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Artificial Neural Networks and AI

Artificial Neural Networks provide…

- A new computing paradigm

- A technique for developing trainable classifiers, memories, 
dimension-reducing mappings, etc

- A tool to study brain function
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Converging Frameworks

• Artificial intelligence (AI): build a 
“packet of intelligence” into a machine

• Cognitive psychology: explain human behavior by interacting 
processes (schemas) “in the head” but not localized in the brain

• Brain Theory: interactions of components of the brain -

- computational neuroscience 
- neurologically constrained-models

• and abstracting from  them as both Artificial intelligence and
Cognitive psychology:
- connectionism: networks of trainable “quasi-neurons” to provide “parallel 
distributed models” little constrained by neurophysiology
- abstract (computer program or control system) information processing 
models
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Vision, AI and ANNs

• 1940s: beginning of Artificial Neural Networks

McCullogh & Pitts, 1942
Σi  wixi ≥ θ

Perceptron learning rule (Rosenblatt, 1962)
Backpropagation
Hopfield networks (1982)
Kohonen self-organizing maps
…
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Vision, AI and ANNs

1950s: beginning of computer vision
Aim: give to machines same or better vision capability as ours
Drive: AI, robotics applications and factory automation

Initially: passive, feedforward, layered and hierarchical process
that was just going to provide input to higher reasoning
processes (from AI)

But soon: realized that could not handle real images

1980s: Active vision: make the system more robust by allowing the
vision to adapt with the ongoing recognition/interpretation
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Major Functional Areas

• Primary motor: voluntary movement
• Primary somatosensory: tactile, pain, pressure, position, temp., mvt.
• Motor association: coordination of complex movements
• Sensory association: processing of multisensorial information
• Prefrontal: planning, emotion, judgement
• Speech center (Broca’s area): speech production and articulation
• Wernicke’s area: comprehen-
• sion of speech
• Auditory: hearing
• Auditory association: complex
• auditory processing
• Visual: low-level vision
• Visual association: higher-level
• vision
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Interconnect
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More on Connectivity



CS 561,  Session 28 10

Neurons and Synapses
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Electron Micrograph of a Real Neuron
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Transmenbrane Ionic Transport

• Ion channels act as gates that allow or block the flow of specific 
ions into and out of the cell.
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The Cable Equation

• See 
http://diwww.epfl.ch/~gerstner/SPNM/SPNM.html
for excellent additional material (some reproduced here).

• Just a piece of passive dendrite can yield complicated differential 
equations which have been extensively studied by electronicians in 
the context of the study of coaxial cables (TV antenna cable):
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The Hodgkin-Huxley Model

Example spike trains obtained…
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Detailed Neural Modeling

• A simulator, called “Neuron” has been developed
at Yale to simulate the Hodgkin-Huxley equations,
as well as other membranes/channels/etc.
See http://www.neuron.yale.edu/
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The "basic" biological neuron

• The soma and dendrites act as the input surface; the axon carries the 
outputs.  

• The tips of the branches of the axon form synapses upon other neurons or 
upon effectors (though synapses may occur along the branches of an axon 
as well as the ends).  The arrows indicate the direction of "typical" 
information flow from inputs to outputs.

Dendrites                   Soma            Axon with branches and
synaptic terminals
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• A McCulloch-Pitts neuron operates on a discrete 
time-scale, t = 0,1,2,3, ...    with time tick equal to 
one refractory period

• At each time step, an input or output is 

on or off — 1 or 0, respectively.  

• Each connection or synapse from the output of one neuron to the 
input of another, has an attached weight.  

Warren McCulloch and Walter Pitts (1943)
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Excitatory and Inhibitory Synapses

• We call a synapse

excitatory if wi > 0, and

inhibitory if wi < 0.   

• We also associate a threshold θ with each neuron

• A neuron fires (i.e., has value 1 on its output line) at time t+1 if the 
weighted sum of inputs at t reaches or passes θ:

y(t+1) = 1   if and only if   ΣΣΣΣ wixi(t) ≥≥≥≥ θθθθ
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From Logical Neurons to Finite Automata
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Increasing the Realism of Neuron Models

• The McCulloch-Pitts neuron of 1943 is important

as a basis for 

• logical analysis of the neurally computable, and

• current design of some neural devices (especially when 
augmented by learning rules to adjust synaptic weights).   

• However, it is no longer considered a useful model for making 
contact with neurophysiological data concerning real neurons.



CS 561,  Session 28 21

Leaky Integrator Neuron

• The simplest "realistic" neuron model is a 
continuous time model based on using the firing rate (e.g., the 
number of spikes traversing the axon in the most recent 20 msec.) 
as a continuously varying measure of the cell's activity

• The state of the neuron is described by a single variable, the 
membrane potential.   

• The firing rate is approximated by a sigmoid, function of membrane 
potential.   
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Leaky Integrator Model

τ =  - m(t) + h     

has solution  m(t) = e-t/ττττ m(0)  + (1 - e-t/ττττ)h 

→ h for time constant τ > 0.  

• We now add synaptic inputs to get the 

Leaky Integrator Model:

τ     =  - m(t) + Σ i wi Xi(t) + h

where Xi(t) is the firing rate at the ith input.   

• Excitatory input (wi > 0) will increase 

• Inhibitory input (wi < 0) will have the opposite effect.

m(t)

m(t)

m(t)
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Hopfield Networks

• A paper by John Hopfield in 1982 was the catalyst 
in attracting the attention of many physicists to 
"Neural Networks".

• In a network of McCulloch-Pitts neurons
whose output is 1 iff Σwij sj ≥ θi and is otherwise 0,
neurons are updated synchronously: every neuron processes its 
inputs at each time step to determine a new output.  
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Hopfield Networks

• A Hopfield net (Hopfield 1982) is a net of such units 
subject to the asynchronous rule for updating one 
neuron at a time:   

"Pick a unit i at random. 
If Σwij sj ≥ θi, turn it on.  
Otherwise turn it off."  

• Moreover, Hopfield assumes symmetric weights:
wij = wji
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“Energy” of a Neural Network

• Hopfield defined the “energy”: 

E = - ½ Σ ij sisjwij + Σ i siθi

• If we pick unit i and the firing rule (previous slide) does not 
change its si, it will not change E.   
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si: 0 to 1 transition

• If si initially equals 0, and Σ wijsj ≥ θi

then si goes from 0 to 1 with all other sj constant, 
and the "energy gap", or change in E, is given by 

∆E = - ½ Σj (wijsj + wjisj) + θi

= - (Σ j wijsj - θi) (by symmetry)
≤ 0.
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si: 1 to 0 transition

• If si initially equals 1, and Σ wijsj < θi

then si goes from 1 to 0 with all other sj constant

The "energy gap," or change in E, is given, for symmetric wij, 
by: 

∆E = Σj wijsj - θi < 0

• On every updating we have ∆∆∆∆E ≤≤≤≤ 0
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Minimizing Energy

• On every updating we have ∆E ≤ 0

• Hence the dynamics of the net tends to move E toward a minimum. 

• We stress that there may be different such states — they are local minima.  
Global minimization is not guaranteed.  
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Self-Organizing Feature Maps

• The neural sheet is 
represented in a discretized
form by a (usually) 2-D 
lattice A of formal neurons. 

• The input pattern is a vector x from some pattern space V. Input
vectors are normalized to unit length. 

• The responsiveness of a neuron at a site r in A is measured by 
x.wr = Σi xi wri

where wr is the vector of the neuron's synaptic efficacies.

• The "image" of an external event is regarded as the unit with the 
maximal response to it
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Self-Organizing Feature Maps

• Typical graphical representation: plot the weights (wr) as vertices 
and draw links between neurons that are nearest neighbors in A.



CS 561,  Session 28 31

Self-Organizing Feature Maps

• These maps are typically useful to achieve some dimensionality-
reducing mapping between inputs and outputs.
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Applications: Classification

Business
•Credit rating and risk assessment 
•Insurance risk evaluation 
•Fraud detection 
•Insider dealing detection 
•Marketing analysis
•Mailshot profiling 
•Signature verification 
•Inventory control 

Engineering
•Machinery defect diagnosis 
•Signal processing 
•Character recognition 
•Process supervision 
•Process fault analysis 
•Speech recognition 
•Machine vision 
•Speech recognition 
•Radar signal classification 

Security
•Face recognition 
•Speaker verification 
•Fingerprint analysis 

Medicine
•General diagnosis 
•Detection of heart defects 

Science
•Recognising genes 
•Botanical classification 
•Bacteria identification 
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Applications: Modelling

Business
•Prediction of share and 
commodity prices 
•Prediction of economic indicators 
•Insider dealing detection 
•Marketing analysis
•Mailshot profiling 
•Signature verification 
•Inventory control 

Engineering
•Transducer linerisation 
•Colour discrimination 
•Robot control and 
navigation 
•Process control 
•Aircraft landing control 
•Car active suspension 
control 
•Printed Circuit auto 
routing 
•Integrated circuit layout 
•Image compression 

Science
•Prediction of the performance of 
drugs from the molecular structure 
•Weather prediction 
•Sunspot prediction 

Medicine
•. Medical imaging 
and image processing 
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Applications: Forecasting

•Future sales 
•Production Requirements 
•Market Performance 
•Economic Indicators 
•Energy Requirements 
•Time Based Variables 
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Applications: Novelty Detection

•Fault Monitoring 
•Performance Monitoring 
•Fraud Detection 
•Detecting Rate Features 
•Different Cases 
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Multi-layer Perceptron Classifier
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http://ams.egeo.sai.jrc.it/eurost
at/Lot16-
SUPCOM95/node7.html

Multi-layer Perceptron
Classifier
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Classifiers

• http://www.electronicsletters.com/papers/2001/0020/paper.asp

• 1-stage approach

• 2-stage
approach
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Example: face recognition

• Here using the 2-stage approach:
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Training

• http://www.neci.nec.
com/homepages/law
rence/papers/face-
tr96/latex.html
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Learning rate



CS 561,  Session 28 42

Testing / Evaluation

• Look at performance as a function of network complexity
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Testing / Evaluation

• Comparison with other known techniques
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Associative Memories

• http://www.shef.ac.uk/psychology/gurney/notes/l5/l5.html

• Idea: store:

So that we can recover it if presented 
with corrupted data such as:
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Associative memory with Hopfield nets

• Setup a Hopfield net such that local minima correspond
to the stored patterns.

• Issues:
- because of weight symmetry, anti-patterns (binary reverse) are stored as 
well as the original patterns (also spurious local minima are created when 
many patterns are stored)
- if one tries to store more than about 0.14*(number of neurons)
patterns, the network exhibits unstable behavior
- works well only if patterns are uncorrelated
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Capabilities and Limitations of Layered Networks

• Issues:

- what can given networks do?
- What can they learn to do?
- How many layers required for given task?
- How many units per layer?
- When will a network generalize?
- What do we mean by generalize?
- …
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Capabilities and Limitations of Layered Networks

• What about boolean functions?

• Single-layer perceptrons are very limited:
- XOR problem
- etc.

• But what about multilayer perceptrons?

We can represent any boolean function with a network with just one 
hidden layer.

How??
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Capabilities and Limitations of Layered Networks

To approximate a set of functions of the inputs by a layered network 
with continuous-valued units and sigmoidal activation function…

Cybenko, 1988: … at most two hidden layers are necessary, with 
arbitrary accuracy attainable by adding more hidden units.

Cybenko, 1989: one hidden layer is enough to approximate any 
continuous function.

Intuition of proof: decompose function to be approximated into a sum 
of localized “bumps.” The bumps can be constructed with two hidden 
layers.

Similar in spirit to Fourier decomposition. Bumps = radial basis
functions.



CS 561,  Session 28 49

Optimal Network Architectures

How can we determine the number of hidden units?

-genetic algorithms: evaluate variations of the network, using a metric 
that combines its performance and its complexity. Then apply various 
mutations to the network (change number of hidden units) until the 
best one is found.

-Pruning and weight decay:
- apply weight decay (remember reinforcement 
learning) during training
- eliminate connections with weight below threshold
- re-train

- How about eliminating units? For example, eliminate units with total 
synaptic input weight smaller than threshold.
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For further information

• See

Hertz, Krogh & Palmer: Introduction to the theory of neural 
computation (Addison Wesley)

In particular, the end of chapters 2 and 6.


