Part 2: Planning under Uncertainty, including Planning Objectives

Example: Planning in High-Stake Decision Situations

Planning with Nonlinear Utility Functions An Actual High-Stake Decision Problem

Who Wants to be a Millionaire?

The term "computer bug" was coined when an insect of which kind caused a computer to crash

a) centipede
b) fly
c) spider
d) moth

100% \$500,000

50%\$32,00050%\$1,000,000

Planning with Nonlinear Utility Functions Exponential Utility Functions

= utility functions with the delta property or with constant local risk aversion [Pratt] [Howard and Matheson]

- exponential utility functions maintain the decomposability of planning tasks
- exponential utility functions can model a continuum of risk attitudes

Planning with Nonlinear Utility Functions Advantages of Planning Task Transformations

- simple representation changes
- can be performed on a variety of planning task representations
- can easily be integrated into agent architectures
- extend the functionality of existing planners
- make planning with exponential utility functions as fast as these planners

Planning with Nonlinear Utility Functions Information Gathering - A Realistic Planning Task

when (and what) to sense

Can we characterize how the behavior of decision makers changes with their risk attitude?

Planning with Nonlinear Utility Functions Information Gathering - An Artificial Planning Task

when (and what) to sense

Planning with Nonlinear Utility Functions Information Gathering - An Artificial Planning Task

does not provide the robot with any information about its current location cost: 1 (road) ... 10 (mud)

sense (O)

does not move the robot provides the robot with certainty about its current location cost: 0.2

Planning with Nonlinear Utility Functions Information Gathering - An Artificial Planning Task

EEO		

policy with fewer sensing actions policy with more sensing actions

policy

Decision-Making Methods for Autonomous Agents; Sven Koenig.

Decision-Making Methods for Autonomous Agents; Sven Koenig.

Planning with Nonlinear Utility Functions Information Gathering - An Artificial Planning Task

 $\gamma = 0.86$ - risk averse $\gamma = 0.86$ (pessimistic robots)

1	2	2	4		(7		9	10	11
A							SSSO			
3	SEO	SEO	SEO	SEO	SEO	SO	SSO			
FO.	FU	FO	FO	ደባ	20	SEU	SO	SO	WSO	
)	NEO	NEO	NEO	EEEO	EEO	EO	ESO	SO	WSO	WWSO
2						EESO	ESO	SO	WSO	
,							SSSO	SO	WSO	
			1				SSO	SO	WSO	
					SSWO	SSWO	SO	WSO	มก	
SO	SWO	SWO	SWO	SWO	SWO	SWO	SWO	-110	WWO	WWWO
goal	WN	พก	พก	un un	พก	Ψn	Ψn			
NO	NWO	NWO	NWO	NWO	NWO	NWO	NWO	NWWO	···· + ··· -	
						NNWO	NNWO			

$\gamma = 1.40$ - risk seeking $\gamma = 1.40$ (optimistic robots)

	1	2	3	Λ	Б.	6	7	0	9	10	11
A	SSEEEO				SSEO	SSEO	SSSO	SSSO			
В	SEEEEO			SEEO	SEEO	SEO	SSO	SSO	SSSSSSSWO		
d	EEEEEESO			EEEESO	EEESO	EESO	SO	SO	SSSSSSWO		
D	EEEEEESO			EEEESO	EEESO	EESO	ESO	SSSSSWO	SSSSSWO	WSSO	WWSSO
E	NNEEEEO	NEEEEEO	NEEEEO	NEEEO	NEEO	EESSSO	ESSSO	SSSSWO	SSSSWO	WSSO	WWSSO
F	SSSSO	SSSSO	SSSSO	SSSSWO	SSSSWWO	EESSO	ESSSO	SSSWO	SSSWO	WSSO	WWSO
G	CCCD	CCCD	2220	CCCUO	cccuuo	ecennno	cccuuuuo	SSWO	SSWO	WSO	WWSO
H	SSO	SSO	SSWO	SSWWO	SSWWO	SSWWWO	SSWWWO	SSWWWWO	SWO	WWO	WWWO
1	S0	SO	SWO	SWWO	SWWWO	SWWWWO	SWWWWO	SWWWWWO	ម្មា	WWO	WWWO
J	goal	WO	WWO	WWWO	WWWWO	WWWWWO	WWWWWWO	WWWWWWWO	WWWWWWWO	WWWWWWWWO	WWWO
K	NO	NO	NWO	WWWO	WWWWO	WWWWWO	WWWWWWO	WWWWWWO	WWWWWWWO	WWWWWWWWO	WWWWWWWWW
L	NNO	NNO	NNWO	NWWO	NWWWO	NWWWWO		NWWWWWO			

Planning with Nonlinear Utility Functions Information Gathering - An Artificial Planning Task

Symmetric Independent Private Values Model

- only one item is for sale

- the item will be sold to the highest bidder for any positive price
- the number of bidders ${\sf N}$ is known to all bidders
- each bidder knows their own valuation V_i for the auctioned item (= the difference in profit between owning and not owning it)
- no bidder knows the other bidder's valuations for the auctioned item but these valuations are independent random variables drawn from a given continuous distribution F(v) with density f(v) over the nonnegative real-values bids, and this distribution is known
- the bidders are indistinguishable

Sealed-Bid Model

- the bidders submit secret bids

First-Price Model

- the winner of the auction pays what they bid

The optimal bidding function for risk-neutral decision makers that participate in first-price sealed bid auctions in the symmetric independent private values (SIPV) model is

$$b(v) = v - \frac{\int_{0}^{v} F(t)^{N-1} dt}{F(v)^{N-1}}$$
 [McAfee and McMillan]

Theorem:

The optimal bidding function for risk-averse decision makers with concave exponential utility functions that participate in first-price sealed bid auctions in the symmetric independent private values (SIPV) model is

Decision-Making Methods for Autonomous Agents; Sven Koenig.

91 of 91