Virtualization-aware Application Framework for High-end Classical-quantum Atomistic Simulations of Nanosystems

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science, Department of Physics & Astronomy, Department of Materials Science & Engineering University of Southern California

Email: anakano@usc.edu

Collaborators:

Rajiv K. Kalia, Ashish Sharma, Priya Vashishta (CACS), Hiroshi Iyetomi (Niigata), Hideaki Kikuchi (Louisiana), Shuji Ogata (Nagoya Inst. Tech.), Fuyuki Shimojo (Kumamoto), Kenji Tsuruta (Okayama)

High End Computing Is Bringing Atomistic Simulation To Macroscopic

Parallel Benchmark Platforms

Computing Beyond Teraflop: Grid of Globally Distributed PC Clusters?

Grid of globally distributed supercomputers

Commodity Xeon-based multi-Teraflop Linux cluster

Virtualization-aware Application Framework

Molecular Dynamics: *N***-Body Problem**

- Newton's equation of motion $m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\frac{\partial V(\mathbf{r}^N)}{\partial \mathbf{r}_i} \quad (i = 1, ..., N)$
- *N*-body problem *O*(*N*²) Long-range electrostatic interaction

$$V_{\rm es}(\mathbf{x}) = \sum_{i=1}^{N} \frac{q_i}{|\mathbf{x} - \mathbf{x}_i|} \quad \mathbf{x} = \mathbf{x}_j \ (j = 1,...,N)$$

• Application: drug design, robotics, entertainment, etc.

Spatial Locality: Fast Multipole Method

1. Clustering: Encapsulate far-field information using multipoles

 $\mathcal{V}(\mathbf{x}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left\{ \sum_{i=1}^{N} q_i r_i^l Y_l^{*m}(\theta_i, \phi_i) \right\} \frac{Y_l^m(\theta, \phi)}{r^{l+1}}$

- 2. Hierarchical abstraction: Octree data structure
- **3.** *O*(*N*) algorithm: Constant number of interactive cells per octree node

 $(\mathbf{r}_i, \boldsymbol{\theta}_i, \boldsymbol{\phi}_i)$

Temporal Locality: Multiple Time Stepping

- Different force-update schedules for different force components
 - → i) Reduced computation

ii) Enhanced data locality & parallel efficiency

- Reversible symplectic integrator Simulation-loop invariant: phase-space volume
 - → Long-time stability

Oxide Growth in an Al Nanoparticle

Unique metal/ceramic nanocomposite

Oxide thickness saturates at 40 Å after 0.5 ns —Excellent agreement with experiments

Quantum N-Body Problem

Challenge: Exponential complexity

h

Density functional theory (DFT) (Kohn, Nobel Chemistry Prize, '98)

$$\frac{1}{(\mathbf{r}, \mathbf{r}_{2}, \mathbf{r}_{2})} = \frac{1}{(\mathbf{r}) | \mathbf{r}_{2} - 1}$$

$$\psi(r_1, r_2, \dots, r_{N_{el}}) \longrightarrow \{\psi_n(\mathbf{r}) \mid n = 1, \dots, N_{el}\}$$
$$O(\mathbb{C}^N) \qquad O(\mathbb{N}^3)$$

- > Pseudopotential (Troullier & Martins, '91)
- > Generalized gradient approximation (Perdew, '96)

Constrained minimization problem:

Minimize:

$$E[\{\psi_n\}] = \sum_{n=1}^{N_{\text{el}}} \int d^3 r \psi_n^*(\mathbf{r}) \left(-\frac{\hbar^2}{2m_e} \frac{\partial^2}{\partial \mathbf{r}^2} + V_{\text{ion}}(\mathbf{r}) \right) \psi_n(\mathbf{r}) + \frac{e^2}{2} \iint d^3 r d^3 r' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + E_{\text{XC}}[\rho(\mathbf{r})]$$
with orthonormal constraints: $\int d^3 r \psi_m^*(\mathbf{r}) \psi_n(\mathbf{r}) = \delta_{mn}$
Charge density: $\rho(\mathbf{r}) = \sum_{n=1}^{N_{\text{el}}} |\psi_n(\mathbf{r})|^2$

Real-Space DFT on Hierarchical Grids

Efficient parallelization of DFT: real-space approaches

- High-order finite difference (Chelikowsky, Troullier, Saad, '94)
- Multigrid acceleration (Bernholc et al., '96; Beck, '00)
- Double-grid method (Ono, Hirose, '99)
- Spatial decomposition/divide-&-conquer

Quantum-Nearsightedness Locality Principle

Data Locality in Parallelization

Challenge: Load balancing for irregular data structures

Irregular data-structures/ processor-speed

Map

Parallel computer

Optimization problem:

- Minimize the load-imbalance cost
- Minimize the communication cost
- Topology-preserving spatial decomposition
 → structured 6-step message passing minimizes latency

$$E = t_{\text{comp}} \left(\max_{p} |\{i \mid \mathbf{r}_{i} \in p\}| \right) + t_{\text{comm}} \left(\max_{p} |\{i \mid \|\mathbf{r}_{i} - \partial p\| < r_{c}\}| \right) + t_{\text{latency}} \left(\max_{p} \left[N_{\text{message}}(p) \right] \right)$$

Computational-Space Decomposition

Topology-preserving "computational-space" decomposition in curved space

Curvilinear coordinate transformation $\xi = x + u(x)$

Particle-processor mapping: regular 3D mesh topology

 $\begin{cases} p(\xi_i) = p_x(\xi_{ix})P_yP_z + p_y(\xi_{iy})P_z + p_z(\xi_{iz}) \\ p_\alpha(\xi_{i\alpha}) = \lfloor \xi_{i\alpha}P_\alpha/L_\alpha \rfloor & (\alpha = x, y, z) \end{cases}$

Regular mesh topology in computational space, ξ

Curved partition in physical space, x

Wavelet-based Adaptive Load Balancing

- Simulated annealing to minimize the load-imbalance & communication costs, *E*[ξ(x)]
- Wavelet representation speeds up the optimization

Locality in Data Compression

Massive data transfer via wide area network: 75 GB/step of data for 1.5 billion-atom MD! → Compressed software pipeline

Scalable encoding:
Store relative positions on spacefilling curve: O(NlogN) → O(N)
Result:
Data size, 50 Bytes/atom → 6 Bytes/atom

Spacefilling-curve Data Compression

Algorithm:

- **1.** Sort particles along the spacefilling curve
- **2.** Store relative positions: $\hat{O}(N \log N) \rightarrow O(N)$
- Adaptive variable-length encoding to handle outliers
- User-controlled error bound

Result:

• An order-of-magnitude reduction of I/O size: 50 → 6 Bytes/atom

Scalable Scientific Algorithm Suite

Grid Enabling: Multiple QM Clustering

Global Collaborative Simulation

Hybrid MD/QM simulation on a Grid of distributed PC clusters in the US & Japan

Japan: Yamaguchi — 65 P4 2.0GHz Hiroshima, Okayama, Niigata — 3×24 P4 1.8GHz US: Louisiana — 17 Athlon XP 1900+

Preliminary Benchmark Results

• Scaled speedup, P = 1 (for MD) + 8n (for QM)

• Efficiency = 94.0% on 25 processors over 3 PC clusters in the US & Japan

Environmental Effect on Fracture

Data Locality in Visualization

- Octree-based fast view-frustum culling
- Probabilistic occlusion culling
- Parallel/distributed processing

• Interactive visualization of a billion-atom dataset in immersive environment

Octree-based View-Frustum Culling

- Use the octree data structure to efficiently select only visible atoms
- Complexity Insertion into octree: O(N) Data extraction: O(logN)

Probabilstic Occlusion Culling

- Remove atoms that are occluded by other atoms closer to the viewer
- Draw fewer atoms per region as the distance of a region from the viewer increases

Without occlusion

With occlusion 68% fewer atoms & 3 times higher frame rate

Distributed Architecture

Parallel & Distributed Atomsviewer

Real-time walkthrough for a billion atoms on an SGI Onyx2 (2 × MIPS R10K, 4GB RAM) connected to a PC cluster (4 × 800MHz P3)

IEEE Virtual Reality 2002 Best Paper

209 Million Atom MD of Hypervelocity Impact

AlN plate with impact velocity 15 km/s

Application of Multiscale Simulations

• Oxidation on Si Surface MD FE 10.0 fs QM cluster QM O Disp. (A) 0.009 0.006 0.003 0 -0.003 -0.006 QM Si Handshake H -0.009 • Interfacing quantum-dot 🗧 Retina 🕅 devices & biological cells Light Peptide linker (e.g. neural implant to restore vision)

Computational Science Education

Cell

QD

Feedback

Conclusion

Multiscale simulation approach:

- Can be virtualized on a Grid of distributed PC clusters through data-locality principles
- Will allow global collaboration of scientists to increase the scope & size of simulation study