Inference in First-Order Logic

- Proofs
- Unification
- Generalized modus ponens
- Forward and backward chaining
- Completeness
- Resolution
- Logic programming

Inference in First-Order Logic

- Proofs - extend propositional logic inference to deal with quantifiers
- Unification
- Generalized modus ponens
- Forward and backward chaining - inference rules and reasoning program
- Completeness - Gödel's theorem: for FOL, any sentence entailed by another set of sentences can be proved from that set
- Resolution - inference procedure that is complete for any set of sentences
- Logic programming

Logic as a representation of the World

Desirable Properties of Inference Procedures

Remember: propositional logic

\diamond Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$
\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}
$$

\diamond And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$
\frac{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}}{\alpha_{i}}
$$

\diamond And-Introduction: (From a list of sentences, you can infer their conjunction.)

$$
\frac{\alpha_{1}, \alpha_{2}, \ldots, \quad \alpha_{n}}{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}}
$$

\diamond Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$
\frac{\alpha_{i}}{\alpha_{1} \vee \alpha_{2} \vee \ldots \vee \alpha_{n}}
$$

\diamond Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

$$
\frac{\neg \neg \alpha}{\alpha}
$$

Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

\diamond Resolution: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$
\frac{\alpha \vee \beta, \quad \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \text { or equivalently } \quad \frac{\neg \alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}
$$

Reminder

- Ground term: A term that does not contain a variable.
- A constant symbol
- A function applies to some ground term
- $\{x / a\}$: substitution/binding list

Proofs

Sound inference: find α such that $K B=\alpha$.
Proof process is a search, operators are inference rules.
E.g., Modus Ponens (MP)

$$
\frac{\alpha, \quad \alpha \Rightarrow \beta}{\beta} \quad \frac{\text { At }(J o e, U C B) \quad \text { At }(J o e, U C B) \Rightarrow O K(J o e)}{O K(J o e)}
$$

E.g., And-Introduction (AI)

$$
\frac{\alpha \beta}{\alpha \wedge \beta} \quad \frac{O K(J o e) \quad C S M a j o r(J o e)}{O K(J o e) \wedge C S M a j o r(J o e)}
$$

E.g., Universal Elimination (UE)

$$
\frac{\forall x \alpha}{\alpha\{x / \tau\}} \quad \frac{\forall x A t(x, U C B) \Rightarrow O K(x)}{A t(P a t, U C B) \Rightarrow O K(P a t)}
$$

τ must be a ground term (i.e., no variables)

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

- Universal Elimination (UE):
for any sentence α, variable x and ground term τ,

$$
\frac{\forall \mathrm{x} \quad \alpha}{\alpha\{\mathrm{x} / \tau\}}
$$

- Existential Elimination (EE):
for any sentence α, variable x and constant symbol k not in KB,

$$
\frac{\exists x \quad \alpha}{\alpha\{x / k\}}
$$

- Existential Introduction (EI):
for any sentence α, variable x not in α and ground term g in α,

$$
\frac{\alpha}{\exists x \quad \alpha\{g / x\}}
$$

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

- Universal Elimination (UE): for any sentence α, variable x and ground term τ,

$$
\frac{\forall x \alpha}{\alpha\{x / \tau\}} \quad \text { e.g., from } \forall x \text { Likes(} x, \text { Candy) and }\{x / \text { Joe }\}
$$

- Existential Elimination (EE):
for any sentence α, variable x and constant symbol k not in KB,

$$
\frac{\exists x \quad \alpha}{\alpha\{x / k\}}
$$

- Existential Introduction (EI):
for any sentence α, variable x not in α and ground term g in α,

$$
\begin{array}{ll}
\frac{\alpha}{\exists x \alpha\{g / x\}} & \text { e.g., from Likes(Joe, Candy) we can infer } \\
\exists x \operatorname{Likes}(x, \text { Candy) }
\end{array}
$$

Example Proof

Bob is a buffalo	1. Buffalo $(B o b)$
Pat is a pig	2. $\operatorname{Pig}(\operatorname{Pat})$
Buffaloes outrun pigs	3. $\forall x, y \quad$ Buffalo $(x) \wedge \operatorname{Pig}(y) \Rightarrow \operatorname{Faster}(x, y)$
Bob outruns Pat	

Example Proof

AI 1 \& 2	4. Buffalo $($ Bob $) \wedge \operatorname{Pig}($ Pat $)$

Example Proof

UE 3, \{x/Bob,y/Pat $\}$	5. Buffalo $($ Bob $) \wedge \operatorname{Pig}($ Pat $) \Rightarrow \operatorname{Faster}($ Bob, Pat $)$

Example Proof

MP $6 \& 7$	6. Faster (Bob,Pat)

Search with primitive example rules

Operators are inference rules
States are sets of sentences
Goal test checks state to see if it contains query sentence

AI, UE, MP is a common inference pattern
Problem: branching factor huge, esp. for UE
Idea: find a substitution that makes the rule premise match some known facts
\Rightarrow a single, more powerful inference rule

Unification

A substitution σ unifies atomic sentences p and q if $\underline{\underline{p \sigma=q \sigma}}$

p	q	σ
Knows(John, x)	Knows(John, Jane)	
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	$\mid K n o w s(y, M o t h e r(y) \mid$	

Goal of unification: finding σ

Unification

Idea: Unify rule premises with known facts, apply unifier to conclusion
E.g., if we know q and $\operatorname{Knows}(J o h n, x) \Rightarrow \operatorname{Likes}(J o h n, x)$ then we conclude Likes(John, Jane)

Likes(John, OJ)
Likes(John, Mother(John))

Extra example for unification

P	Q	σ
Student(x)	Student(Bob)	$\{x /$ Bob $\}$
Sells(Bob, x)	Sells(x, coke)	$\{x /$ coke,$x / B o b\}$ Is it correct?

Extra example for unification

P	Q	σ
Student(x)	Student(Bob)	$\{x /$ Bob $\}$
Sells(Bob, x)	Sells(y, coke)	$\{x /$ coke, $y /$ Bob $\}$

More Unification Examples

$$
\begin{array}{ll}
& \text { VARIABLE } \\
1 \text { - unify }(P(a, X), P(a, b)) & \sigma=\{X / b\} \\
2 \text { - unify }(P(a, X), P(Y, b)) & \sigma=\{Y / a, X / b\} \\
3 \text { - unify }(P(a, X), P(Y, f(a)) & \sigma=\{Y / a, X / f(a)\} \\
4 \text { - unify }(P(a, X), P(X, b)) & \sigma=\text { failure }
\end{array}
$$

Note: If $P(a, X)$ and $P(X, b)$ are independent, then we can replace X with Y and get the unification to work.

Generalized Modus Ponens (GMP)

$$
\frac{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime}, \quad\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \sigma} \quad \text { where } p_{i}{ }^{\prime} \sigma=p_{i} \sigma \text { for all } i
$$

$$
\text { E.g. } p_{1}^{\prime}=\text { Faster(Bob,Pat) }
$$

$$
p_{2}{ }^{\prime}=\text { Faster (Pat,Steve) }
$$

$$
p_{1} \wedge p_{2} \Rightarrow q=\text { Faster }(x, y) \wedge \text { Faster }(y, z) \Rightarrow \text { Faster }(x, z)
$$

$$
\sigma=\{x / \text { Bob }, y / \text { Pat }, z / \text { Steve }\}
$$

$$
q \sigma=\text { Faster }(\text { Bob }, \text { Steve })
$$

GMP used with KB of definite clauses (exactly one positive literal): either a single atomic sentence or
(conjunction of atomic sentences) \Rightarrow (atomic sentence)
All variables assumed universally quantified

Soundness of GMP

Need to show that

$$
p_{1}^{\prime}, \ldots, p_{n}{ }^{\prime}, \quad\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \models q \sigma
$$

provided that $p_{i}{ }^{\prime} \sigma=p_{i} \sigma$ for all i
Lemma: For any definite clause p, we have $p=p \sigma$ by UE

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \models\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \sigma=\left(p_{1} \sigma \wedge \ldots \wedge p_{n} \sigma \Rightarrow q \sigma\right)$
2. $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime} \models p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime}=p_{1}{ }^{\prime} \sigma \wedge \ldots \wedge p_{n}{ }^{\prime} \sigma$
3. From 1 and $2, q \sigma$ follows by simple MP

Properties of GMP

- Why is GMP and efficient inference rule?
- It takes bigger steps, combining several small inferences into one
- It takes sensible steps: uses eliminations that are guaranteed to help (rather than random UEs)
- It uses a precompilation step which converts the KB to canonical form (Horn sentences)

Remember: sentence in Horn from is a conjunction of Horn clauses (clauses with at most one positive literal), e.g.,
$(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$, that is $(B \Rightarrow A) \wedge((C \wedge D) \Rightarrow B)$

Horn form

- We convert sentences to Horn form as they are entered into the KB
- Using Existential Elimination and And Elimination
- e.g., $\exists x$ Owns(Nono, x) ^Missile(x) becomes

Owns(Nono, M)
Missile(M)
(with M a new symbol that was not already in the KB)

Forward chaining

When a new fact p is added to the KB
for each rule such that p unifies with a premise
if the other premises are known
then add the conclusion to the KB and continue chaining
Forward chaining is data-driven
e.g., inferring properties and categories from percepts

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; $\sqrt{ }$ indicates rule firing

1. Buffalo $(x) \wedge \operatorname{Pig}(y) \Rightarrow \operatorname{Faster}(x, y)$
2. $\operatorname{Pig}(y) \wedge \operatorname{Slug}(z) \Rightarrow \operatorname{Faster}(y, z)$
3. Faster $(x, y) \wedge \operatorname{Faster}(y, z) \Rightarrow \operatorname{Faster}(x, z)$
4. Buffalo(Bob) $[1 \mathrm{a}, \times]$
5. $\operatorname{Pig}($ Pat $) \underset{\underline{[2 \mathrm{ba}, \times]}]}{[1 \mathrm{~b}, \sqrt{6}} \boldsymbol{\text { 6 }}$ Faster $($ Bob, Pat $) \underline{[3 \mathrm{a}, \times]}, \underline{[3 \mathrm{~b}, \times]}$
6. $\operatorname{Slug}($ Steve $)[2 \mathrm{~b}, \sqrt{ }]$
\rightarrow 8. Faster (Pat, Steve) [3a, \times], [3b, $\sqrt{ }]$
\rightarrow 9. Faster (Bob, Steve) [3a, $\times],[3 \mathrm{~b}, \times]$

Example: Forward Chaining

Current available rules

- $A \wedge C=>E$
- $D^{\wedge} C=>F$
- $B \wedge E=>F$
- $B=>C$
- $F=>G$

Example: Forward Chaining

Current available rules

- $A \wedge C=>E$
- $\mathrm{D}^{\wedge} \mathrm{C}=>\mathrm{F}$
- $B \wedge E=>F$
- $B=>C$
- $F=>G$

Percept 1. A (is true)
Percept 2. B (is true)
then, from (4), C is true, then the premises of (1) will be satisfied, resulting to make E true, then the premises of (3) are going to be satisfied, thus F is true, and finally from (5) G is true.

Example of Deduction: What can we prove?

$$
\begin{aligned}
& \mathrm{s}(\mathrm{Y}, \mathrm{Z}) \wedge \mathrm{r}(\mathrm{Z}) \rightarrow \mathrm{r}(\mathrm{Y}) \\
& \mathrm{r}(\mathrm{a}) . \\
& \mathrm{s}(\mathrm{~b}, \mathrm{c}) \\
& \mathrm{s}(\mathrm{c}, \mathrm{a}) . \\
& \mathrm{rr}(\mathrm{c})
\end{aligned}
$$

Example of Deduction: What can we prove?

```
\(\neg s(Y, Z) \vee \neg r(Z) \vee r(Y)\)
\(r(a)\).
\(\mathrm{s}(\mathrm{b}, \mathrm{c})\)
\(\mathrm{s}(\mathrm{c}, \mathrm{a})\).
\(\neg r(c)\)
```


Example of Deduction: What can we prove?

```
\(\neg s(Y, Z) \vee \neg r(Z) \vee r(Y)\)
\(r(a)\).
\(\mathrm{s}(\mathrm{b}, \mathrm{c})\)
\(\mathrm{s}(\mathrm{c}, \mathrm{a})\).
ᄀr(c)
deadend.
```


Example of Deduction: What can we prove?

Inference example

quaker $(\mathrm{X})=>$ pacifist (X).
republican $(X)=>\neg$ pacifist (X).
republican(george).
quaker(richard).
republican(richard)?

Can we use forward chaining to achieve this?

Backward chaining

When a query q is asked
if a matching fact q^{\prime} is known, return the unifier
for each rule whose consequent q^{\prime} matches q
attempt to prove each premise of the rule by backward chaining
(Some added complications in keeping track of the unifiers)
(More complications help to avoid infinite loops)
Two versions: find any solution, find all solutions
Backward chaining is the basis for logic programming, e.g., Prolog

Backward chaining example

1. $\operatorname{Pig}(y) \wedge \operatorname{Slug}(z) \Rightarrow \operatorname{Faster}(y, z)$
2. $\operatorname{Slimy}(z) \wedge \operatorname{Creeps}(z) \Rightarrow \operatorname{Slug}(z)$
3. $\operatorname{Pig}($ Pat $)$ 4. Slimy(Steve) 5. Creeps(Steve)

A simple example

- $\mathrm{B}^{\wedge} \mathrm{C}=>\mathrm{G}$
- $\mathrm{A}^{\wedge} \mathrm{G}=>\mathrm{I}$
- $\mathrm{D}^{\wedge} \mathrm{G}=>\mathrm{J}$
- $\mathrm{E}=>\mathrm{C}$
- $\mathrm{D}^{\wedge} \mathrm{C}=>\mathrm{K}$
- $\mathrm{F}=>\mathrm{C}$
- Q: I?

A simple example

- $\mathrm{B}^{\wedge} \mathrm{C}=>\mathrm{G}$
- $\mathrm{A}^{\wedge} \mathrm{G}=>\mathrm{I}$
- $\mathrm{D}^{\wedge} G=>$ J
- $E=>C$
- $D^{\wedge} C=>K$
- $\mathrm{F}=>\mathrm{C}$
- Q: I?

1. $A^{\wedge} G$
2. A ?
3. USER
4. G?
5. $\mathrm{B}^{\wedge} \mathrm{C}$
6. USER
7. EvF

Another Example (from Konelsky)

- Nintendo example.
- Nintendo says it is Criminal for a programmer to provide emulators to people. My friends don't have a Nintendo 64, but they use software that runs N64 games on their PC, which is written by Reality Man, who is a programmer.

Forward Chaining

- The knowledge base initially contains:
- Programmer(x) \wedge Emulator $(y) \wedge \operatorname{People}(z) \wedge$ Provide $(x, z, y) \Rightarrow$ Criminal (x)
- Use(friends, $x) \wedge$ Runs(x, N64 games) \Rightarrow Provide(Reality Man, friends, x)
- Software $(x) \wedge$ Runs(x, N64 games) \Rightarrow Emulator (x)

Forward Chaining

$\operatorname{Programmer}(x) \wedge$ Emulator $(y) \wedge \operatorname{People}(z) \wedge \operatorname{Provide}(x, z, y) \Rightarrow$ Criminal(x)
Use(friends, x) ^Runs(x, N64 games)
\Rightarrow Provide(Reality Man, friends, x)
Software (x) ^Runs(x, N64 games)
\Rightarrow Emulator(x)

- Now we add atomic sentences to the KB sequentially, and call on the forward-chaining procedure:
- FORWARD-CHAIN(KB, Programmer(Reality Man))

Forward Chaining

```
Programmer \((x) \wedge\) Emulator \((y) \wedge \operatorname{People}(z) \wedge \operatorname{Provide}(x, z, y)\)
    \(\Rightarrow\) Criminal \((\mathrm{x})\)
Use(friends, x) ^ Runs(x, N64 games)
    \(\Rightarrow\) Provide(Reality Man, friends, \(x\) )
Software (x) ^Runs(x, N64 games)
    \(\Rightarrow\) Emulator( x )
Programmer(Reality Man)(4)
```

- This new premise unifies with (1) with subst(\{x/Reality Man\}, Programmer(x)) but not all the premises of (1) are yet known, so nothing further happens.

Forward Chaining

Programmer $(x) \wedge$ Emulator $(y) \wedge$ People(z)Provide $(x, z, y) \Rightarrow$ Criminal (x)(1)Use(friends, x) ^Runs(x, N64 games)\Rightarrow Provide(Reality Man, friends, x)(2)
Software(x) ^Runs(x , N64 games)\Rightarrow Emulator(x)(3)
Programmer(Reality Man)(4)

- Continue adding atomic sentences:
- FORWARD-CHAIN(KB, People(friends))

Forward Chaining

Programmer $(x) \wedge$ Emulator $(y) \wedge$ People(z) \wedge Provide(x, z, y) \Rightarrow Criminal(x)

Use(friends, x) ^Runs(x, N64 games)
\Rightarrow Provide(Reality Man, friends, x)
Software (x) ^Runs(x, N64 games)
\Rightarrow Emulator(x)
Programmer(Reality Man)
People(friends)

- This also unifies with (1) with subst(\{z/friends\}, People(z)) but other premises are still missing.

Forward Chaining

Programmer $(x) \wedge$ Emulator $(y) \wedge$ People(z)Provide $(x, z, y) \Rightarrow$ Criminal(x)(1)Use(friends, x) ^Runs(x, N64 games)\Rightarrow Provide(Reality Man, friends, x)(2)
Software (x) ^Runs(x, N64 games)\Rightarrow Emulator(x)(3)
Programmer(Reality Man) (4)People(friends)(5)

- Add:
- FORWARD-CHAIN(KB, Software(U64))

Forward Chaining

```
Programmer(x) ^ Emulator(y) ^ People(z) ^ Provide(x,z,y)
    Criminal(x)
Use(friends, x) ^ Runs(x, N64 games)
    => Provide(Reality Man, friends, x)
Software(x) ^ Runs(x, N64 games)
        => Emulator(x)
Programmer(Reality Man)(4)
People(friends) (5)
Software(U64)
- This new premise unifies with (3) but the other premise is not yet known.

\section*{Forward Chaining}
Programmer \((x) \wedge\) Emulator \((y) \wedge\) People \((z) \wedge \operatorname{Provide(x,z,y)~}\)
    \(\Rightarrow\) Criminal( x )(1)
Use(friends, \(x\) ) ^Runs( \(x\), N64 games)
    \(\Rightarrow\) Provide(Reality Man, friends, \(x\) )
Software( x ) ^Runs( x , N64 games)
    \(\Rightarrow\) Emulator( x )
Programmer(Reality Man)
People(friends)
Software(U64)
- Add:
- FORWARD-CHAIN(KB, Use(friends, U64))

\section*{Forward Chaining}
\(\operatorname{Programmer}(x) \wedge\) Emulator \((y) \wedge \operatorname{People}(z) \wedge \operatorname{Provide}(x, z, y) \Rightarrow \operatorname{Criminal}(x)\)
Use(friends, \(x) \wedge\) Runs( \(x\), N64 games) \(\Rightarrow\) Provide(Reality Man, friends, \(x\) )(2)
Software ( \(x\) ) \(\wedge\) Runs( \(x\), N64 games) \(\Rightarrow\) Emulator \((x)\)
Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)
- This premise unifies with (2) but one still lacks.

\section*{Forward Chaining}
```

Programmer(x) ^ Emulator(y) ^ People(z) ^ Provide(x,z,y) => Criminal(x)
Use(friends, x) ^Runs(x, N64 games) \Rightarrow Provide(Reality Man, friends, x)
Software(x) ^ Runs(x, N64 games) \Rightarrow Emulator(x)

Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)
(5)
(6)
(7)

- Add:
- FORWARD-CHAIN(Runs(U64, N64 games))

Forward Chaining

```
Programmer(x) ^ Emulator(y) ^ People(z) ^ Provide(x,z,y) => Criminal(x)
Use(friends, \(x\) ) ^Runs( \(x\), N64 games) \(\Rightarrow\) Provide(Reality Man, friends, \(x\) )
Software( \(x\) ) ^ Runs(x, N64 games) \(\Rightarrow\) Emulator( \(x\) )

Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)
(6)

Runs(U64, N64 games)
- This new premise unifies with (2) and (3).

\section*{Forward Chaining}
```

Programmer(x) ^ Emulator(y) ^ People(z) ^ Provide(x,z,y) => Criminal(x)
Use(friends, x) $\wedge \operatorname{Runs}(x$, N64 games) $\Rightarrow \operatorname{Provide(Reality~Man,~friends,~} x$)
Software(x) ^ Runs(x, N64 games) \Rightarrow Emulator(x)

Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)
(5)

Runs(U64, N64 games)

- Premises (6), (7) and (8) satisfy the implications fully.

Forward Chaining

```
Programmer(x) ^ Emulator(y) ^ People(z) ^ Provide(x,z,y) => Criminal(x)
Use(friends, x) ^ Runs(x, N64 games) }=>\mathrm{ Provide(Reality Man, friends, x)
Software(x) ^Runs(x, N64 games) }=>\mathrm{ Emulator(x)
```

Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)
Runs(U64, N64 games)

- So we can infer the consequents, which are now added to the knowledge base (this is done in two separate steps).

Forward Chaining

$\operatorname{Programmer}(x) \wedge$ Emulator $(y) \wedge \operatorname{People}(z) \wedge \operatorname{Provide}(x, z, y) \Rightarrow \operatorname{Criminal}(x)$
Use(friends, x) \wedge Runs(x, N64 games) \Rightarrow Provide(Reality Man, friends, x)
Software (x) \wedge Runs(x, N64 games) \Rightarrow Emulator(x)
Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)
Runs(U64, N64 games) (8)
Provide(Reality Man, friends, U64) (9)
Emulator(U64)(3)(10)

- Addition of these new facts triggers further forward chaining.

Forward Chaining

$\operatorname{Programmer}(x) \wedge \operatorname{Emulator}(y) \wedge \operatorname{People}(z) \wedge \operatorname{Provide}(x, z, y) \Rightarrow \operatorname{Criminal}(x)$
Use(friends, $x) \wedge$ Runs $(x$, N64 games) \Rightarrow Provide(Reality Man, friends, x)
Software (x) \wedge Runs(x , N64 games) \Rightarrow Emulator(x)(2)(3)
Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)
Runs(U64, N64 games) (8)
Provide(Reality Man, friends, U64) (9)
Emulator(U64) (10)
Criminal(Reality Man) (11)

- Which results in the final conclusion: Criminal(Reality Man)

Forward Chaining

- Forward Chaining acts like a breadth-first search at the top level, with depth-first sub-searches.
- Since the search space spans the entire KB, a large KB must be organized in an intelligent manner in order to enable efficient searches in reasonable time.

Backward Chaining

- Current knowledge:
- hurts(x, head)
- What implications can lead to this fact?
- kicked(x, head)
- fell_on(x, head)
- brain_tumor(x)
- hangover(x)
- What facts do we need in order to prove these?

Backward Chaining

- The algorithm (available in detail in Fig. 9.2 on page 275 of the text):
- a knowledge base KB
- a desired conclusion c or question q
- finds all sentences that are answers to q in KB or proves C
- if q is directly provable by premises in KB, infer q and remember how q was inferred (building a list of answers).
- find all implications that have q as a consequent.
- for each of these implications, find out whether all of its premises are now in the KB, in which case infer the consequent and add it to the KB, remembering how it was inferred. If necessary, attempt to prove the implication also via backward chaining
- premises that are conjuncts are processed one conjunct at a time

Backward Chaining

- Question: Has Reality Man done anything criminal?
- Criminal(Reality Man)
- Possible answers:
- Steal $(x, y) \Rightarrow \operatorname{Criminal}(x)$
- $\operatorname{Kill}(x, y) \Rightarrow \operatorname{Criminal}(x)$
- $\operatorname{Grow}(x, y) \wedge$ Illegal(y) $\Rightarrow \operatorname{Criminal}(x)$
- HaveSillyName $(x) \Rightarrow$ Criminal (x)
- Programmer $(x) \wedge$ Emulator $(y) \wedge \operatorname{People}(z) \wedge \operatorname{Provide}(x, z, y)$ \Rightarrow Criminal(x)

Backward Chaining

- Question: Has Reality Man done anything criminal?

$$
\operatorname{Criminal}(\mathrm{x})
$$

Backward Chaining

- Question: Has Reality Man done anything criminal?

Backward Chaining

- Question: Has Reality Man done anything criminal?
Criminal(x)
Steal(x,y)
FAIL

Backward Chaining

- Question: Has Reality Man done anything criminal?

FAIL

Backward Chaining

- Question: Has Reality Man done anything criminal?

Backward Chaining

- Question: Has Reality Man done anything criminal?

Backward Chaining

- Question: Has Reality Man done anything criminal?

Backward Chaining

- Question: Has Reality Man done anything criminal?

- Backward Chaining is a depth-first search: in any knowledge base of realistic size, many search paths will result in failure.

Backward Chaining

- Question: Has Reality Man done anything criminal?

$$
\operatorname{Criminal}(\mathrm{x})
$$

Backward Chaining

- Question: Has Reality Man done anything criminal?

$$
\text { Criminal(} \mathrm{x} \text {) }
$$

Programmer(x)
Yes, \{x/Reality Man\}

Backward Chaining

- Question: Has Reality Man done anything criminal?

Backward Chaining

- Question: Has Reality Man done anything criminal?

Yes, \{x/Reality Man\}
Yes, \{z/friends\}

Backward Chaining

- Question: Has Reality Man done anything criminal?

Yes, $\{y / U / t r a H L E\}$

Backward Chaining

- Question: Has Reality Man done anything criminal?

Backward Chaining

- Question: Has Reality Man done anything criminal?

Backward Chaining

- Question: Has Reality Man done anything criminal?

Backward Chaining

- Backward Chaining benefits from the fact that it is directed toward proving one statement or answering one question.
- In a focused, specific knowledge base, this greatly decreases the amount of superfluous work that needs to be done in searches.
- However, in broad knowledge bases with extensive information and numerous implications, many search paths may be irrelevant to the desired conclusion.
- Unlike forward chaining, where all possible inferences are made, a strictly backward chaining system makes inferences only when called upon to answer a query.

Completeness

- As explained earlier, Generalized Modus Ponens requires sentences to be in Horn form:
- atomic, or
- an implication with a conjunction of atomic sentences as the antecedent and an atom as the consequent.
- However, some sentences cannot be expressed in Horn form.
- e.g.: $\forall x \neg$ bored_of_this_lecture (x)
- Cannot be expressed in Horn form due to presence of negation.

Completeness

- A significant problem since Modus Ponens cannot operate on such a sentence, and thus cannot use it in inference.
- Knowledge exists but cannot be used.
- Thus inference using Modus Ponens is incomplete.

Completeness

- However, Kurt Gödel in 1930-31 developed the completeness theorem, which shows that it is possible to find complete inference rules.
- The theorem states:
- any sentence entailed by a set of sentences can be proven from that set.
$=>$ Resolution Algorithm which is a complete inference method.

Completeness

- The completeness theorem says that a sentence can be proved if it is entailed by another set of sentences.
- This is a big deal, since arbitrarily deeply nested functions combined with universal quantification make a potentially infinite search space.
- But entailment in first-order logic is only semidecidable, meaning that if a sentence is not entailed by another set of sentences, it cannot necessarily be proven.

Completeness in FOL

Procedure i is complete if and only if

$$
K B \vdash_{i} \alpha \quad \text { whenever } \quad K B \models \alpha
$$

Forward and backward chaining are complete for Horn KBs but incomplete for general first-order logic
E.g., from

$$
\begin{aligned}
& \operatorname{PhD}(x) \Rightarrow \text { HighlyQualified }(x) \\
& \neg \operatorname{PhD}(x) \Rightarrow \text { EarlyEarnings }(x) \\
& \operatorname{HighlyQualified}(x) \Rightarrow \operatorname{Rich}(x) \\
& \text { EarlyEarnings }(x) \Rightarrow \operatorname{Rich}(x)
\end{aligned}
$$

should be able to infer Rich(Me), but FC/BC won't do it
Does a complete algorithm exist?

Historical note

450b.c. Stoics
322b.c. Aristotle
15犃 Cardano
1847 Boole
1879 Frege
1922 Wittgenstein
1930 Gödel
1930 Herbrand
1931 Gödel
19-0 Davis/Putnam
19.05 Robinson
propositional logic, inference (maybe) "syllogisms" (inference rules), quantifiers
probability theory (propositional logic + uncertainty)
propositional logic (again) first-order logic
proof by truth tables
\exists complete algorithm for FOL
complete algorithm for FOL (reduce to propositional)
$\neg \exists$ complete algorithm for arithmetic
"practical" algorithm for propositional logic
"practical" algorithm for FOL—resolution

Kinship Example

KB:
(1) father (art, jon)
(2) father (bob, kim)
(3) father $(X, Y) \Rightarrow$ parent (X, Y)

Goal: parent (art, jon)?

Refutation Proof/Graph

Resolution

Entailment in first-order logic is only semidecidable:
can find a proof of α if $K B \models \alpha$
cannot always prove that $K B \neq \alpha$
Cf. Halting Problem: proof procedure may be about to terminate with success or failure, or may go on for ever

Resolution is a refutation procedure:
to prove $K B \vDash \alpha$, show that $K B \wedge \neg \alpha$ is unsatisfiable
Resolution uses $K B, \neg \alpha$ in CNF (conjunction of clauses)
Resolution inference rule combines two clauses to make a new one:

Inference continues until an empty clause is derived (contradiction)

Resolution inference rule

Basic propositional version:

$$
\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \text { or equivalently } \quad \frac{\neg \alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}
$$

Full first-order version:

$$
\frac{p_{1} \vee \ldots p_{j} \ldots \vee p_{m},}{q_{1} \vee \ldots q_{k} \ldots \vee q_{n}} \frac{\left(p_{1} \vee \ldots p_{j-1} \vee p_{j+1} \ldots p_{m} \vee q_{1} \ldots q_{k-1} \vee q_{k+1} \ldots \vee q_{n}\right) \sigma}{}
$$

where $p_{j} \sigma=\neg q_{k} \sigma$
For example,

$$
\begin{aligned}
& \neg \operatorname{Rich}(x) \vee \operatorname{Unhappy}(x) \\
& \frac{\operatorname{Rich}(M e)}{\operatorname{Unhappy}(M e)}
\end{aligned}
$$

with $\sigma=\{x / M e\}$

Remember: normal forms

Other approaches to inference use syntactic operations on sentences, often expressed in standardized forms

Conjunctive Normal Form (CNF—universal)
conjunction of $\underbrace{\text { disjunctions } \text { of literals }}_{\text {clauses }}$
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Disjunctive Normal Form (DNF—universal)
disjunction of $\underbrace{\text { conjunctions of literals }}_{\text {terms }}$
E.g., $(A \wedge B) \vee(A \wedge \neg C) \vee(A \wedge \neg D) \vee(\neg B \wedge \neg C) \vee(\neg B \wedge \neg D)$

Horn Form (restricted)
conjunction of Horn clauses (clauses with ≤ 1 positive literal)
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Often written as set of implications:
$B \Rightarrow A$ and $(C \wedge D) \Rightarrow B$
"product of sums of simple variables or negated simple variables"
"sum of products of simple variables or negated simple variables"

$$
0,1
$$

$$
0,4
$$

Conjunctive normal form

Literal $=$ (possibly negated) atomic sentence, e.g., $\neg \operatorname{Rich}(M e)$
Clause $=$ disjunction of literals, e.g., $\neg \operatorname{Rich}(M e) \vee \operatorname{Unhappy}(M e)$
The KB is a conjunction of clauses
Any FOL KB can be converted to CNF as follows:

1. Replace $P \Rightarrow Q$ by $\neg P \vee Q$
2. Move \neg inwards, e.g., $\neg \forall x P$ becomes $\exists x \neg P$
3. Standardize variables apart, e.g., $\forall x P \vee \exists x Q$ becomes $\forall x P \vee \exists y Q$
4. Move quantifiers left in order, e.g., $\forall x P \vee \exists x Q$ becomes $\forall x \exists y P \vee Q$
5. Eliminate \exists by Skolemization (next slide)
6. Drop universal quantifiers
7. Distribute \wedge over \vee, e.g., $(P \wedge Q) \vee R$ becomes $(P \vee Q) \wedge(P \vee R)$

Skolemization

$\exists x \operatorname{Rich}(x)$ becomes $\operatorname{Rich}(G 1)$ where $G 1$ is a new "Skolem constant"
$\exists k \frac{d}{d y}\left(k^{y}\right)=k^{y}$ becomes $\frac{d}{d y}\left(e^{y}\right)=e^{y}$
More tricky when \exists is inside \forall
E.g., "Everyone has a heart"

$$
\forall x \operatorname{Person}(x) \Rightarrow \exists y \operatorname{Heart}(y) \wedge \operatorname{Has}(x, y)
$$

Incorrect:

$$
\forall x \operatorname{Person}(x) \Rightarrow \operatorname{Heart}(H \mathbf{1}) \wedge \operatorname{Has}(x, H 1)
$$

Correct:
$\forall x \operatorname{Person}(x) \Rightarrow \operatorname{Heart}(H(x)) \wedge H a s(x, H(x))$
where H is a new symbol ("Skolem function")
Skolem function arguments: all enclosing universally quantified variables

Examples: Converting FOL sentences to clause form...

Convert the sentence

1. $(\forall x)(P(x)=>((\forall y)(P(y)=>P(f(x, y))) \wedge \neg(\forall y)(Q(x, y)=>P(y))))$
(like A => B ^ C)
2. Eliminate $=>(\forall x)(\neg P(x) \vee((\forall y)(\neg P(y) \vee P(f(x, y))) \wedge \neg(\forall y)(\neg Q(x, y)$ $\checkmark P(y)))$)
3. Reduce scope of negation

$$
(\forall x)(\neg P(x) \vee((\forall y)(\neg P(y) \vee P(f(x, y))) \wedge(\exists y)(Q(x, y) \wedge \neg P(y))))
$$

4. Standardize variables

$$
(\forall x)(\neg P(x) \vee((\forall y)(\neg P(y) \vee P(f(x, y))) \wedge(\exists z)(Q(x, z) \wedge \neg P(z))))
$$

Examples: Converting FOL sentences to clause form...

5. Eliminate existential quantification $(\forall x)\left(\neg P(x) \vee\left((\forall y)(\neg P(y) \vee P(f(x, y))) \wedge(Q(x, g(x)))^{\wedge}\right.\right.$ $\neg P(g(x)))))$
6. Drop universal quantification symbols

$$
\left(\neg P(x) \vee\left((\neg P(y) \vee P(f(x, y))) \wedge\left(Q(x, g(x))^{\wedge} \neg P(g(x))\right)\right)\right)
$$

7. Convert to conjunction of disjunctions

$$
\begin{aligned}
& (\neg P(x) \vee \neg P(y) \vee P(f(x, y))) \wedge(\neg P(x) \vee Q(x, g(x))) \\
& \wedge(\neg P(x) \vee \neg P(g(x))))
\end{aligned}
$$

Examples: Converting FOL sentences to clause form...

8. Create separate clauses

$$
\begin{aligned}
& \neg P(x) \vee \neg P(y) \vee P(f(x, y)) \\
& \neg P(x) \vee Q(x, g(x)) \\
& \neg P(x) \vee \neg P(g(x))
\end{aligned}
$$

9. Standardize variables

$$
\begin{aligned}
& \neg P(x) \vee \neg P(y) \vee P(f(x, y)) \\
& \neg P(z) \vee Q(z, g(z)) \\
& \neg P(w) \vee \neg P(g(w))
\end{aligned}
$$

Resolution proof

To prove α :

- negate it
- convert to CNF
- add to CNF KB
- infer contradiction
E.g., to prove Rich $(m e)$, add $\neg \operatorname{Rich}(m e)$ to the CNF KB

```
\neg P h D ( x ) \vee ~ H i g h l y Q u a l i f i e d ~ ( x )
PhD(x)\vee EarlyEarnings(x)
\neg H i g h l y Q u a l i f i e d ( x ) \vee ~ R i c h ( x )
\negarlyEarnings(x)\vee Rich(x)
```

Resolution proof

Inference in First-Order Logic

- Canonical forms for resolution

Conjunctive Normal Form (CNF)
Implicative Normal Form (INF)

$$
\begin{gathered}
\neg P(w) \vee Q(w) \\
P(x) \vee R(x) \\
\neg Q(y) \vee S(y) \\
\neg R(z) \vee S(z)
\end{gathered}
$$

$$
\begin{aligned}
& P(w) \Rightarrow Q(w) \\
& \text { True } \Rightarrow P(x) \vee R(x) \\
& Q(y) \Rightarrow S(y) \\
& R(z) \Rightarrow S(z)
\end{aligned}
$$

Reference in First-Order Logic

- Resolution Proofs

In a forward- or backward-chaining algorithm, just as Modus Ponens.

Inference in First-Order Logic

- Refutation

Example of Refutation Proof (in conjunctive normal form)

(1) Cats like fish
(2) Cats eat everything they like
(3) Josephine is a cat.
(4) Prove: Josephine eats fish.
\neg cat (x) \vee likes (x, fish)
\neg cat $(y) \vee \neg$ likes $(y, z) \vee$ eats (y, z)
cat (jo)
eats (jo,fish)

Backward Chaining

Negation of goal wff: \neg eats(jo, fish)

Forward chaining

Question:

- When would you use forward chaining? What about backward chaining?
- A:
- FC: If expert needs to gather information before any inferencing
- BC: If expert has a hypothetical solution

