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Last time: Summary

� Definition of AI?
� Turing Test?
� Intelligent Agents:

� Anything that can be viewed as perceiving its environment through 
sensors and acting upon that environment through its effectors to 
maximize progress towards its goals.

� PAGE (Percepts, Actions, Goals, Environment)
� Described as a Perception (sequence) to Action Mapping: f : P* → A
� Using look-up-table, closed form, etc.

� Agent Types: Reflex, state-based, goal-based, utility-based

� Rational Action: The action that maximizes the expected value of 
the performance measure given the percept sequence to date
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Outline: Problem solving and search

� Introduction to Problem Solving

� Complexity

� Uninformed search
� Problem formulation
� Search strategies: depth-first, breadth-first

� Informed search
� Search strategies: best-first, A*
� Heuristic functions
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Example: Measuring problem!

� Problem: Using these three buckets, measure 7 liters of water.

3 l 5 l
9 l
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Example: Measuring problem!

� (one possible) Solution:

a b c
0 0 0 start
3 0 0
0 0 3
3 0 3
0 0 6
3 0 6
0 3 6
3 3 6
1 5 6
0 5 7 goal

3 l 5 l
9 l

a b c
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Example: Measuring problem!

� Another Solution:

a b c
0 0 0 start
0 5 0
0 0 3
3 0 3
0 0 6
3 0 6
0 3 6
3 3 6
1 5 6
0 5 7 goal

3 l 5 l
9 l

a b c
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Example: Measuring problem!

� Another Solution:

a b c
0 0 0 start
0 5 0
3 2 0
0 0 3
3 0 3
0 0 6
3 0 6
0 3 6
3 3 6
1 5 6
0 5 7 goal

3 l 5 l
9 l

a b c
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Example: Measuring problem!

� Another Solution:

a b c
0 0 0 start
0 5 0
3 2 0
3 0 2
3 0 3
0 0 6
3 0 6
0 3 6
3 3 6
1 5 6
0 5 7 goal

3 l 5 l
9 l

a b c
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Example: Measuring problem!

� Another Solution:

a b c
0 0 0 start
0 5 0
3 2 0
3 0 2
3 5 2
3 0 7 goal
3 0 6
0 3 6
3 3 6
1 5 6
0 5 7 goal

3 l 5 l
9 l

a b c
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Which solution do we prefer?

� Solution 1:

a b c
0 0 0 start
3 0 0
0 0 3
3 0 3
0 0 6
3 0 6
0 3 6
3 3 6
1 5 6
0 5 7 goal

� Solution 2:

a b c
0 0 0 start
0 5 0
3 2 0
3 0 2
3 5 2
3 0 7 goal
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Problem-Solving Agent

Note: This is offline problem-solving.  Online problem-solving involves 
acting w/o complete knowledge of the problem and environment

tion
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Example: Buckets

� Measure 7 liters of water using a 3 liter, a 5 liter, and a 9 liter 
bucket.

� Formulate goal: Have 7 liters of water in 9-liter bucket

� Formulate problem:
� States: amount of water in the buckets
� Operators: Fill bucket from source, empty bucket

� Find solution: sequence of operators that bring you from 
current state to the goal state
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Remember (lecture 2): Environment types

NoSemiNoSemiNoMars

NoNoNoNoNoOffice 
Environment

Yes/NoNoYes/NoYesYesVirtual Reality

YesNoNoYesYesOperating 
System

DiscreteStaticEpisodicDeterministicAccessibleEnvironment

The environment types largely determine the agent design.
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Problem types

� Single-state problem: deterministic, accessible
Agent knows everything about world, thus can
calculate optimal action sequence to reach goal state.

� Multiple-state problem: deterministic, inaccessible
Agent must reason about sequences of actions and
states assumed while working towards goal state.

� Contingency problem: nondeterministic, inaccessible
� Must use sensors during execution
� Solution is a tree or policy
� Often interleave search and execution

� Exploration problem: unknown state space
Discover and learn about environment while taking actions.
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Example: Vacuum world

Simplified world: 2 locations, each may or not contain dirt,
each may or not contain vacuuming agent.

Goal of agent: clean up the dirt.
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Example: Romania

� In Romania, on vacation. Currently in Arad.
� Flight leaves tomorrow from Bucharest.

� Formulate goal:
� be in Bucharest

� Formulate problem:
� states: various cities
� operators: drive between cities

� Find solution:
� sequence of cities, such that total driving distance is minimized.
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Example: Traveling from Arad To Bucharest
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Problem formulation
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Selecting a state space

� Real world is absurdly complex; some abstraction is necessary to
allow us to reason on it�

� Selecting the correct abstraction and resulting state space is a
difficult problem!

� Abstract states � real-world states

� Abstract operators � sequences or real-world actions
(e.g., going from city i to city j costs Lij � actually drive from city i to j)

� Abstract solution � set of real actions to take in the
real world such as to solve problem
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Example: 8-puzzle

� State: 
� Operators:
� Goal test:
� Path cost:

start state goal state
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Example: 8-puzzle

� State: integer location of tiles (ignore intermediate locations)
� Operators: moving blank left, right, up, down (ignore jamming)
� Goal test: does state match goal state?
� Path cost: 1 per move

start state goal state
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Example: 8-puzzle

start state goal state

� Why search algorithms?
� 8-puzzle has 362,800 states
� 15-puzzle has 10^12 states
� 24-puzzle has 10^25 states

So, we need a principled way to look for a solution in these huge 
search spaces�
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Back to Vacuum World
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Back to Vacuum World
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Example: Robotic Assembly
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Real-life example: VLSI Layout

� Given schematic diagram comprising components (chips, resistors,
capacitors, etc) and interconnections (wires), find optimal way to 
place components on a printed circuit board, under the constraint 
that only a small number of wire layers are available (and wires on 
a given layer cannot cross!)

� �optimal way�??

� minimize surface area
� minimize number of signal layers
� minimize number of vias (connections from one layer to another)
� minimize length of some signal lines (e.g., clock line)
� distribute heat throughout board
� etc.
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Search algorithms

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Basic idea:

offline, systematic exploration of simulated state-space by 
generating successors of explored states (expanding)



CS 561,  Lectures 3-5 41

Last time: Problem-Solving

� Problem solving:
� Goal formulation 
� Problem formulation (states, operators) 
� Search for solution

� Problem formulation:
� Initial state
� ?
� ?
� ?

� Problem types:
� single state: accessible and deterministic environment
� multiple state: ?
� contingency: ?
� exploration: ?
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Last time: Problem-Solving

� Problem solving:
� Goal formulation 
� Problem formulation (states, operators) 
� Search for solution

� Problem formulation:
� Initial state
� Operators
� Goal test
� Path cost

� Problem types:
� single state: accessible and deterministic environment
� multiple state: ?
� contingency: ?
� exploration: ?
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Last time: Problem-Solving

� Problem solving:
� Goal formulation 
� Problem formulation (states, operators) 
� Search for solution

� Problem formulation:
� Initial state
� Operators
� Goal test
� Path cost

� Problem types:
� single state: accessible and deterministic environment
� multiple state: inaccessible and deterministic environment
� contingency: inaccessible and nondeterministic environment
� exploration: unknown state-space
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Last time: Finding a solution

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by 
generating successors of explored states (expanding)
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Last time: Finding a solution

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Solution: is a sequence of operators that bring you from current state to the 
goal state.

Basic idea: offline, systematic exploration of simulated state-space by 
generating successors of explored states (expanding).

Strategy: The search strategy is determined by ???
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Last time: Finding a solution

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Solution: is a sequence of operators that bring you from current state to the 
goal state

Basic idea: offline, systematic exploration of simulated state-space by 
generating successors of explored states (expanding)

Strategy: The search strategy is determined by the order in which the nodes 
are expanded.
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Example: Traveling from Arad To Bucharest
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From problem space to search tree 

� Some material in this and following slides is from
http://www.cs.kuleuven.ac.be/~dannyd/FAI/ check it out!
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Paths in search trees
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General search example
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General search example
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General search example
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General search example
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Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure
nodes � make-queue(make-node(initial-state[problem]))
loop do

if nodes is empty then return failure
node � Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node
nodes � Queuing-Fn(nodes, Expand(node, Operators[problem]))

end

Queuing-Fn(queue, elements) is a queuing function that inserts a set 
of elements into the queue and determines the order of node expansion.  
Varieties of the queuing function produce varieties of the search algorithm.
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Encapsulating state information in nodes
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Evaluation of search strategies

� A search strategy is defined by picking the order of node expansion.

� Search algorithms are commonly evaluated according to the following 
four criteria:
� Completeness: does it always find a solution if one exists?
� Time complexity: how long does it take as function of num. of nodes?
� Space complexity: how much memory does it require?
� Optimality: does it guarantee the least-cost solution?

� Time and space complexity are measured in terms of:
� b � max branching factor of the search tree
� d � depth of the least-cost solution
� m � max depth of the search tree (may be infinity)
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Complexity

� Why worry about complexity of algorithms?

� because a problem may be solvable in principle but may take too 
long to solve in practice

� How can we evaluate the complexity of algorithms?

� through asymptotic analysis, i.e., estimate time (or number of 
operations) necessary to solve an instance of size n of a problem 
when n tends towards infinity

� See AIMA, Appendix A.
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Complexity example: Traveling Salesman Problem

� There are n cities, with a road of length Lij joining 
city i to city j. 

� The salesman wishes to find a way to visit all cities that 
is optimal in two ways: each city is visited only once, and 
the total route is as short as possible.    

� This is a hard problem: the only known algorithms (so far) to solve it 
have exponential complexity, that is, the number of operations 
required to solve it grows as exp(n) for n cities.
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Why is exponential complexity �hard�?

It means that the number of operations necessary to compute the 
exact solution of the problem grows exponentially with the size of 
the problem (here, the number of cities).

� exp(1) = 2.72

� exp(10) = 2.20 104 (daily salesman trip)

� exp(100) = 2.69 1043 (monthly salesman planning)

� exp(500) = 1.40 10217 (music band worldwide tour)

� exp(250,000) = 10108,573 (fedex, postal services)

� Fastest computer = 1012 operations/second
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So�

In general, exponential-complexity problems cannot be 
solved for any but the smallest instances!
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Complexity

� Polynomial-time (P) problems: we can find algorithms that will solve them 
in a time (=number of operations) that grows polynomially with the size of 
the input.

� for example: sort n numbers into increasing order: poor algorithms have 
n^2 complexity, better ones have n log(n) complexity.

� Since we did not state what the order of the polynomial is, it could be very 
large!  Are there algorithms that require more than polynomial time?

� Yes (until proof of the contrary); for some algorithms, we do not know of 
any polynomial-time algorithm to solve them.  These are referred to as 
nondeterministic-polynomial-time (NP) algorithms.

� for example: traveling salesman problem.

� In particular, exponential-time algorithms are believed to be NP.
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Note on NP-hard problems

� The formal definition of NP problems is:

A problem is nondeterministic polynomial if there exists some 
algorithm that can guess a solution and then verify whether or not 
the guess is correct in polynomial time.

(one can also state this as these problems being solvable in polynomial 
time on a nondeterministic Turing machine.)

In practice, until proof of the contrary, this means that known 
algorithms that run on known computer architectures will take more 
than polynomial time to solve the problem.
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Complexity: O() and o() measures (Landau symbols)

� How can we represent the complexity of an algorithm?

� Given: Problem input (or instance) size: n
Number of operations to solve problem: f(n)

� If, for a given function g(n), we have:

then f is dominated by g

� If, for a given function g(n), we have:

then f is negligible compared to g
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Landau symbols
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Examples, properties

� f(n)=n, g(n)=n^2:
n is o(n^2), because n/n^2 = 1/n -> 0 as n ->infinity
similarly, log(n) is o(n)

n^C is o(exp(n)) for any C

� if f is O(g), then for any K, K.f is also O(g); idem for o()
� if f is O(h) and g is O(h), then for any K, L: K.f + L.g is O(h)

idem for o()

� if f is O(g) and g is O(h), then f is O(h)
� if f is O(g) and g is o(h), then f is o(h)
� if f is o(g) and g is O(h), then f is o(h)
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Polynomial-time hierarchy

� From Handbook of Brain
Theory & Neural Networks
(Arbib, ed.;
MIT Press 1995).

AC0 NC1 NC P complete NP complete

P
NP

PH

AC0: can be solved using gates of constant depth
NC1: can be solved in logarithmic depth using 2-input gates
NC: can be solved  by small, fast parallel computer
P: can be solved in polynomial time
P-complete: hardest problems in P; if one of them can be proven to be

NC, then P = NC
NP: nondeterministic-polynomial algorithms
NP-complete: hardest NP problems; if one of them can be proven to be

P, then NP = P
PH: polynomial-time hierarchy
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Complexity and the human brain

� Are computers close to human brain power?

� Current computer chip (CPU):
� 10^3 inputs (pins)
� 10^7 processing elements (gates)
� 2 inputs per processing element (fan-in = 2)
� processing elements compute boolean logic (OR, AND, NOT, etc)

� Typical human brain:
� 10^7 inputs (sensors)
� 10^10 processing elements (neurons)
� fan-in = 10^3
� processing elements compute complicated

functions
Still a lot of improvement needed for computers; but
computer clusters come close!
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Remember: Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure
nodes � make-queue(make-node(initial-state[problem]))
loop do

if nodes is empty then return failure
node � Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node
nodes � Queuing-Fn(nodes, Expand(node, Operators[problem]))

end

Queuing-Fn(queue, elements) is a queuing function that inserts a set 
of elements into the queue and determines the order of node expansion.  
Varieties of the queuing function produce varieties of the search algorithm.



CS 561,  Lectures 3-5 69

Encapsulating state information in nodes
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Evaluation of search strategies

� A search strategy is defined by picking the order of node expansion.

� Search algorithms are commonly evaluated according to the following 
four criteria:
� Completeness: does it always find a solution if one exists?
� Time complexity: how long does it take as function of num. of nodes?
� Space complexity: how much memory does it require?
� Optimality: does it guarantee the least-cost solution?

� Time and space complexity are measured in terms of:
� b � max branching factor of the search tree
� d � depth of the least-cost solution
� m � max depth of the search tree (may be infinity)
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Note: Approximations

� In our complexity analysis, we do not take the built-in loop-
detection into account.

� The results only �formally� apply to the variants of our algorithms 
WITHOUT loop-checks.

� Studying the effect of the loop-checking on the complexity is 
hard: 
� overhead of the checking MAY or MAY NOT be compensated by the 

reduction of the size of the tree.

� Also: our analysis DOES NOT take the length (space) of 
representing paths into account !!

http://www.cs.kuleuven.ac.be/~dannyd/FAI/
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Uninformed search strategies

Use only information available in the problem formulation

� Breadth-first
� Uniform-cost
� Depth-first
� Depth-limited
� Iterative deepening
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Breadth-first search
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Example: Traveling from Arad To Bucharest
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Breadth-first search
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Breadth-first search
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Breadth-first search
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Properties of breadth-first search

� Completeness:
� Time complexity:
� Space complexity:
� Optimality:

� Search algorithms are commonly evaluated according to the following four criteria:
� Completeness: does it always find a solution if one exists?
� Time complexity: how long does it take as function of num. of nodes?
� Space complexity: how much memory does it require?
� Optimality: does it guarantee the least-cost solution?

� Time and space complexity are measured in terms of:
� b � max branching factor of the search tree
� d � depth of the least-cost solution
� m � max depth of the search tree (may be infinity)
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Properties of breadth-first search

� Completeness: Yes, if b is finite
� Time complexity: 1+b+b2+�+bd = O(b d), i.e., exponential in d
� Space complexity: O(b d), keeps every node in memory
� Optimality: Yes (assuming cost = 1 per step)

Why keep every node in memory?  To avoid revisiting already-visited 
nodes, which may easily yield infinite loops.



CS 561,  Lectures 3-5 80

Time complexity of breadth-first search

� If a goal node is found on depth d of the tree, all nodes up till that 
depth are created. 

mm
GGbb

dd

� Thus:  O(bd) 
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� QUEUE contains all         and        nodes.  (Thus: 4) .

� In General: bd

Space complexity of breadth-first

� Largest number of nodes in QUEUE is reached on the level d of 
the goal node.

GG
mmbb

dd

GG
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Uniform-cost search

So, the queueing function keeps the node list sorted by increasing 
path cost, and we expand the first unexpanded node (hence with 
smallest path cost) 

A refinement of the breadth-first strategy: 

Breadth-first = uniform-cost with path cost = node depth
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Romania with step costs in km
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Uniform-cost search
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Uniform-cost search
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Uniform-cost search
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Properties of uniform-cost search

� Completeness: Yes, if step cost ≥ ε >0
� Time complexity: # nodes with g ≤ cost of optimal solution, ≤ O(b d)
� Space complexity: # nodes with g ≤ cost of optimal solution, ≤ O(b d)
� Optimality: Yes, as long as path cost never decreases

g(n) is the path cost to node n
Remember: 

b = branching factor
d = depth of least-cost solution
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Implementation of uniform-cost search

� Initialize Queue with root node (built from start state)

� Repeat until (Queue is empty) or (first node has Goal state):

� Remove first node from front of Queue
� Expand node (find its children)
� Reject those children that have already been considered, to avoid loops
� Add remaining children to Queue, in a way that keeps entire queue 

sorted by increasing path cost

� If Goal was reached, return success, otherwise failure
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Caution!

� Uniform-cost search not optimal if it is terminated when any node 
in the queue has goal state.

GG

100100

55

DD
55

1010

EE
55

1515

FF 55
2020

SS
AA CC

11 55 5511

BB
11

22 � Uniform cost returns 
the path with cost 
102 (if any goal 
node is considered a 
solution), while there 
is a path with cost 
25.
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Note: Loop Detection

� In class, we saw that the search may fail or be sub-optimal if:

- no loop detection: then algorithm runs into infinite cycles
(A -> B -> A -> B -> �)

- not queueing-up a node that has a state which we have
already visited: may yield suboptimal solution

- simply avoiding to go back to our parent: looks promising, 
but we have not proven that it works

Solution?  do not enqueue a node if its state matches the state of any 
of its parents (assuming path costs>0).

Indeed, if path costs > 0, it will always cost us more to consider a 
node with that state again than it had already cost us the first time.

Is that enough??
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Example

G

From: http://www.csee.umbc.edu/471/current/notes/uninformed-search/
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Breadth-First Search Solution

From: http://www.csee.umbc.edu/471/current/notes/uninformed-search/
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Uniform-Cost Search Solution

From: http://www.csee.umbc.edu/471/current/notes/uninformed-search/
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Note: Queueing in Uniform-Cost Search

In the previous example, it is wasteful (but not incorrect) to queue-up 
three nodes with G state, if our goal if to find the least-cost 
solution:

Although they represent different paths, we know for sure that the one 
with smallest path cost (9 in the example) will yield a solution with 
smaller total path cost than the others.

So we can refine the queueing function by:
- queue-up node if

1) its state does not match the state of any parent
and 2) path cost smaller than path cost of any 

unexpanded node with same state in the queue 
(and in this case, replace old node with same 
state by our new node)

Is that it??
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A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) returns a solution, or failure
open � make-queue(make-node(initial-state[problem]))
closed � [empty]
loop do

if open is empty then return failure
currnode � Remove-Front(open)
if Goal-Test[problem] applied to State(currnode) then return currnode
children � Expand(currnode, Operators[problem])
while children not empty

[� see next slide �]
end
closed � Insert(closed, currnode)
open � Sort-By-PathCost(open)

end
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A Clean Robust Algorithm

[� see previous slide �]
children � Expand(currnode, Operators[problem])
while children not empty

child � Remove-Front(children)
if no node in open or closed has child�s state

open � Queuing-Fn(open, child)
else if there exists node in open that has child�s state

if PathCost(child) < PathCost(node)
open � Delete-Node(open, node)
open � Queuing-Fn(open, child)

else if there exists node in closed that has child�s state
if PathCost(child) < PathCost(node)

closed � Delete-Node(closed, node)
open � Queuing-Fn(open, child)

end
[� see previous slide �]
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Example
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11

#      State    Depth    Cost    Parent

1 S 0 0 -
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Example

GG

100100

55

DD
55

EE
55

FF 55

SS
AA CC

11 55

BB
11

11

#      State    Depth    Cost    Parent

1 S 0 0 -
2 A 1 1 1
3 C 1 5 1

Insert expanded nodes
Such as to keep open queue
sorted

Black = open queue
Grey = closed queue
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Example

GG

100100

55

DD
55

EE
55

FF 55

SS
AA CC

11 55

BB
11

11

#      State    Depth    Cost    Parent

1 S 0 0 -
2 A 1 1 1
4 B 2 2 2
3 C 1 5 1

Node 2 has 2 successors: one with state B
and one with state S.

We have node #1 in closed with state S;
but its path cost 0 is smaller than the path
cost obtained by expanding from A to S.
So we do not queue-up the successor of
node 2 that has state S.
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Example

GG

100100

55

DD
55

EE
55

FF 55

SS
AA CC

11 55

BB
11

11

#      State    Depth    Cost    Parent

1 S 0 0 -
2 A 1 1 1
4 B 2 2 2
5 C 3 3 4
6 G 3 102 4

Node 4 has a successor with state C and
Cost smaller than node #3 in open that
Also had state C; so we update open
To reflect the shortest path.
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Example

GG
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11

#      State    Depth    Cost    Parent

1 S 0 0 -
2 A 1 1 1
4 B 2 2 2
5 C 3 3 4
7 D 4 8 5
6 G 3 102 4
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Example

GG

100100

55

DD
55

EE
55

FF 55

SS
AA CC

11 55

BB
11

11

#      State    Depth    Cost    Parent

1 S 0 0 -
2 A 1 1 1
4 B 2 2 2
5 C 3 3 4
7 D 4 8 5
8 E 5 13 7
6 G 3 102 4
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Example

GG

100100
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DD
55
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55

FF 55

SS
AA CC

11 55

BB
11

11

#      State    Depth    Cost    Parent

1 S 0 0 -
2 A 1 1 1
4 B 2 2 2
5 C 3 3 4
7 D 4 8 5
8 E 5 13 7
9 F 6 18 8
6 G 3 102 4
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Example

GG

100100

55
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55
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55

FF 55

SS
AA CC

11 55

BB
11

11

#      State    Depth    Cost    Parent

1 S 0 0 -
2 A 1 1 1
4 B 2 2 2
5 C 3 3 4
7 D 4 8 5
8 E 5 13 7
9 F 6 18 8
10 G 7 23 9
6 G 3 102 4
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Example

GG

100100

55

DD
55

EE
55

FF 55

SS
AA CC

11 55

BB
11

11

#      State    Depth    Cost    Parent

1 S 0 0 -
2 A 1 1 1
4 B 2 2 2
5 C 3 3 4
7 D 4 8 5
8 E 5 13 7
9 F 6 18 8
10 G 7 23 9
6 G 3 102 4

Goal reached
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More examples�

� See the great demos at:

http://pages.pomona.edu/~jbm04747/courses/spring2001/cs151/Search/Strategies.html
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Depth-first search
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Romania with step costs in km
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Depth-first search
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Depth-first search
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Depth-first search



CS 561,  Lectures 3-5 112

Properties of depth-first search

� Completeness: No, fails in infinite state-space (yes if finite 
state space)

� Time complexity: O(b m)
� Space complexity: O(bm)
� Optimality: No

Remember: 

b = branching factor

m = max depth of search tree
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Time complexity of depth-first: details

� In the worst case: 
� the (only) goal node may be on the right-most branch, 

GG

mmbb

� Time complexity  == bm + bm-1 + � + 1 = bm+1 -1
� Thus:  O(bm) b b -- 11
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Space complexity of depth-first

� Largest number of nodes in QUEUE is reached in bottom left-
most node.

� Example: m = 3,  b = 3 :

......

� QUEUE contains all         nodes.  Thus: 7.
� In General:  ((b-1) * m) + 1
� Order:  O(m*b)
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Avoiding repeated states

In increasing order of effectiveness and computational overhead:

� do not return to state we come from, i.e., expand function will skip 
possible successors that are in same state as node�s parent.

� do not create paths with cycles, i.e., expand function will skip 
possible successors that are in same state as any of node�s 
ancestors.

� do not generate any state that was ever generated before, by 
keeping track (in memory) of every state generated, unless the cost 
of reaching that state is lower than last time we reached it.
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Depth-limited search

Is a depth-first search with depth limit l

Implementation: 
Nodes at depth l have no successors.

Complete: if cutoff chosen appropriately then it is guaranteed to find 
a solution.

Optimal: it does not guarantee to find the least-cost solution
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Iterative deepening search

Function Iterative-deepening-Search(problem) returns a solution, or failure
for depth = 0 to ∞ do

result � Depth-Limited-Search(problem, depth)
if result succeeds then return result

end
return failure 

Combines the best of breadth-first and depth-first search strategies.
� Completeness: Yes,
� Time complexity: O(b d)
� Space complexity: O(bd)
� Optimality: Yes, if step cost = 1
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Romania with step costs in km
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Iterative deepening complexity

� Iterative deepening search may seem wasteful because so many states are 
expanded multiple times.

� In practice, however, the overhead of these multiple expansions is small, 
because most of the nodes are towards leaves (bottom) of the search tree:

thus, the nodes that are evaluated several times (towards top
of tree) are in relatively small number.

� In iterative deepening, nodes at bottom level are expanded once, level 
above twice, etc. up to root (expanded d+1 times) so total number of 
expansions is:
(d+1)1 + (d)b + (d-1)b^2 + � + 3b^(d-2) + 2b^(d-1) + 1b^d = O(b^d)

� In general, iterative deepening is preferred to depth-first or breadth-first 
when search space large and depth of solution not known.
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Bidirectional search

� Both search forward from initial state, and backwards from goal.
� Stop when the two searches meet in the middle.

� Problem: how do we search backwards from goal??
� predecessor of node n = all nodes that have n as successor
� this may not always be easy to compute!
� if several goal states, apply predecessor function to them just as we 

applied successor (only works well if goals are explicitly known; may be 
difficult if goals only characterized implicitly).

� for bidirectional search to work well, there must be an efficient way to 
check whether a given node belongs to the other search tree.

� select a given search 
algorithm for each half.

GoalGoalStartStart
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Comparing uninformed search strategies

Criterion Breadth- Uniform Depth- Depth- Iterative Bidirectional
first cost first limited deepening (if applicable)

Time b^d b^d b^m b^l b^d b^(d/2)

Space b^d b^d bm bl bd b^(d/2)

Optimal? Yes Yes No No Yes Yes

Complete? Yes Yes No Yes if l≥d Yes Yes

� b � max branching factor of the search tree
� d � depth of the least-cost solution
� m � max depth of the state-space (may be infinity)
� l � depth cutoff
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Summary

� Problem formulation usually requires abstracting away real-world 
details to define a state space that can be explored using computer 
algorithms.

� Once problem is formulated in abstract form, complexity analysis
helps us picking out best algorithm to solve problem.

� Variety of uninformed search strategies; difference lies in method 
used to pick node that will be further expanded.

� Iterative deepening search only uses linear space and not much 
more time than other uniformed search strategies.


