Administrativia

- Assignment 1 due thursday 9/ 25/ 2003 BEFORE midnight
- Midterm exam 10/ 09/ 2003 in class

Last time: search strategies

Uninformed: Use only information available in the problem formulation

- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening

I nformed: Use heuristics to guide the search

- Best first:
- Greedy search - queue first nodes that maximize heuristic "desirability" based on estimated path cost from current node to goal;
- A* search - queue first nodes that maximize sum of path cost so far and estimated path cost to goal.
- Iterative improvement - keep no memory of path; work on a single current state and iteratively improve its "value."
- Hill climbing - select as new current state the successor state which maximizes value.
- Simulated annealing - refinement on hill climbing by which "bad moves" are permitted, but with decreasing size and frequency. Will find global extremum.

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding operator, and the leaves are labeled with the value of the heuristic function, h.

Which node (use the node's letter) will be expanded next by each of the following search algorithms?
(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search
(e) A^{*} search

Depth-first search

Node queue: initialization
\# \quad state \quad depth \quad path cost \quad parent \#

1 A
0
0

Depth-first search

Node queue: add successors to queue front; empty queue from top
\# state depth path cost parent \#

2	B	1	3	1
3	C	1	19	1
4	D	1	5	1
1	A	0	0	--

Depth-first search

Node queue: add successors to queue front; empty queue from top

\#	state	depth	path cost	parent \#

5	E	2	7	2
6	F	2	8	2
7	G	2	8	2
8	H	2	9	2
2	B	1	3	1
3	C	1	19	1
4	D	1	5	1
I	A	0	0	--

Depth-first search

Node queue: add successors to queue front; empty queue from top

$\#$	state	depth	path cost

5	E	2	7	2
6	F	2	8	2
7	G	2	8	2
8	H	2	9	2
2	B	1	3	1
3	C	1	19	1
4	D	1	5	1
1	A	0	0	--

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding operator, and the leaves are labeled with the value of the heuristic function, h.

Which node (use the node's letter) will be expanded next by each of the following search algorithms?
(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search
(e) A^{*} search

Breadth-first search

Node queue: initialization

$\#$	state	depth	path cost	parent \#
1	A	0	0	--

Breadth-first search

Node queue: add successors to queue end; empty queue from top

$\#$	state	depth	path cost	par
1	A	0	0	--
2	B	1	3	1
3	C	1	19	1
4	D	1	5	1

Breadth-first search

Node queue: add successors to queue end; empty queue from top

$\#$	state	depth	path cost	parent \#
1	A	1	0	--
2	B	1	3	1
3	C	1	19	1
4	D	2	7	1
5	E	2	8	2
6	F	2	8	2
7	G	2	9	2
8	H		2	

Breadth-first search

Node queue: add successors to queue end; empty queue from top

$\#$	state	depth	path cost	parent \#
1	A	1	0	--
2	B	1	3	1
3	C	1	19	1
4	D	2	7	1
5	E	2	8	2
6	F	2	8	2
7	G	2	9	2
8	H		2	

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding operator, and the leaves are labeled with the value of the heuristic function, h.

Which node (use the node's letter) will be expanded next by each of the following search algorithms?
(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search
(e) A^{*} search

Uniform-cost search

Node queue: initialization

$\#$	state	depth	path cost	parent \#
1	A	0	0	--

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted by path cost so far; empty queue from top

$\#$	state	depth	path cost	parent \#
1	A	0	0	
2	B	1	3	1
3	D	1	5	1
4	C	1	19	1

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted by path cost so far; empty queue from top

$\#$	state	depth	path cost	parent \#
1	A	0	0	
2	B	1	3	1
3	D	1	5	1
5	E	2	7	2
6	F	2	8	2
7	G	2	8	2
8	H	2	9	2
4	C	1	19	1

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted by path cost so far; empty queue from top

$\#$	state	depth	path cost	parent \#
1	A	0	0	
2	B	1	3	1
3	D	1	5	1
5	E	2	7	2
6	F	2	8	2
7	G	2	8	2
8	H	2	9	2
4	C	1	19	1

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding operator, and the leaves are labeled with the value of the heuristic function, h.

Which node (use the node's letter) will be expanded next by each of the following search algorithms?
(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search
(e) A^{*} search

Greedy search

Node queue: initialization

\#	state	depth	path cost	cost to goal	total cost	parent \#
1	A	0	0	20	20	--

Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

$\#$	state	depth	path cost	cost to goal	total cost	parent \#
1	A	0	0	20	20	--
2	B	1	3	14	17	1
3	D	1	5	15	20	1
4	C	1	19	18	37	1
				\uparrow Sort key		

Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

\#	state	depth	path cost	cost to goal	total	parent \#
1	A	0	0	20	20	--
2	B	1	3	14	17	1
5	G	2	8	8	16	2
7	E	2	7	10	17	2
6	H	2	9	10	19	2
8	F	2	8	12	20	2
3	D	1	5	15	20	1
4	C	1	19	18	37	1

Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

\#	state	depth	path cost	cost to goal cost	total	
1	A	0	0	20	20	--
2	B	1	3	14	17	1
5	G	2	8	8	16	2
7	E	2	7	10	17	2
6	H	2	9	10	19	2
8	F	2	8	12	20	2
3	D	1	5	15	20	1
4	C	1	19	18	37	1

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding operator, and the leaves are labeled with the value of the heuristic function, h.

Which node (use the node's letter) will be expanded next by each of the following search algorithms?
(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search
(e) A^{*} search

A* search

Node queue: initialization

\#	state	depth	path cost	cost to goal	total cost	parent \#
1	A	0	0	20	20	--

A* search

Node queue: Add successors to queue, sorted by total cost.

$\#$	state	depth	path cost	cost to goal	total cost	parent \#
1	A	0	0	20	20	--
2	B	1	3	14	17	1
3	D	1	5	15	20	1
4	C	1	19	18	37	1
					\uparrow	
			Sort key			

A* search

Node queue: Add successors to queue front, sorted by total cost.

\#	state	depth	path cost	cost to goal	cost	parent \#
1	A	0	0	20	20	--
2	B	1	3	14	17	1
5	G	2	8	8	16	2
6	E	2	7	10	17	2
7	H	2	9	10	19	2
3	D	1	5	15	20	1
8	F	2	8	12	20	2
4	C	1	19	18	37	1

A* search

Node queue: Add successors to queue front, sorted by total cost.

\#	state	depth	path cost	cost to goal cost	total	
1	A	0	0	20	20	--
2	B	1	3	14	17	1
5	G	2	8	8	16	2
6	E	2	7	10	17	2
7	H	2	9	10	19	2
3	D	1	5	15	20	1
8	F	2	8	12	20	2
4	C	1	19	18	37	1

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding operator, and the leaves are labeled with the value of the heuristic function, h.

Which node (use the node's letter) will be expanded next by each of the following search algorithms?
(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search
(e) A^{*} search

Last time: Simulated annealing algorithm

- Idea: Escape local extrema by allowing "bad moves," but gradually decrease their size and frequency.
function Simulated-Annealing(problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling the probability of downward steps
current \leftarrow Make-Node $($ Initial-State $[$ problem $]$)
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule $[t]$
if $T=0$ then return current
$n e x t \leftarrow$ a randomly selected successor of current
$\Delta E \leftarrow \operatorname{Value}[n e x t]$ - Value [current $]$
if $\Delta E>0$ then current \leftarrow next
Note: goal here is to maximize E .
else current \leftarrow next only with probability $e^{\Delta E / T}$

Last time: Simulated annealing algorithm

- Idea: Escape local extrema by allowing "bad moves," but gradually decrease their size and frequency.

```
function Simulated-Annealing ( problem, schedule) returns a solution state
    inputs: problem, a problem
    schedule, a mapping from time to "temperature"
    local variables: current, a node
    next, a node
    \(T\), a "temperature" controlling the probability of downward steps
    current \(\leftarrow\) Maike-Node(Initial-State[problem])
    for \(t \leftarrow 1\) to \(\infty\) do
        \(T \leftarrow\) schedule \([t]\)
        if \(T=0\) then return current
        next \(\leftarrow\) a randomly selected successor of current
        \(\Delta E \leftarrow \operatorname{Value}[\) next \(]\) - Value [curtent]
        if \(\Delta E<0\) then current \(\leftarrow\) next
                                    Algorithm when goal
                                    is to minimize E .
```

```
    else current \(\leftarrow\) next only with probability \(\bar{e}^{\Delta E / T}\)
```


This time: Outline

- Game playing
- The minimax algorithm
- Resource limitations
- alpha-beta pruning
- Elements of chance

What kind of games?

- Abstraction: To describe a game we must capture every relevant aspect of the game. Such as:
- Chess
- Tic-tac-toe
- Accessible environments: Such games are characterized by perfect information
- Search: game-playing then consists of a search through possible game positions
- Unpredictable opponent: introduces uncertainty thus game-playing must deal with contingency problems

Searching for the next move

- Complexity: many games have a huge search space
- Chess: $b=35, m=100 \Rightarrow$ nodes $=35^{100}$
if each node takes about 1 ns to explore then each move will take about 10^{50} millennia to calculate.
- Resource (e.g., time, memory) limit: optimal solution not feasible/possible, thus must approximate

1. Pruning: makes the search more efficient by discarding portions of the search tree that cannot improve quality result.
2. Evalluation functions: heuristics to evaluate utility of a state without exhaustive search.

Two-player games

- A game formulated as a search problem:
- Initial state: ?
- Operators: ?
- Terminal state: ?
- Utility function: ?

Two-player games

- A game formulated as a search problem:
- Initial state: board position and turn
- Operators: definition of legal moves
- Terminal state:
- Utility function:
conditions for when game is over
a numeric value that describes the outcome of the game. E.g., -1, 0, 1 for loss, draw, win. (AKA payoff function)

Game vs. search problem

"Unpredictable" opponent \Rightarrow solution is a contingency plan
Time limits \Rightarrow unlikely to find goal, must approximate
Plan of attack:

- algorithm for perfect play (Von Neumann, 1944)
- finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950; Samuel, 1952-57)
- pruning to reduce costs (McCarthy, 1956)

Example: Tic-Tac-Toe

Type of games

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon monopoly
		bridge, poker, scrabble nuclear war

Type of games

The minimax algorithm

- Perfect play for deterministic environments with perfect information
- Basic idea: choose move with highest minimax value $=$ best achievable payoff against best play
- Algorithm:

1. Generate game tree completely
2. Determine utility of each terminal state
3. Propagate the utility values upward in the three by applying MIN and MAX operators on the nodes in the current level
4. At the root node use minimax decision to select the move with the max (of the min) utility value

- Steps 2 and 3 in the algorithm assume that the opponent will play perfectly.

Generate Game Tree

Generate Game Tree

Generate Game Tree

Generate Game Tree

A subtree

What is a good move?

Minimax

-Minimize opponent's chance
-Maximize your chance

Minimax

-Minimize opponent's chance
-Maximize your chance

Minimax

-Minimize opponent's chance
-Maximize your chance

Minimax

MAX

MIN

-Minimize opponent's chance
-Maximize your chance

minimax $=$ maximum of the minimum

Minimax: Recursive implementation

function Minimax-DECISION(game) returns an operator
for each op in Operators[game] do
$\operatorname{Value}[o p] \leftarrow \operatorname{Minimax}-\mathrm{Value}(\operatorname{ApPly}(o p, g a m e), g a m e)$
end
return the op with the highest Value[$o p]$
function MinMax-Value(state, game) returns a utility value
if Terminal-Test[game](state) then return C^{-}тility $[$game] (state)
else if MaX is to move in state then
return the highest Minimax-Value of Successons(state)
else
return the lowest Minimax-Value of Successors(state)

Complete: ?
Optimal: ?

Time complexity: ? Space complexity: ?

Minimax: Recursive implementation

function Minimax-DECISION(game) returns an operator
for each op in Operatons[game] do
$\operatorname{Value}[o p] \leftarrow \operatorname{Minimax}-\mathrm{Value}(\operatorname{ApPly}(o p, g a m e), g a m e)$
end
return the op with the highest Value[$o p]$
function MinMax-Value(state, game) returns a utility value
if Terminal-Test[game](state) then
return C^{-}тility $[$game] (state)
else if MaX is to move in state then
return the highest Minimax-Value of Successors(state)
else
return the lowest Minimax-Value of Successors(state)

Complete: Yes, for finite state-space Time complexity: O(bm) Optimal: Yes Space complexity: O(bm) (= DFS Does not keep all nodes in memory.)

Do We Have To Do All That Work?

MAX

MIN

Do We Have To Do All That Work?

MAX

MIN

Do We Have To Do All That Work?

Since 2 is smaller than 3 , then there is no need for further search

Do We Have To Do All That Work?

More on this next time: $\alpha-\beta$ pruning

1. Move evaluation without complete search

- Complete search is too complex and impractical
- Evaluation function: evaluates value of state using heuristics and cuts off search
- New MI NI MAX:
- CUTOFF-TEST: cutoff test to replace the termination condition (e.g., deadline, depth-limit, etc.)
- EVAL: evaluation function to replace utility function (e.g., number of chess pieces taken)

Evaluation functions

Black to move
White slightly better

White to move
Black winning

- Weighted linear evaluation function: to combine n heuristics $f=w_{1} f_{1}+w_{2} f_{2+\ldots}+w_{n} f_{n}$
E.g, \quad 's could be the values of pieces (1 for prawn, 3 for bishop etc.) f 's could be the number of type of pieces on the board

Note: exact values do not matter

MAX

MIN

Behaviour is preserved under any monotonic transformation of Eval
Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Minimax with cutoff: viable algorithm?

MinimaxCutoff is identical to MinimaxValue except 1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?

$$
b^{m}=10^{6}, \quad b=35 \quad \Rightarrow \quad m=4
$$

4-ply lookahead is a hopeless chess player!
4-ply \approx human novice
8-ply \approx typical PC, human master

Assume we have 100 seconds, evaluate 10^{4} nodes/s; can evaluate 10^{6} nodes/move 12 -ply \approx Deep Blue, Kasparov
2. $\alpha-\beta$ pruning: search cutoff

- Pruning: eliminating a branch of the search tree from consideration without exhaustive examination of each node
- $\alpha=\beta$ pruning: the basic idea is to prune portions of the search tree that cannot improve the utility value of the max or min node, by just considering the values of nodes seen so far.
- Does it work? Yes, in roughly cuts the branching factor from b to $\sqrt{ }$ b resulting in double as far look-ahead than pure minimax

$\alpha-\beta$ pruning: example

$\alpha-\beta$ pruning: example

$\alpha-\beta$ pruning: example

$\alpha-\beta$ pruning: example

MAX

MIN

$\alpha-\beta$ pruning: general principle

Properties of $\alpha-\beta$

Pruning does not affect final result
Good move ordering improves effectiveness of pruning
With "perfect ordering," time complexity $=O\left(b^{m / 2}\right)$
\Rightarrow doubles depth of search
\Rightarrow can easily reach depth 8 and play good chess
A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

The $\alpha-\beta$ algorithm:

Basically Minimax + keep track of $\alpha, \beta+$ prune

```
function Max-Value(state, game, \alpha,\beta) returns the minimax value of state
    inputs: state, current state in game
            game, game description
            \alpha, the best score for MAX along the path to state
            \beta, the best score for min along the path to state
    if Cutoff-Test(state) then return Eval(state)
    for each s in SuCcessors(state) do
        \alpha\leftarrow\operatorname{Max}(\alpha,\operatorname{Min-ValuE}(s,game, \alpha, \beta))
        if }\alpha\geq\beta\mathrm{ then return }
    end
    return \alpha
```

function Min-Value(state, game, α, β) returns the minimax value of state
if Cutoff-Test(state) then return Eval(state)
for each s in Successors (state) do
$\beta \leftarrow \operatorname{Min}(\beta$, Max-Value $(s$, game, $\alpha, \beta))$
if $\beta \leq \alpha$ then return α
end
return β

More on the $\alpha-\beta$ algorithm

- Same basic idea as minimax, but prune (cut away) branches of the tree that we know will not contain the solution.

More on the $\alpha-\beta$ algorithm: start from Minimax

Basically Minimax + loop_track of $\lambda, \beta+$ prune

```
function MAX-VALUE(state, game, \alpha,\beta) returns the minimax value of state
    inputs: state, current state in game
        game, game description
```



```
    if Cutoff-Test(state) then return Eval(state)
    for each s in Successors(state) do
        \alpha}\leftarrow\operatorname{Max}(\alpha,\operatorname{Min-VAluE}(s,game, \alpha, \beta)
        if
    end
    return o
```

function Min-Value(state, game, α, β) returns the minimax value of state
if Cutoff-Test(state) then return Eval(state)
for each s in Successors (state) do
$\beta \leftarrow \operatorname{Min}(\beta, \operatorname{MaX}-\operatorname{Value}(s$, game $, \alpha, \beta))$
if β — then retwon a
end
return β

Remember: Minimax: Recursive implementation

function MINMAX-DECISION(game) returns an operator
for each op in Operatons[game] do
$\operatorname{Value}[o p] \leftarrow \operatorname{Minimax}-\mathrm{Value}(\operatorname{ApPly}(o p, g a m e), g a m e)$
end
return the op with the highest Value $[o p]$
function Minimax-Value(state, game) returns a utility value
if Terminal-Test [game] (state) then
return C^{-}Tility $[$game] (state)
else if Max is to move in state then
return the highest Minimax-Value of Successons(state)
else
return the lowest Minimax-Value of Successors(state)

Complete: Yes, for finite state-space Time complexity: $O\left(b^{m}\right)$
Optimal: Yes
Space complexity: O(bm) (= DFS Does not keep all nodes in memory.)

More on the $\alpha-\beta$ algorithm

- Same basic idea as minimax, but prune (cut away) branches of the tree that we know will not contain the solution.
- Because minimax is depth-first, let's consider nodes along a given path in the tree. Then, as we go along this path, we keep track of:
- α : Best choice so far for MAX
- β : Best choice so far for MIN

More on the $\alpha-\beta$ algorithm: start from Minimax

Basically Minimax + keep track of $\alpha, \beta+$ prune

```
function Max-VALUE(state, game, \alpha,\beta) returns the minimax value of state
    inputs: state, current state in game
```


α, the best score for MAX along the path to state β, the best score for min along the path to state
if Cutoff-Test (state) then return Eval(state)
for each s in Successors (state) do
$\alpha \leftarrow \operatorname{Max}(\alpha, \operatorname{Min}-\operatorname{Value}(s, g a m e, \boldsymbol{\alpha}, \beta))$
if $\alpha \geq \beta$ then return β
end
return α
function Min-Value(state, game, α, β) returns the minimax value of state
if Cutoff-Test (state) then return Eval(state)
for each s in Successors (state) do
$\beta \leftarrow \operatorname{Min}(\beta, \operatorname{MaX}-\operatorname{Value}(s$, game $, \alpha, \beta))$
if $\beta \leq \alpha$ then return α
end
return β

Note: These are both Local variables. At the Start of the algorithm, We initialize them to $\alpha=-\infty$ and $\beta=+\infty$

More on the $\alpha-\beta$ algorithm

In Min-Value:

```
fur each s in Successors(state) du
    \beta\leftarrow\operatorname{Min}(\beta,MAX-VALUE(s, game, \alpha,\beta))
    if }\beta\leq\alpha\mathrm{ then returin }
end
returin }
```

MAX

More on the $\alpha-\beta$ algorithm

In Max-Value:

```
for each }s\mathrm{ in SUCCESSORS(state) do
    \alpha\leftarrowMAX(\alpha,MiN-Value(s, qame, }\alpha,\beta)
    if }\alpha\geq\beta\mathrm{ then return }
end
return a
```

MAX MAX

More on the $\alpha-\beta$ algorithm

In Min-Value:

More on the $\alpha-\beta$ algorithm
In Max-Value:

```
for each s in SuCCESSORS(state) do
    \alpha\leftarrowMax( }\alpha,\operatorname{Min-Value(s: game, }\alpha,\beta)
    if }\alpha\geq\beta\mathrm{ then return }
end
return a
```


Another way to understand the algorithm

- From:
http://yoda.cis.temple.edu:8080/UGAI WVW/lectures95/search/alpha-beta.html
- For a given node N ,
α is the value of N to MAX
β is the value of N to MIN

Example

$\alpha-\beta$ algorithm:

Basically Minimax + keep track of $\alpha, \beta+$ prune

```
function MAX-VALUE(state, game, \alpha,\beta) returns the minimax value of state
    inputs: state, current state in game
        game, game description
        \alpha, the best score for max along the path to state
        \beta, the best score for min along the path to state
    if Cutoff-Test(state) then return Eval(state)
    for each s in Successors(state) do
        \alpha}\leftarrow\operatorname{Max}(\alpha,\operatorname{Min-VAlue}(s,game, \alpha, \beta)
        if }\alpha\geq\beta\mathrm{ then return }
    end
    return \alpha
```

function Min-Value(state, game, α, β) returns the minimax value of state
if Cutoff-Test(state) then return Eval(state)
for each s in Successors(state) do
$\beta \leftarrow \operatorname{Min}(\beta, \operatorname{MaX}-\operatorname{Value}(s$, game $, \alpha, \beta))$
if $\beta \leq \alpha$ then return α
end
return β

Solution

NODE	TYPE	ALPHA	BETA	SCORE					
A	Max	-I	+1						
B	Min	-I	+1						
C	Max	-I	+		NODE	TYPE	ALPHA	BETA	SCORE
D	Min	-I	+1						
E	Max	10	10	10	\cdots	Max	10	10	10
D	Min	-I	10		B	Min	-1	10	10
F	Max	11	11	11	A	Max	10	+1	
D	Min	-I	10	10	Q	Min	10	+	
C	Max	10	+		R	Max	10	+	
G	Min	10	+		S	Min	10	+	
H	Max	9	9	9	T	Max	5	5	5
G	Min	10	9	9	S	Min	10	5	5
C	Max	10	+1	10	R	Max	10	+	
B	Min	-1	10		V	Min	10	+1	
J	Max	-I	10		W	Max	4	4	4
K	Min	-I	10		V	Min	10	4	4
L	Max	14	14	14	R	Max	10	+1	10
K	Min	-I	10	10	Q	Min	10	10	10
..'					A	Max	10	10	10
				CS 460, S	ssions 8				82

State-of-the-art for deterministic games

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of $443,748,401,247$ positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, $b>300$, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic games

E..g, in backgammon, the dice rolls determine the legal moves

Simplified example with coin-flipping instead of dice-rolling:

Algorithm for nondeterministic games

Expectiminimax gives perfect play
Just like Minimax, except we must also handle chance nodes:
if state is a chance node then return average of ExpectiMinimax-Value of Successors(state)

A version of $\alpha-\beta$ pruning is possible but only if the leaf values are bounded. Why??

Remember: Minimax algorithm

```
function Minimax-Decision(game) returns an operator
    for each op in Operators[game] do
    Value \([o p] \leftarrow\) Minimax-Value(Aprly \((o p, g a m e)\), game)
    end
    return the \(o p\) with the highest Value \([o p]\)
```

function Minmax-Value(state, game) returns a utility value
if Terminal-Test[game](state) then
return U^{-}тilit Y[game](state)
else if MAX is to move in state then
return the highest Minimax-Value of Successors(state)
else
return the lowest Minimax-Value of Successons(state)

Nondeterministic games: the element of chance

expectimax and expectimin, expected values over all possible outcomes

Nondeterministic games: the element of chance

Evaluation functions: Exact values DO matter

Order-preserving transformation do not necessarily behave the same!

MIN

State-of-the-art for nondeterministic games

Dice rolls increase b : 21 possible rolls with 2 dice Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

$$
\text { depth } 4=20 \times(21 \times 20)^{3} \approx 1.2 \times 10^{9}
$$

As depth increases, probability of reaching a given node shrinks
\Rightarrow value of lookahead is diminished
$\alpha-\beta$ pruning is much less effective

Summary

Games are fun to work on! (and dangerous)
They illustrate several important points about AI
\diamond perfection is unattainable \Rightarrow must approximate
\diamond good idea to think about what to think about
\diamond uncertainty constrains the assignment of values to states
Games are to Al as grand prix racing is to automobile design

Exercise: Game Playing

Consider the following game tree in which the evaluation function values are shown below each leaf node. Assume that the root node corresponds to the maximizing player. Assume the search always visits children left-to-right.
(a) Compute the backed-up values computed by the minimax algorithm. Show your answer by writing values at the appropriate nodes in the above tree.
(b) Compute the backed-up values computed by the alpha-beta algorithm. What nodes will not be examined by the alpha-beta pruning algorithm?
(c) What move should Max choose once the values have been backed-up all the way?

$\begin{array}{llllllllllllll}\mathrm{L} & \mathrm{M} & \mathrm{N} & \mathrm{O} & \mathrm{P} & \mathrm{Q} & \mathrm{R} & \mathrm{S} & \mathrm{T} & \mathrm{U} & \mathrm{V} & \mathrm{W} & \mathrm{X} & \mathrm{Y} \\ 2 & 3 & 8 & 5 & 7 & 6 & 0 & 1 & 5 & 2 & 8 & 4 & 10 & 2\end{array}$

