Midterm format

- Date: 10/09/2003 from 5:00pm 6:30pm
- Location: THH 208
- Credits: 35% of overall grade
- Approx. 4 problems, several questions in each.
- Material: everything so far.
- Not a multiple choice exam
- <u>No books</u> (or other material) are allowed.
- Duration will be 1:30 hours.
- Academic Integrity code: see class main page.

Last time: Logic and Reasoning

- Knowledge Base (KB): contains a set of <u>sentences</u> expressed using a knowledge representation language
 - TELL: operator to add a sentence to the KB
 - ASK: to query the KB
- Logics are KRLs where conclusions can be drawn
 - Syntax
 - Semantics
- Entailment: KB |= a iff a is true in all worlds where KB is true
- Inference: KB $|-_i a|$ = sentence a can be derived from KB using procedure *i*
 - Sound: whenever KB $|-_i$ a then KB |= a is true
 - Complete: whenever KB |= a then KB $|-_i$ a

Last Time: Syntax of propositional logic

Propositional logic is the simplest logic—illustrates ba The proposition symbols P_1 , P_2 etc are sentences If S is a sentence, $\neg S$ is a sentence If S_1 and S_2 is a sentence, $S_1 \wedge S_2$ is a sentence If S_1 and S_2 is a sentence, $S_1 \vee S_2$ is a sentence If S_1 and S_2 is a sentence, $S_1 \Rightarrow S_2$ is a sentence If S_1 and S_2 is a sentence, $S_1 \Leftrightarrow S_2$ is a sentence

Last Time: Semantics of Propositional logic

Each model specifies true/false for each proposition symbol

E.g.
$$A$$
 B C
 $True$ $True$ $False$

Rules for evaluating truth with respect to a model m:

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true <u>and</u>	S_2	is true
$S_1 \lor S_2$	is true iff	S_1	is true <u>or</u>	S_2	is true
$S_1 \Rightarrow S_2$	is true iff	S_1	is false <u>or</u>	S_2	is true
i.e.,	is false iff	S_1	is true <u>and</u>	S_2	is false
$S_1 \Leftrightarrow S_2$	is true iff	$S_1 \Rightarrow S_2$	is true <u>and</u>	$S_2 \Rightarrow S_1$	is true

Last Time: Inference rules for propositional logic

♦ **Modus Ponens** or **Implication-Elimination**: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{\alpha \Rightarrow \beta, \qquad \alpha}{\beta}$$

♦ And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_1}$$

♦ And-Introduction: (From a list of sentences, you can infer their conjunction.)

 $\frac{\alpha_1, \alpha_2, \ldots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}$

♦ **Or-Introduction**: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

♦ Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

 $\frac{\neg \neg \alpha}{\alpha}$

 \diamond Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$\frac{\alpha \lor \beta, \qquad \neg \beta}{\alpha}$$

 \diamond **Resolution**: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{\alpha \lor \beta, \quad \neg \beta \lor \gamma}{\alpha \lor \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

5

This time

- First-order logic
 - Syntax
 - Semantics
 - Wumpus world example
- **Ontology** (ont = 'to be'; logica = 'word'): kinds of things one can talk about in the language

- We saw that propositional logic is limited because it only makes the ontological commitment that the world consists of facts.
- Difficult to represent even simple worlds like the Wumpus world;

e.g.,

"don't go forward if the Wumpus is in front of you" takes 64 rules

First-order logic (FOL)

- Ontological commitments:
 - **Objects**: wheel, door, body, engine, seat, car, passenger, driver
 - **Relations**: Inside(car, passenger), Beside(driver, passenger)
 - Functions: ColorOf(car)
 - **Properties**: Color(car), IsOpen(door), IsOn(engine)
- Functions are relations with single value for each object

Semantics

there is a correspondence between

- functions, which return values
- predicates, which are true or false

Function: father_of(Mary) = Bill Predicate: father_of(Mary, Bill)

Examples:

"One plus two equals three"
 Objects:
 Relations:
 Properties:
 Functions:

 "Squares neighboring the Wumpus are smelly" Objects: Relations: Properties: Functions:

Examples:

• "One plus two equals three"

- Objects: one, two, three, one plus two
- Relations: equals
- Properties: --
- Functions: plus ("one plus two" is the name of the object obtained by applying function plus to one and two; three is another name for this object)
- "Squares neighboring the Wumpus are smelly"
 - Objects: Wumpus, square
 - Relations: neighboring
 - Properties: smelly
 - Functions: --

FOL: Syntax of basic elements

- Constant symbols: 1, 5, A, B, USC, JPL, Alex, Manos, ...
- Predicate symbols: >, Friend, Student, Colleague, ...
- Function symbols: +, sqrt, SchoolOf, TeacherOf, ClassOf, ...
- Variables: x, y, z, next, first, last, ...
- Connectives: $\land, \lor, \Rightarrow, \Leftrightarrow$
- Quantifiers: \forall , \exists
- Equality: =

Syntax of Predicate Logic

- Symbol set
 - constants
 - Boolean connectives
 - variables
 - functions
 - predicates (relations)
 - quantifiers

Syntax of Predicate Logic

- Terms: a reference to an object
 - variables,
 - constants,
 - functional expressions (can be arguments to predicates)

- Examples:
 - first([a,b,c]), sq_root(9), sq_root(n), tail([a,b,c])

- Sentences: make claims about objects
 - (Well-formed formulas, (wffs))
- Atomic Sentences (predicate expressions):
 - loves(John,Mary), brother_of(John,Ted)
- Complex Sentences (Atomic Sentences connected by booleans):
 - loves(John,Mary)
 - brother_of(John,Ted)
 - teases(Ted, John)

Examples of Terms: Constants, Variables and Functions

- Constants: object constants refer to individuals
 - Alan, Sam, R225, R216
- Variables
 - PersonX, PersonY, RoomS, RoomT
- Functions
 - father_of(PersonX)
 - product_of(Number1,Number2)

Examples of Predicates and Quantifiers

- Predicates
 - in(Alan,R225)
 - partOf(R225,Pender)
 - fatherOf(PersonX,PersonY)
- Quantifiers
 - All dogs are mammals.
 - Some birds can't fly.
 - 3 birds can't fly.

Semantics

- Referring to individuals
 - Jackie
 - son-of(Jackie), Sam
- Referring to states of the world
 - person(Jackie), female(Jackie)
 - mother(Sam, Jackie)

FOL: Atomic sentences

AtomicSentence \rightarrow Predicate(Term, ...) | Term = Term

Term \rightarrow Function(Term, ...) | Constant | Variable

- Examples:
 - SchoolOf(Manos)
 - Colleague(TeacherOf(Alex), TeacherOf(Manos))
 - >((+ x y), x)

FOL: Complex sentences

- Sentence → AtomicSentence | Sentence Connective Sentence | Quantifier Variable, ... Sentence | ¬ Sentence | (Sentence)
- Examples:
 - S1 \land S2, S1 \lor S2, (S1 \land S2) \lor S3, S1 \Rightarrow S2, S1 \Leftrightarrow S3
 - Colleague(Paolo, Maja) ⇒ Colleague(Maja, Paolo)
 Student(Alex, Paolo) ⇒ Teacher(Paolo, Alex)

Semantics of atomic sentences

- Sentences in FOL are interpreted with respect to a model
- Model contains objects and relations among them
- Terms: refer to objects (e.g., Door, Alex, StudentOf(Paolo))
 - <u>Constant symbols</u>: refer to <u>objects</u>
 - <u>Predicate symbols:</u> refer to relations
 - Function symbols: refer to functional Relations
- An atomic sentence *predicate(term₁, ..., term_n)* is **true** iff the relation referred to by *predicate* holds between the objects referred to by *term₁, ..., term_n*

Example model

- Objects: John, James, Marry, Alex, Dan, Joe, Anne, Rich
- Relation: sets of tuples of objects
 {<John, James>, <Marry, Alex>, <Marry, James>, ...}
 {<Dan, Joe>, <Anne, Marry>, <Marry, Joe>, ...}
- E.g.: Parent relation -- {<John, James>, <Marry, Alex>, <Marry, James>}

then Parent(John, James) is true Parent(John, Marry) is false

Quantifiers

- Expressing sentences about **collections** of objects without enumeration (naming individuals)
- E.g., All Trojans are clever

Someone in the class is sleeping

- Universal quantification (for all): \forall
- Existential quantification (three exists): ∃

Universal quantification (for all): \forall

∀ <variables> <sentence>

- "Every one in the cs561 class is smart": $\forall x \quad \ln(cs561, x) \Rightarrow Smart(x)$
- ∀ P corresponds to the conjunction of instantiations of P
 In(cs561, Manos) ⇒ Smart(Manos) ∧
 In(cs561, Dan) ⇒ Smart(Dan) ∧
 ...
 In(cs561, Clinton) ⇒ Smart(Clinton)

Universal quantification (for all): \forall

- \Rightarrow is a natural connective to use with \forall
- Common mistake: to use ∧ in conjunction with ∀
 e.g: ∀ x In(cs561, x) ∧ Smart(x)
 means *"every one is in cs561 and everyone is smart"*

Existential quantification (there exists): \exists

∃ <variables> <sentence>

- *"Someone in the cs561 class is smart"*: ∃ *x* In(cs561, *x*) ∧ Smart(*x*)
- J P corresponds to the disjunction of instantiations of P
 In(cs561, Manos) Smart(Manos) In(cs561, Dan) Smart(Dan)

```
In(cs561, Clinton) ^ Smart(Clinton)
```

Existential quantification (there exists): \exists

- \land is a natural connective to use with \exists
- Common mistake: to use ⇒ in conjunction with ∃

 e.g: ∃ x In(cs561, x) ⇒ Smart(x)
 is true if there is anyone that is not in cs561!
 (remember, false ⇒ true is valid).

Properties of quantifiers

 $\forall x \ \forall y$ is the same as $\forall y \ \forall x \ (why??)$

 $\exists x \exists y \text{ is the same as } \exists y \exists x (why??)$

$$\exists x \ \forall y \ \text{ is } \underline{\text{not}} \text{ the same as } \forall y \ \exists x$$

 $\exists x \ \forall y \ Loves(x,y)$ "There is a person who loves everyone in the world" Not all by one $\forall y \ \exists x \ Loves(x,y)$ "Everyone in the world is loved by at least one person" each one at least by one <u>Quantifier duality</u>: each can be expressed using the other $\forall x \ Likes(x, IceCream) \quad \neg \exists x \ \neg Likes(x, IceCream) \quad \text{Proof?} \\ \exists x \ Likes(x, Broccoli) \quad \neg \forall x \ \neg Likes(x, Broccoli)$ 28

Proof

• In general we want to prove:

$$\forall x P(x) \leq = \neg \exists x \neg P(x)$$

$$\Box \forall x P(x) = \neg(\neg(\forall x P(x))) = \neg(\neg(P(x1) \land P(x2) \land ... \land P(xn))) = \neg(\neg P(x1) \lor \neg P(x2) \lor ... \lor \neg P(xn)))$$

$$\Box \exists x \neg P(x) = \neg P(x1) \lor \neg P(x2) \lor \ldots \lor \neg P(xn)$$

$$\Box \neg \exists x \neg P(x) = \neg (\neg P(x1) \lor \neg P(x2) \lor ... \lor \neg P(xn))$$

Example sentences

• Brothers are siblings

• Sibling is transitive

.

٠

• One's mother is one's sibling's mother

• A first cousin is a child of a parent's sibling

Example sentences

• Brothers are siblings

 $\forall x, y \text{ Brother}(x, y) \Rightarrow \text{Sibling}(x, y)$

• Sibling is transitive

 $\forall x, y, z$ Sibling(x, y) \land Sibling(y, z) \Rightarrow Sibling(x, z)

• One's mother is one's sibling's mother

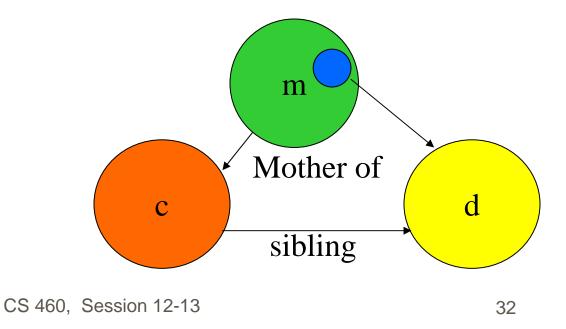
 \forall m, c Mother(m, c) \land Sibling(c, d) \Rightarrow Mother(m, d)

• A first cousin is a child of a parent's sibling

 \forall c, d FirstCousin(c, d) \Leftrightarrow \exists p, ps Parent(p, d) \land Sibling(p, ps) \land Parent(ps, c)

Example sentences

- One's mother is one's sibling's mother
 ∀ m, c,d Mother(m, c) ∧ Sibling(c, d) ⇒ Mother(m, d)
- \forall c,d \exists **m** Mother(m, c) \land Sibling(c, d) \Rightarrow Mother(m, d)



Translating English to FOL

• Every gardener likes the sun.

 \forall x gardener(x) => likes(x,Sun)

You can fool some of the people all of the time.
 ∃ x ∀ t (person(x) ^ time(t)) => can-fool(x,t)

Translating English to FOL

You can fool all of the people some of the time.
 ∀ x ∃ t (person(x) ^ time(t) => can-fool(x,t)

- All purple mushrooms are poisonous.
 - ∀ x (mushroom(x) ^ purple(x)) =>
 poisonous(x)

Translating English to FOL...

- No purple mushroom is poisonous.
- $\neg(\exists x) purple(x) ^ mushroom(x) ^ poisonous(x)$

```
or, equivalently,
```

Translating English to FOL...

- There are exactly two purple mushrooms.
- (∃ x)(∃ y) mushroom(x) ^ purple(x) ^
 mushroom(y) ^ purple(y) ^ ¬(x=y) ^ (∀ z)
 (mushroom(z) ^ purple(z)) => ((x=z) v (y=z))

• Deb is not tall.

rtall(Deb)

Translating English to FOL...

• X is above Y if X is on directly on top of Y or else there is a pile of one or more other objects directly on top of one another starting with X and ending with Y.

```
(∀ x)(∀ y) above(x,y) <=> (on(x,y) v (∃ z)
(on(x,z) ^ above(z,y)))
```

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g.,
$$1 = 2$$
 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable $2 = 2$ is valid

E.g., definition of (full) Sibling in terms of Parent: $\forall x, y \ Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \neg(m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Higher-order logic?

- First-order logic allows us to quantify over objects (= the first-order entities that exist in the world).
- Higher-order logic also allows quantification over relations and functions.

e.g., "two objects are equal iff all properties applied to them are equivalent":

 $\forall x,y (x=y) \Leftrightarrow (\forall p, p(x) \Leftrightarrow p(y))$

• Higher-order logics are more expressive than first-order; however, so far we have little understanding on how to effectively reason with sentences in higher-order logic. 39

Logical agents for the Wumpus world

Remember: generic knowledge-based agent:

```
function KB-AGENT( percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time
TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
action \leftarrow Ask(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE( action, t))
t \leftarrow t + 1
return action
```

- 1. TELL KB what was perceived Uses a KRL to insert new sentences, representations of facts, into KB
- ASK KB what to do.
 Uses logical reasoning to examine actions and select best.

Using the FOL Knowledge Base

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:

 $\begin{aligned} \text{Tell}(KB, Percept([Smell, Breeze, None], 5)) \\ \text{Ask}(KB, \exists a \ Action(a, 5)) \end{aligned}$

I.e., does the KB entail any particular actions at t = 5?

Answer: Yes, $\{a/Shoot\} \leftarrow substitution \text{ (binding list)}$ Given a sentence S and a substitution σ , Set of solutions

 $S\sigma$ denotes the result of plugging σ into S; e.g.,

S = Smarter(x, y) $\sigma = \{x/Hillary, y/Bill\}$ $S\sigma = Smarter(Hillary, Bill)$

Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

Wumpus world, FOL Knowledge Base

"Perception"

 $\begin{array}{ll} \forall b,g,t \ \ Percept([Smell,b,g],t) \Rightarrow Smelt(t) \\ \forall s,b,t \ \ Percept([s,b,Glitter],t) \Rightarrow AtGold(t) \end{array}$

<u>**Reflex:**</u> $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$

<u>Reflex with internal state</u>: do we have the gold already? $\forall t \ AtGold(t) \land \neg Holding(Gold,t) \Rightarrow Action(Grab,t)$

 $\frac{Holding(Gold,t) \text{ cannot be observed}}{\Rightarrow \text{ keeping track of change is essential}}$

Deducing hidden properties

Properties of locations: $\forall l, t \; At(Agent, l, t) \land Smelt(t) \Rightarrow Smelly(l)$ $\forall l, t \; At(Agent, l, t) \land Breeze(t) \Rightarrow Breezy(l)$

Squares are breezy near a pit:

 $\frac{\text{Diagnostic}}{\forall y} \text{ } Breezy(y) \Rightarrow \exists x \ Pit(x) \land Adjacent(x,y)$

<u>Causal</u> rule—infer effect from cause $\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

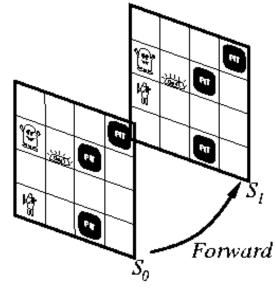
<u>Definition</u> for the *Breezy* predicate: $\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x, y)]$

Situation calculus

Facts hold in <u>situations</u>, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL: Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function Result(a, s) is the situation that results from doing a is s



Describing actions

"Effect" axiom—describe changes due to action $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$

"Frame" axiom—describe <u>non-changes</u> due to action
 ∀s HaveArrow(s) ⇒ HaveArrow(Result(Grab, s))
 May result in too many frame problem: find an elegant way to handle non-change (a) representation—avoid frame axioms
 (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or ...

<u>Ramification problem</u>: real actions have many secondary consequences what about the dust on the gold, wear and tear on gloves, ...

Describing actions (cont'd)

Successor-state axioms solve the representational frame problem

Each axiom is "about" a predicate (not an action per se):

- P true afterwards \Leftrightarrow [an action made P true
 - \vee P true already and no action made P false]

For holding the gold:

$$\begin{array}{l} \forall a,s \ Holding(Gold,Result(a,s)) \Leftrightarrow \\ [(a = Grab \land AtGold(s)) \\ \lor (Holding(Gold,s) \land a \neq Release)] \end{array}$$

Planning

Initial condition in KB: $At(Agent, [1, 1], S_0)$ $At(Gold, [1, 2], S_0)$

Query: $Ask(KB, \exists s \ Holding(Gold, s))$ i.e., in what situation will I be holding the gold?

Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$ i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Generating action sequences

Represent <u>plans</u> as action sequences $[a_1, a_2, \ldots, a_n]$

PlanResult(p, s) is the result of executing p in s

Then the query $A_{SK}(KB, \exists p \ Holding(Gold, PlanResult(p, S_0)))$ has the solution $\{p/[Forward, Grab]\}$

Definition of PlanResult in terms of Result: $\forall s \ PlanResult([], s) = s$ [] = empty plan $\forall a, p, s \ PlanResult([a|p], s) = PlanResult(p, Result(a, s))$ Recursively continue until it gets to empty plan [] <u>Planning systems</u> are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB