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Robots–The Original Vision

Karel Capek

1920
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Robots–The Reality
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Robots–What We Might Want
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Robots—A New Wave:
The Humanoids Are Coming …

Amar–FZI, Karlsruhe Centaur–KIST, Korea
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Robots—A New Wave:
The Humanoids Are Coming …

Hadaly–SuganoLab, Waseda Hermes–BWH, Munich
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Robots—A New Wave:
The Humanoids Are Coming …

Hoap–Fujitsu, Japan Asimo–Honda, Japan
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Robots—A New Wave:
The Humanoids Are Coming …

HRP-2P–Kawada, Japan Isamu–Kawada, Japan
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Robots—A New Wave:
The Humanoids Are Coming …

Jack–ETL, Japan Cog–MIT
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Robots—A New Wave:
The Humanoids Are Coming …

Infanoid–CRL/Kozima, Japan Robotnaut–NASA
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Robots—A New Wave:
The Humanoids Are Coming …

Morph3–Kitano, Japan JSK-H7–Tokyo University
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Robots—A New Wave:
The Humanoids Are Coming …

Arnold—INI/Bochum, Germany, Pino—Kitano, Japan
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Robots—A New Wave:
The Humanoids Are Coming …

Robos—Kozoh, Japan Sony Robot
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Robots—A New Wave:
The Humanoids Are Coming …

Robotic Surrogate—RHD, USA Wabian–Waseda/Takanishi, Japan
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Robots—A New Wave:
The Humanoids Are Coming …

Sarcos Humanoid—ATR, Japan 
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Robots–What We Might Want
But Can We Program Them?
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Learning—A Key Element
in Future Robots

Imitation

Statistical

Learning

Neuroscience
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Example 1: Statistical Learning
for Motor Control

u t( ) = p x t( ),t,a( )Policy:
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Many Elements of Learning
Involve Function Approximation

l Direct Control (Model-free)

Adaptive Control

Dynamic Programming

Reinforcement Learning
Evolutionary Methods

Supervised Learning

Adaptive Control

Dynamic Programming

Reinforcement Learning

Evolutionary Methods

l Indirect Control (Model-based)
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Function Approximation
with Locally Linear Models

Region of Validity

Linear
Model

Receptive Field
Activation w

0

1

2qk

If we can find the tangent (plane) and the region of

validity from only local data, the function approximation
problem can be solved efficiently
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ExEE ample: 2D Fitting

z = max exp -10x 2( ),exp -50y2( ),1.25exp -5 x2 + y2( )( )( )



22

ExEE ample: 2D Fitting

z = max exp -10x 2( ),exp -50y2( ),1.25exp -5 x2 + y2( )( )( )
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RMRC Inverse
Kinematics Learning

Trick: Learn direct kinematics and additionally local inverse in each local model
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Inverse Dynamics Learning

On-line 90->30 Dim. Mapping in Computed Torque Controller
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Skill Learning
(requires accurate dynamics model)
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Example: Behavioral and
Computational Neuroscience

- Measure

human

movement

- Measure brain

activity

- Analyze data to

extract

principles of

learning and

control in

humans

- Also use robots

as subjects
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Motor Learning
in High Dimensional Spaces

-The Curse of Dimensionality
; The power of local learning comes from exploiting the

discriminative power of local neighborhood relations, but

the notion of a “local” breaks down in high dim. spaces
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Dimensionality of Full Body Motion

About 8 dimensions in the space formed by joint positions,

velocities, and accelerations are needed to model an inverse

dynamics model
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Example: Wrist Trajectories
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fMRI Summary Data
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Example: Imitation Learning
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A Concept of Imitation
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Dynamic Systems Primitives:
Implicit Desired Trajectories

l What is a dynamic system primitive?
- A dynamical system (differential equation) with a

particular behavior (a.k.a. pattern generator)
; E.g.: Reaching movement can be interpreted as a point attractive

behavior:

l What is the advantage of dynamic system primitives?
- Independent of initial conditions

- Online planning

- Online modification through additional “coupling” terms. i.e.,
planning can react to sensory input

˙qd = a q f - qd( )

TargetSpeed

˙qd = a q f - qd( ) + b q - qd( )
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Dynamic Systems Primitives:
On-line Modification of Trajectory Planning

Unperturbed

Behavior

Temporarily

Perturbed Behavior

target

target

Plan and execution coincide

Plan and execution differ
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Dynamic Systems As Motor
Primitives
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Dynamic Systems As Motor
Primitives
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Dynamic Systems As Motor
Primitives
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Imitation Learning With Dynamic
Primitives



39

Imitation Learning With Dynamic
Primitives
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Imitation Learning With Dynamic
Primitives
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Imitation Learning With Dynamic
Primitives
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More Information…

http://www-clmc.usc.edu


