Last time: Summary

- Definition of AI?
- Turing Test?
- Intelligent Agents:
- Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through its effectors to maximize progress towards its goals.
- PAGE (Percepts, Actions, Goals, Environment)
- Described as a Perception (sequence) to Action Mapping: $f: \mathcal{P}^{*} \rightarrow \mathcal{A}$
- Using look-up-table, closed form, etc.
- Agent Types: Reflex, state-based, goal-based, utility-based
- Rational Action: The action that maximizes the expected value of the performance measure given the percept sequence to date

Outline: Problem solving and search

- Introduction to Problem Solving
- Complexity
- Uninformed search
- Problem formulation
- Search strategies: depth-first, breadth-first
- Informed search
- Search strategies: best-first, A*
- Heuristic functions

Example: Measuring problem!

- Problem: Using these three buckets, measure 7 liters of water.

Example: Measuring problem!

```
- (one possible) Solution:
\begin{tabular}{llll}
\begin{tabular}{lll}
\(a\) & \(b\) & \(c\) \\
0 & 0 & 0
\end{tabular} & \\
& start
\end{tabular}
```


Example: Measuring problem!

- (one possible) Solution:

a

b

Example: Measuring problem!

\section*{- (one possible) Solution:

Example: Measuring problem!

\section*{- (one possible) Solution:
 | l | b | c | |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | |
| | start | | |
| 3 | 0 | 0 | |
| 0 | 0 | 3 | |
| 3 | 0 | 3 | |
| | | | |}

a

Example: Measuring problem!

- (one possible) Solution:

l	b	c	
0	0	0	
	start		
3	0	0	
0	0	3	
3	0	3	
0	0	6	

a

Example: Measuring problem!

- (one possible) Solution:

a	b	c	
0	0	0	start
3	0	0	
0	0	3	
3	0	3	
0	0	6	
3	0	6	

a

Example: Measuring problem!

- (one possible) Solution:

a

Example: Measuring problem!

- (one possible) Solution:

y	b	c	
0	0	0	start
3	0	0	
0	0	3	
3	0	3	
0	0	6	
3	0	6	
0	3	6	
3	3	6	

a

b

Example: Measuring problem!

- (one possible) Solution:

a	b	c	
0	0	0	
3	0	0	
0	0	3	
3	0	3	
0	0	6	
3	0	6	
0	3	6	
3	3	6	
1	5	6	

a

b

Example: Measuring problem!

Example: Measuring problem!

- Another Solution:

a

Example: Measuring problem!

- Another Solution:

a	b	c
0	0	0
0	5	0
3	2	0

Example: Measuring problem!

- Another Solution:			
a	b	c	
0	0	0	start
0	5	0	
3	2	0	
3	0	2	

a

Example: Measuring problem!

- Another Solution:

a	b	c
0	0	0
0	5	0
3	2	0
3	0	2
3	5	2

a

Example: Measuring problem!

- Another Solution:

a	b	c	
0	0	0	start
0	5	0	
3	2	0	
3	0	2	
3	5	2	
3	0	7	goal

a

Which solution do we prefer?

Solution 1:				- Solution 2:				
a	b	c			a	b	c	
0	0	0	start		0	0	0	start
3	0	0			0	5	0	
0	0	3			3	2	0	
3	0	3			3	0	2	
0	0	6			3	5	2	
3	0	6			3	0	7	goal
0	3	6						
3	3	6						
1	5	6						
0	5	7	goal					

Problem-Solving Agent

```
function Simple-PROBLEM-SOLVING-AGENT \((p)\) returns an action
    inputs: \(p\), a percept
    static: \(s\), an action sequence, initially empty
            state, some description of the current world state
            \(g\), a goal, initially null
            problem, a problem formulation
    state \(\leftarrow\) UPDATE-STATE \((\) state,\(p)\)
    if \(s\) is empty then
        \(g \leftarrow\) FORMULATE-GOAL(state)
        problem \(\leftarrow\) FORMULATE-PROBLEM \((\) state, g)
        \(s \leftarrow\) SEARCH ( problem)
    action \(\leftarrow\) RECOMMENDATION \((s\), state \()\)
    \(s \leftarrow \operatorname{REMAINDER}(s\), state \()\)
    return action.
```

Note: This is offline problem-solving. Online problem-solving involves acting w/o complete knowledge of the problem and environment

Example: Buckets

- Measure 7 liters of water using a 3 liter, a 5 liter, and a 9 liter bucket.
- Formulate goal: Have 7 liters of water in 9 -liter bucket
- Formulate problem:
- States: amount of water in the buckets
- Operators: Fill bucket from source, empty bucket
- Find solution: sequence of operators that bring you from current state to the goal state

Remember (lecture 2): Environment types

Environment	Accessible	Deterministic	Episodic	Static	Discrete
Operating System	Yes	Yes	No	No	Yes
Virtual Reality	Yes	Yes	Yes/No	No	Yes/No
Office Environment	No	No	No	No	No
Mars	No	Semi	No	Semi	No

The environment types largely determine the agent design.

Problem types

- Single-state problem: deterministic, accessible

Agent knows everything about world, thus can
calculate optimal action sequence to reach goal state.

- Multiple-state problem: deterministic, inaccessible

Agent must reason about sequences of actions and
states assumed while working towards goal state.

- Contingency problem: nondeterministic, inaccessible
- Must use sensors during execution
- Solution is a tree or policy
- Often interleave search and execution
- Exploration problem: unknown state space

Discover and learn about environment while taking actions.

Example: Vacuum world

Simplified world: 2 locations, each may or not contain dirt, each may or not contain vacuuming agent.
Goal of agent: clean up the dirt.
Single-state, start in \#5. Solution??
Multiple-state, start in $\{1,2,3,4,5,6,7,8\}{ }^{1}$ 国 e.g., Right goes to $\{2,4,6,8\}$. Solution??

Contingency, start in \#5 Murphy's Law: Suck can dirty a clean carpet
Local sensing: dirt, location only. Solution??

Example: Romania

- In Romania, on vacation. Currently in Arad.
- Flight leaves tomorrow from Bucharest.
- Formulate goal:
> be in Bucharest
- Formulate problem:
> states: various cities
> operators: drive between cities
- Find solution:
> sequence of cities, such that total driving distance is minimized.

Example: Traveling from Arad To Bucharest

Problem formulation

A problem is defined by four items:
initial state e.g., "at Arad"
operators (or successor function $S(x)$)
e.g., Arad \rightarrow Zerind \quad Arad \rightarrow Sibiu etc.
goal test, can be
explicit, e.g., $x=$ "at Bucharest"
implicit, e.g., NoDirt(x)
path cost (additive)
e.g., sum of distances, number of operators executed, etc.

A solution is a sequence of operators
leading from the initial state to a goal state

Selecting a state space

- Real world is absurdly complex; some abstraction is necessary to allow us to reason on it...
- Selecting the correct abstraction and resulting state space is a difficult problem!
- Abstract states \Leftrightarrow real-world states
- Abstract operators \Leftrightarrow sequences or real-world actions (e.g., going from city i to city j costs Lij \Leftrightarrow actually drive from city i to j)
- Abstract solution \Leftrightarrow set of real actions to take in the real world such as to solve problem

Example: 8-puzzle

5	4		1	2	3
6	1	8	8		4
7	3	2	7	6	5
start state			goal state		

- State:
- Operators:
- Goal test:
- Path cost:

Example: 8-puzzle

start state

goal state

- State: integer location of tiles (ignore intermediate locations)
- Operators: moving blank left, right, up, down (ignore jamming)
- Goal test: does state match goal state?
- Path cost: 1 per move

Example: 8-puzzle

5	4	
6	1	8
7	3	2
start state		

1	2	3
8		4
8		4
7	6	5
goal state		

- Why search algorithms?
- 8-puzzle has 362,800 states
- 15-puzzle has $10^{\wedge} 12$ states
- 24-puzzle has 10^25 states

So, we need a principled way to look for a solution in these huge search spaces...

Back to Vacuum World

states??
operators??
goal test??
path cost??

Back to Vacuum World

states??: integer dirt and robot locations (ignore dirt amounts) operators??: Left, Right, Suck
goal test??: no dirt
path cost??: 1 per operator

Example: Robotic Assembly

states??: real-valued coordinates of
robot joint angles
parts of the object to be assembled
operators??: continuous motions of robot joints goal test??: complete assembly with no robot included!
path cost??: time to execute

Real-life example: VLSI Layout

- Given schematic diagram comprising components (chips, resistors, capacitors, etc) and interconnections (wires), find optimal way to place components on a printed circuit board, under the constraint that only a small number of wire layers are available (and wires on a given layer cannot cross!)
- "optimal way"??
> minimize surface area
$>$ minimize number of signal layers
$>$ minimize number of vias (connections from one layer to another)
$>$ minimize length of some signal lines (e.g., clock line)
$>$ distribute heat throughout board
$>$ etc.

Protel's hierarchical schematic design features let you take a "bottom up" or "top down" approach, depending on your preferred methodology. Protel can automatically generate sub-sheets based on higher-level sheet symbols, or create sheet symbols based on existing sheets.

Dixplep
FF Camparentz
F Skinem
F Coppst
For Ted
5 Wie Fiere

Γ Asis Constesint

- X 150 Y 39

Protel 99 SE's unique 3D visualization feature lets you see your finished board before it leaves your desktop. Sophisticated 3D modeling and extrusion techniques render your board in stunning 3D without the need for additional height information. Rotate and zoom to examine every aspect of your board.

Search algorithms

Basic idea:
offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure initialize the search tree using the initial state problem

loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree
end

Last time: Problem-Solving

- Problem solving:
- Goal formulation
- Problem formulation (states, operators)
- Search for solution
- Problem formulation:
- Initial state
- ?
- ?
- ?
- Problem types:
- single state: accessible and deterministic environment
- multiple state: ?
- contingency: ?
- exploration: ?

Last time: Problem-Solving

- Problem solving:
- Goal formulation
- Problem formulation (states, operators)
- Search for solution
- Problem formulation:
- Initial state
- Operators
- Goal test
- Path cost
- Problem types:
- single state: accessible and deterministic environment
- multiple state: ?
- contingency: ?
- exploration: ?

Last time: Problem-Solving

- Problem solving:
- Goal formulation
- Problem formulation (states, operators)
- Search for solution
- Problem formulation:
- Initial state
- Operators
- Goal test
- Path cost
- Problem types:
- single state: accessible and deterministic environment
- multiple state:
- contingency: inaccessible and deterministic environment
- exploration: unknown state-space

Last time: Finding a solution

Solution: is ???
Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure initialize the search tree using the initial state problem loop do
if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution else expand the node and add resulting nodes to the search tree
end

Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state.

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding).

Function General-Search(problem, strategy) returns a solution, or failure initialize the search tree using the initial state problem

loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution else expand the node and add resulting nodes to the search tree
end
Strategy: The search strategy is determined by ???

Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure initialize the search tree using the initial state problem

loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution else expand the node and add resulting nodes to the search tree
end
Strategy: The search strategy is determined by the order in which the nodes are expanded.

Example: Traveling from Arad To Bucharest

From problem space to search tree

- Some material in this and following slides is from http://www.cs.kuleuven.ac.be/~dannyd/FAI/ check it out!

Associated loop-free search tree

Paths in search trees

General search example

General search example

General search example

General search example

Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure nodes \leftarrow make-queue(make-node(initial-state[problem]))
loop do
if nodes is empty then return failure node \leftarrow Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node nodes \leftarrow Queuing-Fn(nodes, Expand(node, Operators[problem])) end

Queuing-Fn(queue, elements) is a queuing function that inserts a set of elements into the queue and determines the order of node expansion. Varieties of the queuing function produce varieties of the search algorithm.

Encapsulating state information in nodes

A state is a (representation of) a physical configuration A node is a data structure constituting part of a search tree includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the Operators (or SuccessorFn) of the problem to create the corresponding states.

Evaluation of search strategies

- A search strategy is defined by picking the order of node expansion.
- Search algorithms are commonly evaluated according to the following four criteria:
- Completeness: does it always find a solution if one exists?
- Time complexity: how long does it take as function of num. of nodes?
- Space complexity: how much memory does it require?
- Optimality: does it guarantee the least-cost solution?
- Time and space complexity are measured in terms of:
- b - max branching factor of the search tree
- d - depth of the least-cost solution
- m - max depth of the search tree (may be infinity)

Complexity

- Why worry about complexity of algorithms?
> because a problem may be solvable in principle but may take too long to solve in practice
- How can we evaluate the complexity of algorithms?
> through asymptotic analysis, i.e., estimate time (or number of operations) necessary to solve an instance of size n of a problem when n tends towards infinity
> See AIMA, Appendix A.

Complexity example: Traveling Salesman Problem

- There are n cities, with a road of length L_{ij} joining city i to city j.
- The salesman wishes to find a way to visit all cities that is optimal in two ways: each city is visited only once, and the total route is as short as possible.

- This is a hard problem: the only known algorithms (so far) to solve it have exponential complexity, that is, the number of operations required to solve it grows as $\exp (n)$ for n cities.

Why is exponential complexity "hard"?

It means that the number of operations necessary to compute the exact solution of the problem grows exponentially with the size of the problem (here, the number of cities).

- $\exp (1)$
$=2.72$
- $\exp (10)$
- $\exp (100)$
- $\exp (500)$
- $\exp (250,000)$
- Fastest computer
$=2.2010^{4} \quad$ (daily salesman trip)
$=2.6910^{43} \quad$ (monthly salesman planning)
$=1.4010^{217} \quad$ (music band worldwide tour)
$=10^{108,573}$ (fedex, postal services)
$=10^{12}$ operations/second

So...

In general, exponential-complexity problems cannot be solved for any but the smallest instances!

Complexity

- Polynomial-time (P) problems: we can find algorithms that will solve them in a time (=number of operations) that grows polynomially with the size of the input.
$>$ for example: sort n numbers into increasing order: poor algorithms have $n^{\wedge} 2$ complexity, better ones have $n \log (n)$ complexity.
- Since we did not state what the order of the polynomial is, it could be very large! Are there algorithms that require more than polynomial time?
- Yes (until proof of the contrary); for some algorithms, we do not know of any polynomial-time algorithm to solve them. These are referred to as nondeterministic-polynomial-time (NP) algorithms.
> for example: traveling salesman problem.
- In particular, exponential-time algorithms are believed to be NP.

Note on NP-hard problems

- The formal definition of NP problems is:

A problem is nondeterministic polynomial if there exists some algorithm that can guess a solution and then verify whether or not the guess is correct in polynomial time.
(one can also state this as these problems being solvable in polynomial time on a nondeterministic Turing machine.)

In practice, until proof of the contrary, this means that known algorithms that run on known computer architectures will take more than polynomial time to solve the problem.

Complexity: O() and O() measures (Landau symbols)

- How can we represent the complexity of an algorithm?
- Given: Problem input (or instance) size: n Number of operations to solve problem: $f(n)$
- If, for a given function $g(n)$, we have:

$$
\exists k \in \Re, \exists n_{0} \in \mathrm{~N}, \forall n \in \mathrm{~N}, n \geq n_{0}, f(n) \leq k g(n)
$$

then $\quad f \in O(g)$
f is dominated by g

- If, for a given function $g(n)$, we have:

$$
\forall k \in \mathfrak{R}, \exists n_{0} \in \mathrm{~N}, \forall n \in \mathrm{~N}, n \geq n_{0}, f(n) \leq \operatorname{kg}(n)
$$

then $\quad f \in o(g)$
f is negligible compared to g

Landau symbols

$$
\begin{aligned}
& f \in O(g) \Leftrightarrow \exists k, f(n) \underset{n \rightarrow \infty}{\leq} k g(n) \Leftrightarrow \frac{f}{g} \text { is bounded } \\
& f \in o(g) \Leftrightarrow \forall k, f(n) \underset{n \rightarrow \infty}{\leq} k g(n) \Leftrightarrow \frac{f(n)}{g(n)} \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

Examples, properties

- $f(n)=n, g(n)=n^{\wedge} 2$:

$$
\begin{aligned}
& n \text { is } o\left(n^{\wedge} 2\right), \text { because } n / n^{\wedge} 2=1 / n->0 \text { as } n->\text { infinity } \\
& \text { similarly, } \\
& \\
& l o g(n) \text { is } o(n) \\
& n^{\wedge} C \text { is } o(\exp (n)) \text { for any } C
\end{aligned}
$$

- if f is $O(g)$, then for any $K, K . f$ is also $O(g)$; idem for $o()$
- if f is $O(h)$ and g is $O(h)$, then for any K, L: K.f + L.g is $O(h)$ idem for $o()$
- if f is $O(g)$ and g is $O(h)$, then f is $O(h)$
- if f is $O(g)$ and g is $o(h)$, then f is $o(h)$
- if f is $O(g)$ and g is $O(h)$, then f is $o(h)$

Polynomial-time hierarchy

- From Handbook of Brain Theory \& Neural Networks (Arbib, ed.; MIT Press 1995).

$A C^{0}$: can be solved using gates of constant depth
NC ${ }^{1}$: can be solved in logarithmic depth using 2 -input gates
NC: can be solved by small, fast parallel computer
P : can be solved in polynomial time
P-complete: hardest problems in P ; if one of them can be proven to be $N C$, then $P=N C$
NP: nondeterministic-polynomial algorithms
NP-complete: hardest NP problems; if one of them can be proven to be

$$
P \text {, then } N P=P
$$

PH : polynomial-time hierarchy

Complexity and the human brain

- Are computers close to human brain power?
- Current computer chip (CPU):
- $10^{\wedge} 3$ inputs (pins)
- 10^7 processing elements (gates)
- 2 inputs per processing element (fan-in = 2)

- processing elements compute boolean logic (OR, AND, NOT, etc)
- Typical human brain:
- $10^{\wedge} 7$ inputs (sensors)
- $10^{\wedge} 10$ processing elements (neurons)
- fan-in $=10^{\wedge} 3$
- processing elements compute complicated functions

Still a lot of improvement needed for computers; but computer clusters come close!

Remember: Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure nodes \leftarrow make-queue(make-node(initial-state[problem])) loop do
if nodes is empty then return failure node \leftarrow Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node nodes \leftarrow Queuing-Fn(nodes, Expand(node, Operators[problem])) end

Queuing-Fn(queue, elements) is a queuing function that inserts a set of elements into the queue and determines the order of node expansion. Varieties of the queuing function produce varieties of the search algorithm.

Encapsulating state information in nodes

A state is a (representation of) a physical configuration A node is a data structure constituting part of a search tree includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the Operators (or SuccessorFn) of the problem to create the corresponding states.

Evaluation of search strategies

- A search strategy is defined by picking the order of node expansion.
- Search algorithms are commonly evaluated according to the following four criteria:
- Completeness: does it always find a solution if one exists?
- Time complexity: how long does it take as function of num. of nodes?
- Space complexity: how much memory does it require?
- Optimality: does it guarantee the least-cost solution?
- Time and space complexity are measured in terms of:
- b - max branching factor of the search tree
- d - depth of the least-cost solution
- m - max depth of the search tree (may be infinity)

Note: Approximations

- In our complexity analysis, we do not take the built-in loopdetection into account.
- The results only 'formally' apply to the variants of our algorithms WITHOUT loop-checks.
- Studying the effect of the loop-checking on the complexity is hard:
- overhead of the checking MAY or MAY NOT be compensated by the reduction of the size of the tree.
- Also: our analysis DOES NOT take the length (space) of representing paths into account !!

Uninformed search strategies

Use only information available in the problem formulation

- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening

Breadth-first search

Expand shallowest unexpanded node
Implementation:
QUEUEINGFN $=$ put successors at end of queue
Arad

Example: Traveling from Arad To Bucharest

CS 561, Lectures 3-5

Breadth-first search

Breadth-first search

Breadth-first search

Properties of breadth-first search

- Completeness:
- Time complexity:
- Space complexity:
- Optimality:
- Search algorithms are commonly evaluated according to the following four criteria:
- Completeness: does it always find a solution if one exists?
- Time complexity: how long does it take as function of num. of nodes?
- Space complexity: how much memory does it require?
- Optimality: does it guarantee the least-cost solution?
- Time and space complexity are measured in terms of:
- $\quad b$ - max branching factor of the search tree
- d-depth of the least-cost solution
- $\quad m$ - max depth of the search tree (may be infinity)

Properties of breadth-first search

- Completeness: Yes, if b is finite
- Time complexity: $1+\mathrm{b}+\mathrm{b}^{2}+\ldots+\mathrm{b}^{\mathrm{d}}=O\left(b^{d}\right)$, i.e., exponential in d
- Space complexity: $O\left(b^{d}\right)$, keeps every node in memory
- Optimality: Yes (assuming cost = 1 per step)

Why keep every node in memory? To avoid revisiting already-visited nodes, which may easily yield infinite loops.

Time complexity of breadth-first search

- If a goal node is found on depth d of the tree, all nodes up till that depth are created.

- Thus: $O\left(b^{d}\right)$

Space complexity of breadth-first

- Largest number of nodes in QUEUE is reached on the level d of the goal node.

- QUEUE contains all
- In General: b^{d}

Uniform-cost search

Expand least-cost unexpanded node
Implementation:
QUEUEINGFN $=$ insert in order of increasing path cost

So, the queueing function keeps the node list sorted by increasing path cost, and we expand the first unexpanded node (hence with smallest path cost)

A refinement of the breadth-first strategy:
Breadth-first $=$ uniform-cost with path cost $=$ node depth

Romania with step costs in km

Straight-line distance	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Uniform-cost search

Uniform-cost search

Uniform-cost search

Properties of uniform-cost search

- Completeness:
- Time complexity:
- Space complexity:
- Optimality:

Yes, if step cost $\geq \varepsilon>0$
\# nodes with $\mathrm{g} \leq$ cost of optimal solution, $\leq O\left(b^{d}\right)$
\# nodes with $\mathrm{g} \leq$ cost of optimal solution, $\leq O\left(b^{d}\right)$
Yes, as long as path cost never decreases
$\mathrm{g}(\mathrm{n})$ is the path cost to node n
Remember:
$\mathrm{b}=$ branching factor
d $=$ depth of least-cost solution

Implementation of uniform-cost search

- Initialize Queue with root node (built from start state)
- Repeat until (Queue is empty) or (first node has Goal state):
- Remove first node from front of Queue
- Expand node (find its children)
- Reject those children that have already been considered, to avoid loops
- Add remaining children to Queue, in a way that keeps entire queue sorted by increasing path cost
- If Goal was reached, return success, otherwise failure

Caution!

- Uniform-cost search not optimal if it is terminated when any node in the queue has goal state.

- Uniform cost returns the path with cost 102 (if any goal node is considered a solution), while there is a path with cost 25.

Note: Loop Detection

- In class, we saw that the search may fail or be sub-optimal if:
- no loop detection: then algorithm runs into infinite cycles
(A -> B -> A -> B -> ...)
- not queueing-up a node that has a state which we have already visited: may yield suboptimal solution
- simply avoiding to go back to our parent: looks promising, but we have not proven that it works

Solution? do not enqueue a node if its state matches the state of any of its parents (assuming path costs>0).
Indeed, if path costs >0, it will always cost us more to consider a node with that state again than it had already cost us the first time.

Is that enough??

Example

From: http://www.csee.umbc.edu/471/current/notes/uninformed-search/

Example Mlustrating Uninformed Search Strategies

Breadth-First Search Solution

From: http://www.csee.umbc.edu/471/current/notes/uninformed-search/

Breadth-First Search

return GENERAL-SEARCH(problem, ENQUEUE-AT-END) exp. node nodes list
(S)
$S \quad(A B C)$
A \{BCDEG\}
B (CDEGG')
C (DEGGG)
D (EGG(G)
$E \quad\left(G G^{\prime} G^{\prime \prime}\right)$
$G \quad\left(G^{\prime} G^{\prime \prime}\right)$
Solution path found is $S A G<-$ this G also has cost 10
Number of nodes expanded (including goal node) $=7$

Uniform-Cost Search Solution

From: http://www.csee.umbc.edu/471/current/notes/uninformed-search/

Uniform-Cost Search

GENERAL-SEARCH(problem, ENQUEUE-BY-PATH-COST) exp. node nodes list
(S)
$\mathrm{S} \quad(\mathrm{A}(1) \mathrm{B}(5) \mathrm{C}(8))$
$A \quad(\mathrm{D}(4) \mathrm{B}(5) \mathrm{C}(8) \mathrm{E}(8) \mathrm{G}(10)$) (NB, we don't return G$)$
$\mathrm{D} \quad(\mathrm{B}(5) \mathrm{C}(8) \mathrm{E}(8) \mathrm{G}(10))$
B $\quad(\mathrm{C}(8) \mathrm{E}(8) \mathrm{G}(9) \mathrm{G}(10))$
$\mathrm{C} \quad\{\mathrm{E}(8) \mathrm{G}(9) \mathrm{G}(10) \mathrm{G}(13)\}$
E (G(9)G(10)G(13))
G ()
Solution path found is SB G $\leqslant-$ this G has cost 9 , not 10
Number of nodes expanded (including goal node) $=7$

Note: Queueing in Uniform-Cost Search

In the previous example, it is wasteful (but not incorrect) to queue-up three nodes with G state, if our goal if to find the least-cost solution:
Although they represent different paths, we know for sure that the one with smallest path cost (9 in the example) will yield a solution with smaller total path cost than the others.

So we can refine the queueing function by:

- queue-up node if

1) its state does not match the state of any parent
and
2) path cost smaller than path cost of any unexpanded node with same state in the queue (and in this case, replace old node with same state by our new node)

Is that it??

A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) returns a solution, or failure open \leftarrow make-queue(make-node(initial-state[problem])) closed \leftarrow [empty] loop do
if open is empty then return failure
currnode \leftarrow Remove-Front(open)
if Goal-Test[problem] applied to State(currnode) then return currnode
children \leftarrow Expand(currnode, Operators[problem])
while children not empty

> [... see next slide ...]
end
closed \leftarrow Insert(closed, currnode)
open \leftarrow Sort-By-PathCost(open)
end

A Clean Robust Algorithm

[... see previous slide ...]
children \leftarrow Expand(currnode, Operators[problem])
while children not empty
child \leftarrow Remove-Front(children)
if no node in open or closed has child's state
open \leftarrow Queuing-Fn(open, child)
else if there exists node in open that has child's state
if PathCost(child) < PathCost(node)
open \leftarrow Delete-Node(open, node)
open \leftarrow Queuing-Fn(open, child)
else if there exists node in closed that has child's state if PathCost(child) < PathCost(node)
closed \leftarrow Delete-Node(closed, node)
open \leftarrow Queuing-Fn(open, child)
end
[... see previous slide ...]
CS 561, Lectures 3-5

Example

Example

\# State Depth Cost Parent

1	S	0	0	-
2	A	1	1	1
3	C	1	5	1

Black = open queue
Grey = closed queue
Insert expanded nodes
Such as to keep open queue sorted

Example

\# State Depth Cost Parent

1	S	0	0	-
2	A	1	1	1
4	B	2	2	2
3	C	1	5	1

Node 2 has 2 successors: one with state B and one with state S .

We have node \#1 in closed with state S; but its path cost 0 is smaller than the path cost obtained by expanding from A to S . So we do not queue-up the successor of node 2 that has state S .

Example

$\#$	State	Depth	Cost	Parent
1	S	0	0	-
2	A	1	1	1
4	B	2	2	2
5	C	3	3	4
6	G	3	102	4
Node 4 has a successor with state C and				
Cost smaller than node \#3 in open that				
Also had state C; so we update open				
To reflect the shortest path.				

Example

\# State Depth Cost Parent

1	S	0	0	-
2	A	1	1	1
4	B	2	2	2
5	C	3	3	4
7	D	4	8	5
6	G	3	102	4

Example

\# State Depth Cost Parent

1	S	0	0	-
2	A	1	1	1
4	B	2	2	2
5	C	3	3	4
7	D	4	8	5
8	E	5	13	7
6	G	3	102	4

Example

\# State Depth Cost Parent

1	S	0	0	-
2	A	1	1	1
4	B	2	2	2
5	C	3	3	4
7	D	4	8	5
8	E	5	13	7
9	F	6	18	8
6	G	3	102	4

Example

$\#$	State	Depth	Cost	Paren
1	S	0	0	-
2	A	1	1	1
4	B	2	2	2
5	C	3	3	4
7	D	4	8	5
8	E	5	13	7
9	F	6	18	8
10	G	7	23	9
6	G	3	102	4

Example

\# State Depth Cost Parent

1	S	0	0	-
2	A	1	1	1
4	B	2	2	2
5	C	3	3	4
7	D	4	8	5
8	E	5	13	7
9	F	6	18	8
10	G	7	23	9
6	G	3	102	4

More examples...

- See the great demos at:
http://pages.pomona.edu/~jbm04747/courses/spring2001/cs151/Search/Strategies.html

Depth-first search

Expand deepest unexpanded node
Implementation:
QUEUEINGFN $=$ insert successors at front of queue

Romania with step costs in km

Straight-line distance	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Depth-first search

Depth-first search

Depth-first search

I.e., depth-first search can perform infinite cyclic excursions Need a finite, non-cyclic search space (or repeated-state checking)

CS 561, Lectures 3-5

Properties of depth-first search

- Completeness:

No, fails in infinite state-space (yes if finite state space)

- Time complexity: $O\left(b^{m}\right)$
- Space complexity: $O(b m)$
- Optimality:

No

Remember:

$$
\begin{aligned}
& b=\text { branching factor } \\
& m=\text { max depth of search tree }
\end{aligned}
$$

Time complexity of depth-first: details

- In the worst case:
- the (only) goal node may be on the right-most branch,

- Time complexity $==b^{\mathbf{m}}+b^{\mathbf{m - 1}}+\ldots+1=b^{\mathbf{m + 1}}-1$
- Thus: $O\left(b^{\mathbf{m}}\right)$

Space complexity of depth-first

- Largest number of nodes in QUEUE is reached in bottom leftmost node.
- Example: $\mathrm{m}=3, \mathrm{~b}=3$:

- QUEUE contains all nodes. Thus: 7.
- In General: ((b-1) * m) + 1
- Order: O(m*b)

Avoiding repeated states

In increasing order of effectiveness and computational overhead:

- do not return to state we come from, i.e., expand function will skip possible successors that are in same state as node's parent.
- do not create paths with cycles, i.e., expand function will skip possible successors that are in same state as any of node's ancestors.
- do not generate any state that was ever generated before, by keeping track (in memory) of every state generated, unless the cost of reaching that state is lower than last time we reached it.

Depth-limited search

Is a depth-first search with depth limit /

Implementation:

Nodes at depth / have no successors.
Complete: if cutoff chosen appropriately then it is guaranteed to find a solution.

Optimal: it does not guarantee to find the least-cost solution

Iterative deepening search

Function Iterative-deepening-Search(problem) returns a solution, or failure for depth $=0$ to ∞ do
result \leftarrow Depth-Limited-Search(problem, depth)
if result succeeds then return result
end
return failure

Combines the best of breadth-first and depth-first search strategies.

- Completeness: Yes,
- Time complexity: $O\left(b^{d}\right)$
- Space complexity: $O(b d)$
- Optimality: Yes, if step cost = 1

Romania with step costs in km

Straight-line distance	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

\square

Arad

Iterative deepening complexity

- Iterative deepening search may seem wasteful because so many states are expanded multiple times.
- In practice, however, the overhead of these multiple expansions is small, because most of the nodes are towards leaves (bottom) of the search tree:
thus, the nodes that are evaluated several times (towards top of tree) are in relatively small number.
- In iterative deepening, nodes at bottom level are expanded once, level above twice, etc. up to root (expanded d+1 times) so total number of expansions is:

$$
(d+1) 1+(d) b+(d-1) b^{\wedge} 2+\ldots+3 b^{\wedge}(d-2)+2 b^{\wedge}(d-1)+1 b^{\wedge} d=O\left(b^{\wedge} d\right)
$$

- In general, iterative deepening is preferred to depth-first or breadth-first when search space large and depth of solution not known.

Bidirectional search

- Both search forward from initial state, and backwards from goal.
- Stop when the two searches meet in the middle.
- Problem: how do we search backwards from goal??
- predecessor of node $\mathrm{n}=$ all nodes that have n as successor
- this may not always be easy to compute!
- if several goal states, apply predecessor function to them just as we applied successor (only works well if goals are explicitly known; may be difficult if goals only characterized implicitly).
- for bidirectional search to work well, there must be an efficient way to check whether a given node belongs to the other search tree.
- select a given search algorithm for each half.

Comparing uninformed search strategies

| Criterion | Breadth- Uniform
 first | Depth-
 cost | Depth-
 first | Iterative | Bidirectional
 leepening |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (if applicable) | | | | | |

- b - max branching factor of the search tree
- d - depth of the least-cost solution
- m - max depth of the state-space (may be infinity)
- / - depth cutoff

Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can be explored using computer algorithms.
- Once problem is formulated in abstract form, complexity analysis helps us picking out best algorithm to solve problem.
- Variety of uninformed search strategies; difference lies in method used to pick node that will be further expanded.
- Iterative deepening search only uses linear space and not much more time than other uniformed search strategies.

