Motion Tracking and Event Understanding in Video Sequences

Isaac Cohen

Elaine Kang, Jinman Kang

Institute for Robotics and Intelligent Systems University of Southern California Los Angeles, CA

Objectives

Infer interesting events events in a video

- Some examples: people meeting, exchanging objects, gesturing....
- Events may take place over a range of time scales
- Requires object recognition
- Provide a convenient form to define events
 - An event recognition language (ERL) that can be compiled automatically to produce recognition programs
- Compute a structured representation of video
 - Events and objects
 - Spatial and temporal relations between them

Example Video

Video Description

 Descriptions useful for query, annotation and compression

Symbolic descriptions

- Events: Name, actors (objects), reference objects, duration, place
- Sub-events and relations between them
- Object descriptions
 - Trajectory, Shape, Appearance
 - Background objects

Example Video

Video with inferred annotations

Challenges

Translation from signals to semantic information Signals are ambiguous (one to many mapping) Image sequence analysis Detection and tracking of moving objects Generic and specific object recognition Object appearances change with many variables (view point, illumination, occlusion, clothing...) Inference of events from object trajectories and identities

Topics Moving blob detection and tracking Static and moving cameras Perceptual grouping for tracking Detection and tracking of objects Segmentation of blobs into objects Tracking of articulated objects Event recognition Definition, compilation, computation Miscellaneous Activities, evaluations, future plans

Motion Detection (Static Cameras)

- Construct an adaptive model of "background"
 - Each pixel modeled as a multi-dimensional Gaussian distribution in color space
 - Updated when new pixel values are observed

Extract "foreground"

- A pixel is foreground if sufficiently different than current background model
- Marked pixels grouped into connected components

Background Learning

Maintain an adaptive background model for the entire region of awareness

• Model each pixel as a multi-dimensional Gaussian distribution (μ, σ) in RGB space

Update background when a new pixel values are observed

Background Learning

- Maintain an adaptive background model for the entire region of awareness
- Model each pixel as a multi-dimensional Gaussian distribution (μ, σ) in RGB space
- Update background when a new pixel value x is observed:

$$\mu \leftarrow \alpha x + (1 - \alpha)\mu$$

$$\sigma^{2} \leftarrow \max(\sigma_{\min}^{2}, \alpha(x - \mu)^{2} + (1 - \alpha)\sigma^{2})$$

where α = learning rate

USC

Foreground Extraction

- Detect changes produced by occluding elements
- Compare observed pixel values to the current distribution
- A new pixel observation x is marked as foreground if:

 $(x-\mu)^2 > (2\sigma)^2$

 Group foreground pixels in connected components - layered description (sprites)



Detection Example

Note: blobs may not correspond to single objects

Detection (Moving Camera)

Compensate for the camera's motion by an affine transformation of images

- Multi-resolution, robust feature-based matching
- Accurate when depth variations in background and image area of moving objects are small
- Detection of moving objects by
 Residual motion
 Color-based classification

Parameter Recovery

Recover 6 affine parameters : (a,b,c,d,t_x,t_y) $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$

->Solving a set of linear equations

$$\begin{pmatrix} x_0 & y_0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_0 & y_0 & 1 \end{pmatrix}_i \begin{pmatrix} a & b & T_x & c & d & T_y \end{pmatrix}^T = (x_1 y_1)_i^T$$

Feature based approach:

- Feature points are extracted by a corner detector
- RANSAC for outliers removal
- Linear Least Square Method using *inliers*

Panning Camera

Mosaic shown from the first camera view point

Hand-held Camera

Limitations

Sudden illumination changes: The layer model is learnt over a sliding window Fragmented detection: neighborhood properties are not considered Mis-registration of images Large depth variations in background and large image area of moving objects Registration in the image joint space

Outlier Detection

e-RANSAC

- RANSAC (Fischler-Bolles) is a standard tool for robust parameter estimation
- Enhanced by controlling feature sampling

Tensor voting

- General purpose grouping methodology
- Encodes local properties and their uncertainties as tensors
- Propagates local estimates to neighbors
- Propagated information combined as a weighted tensor addition
- Provides a *saliency* map, outliers have low saliency
- Used to group points lying in salient planes in the joint image space

Robust Affine Motion Estimation in Joint Image Space

Parametric motion estimation

- Widely used for video processing: image mosaics, compression, and surveillance
- Affine motion model (six parameters)
 - commonly used due to simplicity and the small inter-frame camera motion.

Issues

- Correspondence-based parameter estimation often fails in the presence of many mismatches and multiple motions
- Robustness of estimation relies on outlier removal

Goal and Approach

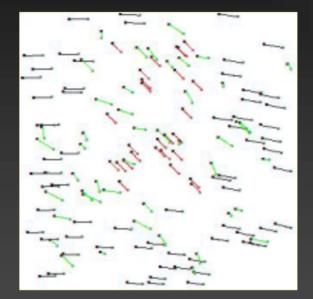
Goal

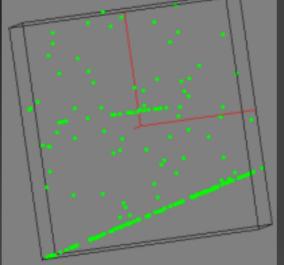
Outlier removal for robust parameter estimation

Approach

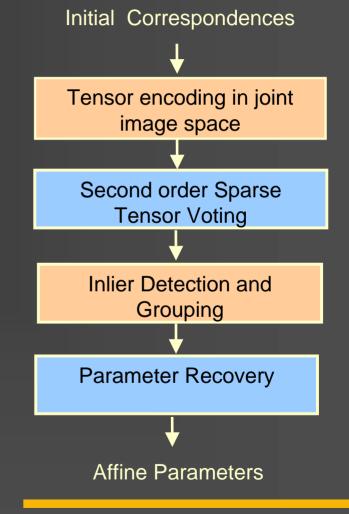
- Representation of correspondences in decoupled joint image spaces
- Analyze the metric of the affine parameters in the defined space
- Tensor voting-based outlier removal
- Direct parameter estimation from correlation matrix of inliers

Illustration of Our Approach





Initial correspondences by affine motions Views in 3D: Affine motions form planes in decoupled joint image space



Affine Joint Image Space

Joint Image Space : (x, y, x', y')
Affine Transformation in the joint image space :

$$1)C\begin{pmatrix} q\\ 1 \end{pmatrix} = 0$$

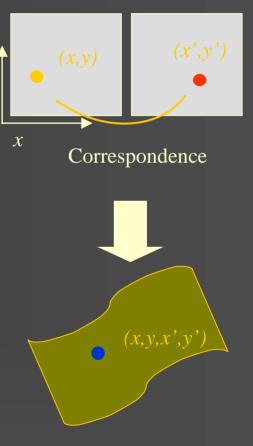
$$P = \begin{pmatrix} a & b & -1 & 0 & t_x \\ c & d & 0 & -1 & t_y \end{pmatrix}$$

$$q = \begin{pmatrix} x & y & x' & y' \end{pmatrix}^T$$

The equation : a quadric in the 4 dimensional joint image space of (*x*, *y*, *x*', *y*')
A 5x 5 matrix *C* is rank 2

CS-597 Isaac Cohen 10/07/02

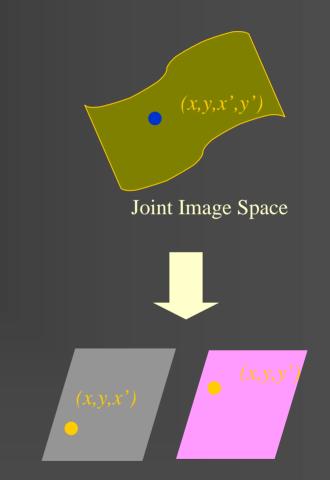
 (q^T)



Joint Image Space

Decoupled Affine Joint Image Space (1/2)

- The parameters (a,b,t_x) and (c,d,t_y) are independent
- We can *decouple* the joint image space into two spaces
- Decoupled joint image spaces
 - Defined by (x, y, x') and (x, y, y')
 - Dimension reduction
 - Isotropic and orthogonal spaces
 - Allow to enforce affine constraint during tensor voting



Decoupled Joint Image Spaces

Decoupled Affine Joint Image Space (2/2)

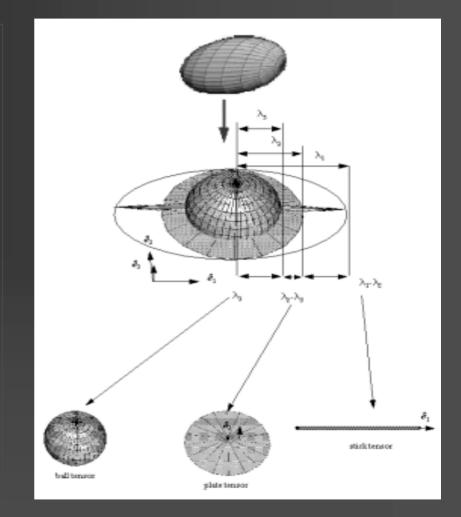
Decoupled Joint Image Spaces	$q_x = (x, y, x^{\prime})^T$	$q_y = (x, y, y')^T$
Parameter Vectors	$p_{x} = (a, b, -1, t_{x})$	$p_{y} = (c, d, -1, t_{y})$
Affine Transformation Equations	$A_x = p_x \begin{pmatrix} q_x \\ 1 \end{pmatrix} = 0$	$A_{y} = p_{y} \begin{pmatrix} q_{y} \\ 1 \end{pmatrix} = 0$

• Consists of all points $(q_x, 1)$ or $(q_y, 1)$

- All points $(q, 1)^{T}$ lie on a 2D plane given by equation A_x or A_y parameterized by p_x or p_y
- If a correspondence is correct, it lies on a 2D plane
- Outlier/Inlier detection is to extract points on a plane
- Properties of a plane :
 - (a, b, -1) and (c, d, -1) define orientation of the plane
 - tx and ty define the perpendicular distance between the plane and the origin of the space

Generic Tensor Voting (1/2)

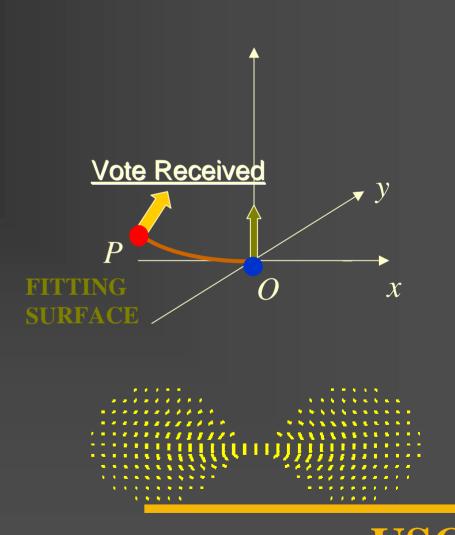
- Data representation: Second order symmetric tensors
 - **shape**: orientation certainty
 - **size:** feature saliency
- In 3D
 - 3 eigenvalues $(\lambda_{max} \lambda_{mid} \lambda_{min})$
 - 3 eigenvectors (e_{max} e_{mid} e_{min})
 - Surface extraction
 Saliency : λ_{max} λ_{mid}
 Normal: e_{max}



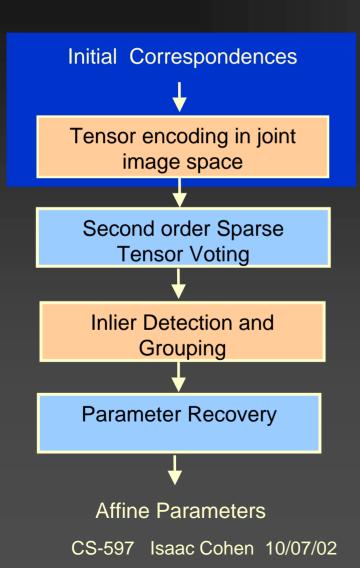
Generic Tensor Voting (2/2)

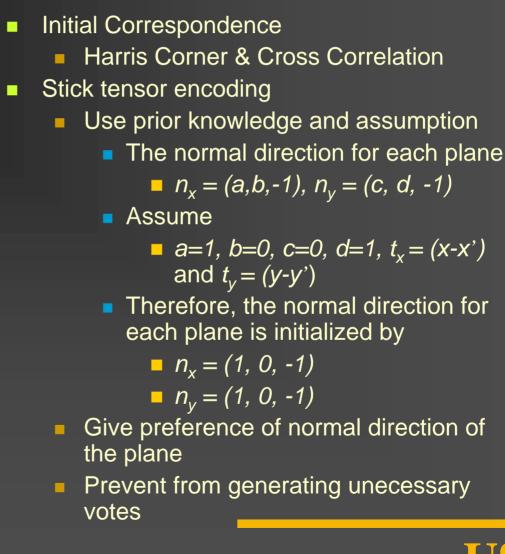
Communication: Voting

- non-iterative, no initialization
- Constraint representation: Voting fields
 - tensor fields encode smoothness criteria
- Each input site propagates its information in a neighborhood
- Each site collects the propagated information

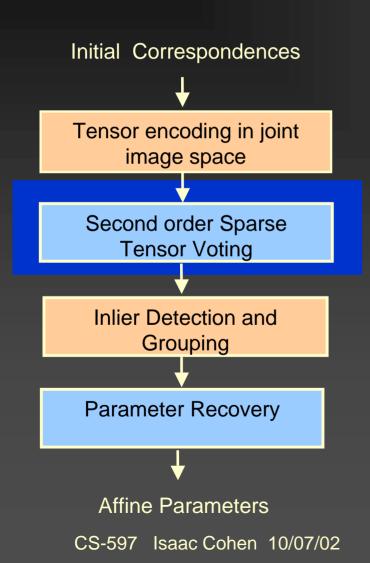


Initial Tensor Encoding





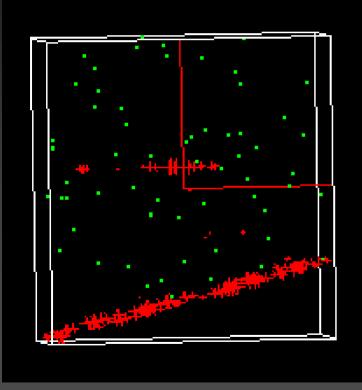
Plane Extraction by Tensor Voting



Tensor Voting for Plane
 Extraction

- Vote with planar field for plane extraction
- First sparse voting
 - Extract the normal direction of the 2D plane encoded by e₁ with saliency λ₁ - λ₂
 - Remove random correspondences
- Second sparse voting
 - Enforce the normal direction extracted from the first voting

Plane Extraction by Tensor Voting



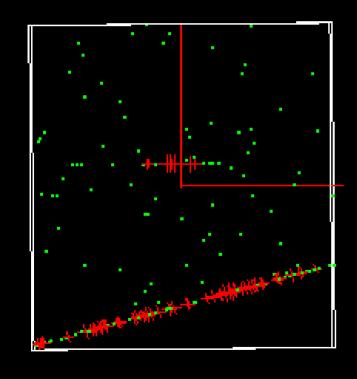
Tensor Voting for Plane Extraction

 Vote with planar field for plane extraction

First sparse voting

- Extract the normal direction of the 2D plane encoded by e_1 with saliency $\lambda_1 - \lambda_2$
- Remove random correspondences
- Second sparse voting
 - Enforce the normal direction extracted from the first voting

Plane Extraction by Tensor Voting



 Tensor Voting for Plane Extraction
 Vote with planar field for plane extraction

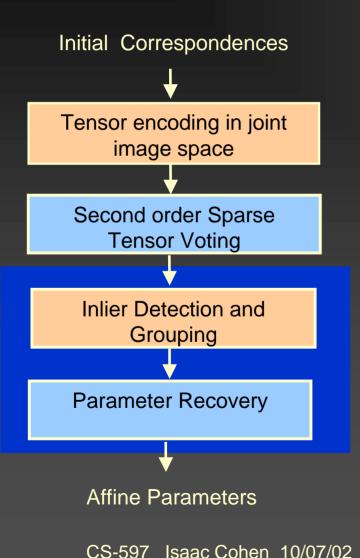
First sparse voting

- Extract the normal direction of the 2D plane encoded by e_1 with saliency $\lambda_1 \lambda_2$
- Remove random correspondences

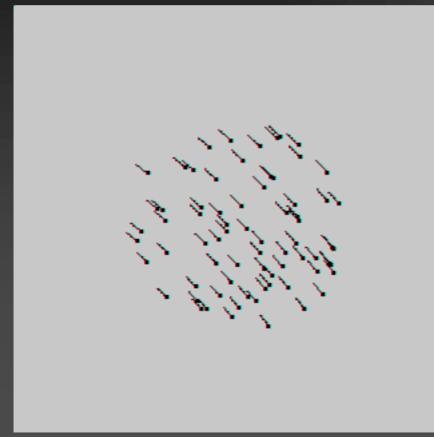
Second sparse voting

Enforce the normal direction extracted from the first voting

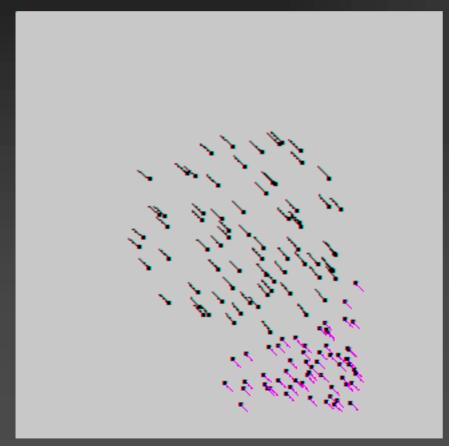
Inlier Detection & Grouping



- Inlier detection and grouping
 - Inliers : Points having saliencies higer than a threshold (median)
 - Two inlier grouping criteria
 - Normal direction e₁ and locally smooth displacement (x-x') or (y-y')
 - Parameter estimation :For each set of grouped inliers
 - Compute the correlation matrix : M_x and M_y
 - To estimate parameters *a*, *b*, *t_x*, the eigen vector corresponding to the smallest eigen value of *M_x* is used



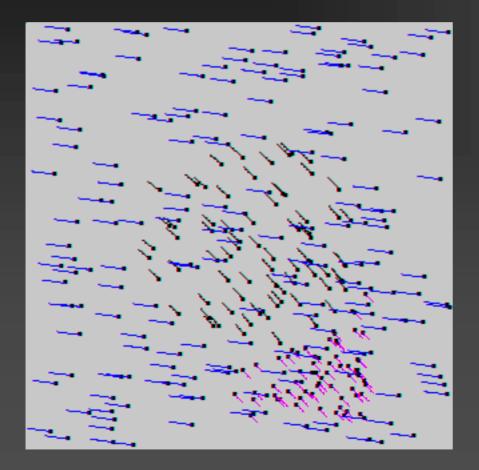
Motion 1 : Foreground motion with rotation and translation



Motion 1:

Foreground motion with rotation and translation Motion 2 :

Conflicting foreground motion with translation

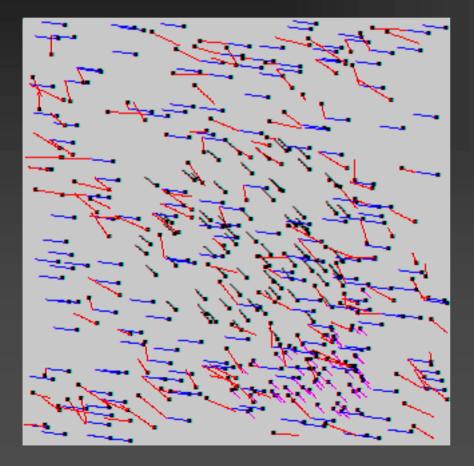


Motion 1 :

Foreground motion with rotation and translation Motion 2 :

Conflicting foreground motion with translation Motion 3 :

Transparent background motion with translation



Motion 1:

Foreground motion with rotation and translation

Motion 2:

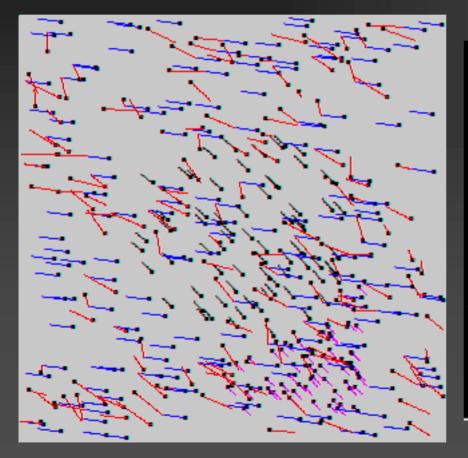
Conflicting foreground motion with translation

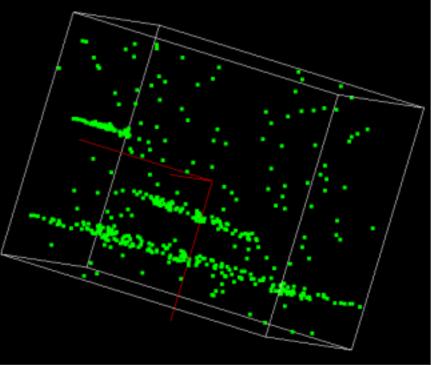
Motion 3 :

Transparent background motion with translation

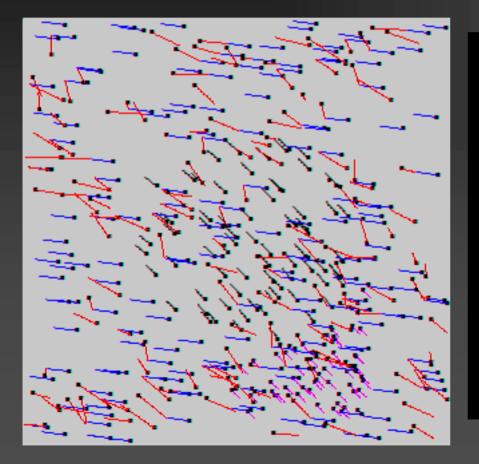
Motion 4 :

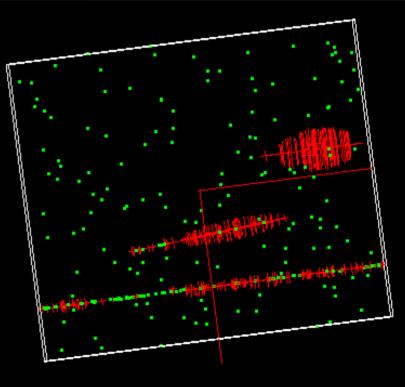
Random motion



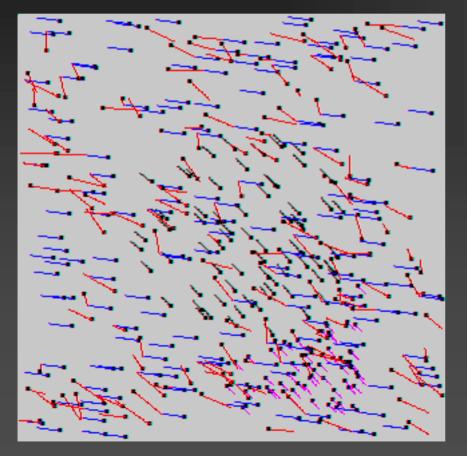


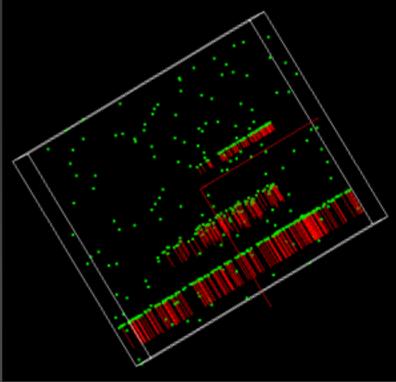
Experimental Result(2/2)





Experimental Result(2/2)

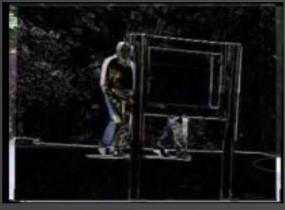




Result (1/3)

Input frames

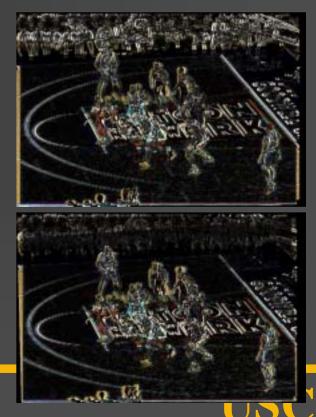
Residuals: by RANSAC(top) by our method (bottom)



Input frames

Initial correlation-based correspondences

Residuals : by RANSAC(top) by our method (bottom)



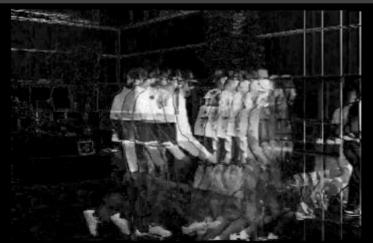
Input Video Sequence

Stabilization by using our method

Closer Look

Input Frames

Accumulated Residuals by Our Method



CO-DB/ ISAAC CUITER TU/U//UZ

Accumulated Residuals by RANSAC

Summary and Future Work

 Robust affine parameter estimation in the presence of many mismatches

- Representation of correspondences in a decoupled joint image space
- Outlier removal by using Tensor voting
- Detect multiple motion layers by extracting multiple planes

Extension to eight parameter projective case

Analyze the geometric structure of projective transformation in joint image space

Detection of Moving Objects

Two-step approach:

image stabilization to compensate for the motion induced by the observer
 moving region detection using residual flow in two consecutive frames

Detection of Moving Objects

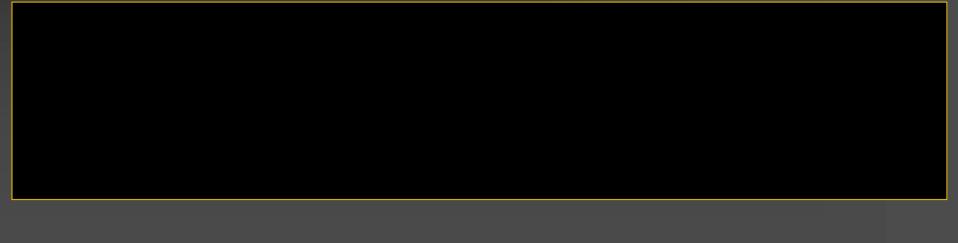
Layered representation of scenes Static component of the scene: background layer Moving objects: foreground layers Detecting moving objects Color-based and pixel-based temporal distribution Color model : RGB Gaussian pixel-based model Layer extraction Background layer : μ • Foreground layers : pixels outside of 2σ range

Vehicle Detection

Image sequence

Moving objects

Panning Camera



Hand-held Camera

Entourage Results

Mosaic

Foreground regions

Summary: Moving Blob Detection

Static cameras

 Background learning method is effective but can be affected by rapid illumination changes, common in some indoor videos

Moving Cameras

 Ego-motion computation effective when scene objects are far or camera motion has no translation

Tracking Moving Regions

Tracking is performed by establishing correspondence between detected regions

Region similarity approach

Tensor Voting perceptual grouping approach

Using Geometric context

Tracking Moving Regions

Detection is performed using two consecutive frames

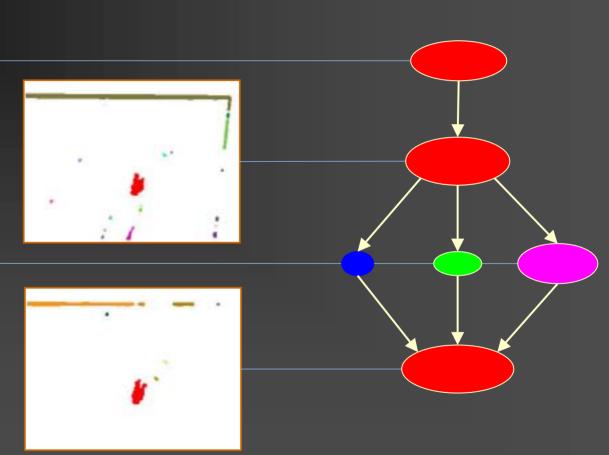
Tracking is performed by establishing correspondence between these regions
 template inference
 temporal coherence
 temporal integration

Graph Representation of Moving Regions

A node: a detected moving region

An edge: a possible match between two regions

Graph Construction



Objects Trajectories

Tracking is performed by establishing correspondences between these regions template inference temporal coherence (>5 frames) Implemented as a graph search: node: moving region edge: between matched regions

Objects Trajectories

Extract optimal path along each graph's connected components Multiple objects tracking Temporal integration Optimality criterion: Associate to each edge a cost Characterize optimal paths

Optimality criterion

Associate to each edge a cost:

$$c_{ij} = \frac{C_{ij}}{1 + d_{ij}^{2}}$$

similarity between the regions:

- correlation Cij
- shape, gray or color distribution...
- proximity between regions:
 - distance dij

Local optimum

Optimality criterion: Temporal Integration

Characterize each node by its length:
 length of the maximal path ending at this node

$$l_i = \max\{l_j, j \in successor(i)\} + 1$$

Associate to each edge the cost:

$$\Gamma_{ij} = l_j c_{ij}$$

Vehicle Tracking

Image sequence

Vehicle trajectory

Human Tracking

Objects trajectories

Convoy Tracking

Region Similarity Approach

Regions are matched based on similarities Gray level distributions, Distances Graph representation of moving regions Node: Detected moving region Edge: A possible match between two regions Inference of median shape from graph Temporal coherence Extract optimal paths along connected components of the graph Multiple objects tracking

Multi-Object Tracking

Graph description well suited for:

- Complete description of moving objects properties
- Identifying temporal changes of objects:
 - occlusions

Tracking arbitrary number of moving objects

Multi-object Tracking

Tracking by Similarity Graph

Detected regions are matched based on similarities

Gray level distributions, distances in the image

- Graph representation of matched regions
 - Node: detected moving region
 - Edge: A possible match between two regions
- Extract optimal paths along connected components of the graph
 - Allows for multiple object tracking

Tracking Moving Blobs

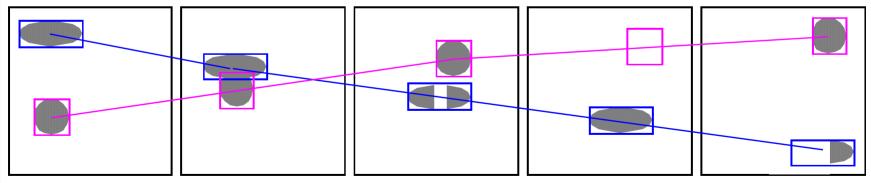
- Blobs split and merge due to occlusion, similarity with background, noise blobs appear...
- Use of region similarities and trajectory smoothness can help infer good trajectories
- Perceptual grouping using graph representation and tensor voting

Some Tracking Problems

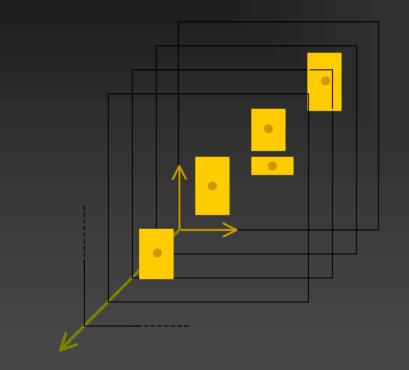
• Input: A set of moving regions

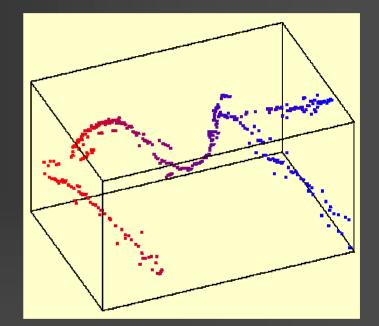


Output: Identification and Tracking of the objects



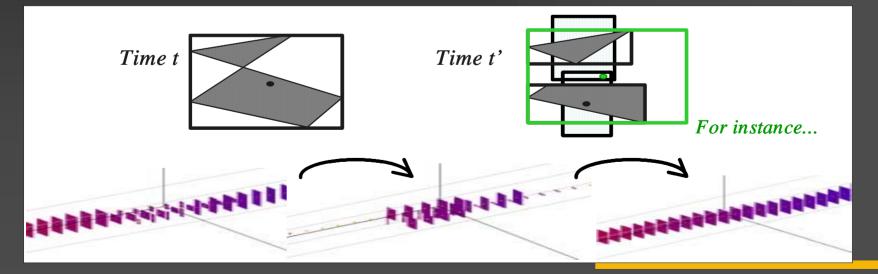
2D+t Representation



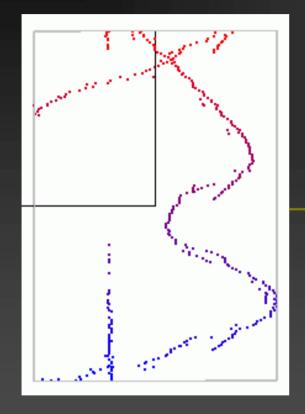


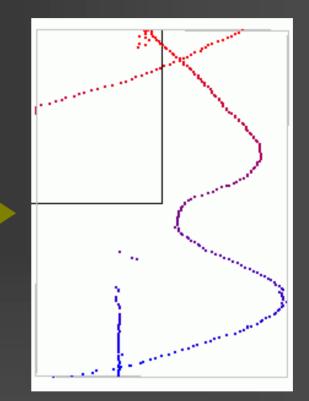
Tracking by Tensor Voting

Propagate motion and shape information into uncertainty regions around paths in the graph
 Accumulate votes by tensor voting process
 Includes process for merging and splitting of blobs to yield smooth trajectories



Grouping Example

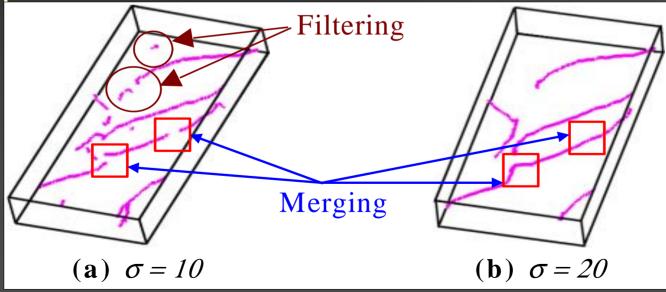




Multi-Scale Processing

Gap completion depends on the scale of the voting field (σ)

 Larger σ provides more filtering and continuity but is more expensive and tracks are less precise



Multiple Objects Tracking

Tracking with multiple cameras

Motivation

Multiple cameras can provide larger field of view and reduce effects of occlusion

Issues

Registration of multiple views
 Calibration of different cameras
 Synchronization of different video streams
 Different frame rates
 Grouping of trajectories across views

Infer trajectories in each camera view

- Tracking by Tensor Voting
- Register cameras views using a homography
 - Use of the ground plane
 - Misalignment can occur if trajectories are not on the ground plane or the streams are not synchronized
- Synchronize the multiple video streams
 - Register and merge trajectories in 2D+t using a homography
- Current implementation not real-time (~1 fps)

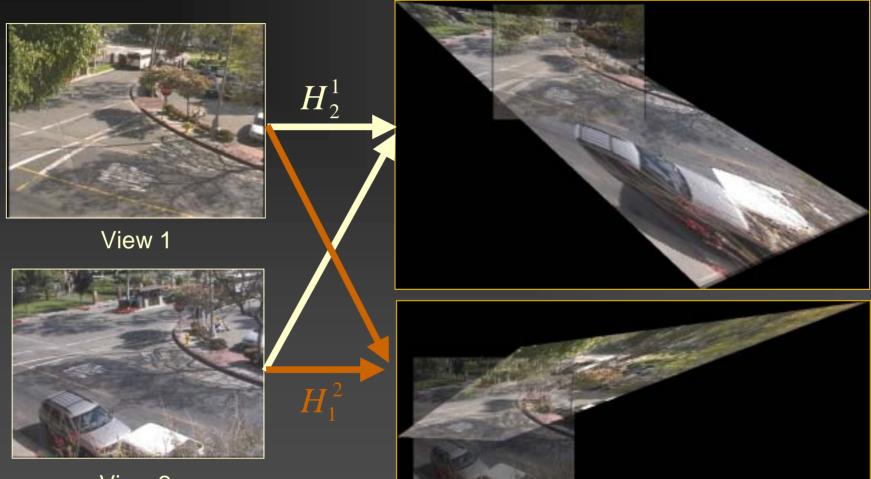
Two Video Streams

Two partially overlapping views

Registration of Multi Camera

Registration of views using ground plane
 Use of a projective transform
 Requires at least 4 pairs of corresponding points on the ground plane

Cameras registration



View 2

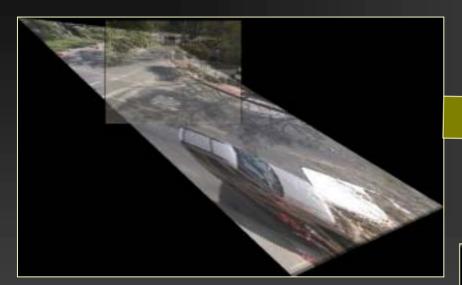
Registration of Trajectories

 Use of a homography for registering cameras views

- Misalignment can occur if:
 - Trajectories are not on the ground plane
 - Input streams are not synchronized
 - Shutter speeds of cameras are different
- Use of objects trajectories for registering the views
 - Videos synchronization using observed trajectories
 - Align objects trajectories

Registration of Video Streams

Projective Registration



Registered Trajectories

Registered Views

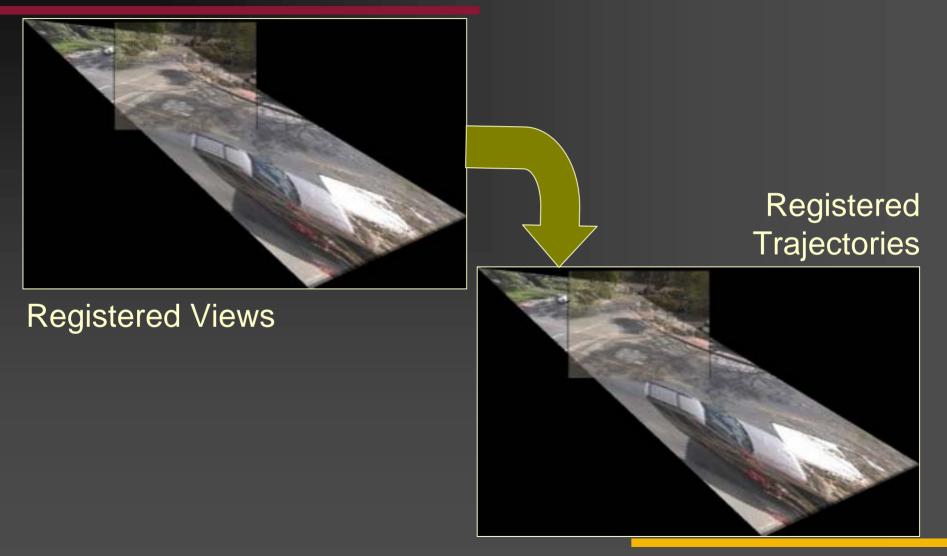
Reverse View

Registered Views

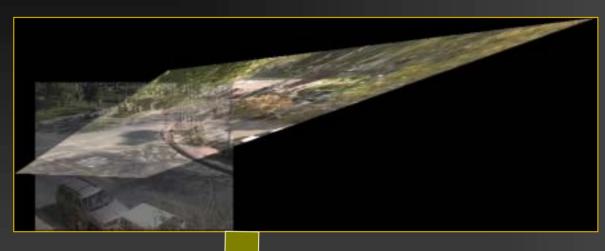
Registered Trajectories

Another Example

Projective Registration

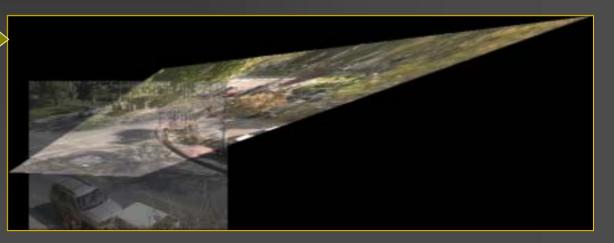


Reverse View



Registered Views

Registered Trajectories



Tracking Using Multiple Cameras: Summary

Ability to merge trajectories across views

- Reduces effects of occlusions
- Increases the field of view
- Speed: 1 to 1.5 Frames per seconds

Future Extensions

- Inference of the 3D tracks
 - Use camera calibration from vanishing points
 - Use multi-view geometry
- Automatic synchronization of trajectories
 - Accommodate different shutter speeds

Summary: Blob Tracking

- Real-time tracking with hierarchical approach and graph-based methods
 - Region similarity exploited but not continuity
- Perceptual grouping using tensor voting
 Slower, but better tracks
- Merging multiple camera tracks is in early development stage
- Future work
 - Improve efficiency of perceptual grouping
 - Develop adaptive multi-scale approach
 - Integrated detection and tracking from multiple cameras

We have presented two detection algorithms:

 Background learning method for stationary cameras

Residual motion for moving platforms
 Describe these algorithms and suggest an approach for combining the two (l.e. a background learning method for moving platforms).

Various methods are used for estimating camera motion: Direct parameter estimation, RANSAC...

Can you describe the joint image space algorithm and explain why registering two images amounts to identify planar patches in the joint image space

Describe the tracking algorithms presented:
 Graph based blob tracking
 Perceptual grouping based tracking
 And explain what are the advantages in combining both for tracking moving objects in a scene.