
CS 561, Session 7 1

Recall: breadth-first search, step by step

CS 561, Session 7 2

Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure
nodes � make-queue(make-node(initial-state[problem]))
loop do

if nodes is empty then return failure
node � Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node
nodes � Queuing-Fn(nodes, Expand(node, Operators[problem]))

end

Queuing-Fn(queue, elements) is a queuing function that inserts a set
of elements into the queue and determines the order of node expansion.
Varieties of the queuing function produce varieties of the search algorithm.

CS 561, Session 7 3

Recall: breath-first search, step by step

CS 561, Session 7 4

Breadth-first search

Node queue: initialization

state depth path cost parent

1 Arad 0 0 --

CS 561, Session 7 5

Breadth-first search

Node queue: add successors to queue end; empty queue from top

state depth path cost parent

1 Arad 0 0 --
2 Zerind 1 1 1
3 Sibiu 1 1 1
4 Timisoara 1 1 1

CS 561, Session 7 6

Breadth-first search

Node queue: add successors to queue end; empty queue from top

state depth path cost parent

1 Arad 0 0 --
2 Zerind 1 1 1
3 Sibiu 1 1 1
4 Timisoara 1 1 1
5 Arad 2 2 2
6 Oradea 2 2 2

(get smart: e.g., avoid repeated states like node #5)

CS 561, Session 7 7

Depth-first search

CS 561, Session 7 8

Depth-first search

Node queue: initialization

state depth path cost parent

1 Arad 0 0 --

CS 561, Session 7 9

Depth-first search

Node queue: add successors to queue front; empty queue from top

state depth path cost parent

2 Zerind 1 1 1
3 Sibiu 1 1 1
4 Timisoara 1 1 1
1 Arad 0 0 --

CS 561, Session 7 10

Depth-first search

Node queue: add successors to queue front; empty queue from top

state depth path cost parent

5 Arad 2 2 2
6 Oradea 2 2 2
2 Zerind 1 1 1
3 Sibiu 1 1 1
4 Timisoara 1 1 1
1 Arad 0 0 --

CS 561, Session 7 11

Last time: search strategies

Uninformed: Use only information available in the problem formulation
• Breadth-first
• Uniform-cost
• Depth-first
• Depth-limited
• Iterative deepening

Informed: Use heuristics to guide the search
• Best first:
• Greedy search

• A* search

CS 561, Session 7 12

Last time: search strategies

Uninformed: Use only information available in the problem formulation
• Breadth-first
• Uniform-cost
• Depth-first
• Depth-limited
• Iterative deepening

Informed: Use heuristics to guide the search
• Best first:
• Greedy search -- queue first nodes that maximize heuristic “desirability”

based on estimated path cost from current node to goal;
• A* search – queue first nodes that minimize sum of path cost so far and

estimated path cost to goal.

CS 561, Session 7 13

This time

• Iterative improvement
• Hill climbing
• Simulated annealing

CS 561, Session 7 14

Iterative improvement

• In many optimization problems, path is irrelevant;
the goal state itself is the solution.

• Then, state space = space of “complete” configurations.
Algorithm goal:

- find optimal configuration (e.g., TSP), or,
- find configuration satisfying constraints

(e.g., n-queens)

• In such cases, can use iterative improvement
algorithms: keep a single “current” state, and try to
improve it.

CS 561, Session 7 15

Iterative improvement example: vacuum world

Simplified world: 2 locations, each may or not contain dirt,
each may or not contain vacuuming agent.

Goal of agent: clean up the dirt.

If path does not matter, do not need to keep track of it.

CS 561, Session 7 16

Iterative improvement example: n-queens

• Goal: Put n chess-game queens on an n x n board, with
no two queens on the same row, column, or diagonal.

• Here, goal state is initially unknown but is specified by
constraints that it must satisfy.

CS 561, Session 7 17

Hill climbing (or gradient ascent/descent)

• Iteratively maximize “value” of current state, by
replacing it by successor state that has highest value, as
long as possible.

CS 561, Session 7 18

Question:
What is the
difference

between this
problem and
our problem

(finding global
minima)?

CS 561, Session 7 19

Hill climbing

• Note: minimizing a “value” function v(n) is equivalent to
maximizing –v(n),

thus both notions are used interchangeably.

• Notion of “extremization”: find extrema (minima or
maxima) of a value function.

CS 561, Session 7 20

Hill climbing

• Problem: depending on initial state, may get stuck in
local extremum.

CS 561, Session 7 21

Minimizing energy

• Let’s now change the formulation of the problem a bit, so
that we can employ new formalism:
- let’s compare our state space to that of a physical

system that is subject to natural interactions,
- and let’s compare our value function to the overall

potential energy E of the system.

• On every updating,
we have ∆E ≤ 0

B

C

A

Basin of

Attraction for C

D

E

CS 561, Session 7 22

Minimizing energy

• Hence the dynamics of the system tend to move E
toward a minimum.

• We stress that there may be different such states — they
are local minima. Global minimization is not guaranteed.

B

C

A

Basin of

Attraction for C

D

E

CS 561, Session 7 23

Local Minima Problem

• Question: How do you avoid this local minima?

starting
point

descend
direction

local minima

global minima

barrier to local search

CS 561, Session 7 24

Consequences of the Occasional Ascents

Help escaping the
local optima.

desired effect

Might pass global optima
after reaching it

adverse effect
(easy to avoid by
keeping track of
best-ever state)

CS 561, Session 7 25

Boltzmann machines

B

C

A
Attraction for C

D

E

h

The Boltzmann Machine of
Hinton, Sejnowski, and Ackley (1984)
uses simulated annealing to escape local minima.

To motivate their solution, consider how one might get a ball-bearing
traveling along the curve to "probably end up" in the deepest
minimum. The idea is to shake the box "about h hard" — then the ball
is more likely to go from D to C than from C to D. So, on average,
the ball should end up in C's valley.

CS 561, Session 7 26

Simulated annealing: basic idea

• From current state, pick a random successor state;

• If it has better value than current state, then “accept
the transition,” that is, use successor state as current
state;

• Otherwise, do not give up, but instead flip a coin and
accept the transition with a given probability (that is
lower as the successor is worse).

• So we accept to sometimes “un-optimize” the value
function a little with a non-zero probability.

CS 561, Session 7 27

Boltzmann’s statistical theory of gases

• In the statistical theory of gases, the gas is described not by a
deterministic dynamics, but rather by the probability that it will be in
different states.

• The 19th century physicist Ludwig Boltzmann developed a theory
that included a probability distribution of temperature (i.e., every
small region of the gas had the same kinetic energy).

• Hinton, Sejnowski and Ackley’s idea was that this distribution might
also be used to describe neural interactions, where low temperature
T is replaced by a small noise term T (the neural analog of random
thermal motion of molecules). While their results primarily concern
optimization using neural networks, the idea is more general.

CS 561, Session 7 28

Boltzmann distribution

• At thermal equilibrium at temperature T, the
Boltzmann distribution gives the relative
probability that the system will occupy state A vs.
state B as:

• where E(A) and E(B) are the energies associated with
states A and B.

)/)(exp(
)/)(exp()()(exp

)(
)(

TAE
TBE

T
BEAE

BP
AP =�

�

�
�
�

� −−=

CS 561, Session 7 29

Simulated annealing

Kirkpatrick et al. 1983:

• Simulated annealing is a general method for making
likely the escape from local minima by allowing jumps to
higher energy states.

• The analogy here is with the process of annealing used
by a craftsman in forging a sword from an alloy.

• He heats the metal, then slowly cools it as he hammers
the blade into shape.
• If he cools the blade too quickly the metal will form patches of

different composition;
• If the metal is cooled slowly while it is shaped, the constituent

metals will form a uniform alloy.

CS 561, Session 7 30

Real annealing: Sword

• He heats the metal, then
slowly cools it as he hammers
the blade into shape.
• If he cools the blade too quickly

the metal will form patches of
different composition;

• If the metal is cooled slowly
while it is shaped, the
constituent metals will form a
uniform alloy.

CS 561, Session 7 31

Simulated annealing in practice

- set T
- optimize for given T
- lower T (see Geman & Geman, 1984)
- repeat

CS 561, Session 7 32

Simulated annealing in practice

- set T
- optimize for given T
- lower T
- repeat

MDSA: Molecular Dynamics Simulated Annealing

CS 561, Session 7 33

Simulated annealing in practice

- set T
- optimize for given T
- lower T (see Geman & Geman, 1984)
- repeat

• Geman & Geman (1984): if T is lowered sufficiently slowly (with
respect to the number of iterations used to optimize at a given T),
simulated annealing is guaranteed to find the global minimum.

• Caveat: this algorithm has no end (Geman & Geman’s T decrease
schedule is in the 1/log of the number of iterations, so, T will never
reach zero), so it may take an infinite amount of time for it to find
the global minimum.

CS 561, Session 7 34

Simulated annealing algorithm

• Idea: Escape local extrema by allowing “bad moves,” but gradually
decrease their size and frequency.

Note: goal here is to
maximize E.-

CS 561, Session 7 35

Simulated annealing algorithm

• Idea: Escape local extrema by allowing “bad moves,” but gradually
decrease their size and frequency.

Algorithm when goal
is to minimize E.< -

-

CS 561, Session 7 36

Note on simulated annealing: limit cases

• Boltzmann distribution: accept “bad move” with ∆E<0 (goal is to
maximize E) with probability P(∆E) = exp(∆E/T)

• If T is large: ∆E < 0
∆E/T < 0 and very small
exp(∆E/T) close to 1
accept bad move with high probability

• If T is near 0: ∆E < 0
∆E/T < 0 and very large
exp(∆E/T) close to 0
accept bad move with low probability

CS 561, Session 7 37

Note on simulated annealing: limit cases

• Boltzmann distribution: accept “bad move” with ∆E<0 (goal is to
maximize E) with probability P(∆E) = exp(∆E/T)

• If T is large: ∆E < 0
∆E/T < 0 and very small
exp(∆E/T) close to 1
accept bad move with high probability

• If T is near 0: ∆E < 0
∆E/T < 0 and very large
exp(∆E/T) close to 0
accept bad move with low probability

Random walk

Deterministic
down-hill

CS 561, Session 7 38

Summary

• Best-first search = general search, where the minimum-cost nodes
(according to some measure) are expanded first.

• Greedy search = best-first with the estimated cost to reach the goal
as a heuristic measure.

- Generally faster than uninformed search
- not optimal
- not complete.

• A* search = best-first with measure = path cost so far + estimated
path cost to goal.

- combines advantages of uniform-cost and greedy searches
- complete, optimal and optimally efficient
- space complexity still exponential

CS 561, Session 7 39

Summary

• Time complexity of heuristic algorithms depend on quality of
heuristic function. Good heuristics can sometimes be constructed
by examining the problem definition or by generalizing from
experience with the problem class.

• Iterative improvement algorithms keep only a single state in
memory.

• Can get stuck in local extrema; simulated annealing provides a way
to escape local extrema, and is complete and optimal given a slow
enough cooling schedule.

