
CS 561,  Sessions 14-15 1

Knowledge Representation

• Knowledge engineering: principles and pitfalls
• Ontologies
• Examples



CS 561,  Sessions 14-15 2

Knowledge Engineer

• Populates KB with facts and relations

• Must study and understand domain to pick important objects and 
relationships

• Main steps:
Decide what to talk about
Decide on vocabulary of predicates, functions & constants
Encode general knowledge about domain
Encode description of specific problem instance
Pose queries to inference procedure and get answers



CS 561,  Sessions 14-15 3

Knowledge engineering vs. programming

Knowledge Engineering Programming

1. Choosing a logic Choosing programming language
2. Building knowledge base Writing program
3. Implementing proof theory Choosing/writing compiler
4. Inferring new facts Running program

Why knowledge engineering rather than programming?
Less work: just specify objects and relationships known to be true, but 

leave it to the inference engine to figure out how to solve a problem 
using the known facts.



CS 561,  Sessions 14-15 4

Properties of good knowledge bases

• Expressive
• Concise
• Unambiguous
• Context-insensitive
• Effective
• Clear
• Correct
• …

Trade-offs: e.g., sacrifice some correctness if it enhances brevity.



CS 561,  Sessions 14-15 5

Efficiency

• Ideally: Not the knowledge engineer’s problem

The inference procedure should obtain same answers no matter 
how knowledge is implemented.

• In practice:
- use automated optimization
- knowledge engineer should have some understanding of

how inference is done



CS 561,  Sessions 14-15 6

Pitfall: design KB for human readers

• KB should be designed primarily for inference procedure!

• e.g.,VeryLongName predicates:

BearOfVerySmallBrain(Pooh) does not allow inference procedure to 
infer that Pooh is a bear, an animal, or that he has a very small 
brain, …

Rather, use:

Bear(Pooh)
∀ b, Bear(b) � Animal(b)
∀ a, Animal(a) �PhysicalThing(a)
…
[See AIMA pp. 220-221 for full example]



CS 561,  Sessions 14-15 7

Debugging

• In principle, easier than debugging a program,

because we can look at each logic sentence in isolation and tell
whether it is correct.

Example:

∀ x, Animal(x) � ∃∃∃∃ b, BrainOf(x) = b
means 

“there is some object that is the value of the BrainOf function 
applied to an animal”

and can be corrected to mean 
“every animal has a brain”

without looking at other sentences.



CS 561,  Sessions 14-15 8

Ontology

• Collection of concepts and inter-relationships

• Widely used in the database community to “translate” queries and
concepts from one database to another, so that multiple databases 
can be used conjointly (database federation)



CS 561,  Sessions 14-15 9

Ontology 
Example

Kh
an

 &
 M

cL
eo

d,
 2

00
0



CS 561,  Sessions 14-15 10

Towards a general ontology

• Develop good representations for:

- categories
- measures
- composite objects
- time, space and change
- events and processes
- physical objects
- substances
- mental objects and beliefs
- …



CS 561,  Sessions 14-15 11

Representing Categories

• We interact with individual objects, but…
much of reasoning takes place at the level of categories.

• Representing categories in FOL:
- use unary predicates

e.g., Tomato(x)

- reification: turn a predicate or function into an object
e.g., use constant symbol Tomatoes to refer to set of all tomatoes
“x is a tomato” expressed as “x∈ Tomatoes”

• Strong property of reification: can make assertions about reified 
category itself rather than its members

e.g., Population(Humans) = 5e9



CS 561,  Sessions 14-15 12

Categories: inheritance

• Allow to organize and simplify knowledge base

e.g., if all members of category Food are edible
and Fruits is a subclass of Food
and Apples is a subclass of Fruits
then we know (through inheritance) that apples are edible.

• Taxonomy: hierarchy of subclasses

• Because categories are sets, we handle them as such.
e.g., two categories are disjoint if they have no member in common

a disjoint exhaustive decomposition is called a partition
etc…



CS 561,  Sessions 14-15 13

Example: Taxonomy of hand/arm movements

Hand/arm movement

Gestures Unintentional Movements

Manipulative Communicative

Acts Symbols

Mimetic Deictic Referential Modalizing

Quek,1994, 1995.



CS 561,  Sessions 14-15 14

Measures

• Can be represented using units functions
e.g., Length(L1) = Inches(1.5) = Centimeters(3.81)

• Measures can be used to describe objects
e.g., Mass(Tomato12) = Kilograms(0.16)

• Caution: be careful to distinguish between measures and objects
e.g., ∀ b, b∈ DollarBills � CashValue(b) = $(1.00)



CS 561,  Sessions 14-15 15

Composite Objects

• One object can be part of another.

• PartOf relation is transitive and reflexive:
e.g., PartOf(Bucharest, Romania)

PartOf(Romania, EasternEurope)
PartOf(EasternEurope, Europe)

Then we can infer Part Of(Bucharest, Europe)

• Composite object: any object that has parts



CS 561,  Sessions 14-15 16

Composite Objects (cont.)

• Categories of composite objects often characterized by their 
structure, i.e., what the parts are and how they relate.

e.g., ∀ a Biped(a) �
∃ ll, lr, b 
Leg(ll) ∧ Leg(lr) ∧ Body(b) ∧
PartOf(ll, a) ∧ PartOf(lr, a) ∧ PartOf(b, a) ∧
Attached(ll, b) ∧ Attached(lr, b) ∧
ll ≠ lr ∧
∀ x Leg(x) ∧ PartOf(x, a) � (x = ll ∨ x = lr)

• Such description can be used to describe any objects, including 
events. We then talk about schemas and scripts.



CS 561,  Sessions 14-15 17

Events

• Chunks of spatio-temporal universe

e.g., consider the event WorldWarII
it has parts or sub-events: SubEvent(BattleOfBritain, WorldWarII)
it can be a sub-event: SubEvent(WorldWarII, TwentiethCentury)

• Intervals: events that include as sub-events all events occurring in 
a given time period (thus they are temporal sections of the entire 
spatial universe).

• Cf. situation calculus: fact true in particular situation
event calculus: event occurs during particular interval



CS 561,  Sessions 14-15 18

Events (cont.)

• Places: spatial sections of the spatio-temporal universe that extend 
through time

• Use In(x) to denote subevent relation between places; e.g. 
In(NewYork, USA)

• Location function: maps an object to the smallest place that 
contains it:

∀ x,l Location(x) = l ⇔ At(x, l) ∧ ∀ ll At(x, ll) � In(l, ll)



CS 561,  Sessions 14-15 19

Times, Intervals and Actions

• Time intervals can be partitioned between moments (=zero 
duration) and extended intervals:

• Absolute times can then be derived from defining a time scale (e.g., 
seconds since midnight GMT on Jan 1, 1900) and associating points 
on that scale with events. 

• The functions Start and End then pick the earliest and latest 
moments in an interval. The function Duration gives the difference 
between end and start times.

∀ i Interval(i) � Duration(i) = (Time(End(i) – Time(Start(i)))
Time(Start(AD1900)) = Seconds(0)
Time(Start(AD1991)) = Seconds(2871694800)
Time(End(AD1991)) = Seconds(2903230800)
Duration(AD1991) = Seconds(31536000)



CS 561,  Sessions 14-15 20

Times, Intervals and Actions (cont.)

• Then we can define predicates on intervals such as:

∀ i, j Meet(i, j) ⇔ Time(End(i)) = Time(Start(j))
∀ i, j Before(i, j) ⇔ Time(End(i)) < Time(Start(j))
∀ i, j After(j, i) ⇔ Before(i ,j)
∀ i, j During(i, j) ⇔ Time(Start(j)) ≤ Time(Start(i)) ∧

Time(End(j)) ≥ Time(End(i))
∀ i, j Overlap(i, j) ⇔ ∃ k During(k, i) ∧ During(k, j)



CS 561,  Sessions 14-15 21

Objects Revisited

• It is legitimate to describe many objects as events

• We can then use temporal and spatial sub-events to capture 
changing properties of the objects

e.g., 
Poland event
19thCenturyPoland temporal sub-event
CentralPoland spatial sub-event

We call fluents objects that can change across situations.



CS 561,  Sessions 14-15 22

Substances and Objects

• Some objects cannot be divided into distinct parts –
e.g., butter: one butter? no, some butter!

� butter substance (and similarly for temporal substances)
(simple rule for deciding what is a substance: if you cut it in half, you 

should get the same).

How can we represent substances?

- Start with a category
e.g., ∀ x,y   x ∈ Butter ∧ PartOf(y, x) � y ∈ Butter

- Then we can state properties
e.g., ∀ x Butter(x) � MeltingPoint(x, Centigrade(30))



CS 561,  Sessions 14-15 23

Example: Activity Recognition

• Goal: use network of video cameras to monitor human activity

• Applications: surveillance, security, reactive environments

• Research: IRIS at USC



CS 561,  Sessions 14-15 24

Human activity detection

• Nevatia/Medioni/Cohen



CS 561,  Sessions 14-15 25

Low-level processing



CS 561,  Sessions 14-15 26

Spatio-temporal representation



CS 561,  Sessions 14-15 27



CS 561,  Sessions 14-15 28

Modeling Events



CS 561,  Sessions 14-15 29

Modeling Events



CS 561,  Sessions 14-15 30



CS 561,  Sessions 14-15 31

Example 2: towards autonomous vision-based robots

• Goal: develop intelligent robots for operation in unconstrained 
environments

• Subgoal: want the system to be able to answer a question based on 
its visual perception

e.g., “Who is doing what to whom?”

While the robot is observing its environment.



CS 561,  Sessions 14-15 32

Example

• Question: “who is doing what to whom?”

• Answer: “Eric passes, turns around and passes again”



CS 561,  Sessions 14-15 33

Motivation:
Humans

1) Free examination

2) estimate material 
circumstances of family

3) give ages of the people

4) surmise what family has
been doing before arrival
of “unexpected visitor”

5) remember clothes worn by
the people

6) remember position of people
and objects

7) estimate how long the “unexpected
visitor” has been away from family

Yarbus, 1967



CS 561,  Sessions 14-15 34

Minimal subscene

Extract “minimal subscene” (i.e., small number of objects and
actions) that is relevant to present behavior.

Achieve representation for it that is robust and stable against
noise, world motion, and egomotion.



CS 561,  Sessions 14-15 35

General
architecture



CS 561,  Sessions 14-15 36

Example of operation

• Question: “What is John catching?”
• Video clip: John catching a ball

1) Initially: empty task map and task list

2) Question mapped onto a sentence frame
allows agent to fill some entries in the task list:

- concepts specifically mentioned in the question
- related concepts inferred from KB (ontology)

e.g., task list contains:
“John [AS INSTANCE OF] human(face, arm, hand,

leg, foot, torso)” (all derived from “John”) 
“catching, grasping, holding” (derived from “catching”)
“object(small, holdable)” (derived from “what”).



CS 561,  Sessions 14-15 37

More formally: how do we do it?

- Use ontology to describe categories, objects and relationships:
Either with unary predicates, e.g., Human(John),
Or with reified categories, e.g., John ∈ Humans,
And with rules that express relationships or properties,

e.g., ∀ x Human(x) � SinglePiece(x) ∧ Mobile(x) ∧ Deformable(x)

- Use ontology to expand concepts to related concepts:
E.g., parsing question yields “LookFor(catching)”

Assume a category HandActions and a taxonomy defined by
catching ∈ HandActions, grasping ∈ HandActions, etc.

We can expand “LookFor(catching)” to looking for other actions in the 
category where catching belongs through a simple expansion rule:
∀ a,b,c a ∈ c ∧ b ∈ c ∧ LookFor(a) � LookFor(b)



CS 561,  Sessions 14-15 38

More formally: how do we do it?

- Use composite objects to describe structure and parts:

∀ h Human(h) � ∃ f, la, ra, lh, rh, ll, rl, lf, rf, t
Face(f) ∧ Arm(la) ∧ Arm(ra) ∧ Hand(lh) ∧ Hand(rh) ∧

Leg(ll) ∧ Leg(rl) ∧ Foot(lf) ∧ Foot(rf) ∧ Torso(t) ∧
PartOf(f, h) ∧ PartOf(la, h) ∧ PartOf(ra, h) ∧ PartOf(lh, h) ∧

PartOf(rh, h) ∧ PartOf(ll, h) ∧ PartOf(rl, h) ∧ PartOf(lf, h) ∧
PartOf(rf, h) ∧ PartOf(t, h) ∧

Attached(f, t) ∧ Attached(la, b) ∧ Attached(ra, b) ∧ Attached(ll, b) ∧
Attached(rl, t) ∧ Attached(lh, la) ∧ Attached(rh, ra) ∧
Attached(lf, ll) ∧ Attached(rf, rl) ∧ Attached(rh, ra) ∧

la ≠ ra ∧ lh ≠ rh ∧ ll ≠ rl ∧ lf ≠ rf ∧
∀ x Leg(x) ∧ PartOf(x, a) � (x = ll ∨ x = rl) ∧ [etc…]



CS 561,  Sessions 14-15 39



CS 561,  Sessions 14-15 40

Example of operation

3) Task list creates top-down biasing signals onto vision, by associating  
concepts in task list to low-level image features in “what memory”

e.g., “human” => look for strong vertically-oriented features
“catching” => look for some type of motion

In more complex scenarios, not only low-level visual features, but also 
feature interactions, spatial location, and spatial scale and 
resolution may thus be biased top-down.



CS 561,  Sessions 14-15 41

More formally: how do we do it?

- Use measures to quantify low-level visual features and weights:
e.g., describing the color of a face:
∀ f Face(f) �

Red(f) = Fweight(0.8) ∧ Green(f) = Fweight(0.5) ∧ Blue(f) = Fweight(0.5)
[or use predicates similar to those seen for intervals to express ranges of 

feature weights]

e.g., recognizing face by measuring how well it matches a template:
∀ f RMSdistance(f, FaceTemplate) < Score(0.1) � Face(f)

e.g., biasing the visual system to look for face color:
∀ f Face(f) ∧ LookFor(f) � RedWeight = Red(f) ∧ GreenWeight = Green(f) ∧

BlueWeight = Blue(f)
[may eliminate Face(f) if Red(), Green() and Blue() defined for all objects we 

might look for]



CS 561,  Sessions 14-15 42

Example of operation

4) Suppose that the visual system first attends to a bright-red chair in 
the scene.

Going through current task list, agent determines that this object is 
most probably irrelevant (not really “holdable”)

Discard it from further consideration as a
component of the minimal subscene.

Task map and task list remain unaltered.



CS 561,  Sessions 14-15 43

More formally: how do we do it?

- What is the task list, given our formalism?
it’s a question to the KB:  ASK(KB, ∃ x  LookFor(x))

- Is the currently attended and recognized object, o, of interest?
ASK(KB, LookFor(o))

- How could we express that if the currently attended & recognized object 
is being looked for, we should add it to the minimal subscene?

∀ x  Attended(x) ∧ Recognized(x) ∧ LookFor(x) ∧
x ∉ MinimalSubscene � x ∈ MinimalSubscene

with:
∀ x ∃ t RMSdistance(x, t) < Score(0.1) � Recognized(x)

and similar for Attended() [Note: should be temporally tagged; see next]



CS 561,  Sessions 14-15 44

Example of operation

5) Suppose next attended and identified object is John’s rapidly
tapping foot. 

This would match the “foot” concept in the task list.

Because of relationship between foot and human (in KB), agent can 
now prime visual system to look for a human that overlap with foot 
found:
- feature bias derived from what memory for human
- spatial bias for location and scale

Task map marks this spatial region as part of the current minimal
subscene. 



CS 561,  Sessions 14-15 45

Example of operation

6) Assume human is next detected and recognized

System should then look for its face
how? from KB we should be able to infer that resolving

“? [AS INSTANCE OF] human”

can be done by looking at the face of the human. 

Once John has been localized and identified, entry 
“John [AS INSTANCE OF] human(face, arm, hand, leg, foot, torso)”

simplifies into simpler entry 
“John [AT] (x, y, scale)”

Thus, further visual biasing will not attempt to further localize John.



CS 561,  Sessions 14-15 46

More formally: how do we do it?

- How do we introduce the idea of successive attentional shifts and 
progressive scene understanding to our formalism?
Using situation calculus!

• Effect axioms (describing change):
∀ x,s  Attended(x, s) ∧ Recognized(x, s) ∧ LookFor(x, s) �

¬LookFor(x, Result(AddToMinimalSubscene, s))
with AddToMiminalSubscene a shorthand for a complex sequence of actions 

to be taken (remember how very long predicates should be avoided!)

• Successor-state axioms (better than the frame axioms for non-change):
∀ x,a,s   x ∈ MinimalSubscene(Result(a, s)) ⇔

(a = AddToMinimalSubscene) ∨
(x ∈ MinimalSubscene(s) ∧ a ≠ DeleteFromminimalSubscene)



CS 561,  Sessions 14-15 47

Example of operation

7) Suppose system then attends to the bright 
green emergency exit sign in the room

This object would be immediately discarded 
because it is too far from the currently 
activated regions in the task map.

Thus, once non-empty, the task map acts as 
a filter that makes it more difficult (but 
not impossible) for new information to 
reach higher levels of processing, that is, 
in our model, matching what has been 
identified to entries in the task list and 
deciding what to do next.



CS 561,  Sessions 14-15 48

Example of operation

8) Assume that now the system attends to John’s arm motion

This action will pass through the task map (that contains John)

It will be related to the identified John (as the task map will not only 
specify spatial weighting but also local identity)

Using the knowledge base, what memory, and current task list the
system would prime the expected location of John’s hand as well as 
some generic object features.



CS 561,  Sessions 14-15 49

Example of operation

9) If the system attends to the flying ball, it would be incorporated into the 
minimal subscene in a manner similar to that by which John was (i.e., 
update task list and task map).

10) Finally: activity recognition. 

The various trajectories of the various objects that have been recognized as 
being relevant, as well as the elementary actions and motions of those 
objects, will feed into the activity recognition sub-system

=> will progressively build the higher-level, symbolic understanding 
of the minimal subscene. 

e.g., will put together the trajectories of John’s body, hand, and of the ball 
into recognizing the complex multi-threaded event “human catching flying 
object.”



CS 561,  Sessions 14-15 50

Example of operation

11) Once this level of understanding is reached, the data needed for 
the system’s answer will be in the form of the task map, task list, 
and these recognized complex events, and these data will be used
to fill in an appropriate sentence frame and apply the answer.



CS 561,  Sessions 14-15 51

Reality or fiction?

Ask your colleague, Vidhya Navalpakkam!



CS 561,  Sessions 14-15 52

Meanwhile…

• Beobots are coming to life!



CS 561,  Sessions 14-15 53

Meanwhile…

And they can see!



CS 561,  Sessions 14-15 54

Example

• Question: “who is doing what to whom?”

• Answer: “Eric passes, turns around and passes again”


