Planning

- Search vs. planning
- STRIPS operators
- Partial-order planning

What we have so far

- Can TELL KB about new percepts about the world
- KB maintains model of the current world state
- Can ASK KB about any fact that can be inferred from KB

How can we use these components to build a planning agent,
i.e., an agent that constructs plans that can achieve its goals, and that then executes these plans?

Example: Robot Manipulators

- Example: (courtesy of Martin Rohrmeier)
- Puma 560
- Kr6

Remember: Problem-Solving Agent

```
function Simple-Problem-Solving-AGENT( \(p\) ) returns an action
    inputs: \(p\), a percept
    static: \(s\), an action sequence, initially empty
        state, some description of the current world state
        \(g\), a goal, initially null
            problem, a problem formulation
    state \(\leftarrow \mathrm{UPDATE}-\operatorname{STATE}(\) state,\(p)\)
    if \(s\) is empty then
        \(g \leftarrow\) FORMULATE-GOAL(state)
        problem \(\leftarrow\) FORMULATE-PROBLEM \((\) state, g)
        \(s \leftarrow\) SEARCH (problem)
    action \(\leftarrow\) RECOMMENDATION \((s\), state \()\)
    \(s \leftarrow \operatorname{REMAINDER}(s\), state \()\)
    return action
```

Note: This is offline problem-solving. Online problem-solving involves acting w/o complete knowledge of the problem and environment

Simple planning agent

- Use percepts to build model of current world state
- IDEAL-PLANNER: Given a goal, algorithm generates plan of action
- STATE-DESCRIPTION: given percept, return initial state description in format required by planner
- MAKE-GOAL-QUERY: used to ask KB what next goal should be

A Simple Planning Agent

```
function SI MPLE-PLANNI NG-AGENT(percept) returns an action
    static: KB, a knowledge base (includes action descriptions)
        p, a plan (initially, NoPlan)
        t, a time counter (initially 0)
    local variables:G, a goal
        current, a current state description
    TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
    current \leftarrow STATE-DESCRIPTION(KB, t)
    if p=NoPlan then
    G\leftarrowASK(KB, MAKE-GOAL-QUERY(t))
    p\leftarrowIDEAL-PLANNER(current, G, KB)
    if p = NoPlan or p is empty then
        action }\leftarrow\textrm{NoOp
    else
        action }\leftarrow\operatorname{FIRST(p)
    p}\leftarrow\operatorname{REST}(p
                                    Like popping from a stack
    TELL(KB, MAKE-ACTION-SENTENCE(action, t))
    t}\leftarrow\textrm{t}+
    return action
```


Search vs. planning

Consider the task get milk, bananas, and a cordless drill
Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate

Search vs. planning

Planning systems do the following:

1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

	Search	Planning
States	Lisp data structures	Logical sentences
Actions	Lisp code	Preconditions/outcomes
Goal	Lisp code	Logical sentence (conjunction)
Plan	Sequence from S_{0}	Constraints on actions

Planning in situation calculus

PlanResult (p, s) is the situation resulting from executing p in s

$$
\begin{aligned}
& \text { PlanResult }([], s)=s \\
& \text { PlanResult }([a \mid p], s)=\operatorname{PlanResult}(p, \operatorname{Result}(a, s))
\end{aligned}
$$

Initial state $\operatorname{At}\left(\mathrm{Home}, S_{0}\right) \wedge \neg \operatorname{Have}\left(\right.$ Milk,$\left.S_{0}\right) \wedge \ldots$
Actions as Successor State axioms
Have (Milk, Result $(a, s)) \Leftrightarrow$
$[(a=\operatorname{Buy}($ Milk $) \wedge$ At $($ Supermarket,$s)) \vee($ Have $($ Milk, $s) \wedge a \neq \ldots)]$
Query

$$
s=\operatorname{PlanResult}\left(p, S_{0}\right) \wedge \operatorname{At}(H o m e, s) \wedge \operatorname{Have}(\operatorname{Milk}, s) \wedge \ldots
$$

Solution

$$
p=[G o(\text { Supermarket }), \text { Buy }(\text { Milk }), \text { Buy }(\text { Bananas }), G o(H W S), \ldots]
$$

Principal difficulty: unconstrained branching, hard to apply heuristics

Basic representation for planning

- Most widely used approach: uses STRIPS language
- states: conjunctions of function-free ground literals (I.e., predicates applied to constant symbols, possibly negated); e.g.,

```
At(Home) ^ \negHave(Milk) ^ \negHave(Bananas) ^ \negHave(Drill) ...
```

- goals: also conjunctions of literals; e.g.,
At(Home) ^ Have(Milk) ^ Have(Bananas) ^ Have(Drill) but can also contain variables (implicitly universally quant.); e.g.,

$$
\text { At }(x) \wedge \text { Sells }(x, \text { Milk) }
$$

Planner vs. theorem prover

- Planner: ask for sequence of actions that makes goal true if executed
- Theorem prover: ask whether query sentence is true given KB

STRIPS operators

Tidily arranged actions descriptions, restricted language
Action: Buy (x)
Precondition: $A t(p), \operatorname{Sells}(p, x)$
Effect: Have (x)
[Note: this abstracts away many important details!]
Restricted language \Rightarrow efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

Graphical notation:

$\operatorname{At}(p) \operatorname{Sells}(p, x)$
$\operatorname{Buy}(\mathbf{x})$
$\operatorname{Have}(x)$

Types of planners

- Situation space planner: search through possible situations
- Progression planner: start with initial state, apply operators until goal is reached

Problem: high branching factor!

- Regression planner: start from goal state and apply operators until start state reached

Why desirable? usually many more operators are applicable to initial state than to goal state.
Difficulty: when want to achieve a conjunction of goals

Initial STRIPS algorithm: situation-space regression planner

State space vs. plan space

Standard search: node $=$ concrete world state
Planning search: node $=$ partial plan Search space of plans rather than of states.
Defn: open condition is a precondition of a step not yet fulfilled
Operators on partial plans:
add a link from an existing action to an open condition add a step to fulfill an open condition
order one step wrt another
iradually move from incomplete/vague plans to complete, correct plans

Operations on plans

- Refinement operators: add constraints to partial plan
- Modification operator: every other operators

Types of planners

- Partial order planner: some steps are ordered, some are not
- Total order planner: all steps ordered (thus, plan is a simple list of steps)
- Linearization: process of deriving a totally ordered plan from a partially ordered plan.

Partially ordered plans

A plan is complete iff every precondition is achieved
A precondition is achieved iff it is the effect of an earlier step and no possibly intervening step undoes it

Plan

We formally define a plan as a data structure consisting of:

- Set of plan steps (each is an operator for the problem)
- Set of step ordering constraints
e.g., A II B means "A before B"
- Set of variable binding constraints
e.g., $v=x \quad$ where v variable and x constant or other variable
- Set of causal links
e.g., $A \xrightarrow{C} B \quad$ means " A achieves c for B "

POP algorithm sketch

function POP (initial, goal, operators) returns plan

```
plan}\leftarrow\mathrm{ -Make-Minimal-Plan(initial, goal)
```

loop do
if Solution? (plan) then return plan
$S_{\text {need }}, c \leftarrow$ Select-Subgoal $(p l a n)$
Choose-Operator(plan, opetatots, $S_{\text {need }}, c$)
Resolve-Threats(plan)
end
function Select-Subgoal (plan) returns $S_{\text {need }}$, c
pick a plan step $S_{\text {need }}$ from Steps (plan)
with a precondition c that has not been achieved
return $S_{\text {need }}, c$

POP algorithm (cont.)

```
procedure Choose-Operator(plan,operators, S Seed,c)
    choo se a step S Sadd from operators or Steps( plan) that has c as an effect
    if there is no such step then fail
    add the causal link Sadd }\xrightarrow{}{c}\mp@subsup{S}{\mathrm{ need }}{}\mathrm{ to LiNkS( plan)
    add the ordering constraint Sadd }\prec\mp@subsup{S}{\mathrm{ need }}{}\mathrm{ to OrderingS( plan)
    if Sadd is a newly added step from operators then
        add S Sadd to Steps(plan)
    add Start \prec Sadd }\prec\mathrm{ Finish to Orderings(plan)
```

procedure Resolve-Threats(plan)
for each $S_{\text {threat }}$ that threatens a link $S_{i} \xrightarrow{c} S_{j}$ in Links (plan) do
choo ie either
Demotion: Add $S_{\text {threat }} \prec S_{i}$ to Orderings (plan)
Promotion: Add $S_{j} \prec S_{\text {threat }}$ to Orderings (plan)
if not Consistent (plan) then fail
end

POP is sound, complete, and systematic (no repetition)
Extensions for disjunction, universals, negation, conditionals

Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition achieved by a causal link. E.g., Go(Home) clobbers $\operatorname{At}(H W S)$:

Example: block world

Clear(x) On(x,z) Clear(y)

+ several inequality constraints

Example (cont.)

FINISH

Example (cont.)

Example (cont.)

Example (cont.)

PutOn(A,B) clobbers $\mathrm{Cl}(\mathrm{B})$ => order after PutOn(B,C)

PutOn(B,C) clobbers $\mathrm{Cl}(\mathrm{C})$ => order after PutOnTable(C)

