
CS 561, Session 19 1

Logical reasoning systems

• Theorem provers and logic programming languages

• Production systems

• Frame systems and semantic networks

• Description logic systems

CS 561, Session 19 2

Logical reasoning systems

• Theorem provers and logic programming languages – Provers: use
resolution to prove sentences in full FOL. Languages: use backward
chaining on restricted set of FOL constructs.

• Production systems – based on implications, with consequents
interpreted as action (e.g., insertion & deletion in KB). Based on
forward chaining + conflict resolution if several possible actions.

• Frame systems and semantic networks – objects as nodes in a
graph, nodes organized as taxonomy, links represent binary
relations.

• Description logic systems – evolved from semantic nets. Reason
with object classes & relations among them.

CS 561, Session 19 3

Basic tasks

• Add a new fact to KB – TELL

• Given KB and new fact, derive facts implied by conjunction of KB
and new fact. In forward chaining: part of TELL

• Decide if query entailed by KB – ASK

• Decide if query explicitly stored in KB – restricted ASK

• Remove sentence from KB: distinguish between correcting false
sentence, forgetting useless sentence, or updating KB re. change in
the world.

CS 561, Session 19 4

Indexing, retrieval & unification

• Implementing sentences & terms: define syntax and map sentences
onto machine representation.

Compound: has operator & arguments.
e.g., c = P(x) ∧ Q(x) Op[c] = ∧; Args[c] = [P(x), Q(x)]

• FETCH: find sentences in KB that have same structure as query.
ASK makes multiple calls to FETCH.

• STORE: add each conjunct of sentence to KB. Used by TELL.
e.g., implement KB as list of conjuncts
TELL(KB, A ∧ ¬B) TELL(KB, ¬C ∧ D)
then KB contains: [A, ¬B, ¬C, D]

CS 561, Session 19 5

Complexity

• With previous approach,

FETCH takes O(n) time on n-element KB

STORE takes O(n) time on n-element KB (if check for
duplicates)

Faster solution?

CS 561, Session 19 6

Table-based indexing

• What are you indexing on? Predicates (relations/functions).
Example:

xxxxxxxx-dog(alice)dog(rover)
dog(fido)

dog

xxxxxxxx-Mother(ann,al)Mother(ann,sam)
Mother(grace,joe)

Mother

PremiseConclu-
sion

NegativePositiveKey

CS 561, Session 19 7

Table-based indexing

• Use hash table to avoid looping over entire KB for each TELL or
FETCH

e.g., if only allowed literals are single letters, use a 26-element
array to store their values.

• More generally:
- convert to Horn form
- index table by predicate symbol
- for each symbol, store:

list of positive literals
list of negative literals
list of sentences in which predicate is in conclusion
list of sentences in which predicate is in premise

CS 561, Session 19 8

Tree-based indexing

• Hash table impractical if many clauses for a given predicate symbol

• Tree-based indexing (or more generally combined indexing):
compute indexing key from predicate and argument symbols

Predicate?

First arg?

CS 561, Session 19 9

Tree-based indexing

Example:

Person(age,height,weight,income)
Person(30,72,210,45000)
Fetch(Person(age,72,210,income))
Fetch(Person(age,height>72,weight<210,income))

CS 561, Session 19 10

Unification algorithm: Example

Understands(mary,x) implies Loves(mary,x)
Understands(mary,pete) allows the system to substitute pete

for x and make the implication that IF
Understands(mary,pete) THEN Loves(mary,pete)

CS 561, Session 19 11

Unification algorithm

• Using clever indexing, can reduce number of calls to
unification

• Still, unification called very often (at basis of modus
ponens) => need efficient implementation.

• See AIMA p. 303 for example of algorithm with O(n^2)
complexity
(n being size of expressions being unified).

CS 561, Session 19 12

Logic programming

Remember: knowledge engineering vs. programming…

CS 561, Session 19 13

Logic programming systems

e.g., Prolog:

• Program = sequence of sentences (implicitly conjoined)
• All variables implicitly universally quantified
• Variables in different sentences considered distinct
• Horn clause sentences only (= atomic sentences or sentences with

no negated antecedent and atomic consequent)
• Terms = constant symbols, variables or functional terms
• Queries = conjunctions, disjunctions, variables, functional terms
• Instead of negated antecedents, use negation as failure operator:

goal NOT P considered proved if system fails to prove P
• Syntactically distinct objects refer to distinct objects
• Many built-in predicates (arithmetic, I/O, etc)

CS 561, Session 19 14

Prolog systems

CS 561, Session 19 15

Basic syntax of facts, rules and queries

<fact> ::= <term> .
<rule> ::= <term> :- <term> .
<query> ::= <term> .
<term> ::= <number> | <atom> | <variable>

| <atom> (<terms>)
<terms> ::= <term> | <term>, <terms>

CS 561, Session 19 16

A PROLOG ProgramA PROLOG Program

• A PROLOG program is a set of facts and rules.
• A simple program with just facts :

parent(alice, jim).
parent(jim, tim).
parent(jim, dave).
parent(jim, sharon).
parent(tim, james).
parent(tim, thomas).

CS 561, Session 19 17

A PROLOG ProgramA PROLOG Program

• c.f. a table in a relational database.

• Each line is a fact (a.k.a. a tuple or a row).

• Each line states that some person X is a parent of some
(other) person Y.

• In GNU PROLOG the program is kept in an ASCII file.

CS 561, Session 19 18

A PROLOG QueryA PROLOG Query

• Now we can ask PROLOG questions :
| ?- parent(alice, jim).
yes
| ?- parent(jim, herbert).
no
| ?-

CS 561, Session 19 19

A PROLOG QueryA PROLOG Query

• Not very exciting. But what about this :

| ?- parent(alice, Who).
Who = jim
yes
| ?-

• Who is called a logical variable.
• PROLOG will set a logical variable to any value

which makes the query succeed.

CS 561, Session 19 20

A PROLOG Query IIA PROLOG Query II

• Sometimes there is more than one correct answer to a
query.

• PROLOG gives the answers one at a time. To get the next
answer type ;.

| ?- parent(jim, Who).
Who = tim ? ;
Who = dave ? ;
Who = sharon ? ;
yes
| ?-

NB : The ;
do not

actually
appear on
the screen.

NB : The ;
do not

actually
appear on
the screen.

CS 561, Session 19 21

A PROLOG Query IIA PROLOG Query II

| ?- parent(jim, Who).
Who = tim ? ;
Who = dave ? ;
Who = sharon ? ;
yes
| ?-

• After finding that jim was a parent of sharon
GNU PROLOG detects that there are no more
alternatives for parent and ends the search.

NB : The ;
do not

actually
appear on
the screen.

NB : The ;
do not

actually
appear on
the screen.

CS 561, Session 19 22

Prolog example
conjunction

CS 561, Session 19 23

Append

• append([], L, L)
• append([H| L1], L2, [H| L3]) :- append(L1,

L2, L3)

• Example join [a, b, c] with [d, e].
• [a, b, c] has the recursive structure [a| [b, c]].
• Then the rule says:
• IF [b,c] appends with [d, e] to form [b, c, d, e] THEN

[a|[b, c]] appends with [d,e] to form [a|[b, c, d, e]]
• i.e. [a, b, c] [a, b, c, d, e]

CS 561, Session 19 24

Expanding Prolog

• Parallelization:
OR-parallelism: goal may unify with many different literals and

implications in KB
AND-parallelism: solve each conjunct in body of an implication

in parallel

• Compilation: generate built-in theorem prover for different
predicates in KB

• Optimization: for example through re-ordering
e.g., “what is the income of the spouse of the president?”

Income(s, i) ∧ Married(s, p) ∧ Occupation(p, President)
faster if re-ordered as:

Occupation(p, President) ∧ Married(s, p) ∧ Income(s, i)

CS 561, Session 19 25

Theorem provers

• Differ from logic programming languages in that:
- accept full FOL
- results independent of form in which KB entered

CS 561, Session 19 26

OTTER

• Organized Techniques for Theorem Proving and Effective Research
(McCune, 1992)

• Set of support (sos): set of clauses defining facts about problem
• Each resolution step: resolves member of sos against other axiom
• Usable axioms (outside sos): provide background knowledge about

domain
• Rewrites (or demodulators): define canonical forms into which

terms can be simplified. E.g., x+0=x
• Control strategy: defined by set of parameters and clauses. E.g.,

heuristic function to control search, filtering function to eliminate
uninteresting subgoals.

CS 561, Session 19 27

OTTER

• Operation: resolve elements of sos against usable axioms

• Use best-first search: heuristic function measures “weight” of each
clause (lighter weight preferred; thus in general weight correlated
with size/difficulty)

• At each step: move lightest close in sos to usable list, and add to
usable list consequences of resolving that close against usable list

• Halt: when refutation found or sos empty

CS 561, Session 19 28

Example

CS 561, Session 19 29

Example: Robbins Algebras Are Boolean

• The Robbins problem---are all Robbins algebras
Boolean?---has been solved: Every Robbins algebra is
Boolean. This theorem was proved automatically by
EQP, a theorem proving program developed at Argonne
National Laboratory

CS 561, Session 19 30

Example: Robbins Algebras Are Boolean

Historical Background
• In 1933, E. V. Huntington presented [1,2] the following basis for

Boolean algebra:

• x + y = y + x. [commutativity]
• (x + y) + z = x + (y + z). [associativity]
• n(n(x) + y) + n(n(x) + n(y)) = x. [Huntington equation]

• Shortly thereafter, Herbert Robbins conjectured that the Huntington
equation can be replaced with a simpler one [5]:

• n(n(x + y) + n(x + n(y))) = x. [Robbins equation]
• Robbins and Huntington could not find a proof, and the problem was

later studied by Tarski and his students

CS 561, Session 19 31

Example: Winker Conditions (1979)

• all x, n(n(x))=x
• ∃ 0 all x, x+0=x
• all x, x+x=x
• 1st: ∃ C ∃ D, C+D=C
• 2nd: ∃ C ∃ D, n(C+D)=n(C)

CS 561, Session 19 32

Example: Otter: October 10, 1996

• n(n(n(y)+x)+n(x+y)) = x. [Robbins equation]
• n(x+y) != n(x). [denial of 2nd Winker condition]

CS 561, Session 19 33

CS 561, Session 19 34

Given to
the system

CS 561, Session 19 35

Forward-chaining production systems

• Prolog & other programming languages: rely on
backward-chaining
(I.e., given a query, find substitutions that satisfy it)

• Forward-chaining systems: infer everything that can be
inferred from KB each time new sentence is TELL’ed

• Appropriate for agent design: as new percepts come in,
forward-chaining returns best action

CS 561, Session 19 36

Implementation

• One possible approach: use a theorem prover, using resolution to
forward-chain over KB

• More restricted systems can be more efficient.

• Typical components:
- KB called “working memory” (positive literals, no variables)
- rule memory (set of inference rules in form

p1 ∧ p2 ∧ … ⇒ act1 ∧ act2 ∧ …
- at each cycle: find rules whose premises satisfied

by working memory (match phase)
- decide which should be executed (conflict resolution phase)
- execute actions of chosen rule (act phase)

CS 561, Session 19 37

Match phase

• Unification can do it, but inefficient

• Rete algorithm (used in OPS-5 system): example
rule memory:

A(x) ∧ B(x) ∧ C(y) ⇒ add D(x)
A(x) ∧ B(y) ∧ D(x) ⇒ add E(x)
A(x) ∧ B(x) ∧ E(x) ⇒ delete A(x)

working memory:
{A(1), A(2), B(2), B(3), B(4), C(5)}

• Build Rete network from rule memory, then pass working memory
through it

CS 561, Session 19 38

Rete network

D A=D add E

A B A=B C add D

E delete A
A(1),
A(2)

B(2),
B(3),
B(4)

A(2),
B(2)

C(5) D(2)

Circular nodes: fetches to WM; rectangular nodes: unifications
A(x) ∧ B(x) ∧ C(y) ⇒ add D(x)
A(x) ∧ B(y) ∧ D(x) ⇒ add E(x)
A(x) ∧ B(x) ∧ E(x) ⇒ delete A(x)

{A(1), A(2), B(2), B(3), B(4), C(5)}

CS 561, Session 19 39

Rete match

A(1), A(2) B(2),B(3),B(4) A(2)
B(2)
X/2

A(x) ∧ B(x) ∧ C(y) ⇒ add D(x)
A(x) ∧ B(y) ∧ D(x) ⇒ add E(x)
A(x) ∧ B(x) ∧ E(x) ⇒ delete A(x)

C(5)
y/5

A

E

C

D

B A=B

Add EA=D

Add D

Delete A

{ A(1), A(2), B(2), B(3), B(4), C(5),

A=E

D(2), E(2) }

D(2)

D(2) A(2)
D(2)
x/2

E(2)

E(2) A(2)
E(2)
x/2

Delete A(2)

CS 561, Session 19 40

Advantages of Rete networks

• Share common parts of rules

• Eliminate duplication over time (since for most production systems
only a few rules change at each time step)

CS 561, Session 19 41

Conflict resolution phase

• one strategy: execute all actions for all satisfied rules

• or, treat them as suggestions and use conflict resolution to pick one
action.

• Strategies:
- no duplication (do not execute twice same rule on same args)
- regency (prefer rules involving recently created WM elements)
- specificity (prefer more specific rules)
- operation priority (rank actions by priority and pick highest)

CS 561, Session 19 42

Frame systems & semantic networks

• Other notation for logic; equivalent to sentence notation

• Focus on categories and relations between them (remember
ontologies)

• e.g., Cats Mammals
Subset

CS 561, Session 19 43

Syntax and Semantics

Link Type

A → B

A → B

A → B

A → B

A → B

Subset

Member

R

R

R

Semantics

A ⊂ B

A ∈ B

R(A,B)

∀x x ∈ A ⇒ R(x,y)

∀x ∃y x ∈ A ⇒ y ∈B ∧ R(x,y)

CS 561, Session 19 44

Semantic Network Representation

Animal

OstrichCanary

FishBird

Breath
Skin
Move

Feathers
Wings
Fly

TallFlyYellowSing

can

can
has

has
can

Is a Is a

has

is iscan cannot

Is a
Is a

CS 561, Session 19 45

Semantic network link types

Link type Semantics Example

A B A ⊂ B Cats Mammals

A B A ∈ B Bill Cats

A B R(A, B) Bill 12

A B ∀x x ∈ A ⇒ R(x, B) Birds 2

A B ∀x ∃y x ∈ A ⇒ y ∈ B ∧ R(x, y) Birds Birds

Subset

Member

R

R

R Parent

Legs

Age

Member

Subset

CS 561, Session 19 46

Description logics

• FOL: focus on objects

• Description logics: focus on categories and their definitions

• Principal inference tasks:
- subsumption: is one category subset of another?
- classification: object belings to category?

CS 561, Session 19 47

CLASSIC

• And(concept, …)
• All(RoleName, Concept)
• AtLeast(Integer, RoleName)
• AtMost(Integer, RolaName)
• Fills(RoleName, IndividualName, …)
• SameAs(Path, Path)
• OneOf(IndividualName, …)

e.g., Bachelor = And(Unmarried, Adult, Male)

