Logical reasoning systems

Theorem provers and logic programming languages

Production systems

Frame systems and semantic networks

Description logic systems

Logical reasoning systems

- Theorem provers and logic programming languages Provers: use resolution to prove sentences in full FOL. Languages: use backward chaining on restricted set of FOL constructs.
- Production systems based on implications, with consequents interpreted as action (e.g., insertion & deletion in KB). Based on forward chaining + conflict resolution if several possible actions.
- Frame systems and semantic networks objects as nodes in a graph, nodes organized as taxonomy, links represent binary relations.
- Description logic systems evolved from semantic nets. Reason with object classes & relations among them.

Basic tasks

- Add a new fact to KB TELL
- Given KB and new fact, derive facts implied by conjunction of KB and new fact. In forward chaining: part of TELL
- Decide if query entailed by KB ASK
- Decide if query explicitly stored in KB restricted ASK
- Remove sentence from KB: distinguish between correcting false sentence, forgetting useless sentence, or updating KB re. change in the world.

Indexing, retrieval & unification

 Implementing sentences & terms: define syntax and map sentences onto machine representation.

```
Compound: has operator & arguments.

e.g., c = P(x) \land Q(x)   Op[c] = \land; Args[c] = [P(x), Q(x)]
```

- FETCH: find sentences in KB that have same structure as query.

 ASK makes multiple calls to FETCH.
- STORE: add each conjunct of sentence to KB. Used by TELL.

```
e.g., implement KB as list of conjuncts TELL(KB, A \land \negB) TELL(KB, \negC \land D) then KB contains: [A, \negB, \negC, D]
```

Complexity

· With previous approach,

FETCH takes O(n) time on n-element KB

STORE takes O(n) time on n-element KB (if check for duplicates)

Faster solution?

Table-based indexing

What are you indexing on? Predicates (relations/functions).
 Example:

Key	Positive	Negative	Conclu- sion	Premise
Mother	Mother(ann,sam) Mother(grace,joe)	-Mother(ann,al)	XXXX	XXXX
dog	dog(rover) dog(fido)	-dog(alice)	XXXX	XXXX

Table-based indexing

 Use hash table to avoid looping over entire KB for each TELL or FETCH

e.g., if only allowed literals are single letters, use a 26-element array to store their values.

- More generally:
 - convert to Horn form
 - index table by predicate symbol
 - for each symbol, store:

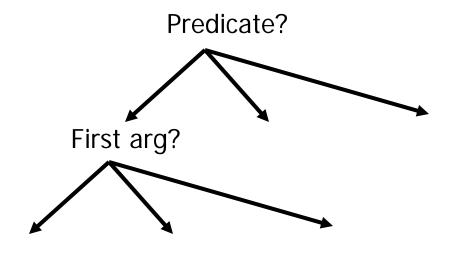
list of positive literals

list of negative literals

list of sentences in which predicate is in conclusion list of sentences in which predicate is in premise

Tree-based indexing

- Hash table impractical if many clauses for a given predicate symbol
- Tree-based indexing (or more generally combined indexing):
 compute indexing key from predicate and argument symbols



Tree-based indexing

Example:

Person(age, height, weight, income)

Person(30,72,210,45000)

Fetch(Person(age,72,210,income))

Fetch(Person(age,height>72,weight<210,income))

Unification algorithm: Example

Understands(mary,x) implies Loves(mary,x)

Understands(mary,pete) allows the system to substitute pete for x and make the implication that IF

Understands(mary,pete) THEN Loves(mary,pete)

Unification algorithm

- Using clever indexing, can reduce number of calls to unification
- Still, unification called very often (at basis of modus ponens) => need efficient implementation.

- See AIMA p. 303 for example of algorithm with O(n^2) complexity
 - (n being size of expressions being unified).

Logic programming

Remember: knowledge engineering vs. programming...

Sound bite: computation as inference on logical KBs

	Logic programming	Ordinary programming
1.	Identify problem	Identify problem
2.	Assemble information	Assemble information
3.	Tea break	Figure out solution
4.	Encode information in KB	Program solution
5.	Encode problem instance as facts	Encode problem instance as data
6.	Ask queries	Apply program to data
7.	Find false facts	Debug procedural errors

Should be easier to debug Capital(NewYork, US) than x := x + 2!

Logic programming systems

e.g., Prolog:

- Program = sequence of sentences (implicitly conjoined)
- All variables implicitly universally quantified
- Variables in different sentences considered distinct
- Horn clause sentences only (= atomic sentences or sentences with no negated antecedent and atomic consequent)
- Terms = constant symbols, variables or functional terms
- Queries = conjunctions, disjunctions, variables, functional terms
- Instead of negated antecedents, use negation as failure operator: goal NOT P considered proved if system fails to prove P
- Syntactically distinct objects refer to distinct objects
- Many built-in predicates (arithmetic, I/O, etc)

Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles Widely used in Europe, Japan (basis of 5th Generation project) Compilation techniques \Rightarrow 10 million LIPS

```
Program = set of clauses = head :- literal, ... literal. Efficient unification by open coding

Efficient retrieval of matching clauses by direct linking

Depth-first, left-to-right backward chaining

Built-in predicates for arithmetic etc., e.g., X is Y*Z+3

Closed-world assumption ("negation as failure")

e.g., not PhD(X) succeeds if PhD(X) fails
```

Basic syntax of facts, rules and queries

A PROLOG Program

- A PROLOG program is a set of facts and rules.
- A simple program with just facts :

```
parent(alice, jim).
parent(jim, tim).
parent(jim, dave).
parent(jim, sharon).
parent(tim, james).
parent(tim, thomas).
```

A PROLOG Program

- c.f. a table in a relational database.
- Each line is a *fact* (a.k.a. a tuple or a row).
- Each line states that some person x is a parent of some (other) person Y.
- In GNU PROLOG the program is kept in an ASCII file.

A PROLOG Query

Now we can ask PROLOG questions:
 | ?- parent(alice, jim).
 yes
 | ?- parent(jim, herbert).
 no
 | ?-

A PROLOG Query

Not very exciting. But what about this :

```
| ?- parent(alice, Who).
Who = jim
yes
| ?-
```

- Who is called a logical variable.
 - PROLOG will set a logical variable to any value which makes the query succeed.

A PROLOG Query II

- Sometimes there is more than one correct answer to a query.
- PROLOG gives the answers one at a time. To get the next answer type;

```
| ?- parent(jim, Who).
Who = tim ?;
Who = dave ?;
Who = sharon ?;
yes
| ?-
```

NB: The;
do not
actually
appear on
the screen.

A PROLOG Query II

```
| ?- parent(jim, Who).
Who = tim ?;
Who = dave ?;
Who = sharon ?;
yes
| ?-
```

NB: The;
do not
actually
appear on
the screen.

 After finding that jim was a parent of sharon GNU PROLOG detects that there are no more alternatives for parent and ends the search.

conjunction

Prolog example

Depth-first search from a start state X:

```
dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).
```

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

```
append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).
```

query: append(A,B,[1,2])?

answers: A=[] B=[1,2]

A = [1] B = [2]

A=[1,2] B=[]

Append

- append([], L, L)
- append([H| L1], L2, [H| L3]) :- append(L1, L2, L3)
- Example join [a, b, c] with [d, e].
 - [a, b, c] has the recursive structure [a| [b, c]].
 - Then the rule says:
 - IF [b,c] appends with [d, e] to form [b, c, d, e] THEN [a|[b, c]] appends with [d,e] to form [a|[b, c, d, e]]
 - i.e. [a, b, c, d, e]

Expanding Prolog

Parallelization:

OR-parallelism: goal may unify with many different literals and implications in KB

AND-parallelism: solve each conjunct in body of an implication in parallel

- Compilation: generate built-in theorem prover for different predicates in KB
- Optimization: for example through re-ordering
 e.g., "what is the income of the spouse of the president?"
 Income(s, i) \(\times \) Married(s, p) \(\times \) Occupation(p, President)
 faster if re-ordered as:

Occupation(p, President) \land Married(s, p) \land Income(s, i)

Theorem provers

- Differ from logic programming languages in that:
 - accept full FOL
 - results independent of form in which KB entered

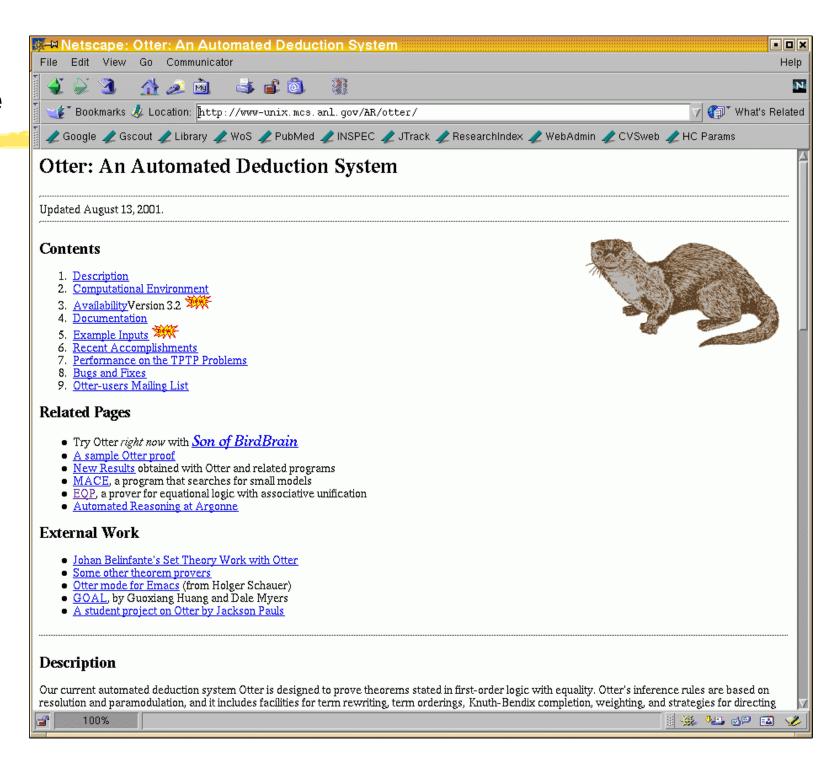
OTTER

- Organized Techniques for Theorem Proving and Effective Research (McCune, 1992)
- Set of support (sos): set of clauses defining facts about problem
- Each resolution step: resolves member of sos against other axiom
- Usable axioms (outside sos): provide background knowledge about domain
- Rewrites (or demodulators): define canonical forms into which terms can be simplified. E.g., x+0=x
- Control strategy: defined by set of parameters and clauses. E.g., heuristic function to control search, filtering function to eliminate uninteresting subgoals.

OTTER

- Operation: resolve elements of sos against usable axioms
- Use best-first search: heuristic function measures "weight" of each clause (lighter weight preferred; thus in general weight correlated with size/difficulty)
- At each step: move lightest close in sos to usable list, and add to usable list consequences of resolving that close against usable list
- Halt: when refutation found or sos empty

Example



Example: Robbins Algebras Are Boolean

The Robbins problem---are all Robbins algebras
Boolean?---has been solved: Every Robbins algebra is
Boolean. This theorem was proved automatically by
EQP, a theorem proving program developed at Argonne
National Laboratory

Example: Robbins Algebras Are Boolean

Historical Background

- In 1933, E. V. Huntington presented [1,2] the following basis for Boolean algebra:
- x + y = y + x. [commutativity]
- (x + y) + z = x + (y + z). [associativity]
- n(n(x) + y) + n(n(x) + n(y)) = x. [Huntington equation]
- Shortly thereafter, Herbert Robbins conjectured that the Huntington equation can be replaced with a simpler one [5]:
- n(n(x + y) + n(x + n(y))) = x. [Robbins equation]
- Robbins and Huntington could not find a proof, and the problem was later studied by Tarski and his students

Example: Winker Conditions (1979)

- all x, n(n(x))=x
- $\exists 0 \text{ all } x, x+0=x$
- all x, x+x=x
- 1st: ∃ C ∃ D, C+D=C
- 2^{nd} : $\exists C \exists D, n(C+D)=n(C)$

Example: Otter: October 10, 1996

- n(n(y)+x)+n(x+y)) = x. [Robbins equation]
- n(x+y) != n(x). [denial of 2nd Winker condition]

The Robbins problem---are all Robbins algebras Boolean?---has been solved: Every Robbins algebra is Boolean. This theorem was proved automatically by \underline{EQP} , a theorem proving program developed at Argonne National Laboratory.

Historical Background

In 1933, E. V. Huntington presented [1,2] the following basis for Boolean algebra:

```
x + y = y + x. [commutativity]

(x + y) + z = x + (y + z). [associativity]

n(n(x) + y) + n(n(x) + n(y)) = x. [Huntington equation]
```

Shortly thereafter, Herbert Robbins conjectured that the Huntington equation can be replaced with a simpler one [5]:

$$n(n(x + y) + n(x + n(y))) = x.$$
 [Robbins equation]

Robbins and Huntington could not find a proof, and the problem was later studied by Tarski and his students [6].

```
Searching ...
Success, in 1.28 seconds!
                                                                               Given to
    ----- PROOF -----
                                                                              the system
         n(n(A) + B) + n(n(A) + n(B))! = A.
2
3
5,4
         x=x.
         X+V=V+X.
         (x+y)+z=x+(y+z).
6
         n(n(x+y)+n(x+n(y)))=x.
8
         X+X=X.
10
         n(n(A) + n(B)) + n(n(A) + B)! = A.
                                                        [para from, 3, 1]
13
         X+(X+V)=X+V
                                                        [para into,4,8,flip.1]
15
         X+ (V+Z)=V+ (X+Z).
                                                        [para into, 4, 3, demod, 5]
23, 22
         X+ (y+x)=X+y.
                                                        [para into, 13, 3]
26
         n(n(x)+n(x+n(x)))=x.
                                                        [para into,6,8]
36
         n(n(n(x)+x)+n(n(x)))=n(x).
                                                        [para into,6,8]
42
         n(n(x+n(y))+n(x+y))=x.
                                                        [para into, 6, 3]
52
         X+ (Y+Z)=X+ (Z+Y).
                                                        [para into, 15, 3, demod, 5]
81,80
         n(n(x+n(x))+n(x))=x.
                                                        [para into, 26, 3]
82
         n(n(n(x)+x)+x)=n(x).
                                                        [para from, 26, 6, demod, 23]
125
         n(n(x+n(x))+(n(x)+x))+x)=n(x+n(x))+n(x). [para into, 80, 80, demod, 5, 81]
139
         n(n(x+n(x))+x)+x = n(x+n(x)).
                                                        [para from, 80, 6]
166, 165
         n(n(x+n(x))+x)=n(x).
                                                        [para into,82,3]
180, 179
        n(n(x)+x)=n(x+n(x)).
                                                        [back_demod, 139, demod, 166]
195
         n(n(x+n(x))+n(n(x)))=n(x).
                                                        [back_demod, 36, demod, 180]
197
         n(n(x+(n(x)+n(x+n(x))))+(n(x+n(x))+x))=n(x). [para_into, 165, 165, demod, 5, 180, 5, 166]
206, 205
         n(n(x+(n(x)+n(x+n(x))))+n(x))=n(x+n(x))+x. [para from, 165, 80, demod, 166, 5, 180, 5]
223, 222
        n(n(x+y)+(y+x))=n(x+(y+n(x+y))).
                                                        [para into, 179, 52, demod, 5]
231, 230
        n(n(x+(n(x)+n(x+n(x))))+x)=n(x+n(x))+n(x). [back demod, 125, demod, 223]
564,563
         n(x+n(x))+x=x.
                                                        [para into, 195, 80, demod, 5, 223, 81, 206, 81]
                                                        [back demod, 197, demod, 564, 231]
582,581
        n(x+n(x))+n(x)=n(x).
586,585
        n(n(x))=x.
                                                        [back_demod, 80, demod, 582]
606,605
         n(x+n(y))+n(x+y)=n(x).
                                                        [para into, 585, 42, flip. 1]
621
                                                        [back demod, 10, demod, 606, 586]
         A! = A.
622
         $F.
                                                        [binary, 621, 2]
----- end of proof ------
```

Forward-chaining production systems

- Prolog & other programming languages: rely on backward-chaining
 (I.e., given a query, find substitutions that satisfy it)
- Forward-chaining systems: infer everything that can be inferred from KB each time new sentence is TELL'ed
- Appropriate for agent design: as new percepts come in, forward-chaining returns best action

Implementation

- One possible approach: use a theorem prover, using resolution to forward-chain over KB
- More restricted systems can be more efficient.
- Typical components:
 - KB called "working memory" (positive literals, no variables)
 - rule memory (set of inference rules in form

$$p1 \land p2 \land ... \Rightarrow act1 \land act2 \land ...$$

- at each cycle: find rules whose premises satisfied by working memory (match phase)
- decide which should be executed (conflict resolution phase)
- execute actions of chosen rule (act phase)

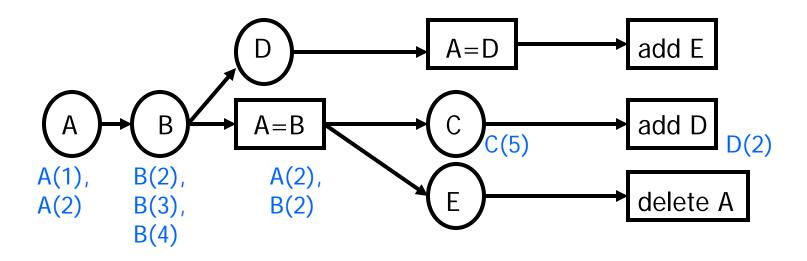
Match phase

- Unification can do it, but inefficient
- Rete algorithm (used in OPS-5 system): example rule memory:

```
A(x) \wedge B(x) \wedge C(y) \Rightarrow \text{add } D(x)
A(x) \wedge B(y) \wedge D(x) \Rightarrow \text{add } E(x)
A(x) \wedge B(x) \wedge E(x) \Rightarrow \text{delete } A(x)
working memory:
\{A(1), A(2), B(2), B(3), B(4), C(5)\}
```

 Build Rete network from rule memory, then pass working memory through it

Rete network



Circular nodes: fetches to WM; rectangular nodes: unifications

$$A(x) \wedge B(x) \wedge C(y) \Rightarrow add D(x)$$

$$A(x) \wedge B(y) \wedge D(x) \Rightarrow add E(x)$$

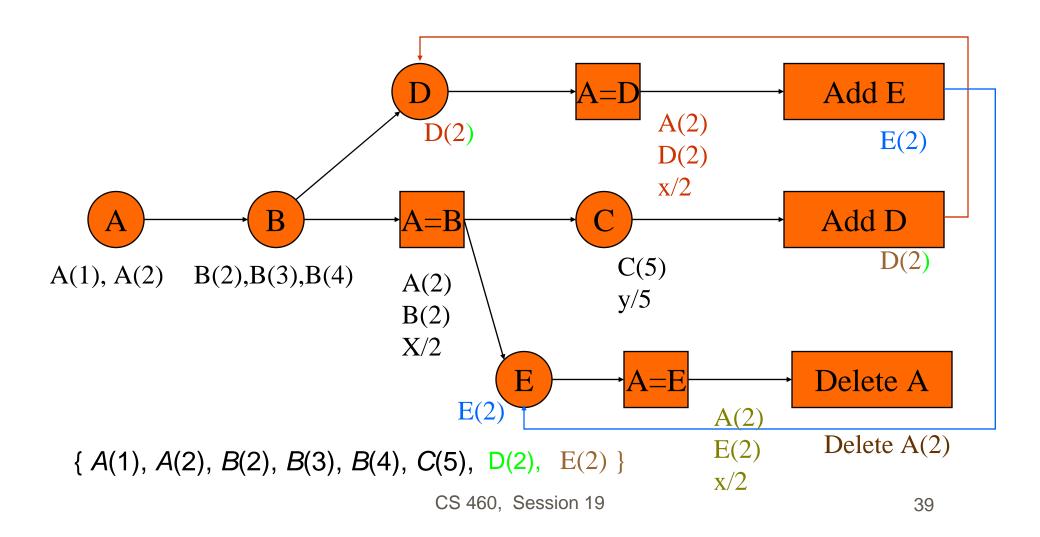
$$A(x) \wedge B(x) \wedge E(x) \Rightarrow delete A(x)$$

 $\{A(1), A(2), B(2), B(3), B(4), C(5)\}$

Rete match

$$A(x) \wedge B(x) \wedge C(y) \Rightarrow \text{add } D(x)$$

 $A(x) \wedge B(y) \wedge D(x) \Rightarrow \text{add } E(x)$
 $A(x) \wedge B(x) \wedge E(x) \Rightarrow \text{delete } A(x) \longrightarrow$



Advantages of Rete networks

- Share common parts of rules
- Eliminate duplication over time (since for most production systems only a few rules change at each time step)

Conflict resolution phase

- one strategy: execute all actions for all satisfied rules
- or, treat them as suggestions and use conflict resolution to pick one action.
- Strategies:
 - no duplication (do not execute twice same rule on same args)
 - regency (prefer rules involving recently created WM elements)
 - specificity (prefer more specific rules)
 - operation priority (rank actions by priority and pick highest)

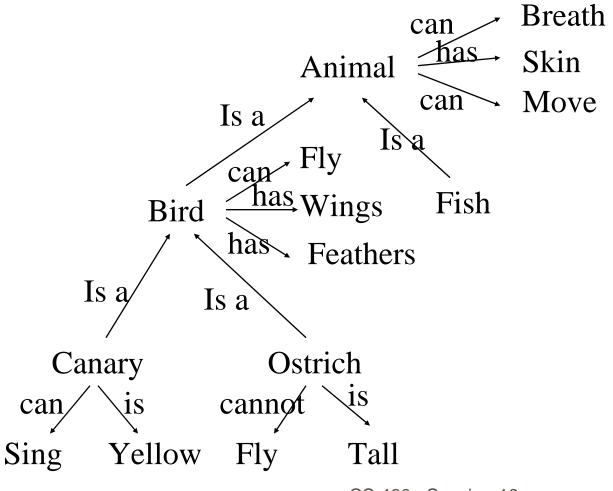
Frame systems & semantic networks

- Other notation for logic; equivalent to sentence notation
- Focus on categories and relations between them (remember ontologies)
- e.g., Cats ———— Mammals

Syntax and Semantics

Link Type	Semantics
$A \xrightarrow{Subset} B$	$A \subset B$
$A \xrightarrow{Member} B$	$A \in B$
$A \xrightarrow{R} B$	R(A,B)
$A \stackrel{\boxed{R}}{\Rightarrow} B$	$\forall x \ x \in A \Rightarrow R(x,y)$
$A \xrightarrow{\boxed{\mathbb{R}}} B$	$\forall x \; \exists y \; x \in A \Rightarrow y \in B \land R(x,y)$

Semantic Network Representation



Semantic network link types

Link	type
~	

$$A \xrightarrow{Subset} B$$

$$A \subset B$$

$$A \xrightarrow{Member} B$$

$$A \in B$$

$$A \xrightarrow{R} B$$

$$\begin{array}{c} Age \\ \hline \\ Legs \end{array}$$

$$A \xrightarrow{R} B$$

$$\forall x \quad x \in A \Rightarrow R(x, B)$$

$$\forall x \; \exists y \; x \in A \Rightarrow y \in B \land R(x, y)$$

Description logics

- FOL: focus on objects
- Description logics: focus on categories and their definitions
- Principal inference tasks:
 - subsumption: is one category subset of another?
 - classification: object belings to category?

CLASSIC

- And(concept, ...)
- All(RoleName, Concept)
- AtLeast(Integer, RoleName)
- AtMost(Integer, RolaName)
- Fills(RoleName, IndividualName, ...)
- SameAs(Path, Path)
- OneOf(IndividualName, ...)

e.g., Bachelor = And(Unmarried, Adult, Male)