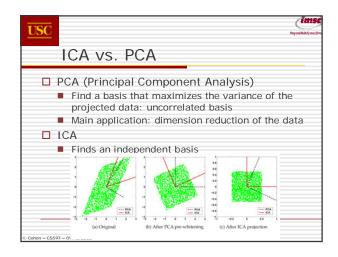
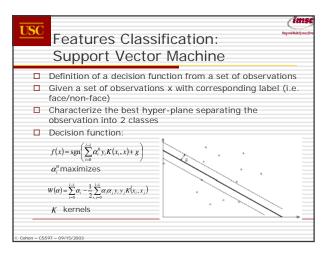
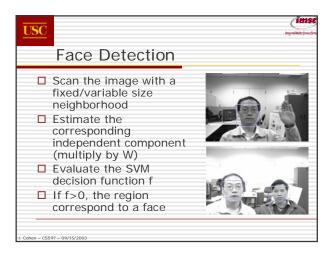
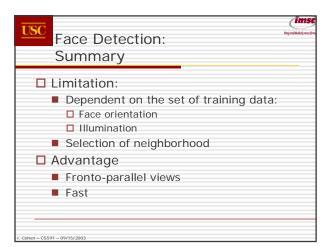

	Visual Sensing of 3D Human Body for Immersive Interactions
	Isaac Cohen icohen@usc.edu
	Institute for Robotics and Intelligent Systems Integrated Media Systems Center
	University of Southern California
I. Cohen – Feb 1	17 - Haffa

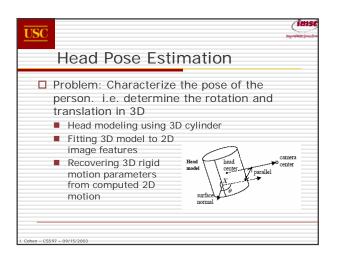


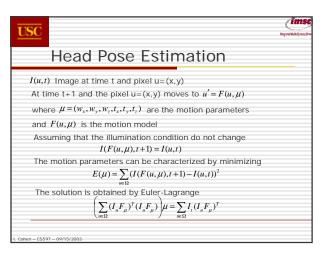
Perceptual User Interface:
 Interaction with a synthetic environment Gesture recognition for augmented, natural communication Identifying user's body and facial gestures
Visual sensing of user in interactive environment Head pose tracking Full body / hands and fingers tracking
Applications Computer-aided training: tracking trainees/expert Interaction with virtual objects Virtual prototyping

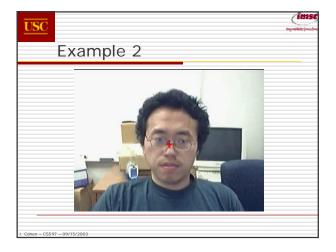

Perceptual User Interface: Head Pose Tracking
 Automatic face detection PCA/ICA face features SVM-based detection
 Face pose estimation Head modeling using 3D cylinder Fitting 3D model to 2D image features Recovering 3D rigid motion parameters
I. Cohen – C5597 – 09/15/2003

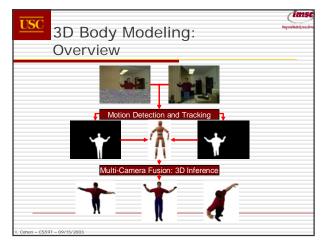


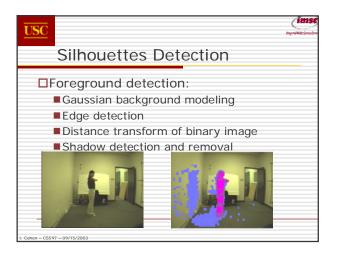

USC	Extracting Face Features: Independent Component Analysis	imse
🗖 Pr	roblem:	
•	Assume that we observe linear mixtures x_1, x_2x_n of n independent components s_1, s_2s_n : $x_1 = a_1s_1 + a_{12}s_2 + + a_{16}s_n$ $x = As$	
	Estimate the matrix A and s_1, s_2s_n	
	olution	
•	Independent components are found by looking fo directions in which the data has a non-Gaussian distribution	r
•	The estimate of s is u defined by $u = Wx$ and W the inverse of A	' is
I. Cohen – CS5	97 - 09/15/2003	

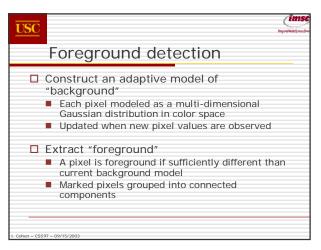


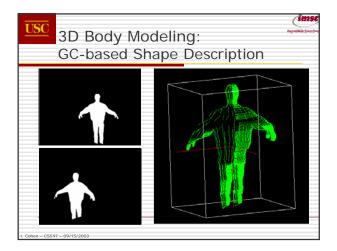

Face Features Extraction Given a large set of face images Use PCA for dimensionality reduction Use ICA for characterizing independent	a formation
Use PCA for dimensionality reduction	
Eaces Non-Faces	

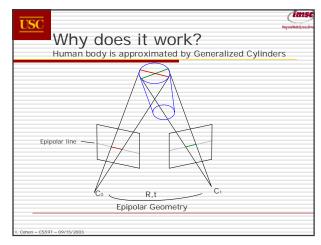


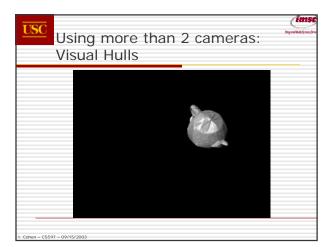


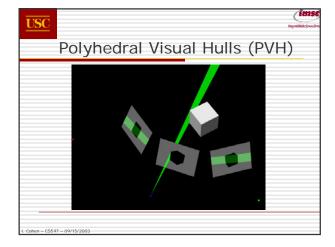


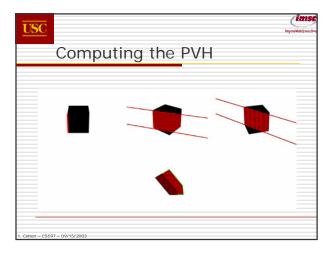


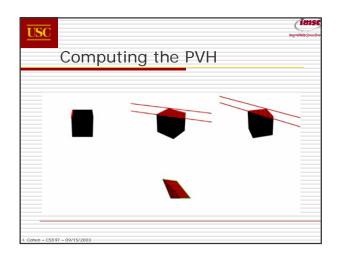


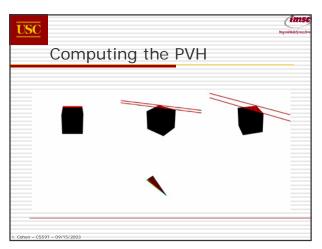


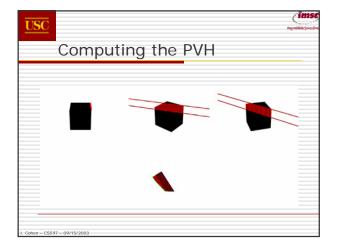


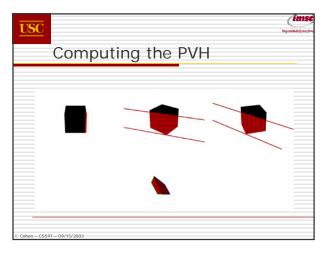


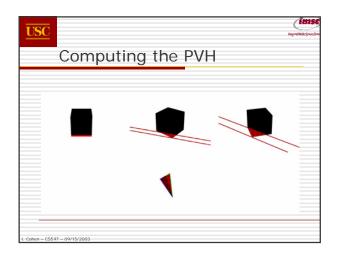


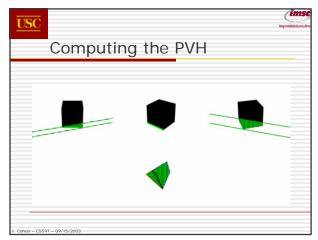


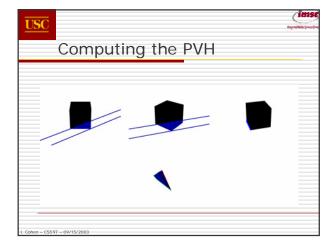

G	C-based	Modeling: Reconstru	ction	ims
M	m			
			fil	

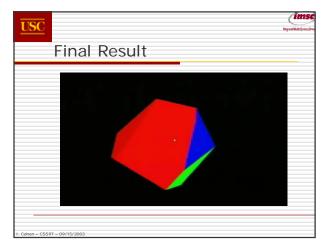


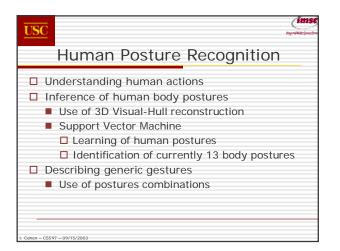


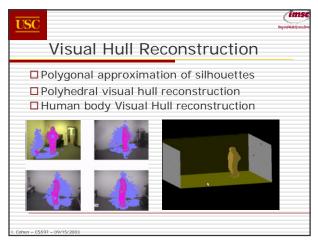


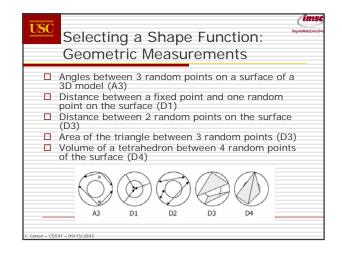


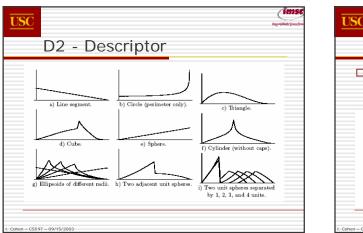


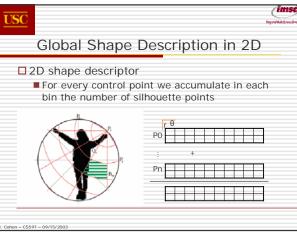


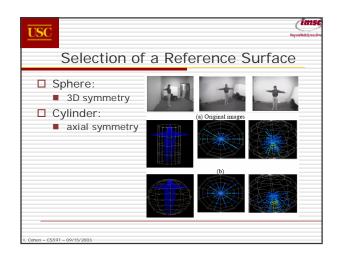


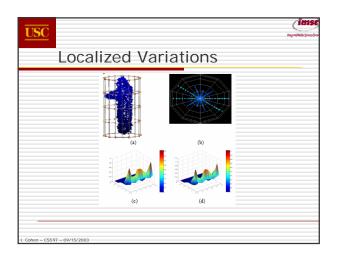


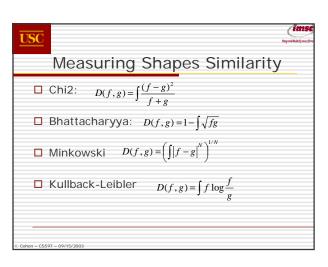




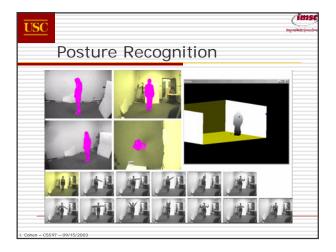



USC	(IIIISC Ingentities in sector
Global Shape Descriptors	
 Characterizing the shape of a 3D surface Querying 3D surface databases Measuring similarity between surfaces 	
 Wish list: Invariance to deformations Translations, Rotation, Scale Affine invariance? Projective invariance? Localized variations Local change in the data generate a local change the surface descriptor 	ge in
I. Cohen - CS597 - 09/15/2003	





USC	imst Ingestitute (see the
Global Shape Description in 3D	
 Generalization to 3D Define a sphere containing the visual hull Sample the sphere using a set of control points Derive the global shape description from the radial distribution of each control point 	
1. Cohen - CS597 - 09/15/2003	



	Ro	tati	on	In	va	ria	nce	è			
		Post	ure 1	J	t P		Postu	ire 3	A	11	
		°	16	32	48	60		16	32	48	60
Posture 1	0	0.000000	0.013796	0.016846	0.015525	0.013204	0.061394	0.054847	0.062393	0.058276	0.056100
	16	0.014024	0.000000	0.015648	0.014420	0.019950	0.066901	0.057760	0.065960	0.063246	0.059444
	32	0.015716	0.014020	0.000000	0.012110	0.015999	0.058286	0.048821	0.058448	0.058678	0.054301
	48	0.015510	0.014088	0.012906	0.000000	0.012449	0.060668	0.050619	0.058655	0.057175	0.056948
	60	0.012907	0.018557	0.016216	0.012712	0.000000	0.062684	0.049774	0.058670	0.057069	0.055565
Posture 3	0	0.061622	0.061855	0.059343	0.062843	0.064294	0.000000	0.014499	0.017765	0.015684	0.015935
	10	0.053709	0.053193	0.048824	0.052622	0.051121	0.014329	0.000000	0.000000	0.014403	0.013560
	48	0.056869	0.057757	0.056807	0.057576	0.056641	0.015286	0.013643	0.010623	0.000000	0.009813
	60	0.056294	0.055608	0.054268	0.058379	0.056175	0.015390	0.012993	0.012427	0.009417	0.000000

Scale	IIIVa	anai	ice			
Posture 1	1	0.9	0.92	0.93	0.94	
	1					
1	0.000000	0.000000	0.000000	0.000000	0.000000	
0.9	0.000000	0.000000	0.000000	0.000000	0.000000	
0.92	0.000000	0.000000	0.000000	0.000000	0.000000	
0.93	0.000000	0.000000	0.000000	0.000000	0.000000	
0.94	0.000000	0.000000	0.000000	0.000000	0.000000	
 •Kullback-Leik	oler Dista	nce (sca	ale rate is	0.90).		

SC	ingentitied.
Future Goals	
Feedback to 3D-CAD data	
Interactive visualization	
Distributed Interaction	
Human behavioral modeling:	
multiple users	
Computer Aided Training	
Occupational therapy	