
CS 460, Session 6 1

Last time: Problem-Solving

� Problem solving:
� Goal formulation
� Problem formulation (states, operators)
� Search for solution

� Problem formulation:
� Initial state
� ?
� ?
� ?

� Problem types:
� single state: accessible and deterministic environment
� multiple state: ?
� contingency: ?
� exploration: ?

CS 460, Session 6 2

Last time: Problem-Solving

� Problem solving:
� Goal formulation
� Problem formulation (states, operators)
� Search for solution

� Problem formulation:
� Initial state
� Operators
� Goal test
� Path cost

� Problem types:
� single state: accessible and deterministic environment
� multiple state: ?
� contingency: ?
� exploration: ?

CS 460, Session 6 3

Last time: Problem-Solving

� Problem solving:
� Goal formulation
� Problem formulation (states, operators)
� Search for solution

� Problem formulation:
� Initial state
� Operators
� Goal test
� Path cost

� Problem types:
� single state: accessible and deterministic environment
� multiple state: inaccessible and deterministic environment
� contingency: inaccessible and nondeterministic environment
� exploration: unknown state-space

CS 460, Session 6 4

Last time: Finding a solution

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding)

CS 460, Session 6 5

Last time: Finding a solution

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Solution: is a sequence of operators that bring you from current state to the
goal state.

Basic idea: offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding).

Strategy: The search strategy is determined by ???

CS 460, Session 6 6

Last time: Finding a solution

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Solution: is a sequence of operators that bring you from current state to the
goal state

Basic idea: offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding)

Strategy: The search strategy is determined by the order in which the nodes
are expanded.

CS 460, Session 6 7

A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) returns a solution, or failure
open � make-queue(make-node(initial-state[problem]))
closed � [empty]
loop do

if open is empty then return failure
currnode � Remove-Front(open)
if Goal-Test[problem] applied to State(currnode) then return currnode
children � Expand(currnode, Operators[problem])
while children not empty

[� see next slide �]
end
closed � Insert(closed, currnode)
open � Sort-By-PathCost(open)

end

CS 460, Session 6 8

A Clean Robust Algorithm

[� see previous slide �]
children � Expand(currnode, Operators[problem])
while children not empty

child � Remove-Front(children)
if no node in open or closed has child�s state

open � Queuing-Fn(open, child)
else if there exists node in open that has child�s state

if PathCost(child) < PathCost(node)
open � Delete-Node(open, node)
open � Queuing-Fn(open, child)

else if there exists node in closed that has child�s state
if PathCost(child) < PathCost(node)

closed � Delete-Node(closed, node)
open � Queuing-Fn(open, child)

end
[� see previous slide �]

CS 460, Session 6 9

Last time: search strategies

Uninformed: Use only information available in the problem formulation
� Breadth-first
� Uniform-cost
� Depth-first
� Depth-limited
� Iterative deepening

Informed: Use heuristics to guide the search
� Best first
� A*

CS 460, Session 6 10

Evaluation of search strategies

� Search algorithms are commonly evaluated according to the following
four criteria:
� Completeness: does it always find a solution if one exists?
� Time complexity: how long does it take as a function of number of nodes?
� Space complexity: how much memory does it require?
� Optimality: does it guarantee the least-cost solution?

� Time and space complexity are measured in terms of:
� b � max branching factor of the search tree
� d � depth of the least-cost solution
� m � max depth of the search tree (may be infinity)

CS 460, Session 6 11

Last time: uninformed search strategies

Uninformed search:
Use only information available in the problem formulation
� Breadth-first
� Uniform-cost
� Depth-first
� Depth-limited
� Iterative deepening

CS 460, Session 6 12

This time: informed search

Informed search:
Use heuristics to guide the search
� Best first
� A*
� Heuristics
� Hill-climbing
� Simulated annealing

CS 460, Session 6 13

Best-first search

� Idea:
use an evaluation function for each node; estimate of
�desirability�

�expand most desirable unexpanded node.

� Implementation:

QueueingFn = insert successors in decreasing order of
desirability

� Special cases:
greedy search
A* search

CS 460, Session 6 14

Romania with step costs in km

374

329

253

CS 460, Session 6 15

Greedy search

� Estimation function:
h(n) = estimate of cost from n to goal (heuristic)

� For example:
hSLD(n) = straight-line distance from n to Bucharest

� Greedy search expands first the node that appears to be
closest to the goal, according to h(n).

CS 460, Session 6 16

CS 460, Session 6 17

CS 460, Session 6 18

CS 460, Session 6 19

CS 460, Session 6 20

Properties of Greedy Search

� Complete?

� Time?

� Space?

� Optimal?

CS 460, Session 6 21

Properties of Greedy Search

� Complete? No � can get stuck in loops
e.g., Iasi > Neamt > Iasi > Neamt > �
Complete in finite space with repeated-state checking.

� Time? O(b^m) but a good heuristic can give
dramatic improvement

� Space? O(b^m) � keeps all nodes in memory

� Optimal? No.

CS 460, Session 6 22

A* search

� Idea: avoid expanding paths that are already expensive

evaluation function: f(n) = g(n) + h(n) with:
g(n) � cost so far to reach n
h(n) � estimated cost to goal from n
f(n) � estimated total cost of path through n to goal

� A* search uses an admissible heuristic, that is,
h(n) ≤ h*(n) where h*(n) is the true cost from n.

For example: hSLD(n) never overestimates actual road distance.

� Theorem: A* search is optimal

CS 460, Session 6 23

CS 460, Session 6 24

CS 460, Session 6 25

CS 460, Session 6 26

CS 460, Session 6 27

CS 460, Session 6 28

CS 460, Session 6 29

1

Optimality of A* (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the
queue. Let n be an unexpanded node on a shortest path to an
optimal goal G1.

CS 460, Session 6 30

Optimality of A* (more useful proof)

CS 460, Session 6 31

f-contours

How do the contours look like when h(n) =0?

CS 460, Session 6 32

Properties of A*

� Complete?

� Time?

� Space?

� Optimal?

CS 460, Session 6 33

Properties of A*

� Complete? Yes, unless infinitely many nodes with f ≤ f(G)

� Time? Exponential in [(relative error in h) x (length of solution)]

� Space? Keeps all nodes in memory

� Optimal? Yes � cannot expand fi+1 until fi is finished

CS 460, Session 6 34

Proof of lemma: pathmax

CS 460, Session 6 35

Admissible heuristics

CS 460, Session 6 36

Admissible heuristics

CS 460, Session 6 37

Relaxed Problem

� Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem.

� If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h1(n) gives the shortest solution.

� If the rules are relaxed so that a tile can move to any
adjacent square, then h2(n) gives the shortest solution.

CS 460, Session 6 38

Next time

� Iterative improvement
� Hill climbing
� Simulated annealing

