

Stefan Schaal Computer Science & Neuroscience University of Southern California and ATR Human Information Sciences Laboratory sschaal@usc.edu http://www-clmc.usc.edu

Robots That Learn

Robots–The Original Vision

Karel Capek 1920

Robots–The Reality

Robots–What We Might Want

Amar-FZI, Karlsruhe

Centaur-KIST, Korea

Hadaly–SuganoLab, Waseda

Hermes-BWH, Munich

Hoap-Fujitsu, Japan

Asimo-Honda, Japan

HRP-2P-Kawada, Japan

Isamu-Kawada, Japan

Jack-ETL, Japan

Cog-MIT

Infanoid–CRL/Kozima, Japan

Robotnaut–NASA

Morph3–Kitano, Japan

JSK-H7–Tokyo University

Arnold-INI/Bochum, Germany,

Pino-Kitano, Japan

Robos-Kozoh, Japan

Sony Robot

Robotic Surrogate-RHD, USA Wabian-Waseda/Takanishi, Japan

Sarcos Humanoid—ATR, Japan

Robots–What We Might Want But Can We Program Them?

RMRC Inverse Kinematics Learning

Trick: Learn direct kinematics and additionally local inverse in each local model

On-line 90->30 Dim. Mapping in Computed Torque Controller

Skill Learning (requires accurate dynamics model)

Example: Behavioral and Computational Neuroscience

- Measure human movement
- Measure brain activity
- Analyze data to extract principles of learning and control in humans
- Also use robots as subjects

Motor Learning in High Dimensional Spaces

-The Curse of Dimensionality

The power of local learning comes from exploiting the discriminative power of local neighborhood relations, but the notion of a "local" breaks down in high dim. spaces

Dimensionality of Full Body Motion

dynamics model

fMRI Summary Data

Dynamic Systems Primitives: Implicit Desired Trajectories

• What is a dynamic system primitive?

- A dynamical system (differential equation) with a particular behavior (a.k.a. pattern generator)
 - E.g.: Reaching movement can be interpreted as a point attractive behavior:

$$\dot{\theta}_d = \alpha \left(\theta_f - \theta_d \right)$$

Speed Target

- What is the advantage of dynamic system primitives?
 - Independent of initial conditions
 - Online planning
 - Online modification through additional "coupling" terms. i.e., planning can react to sensory input

$$\dot{\theta}_d = \alpha \left(\theta_f - \theta_d \right) + \beta \left(\theta - \theta_d \right)$$

Dynamic Systems As Motor Primitives

Dynamic Systems As Motor Primitives

More Information...

http://www-clmc.usc.edu