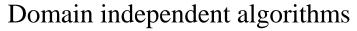
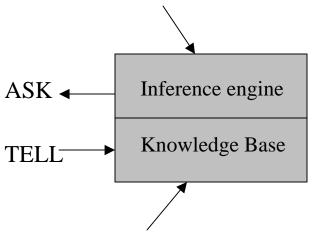
Knowledge and reasoning – second part

- Knowledge representation
- Logic and representation
- Propositional (Boolean) logic
- Normal forms
- Inference in propositional logic
- Wumpus world example

Knowledge-Based Agent





Domain specific content

- Agent that uses prior or acquired knowledge to achieve its goals
 - Can make more efficient decisions
 - Can make informed decisions
- Knowledge Base (KB): contains a set of representations of facts about the Agent's environment
- Each representation is called a **sentence**
- Use some knowledge representation language, to TELL it what to know e.g., (temperature 72F)
- ASK agent to query what to do
- Agent can use inference to deduce new facts from TELLed facts

Generic knowledge-based agent

```
\begin{array}{l} \textbf{function KB-AGENT}( \ percept) \ \textbf{returns an} \ action \\ \textbf{static:} \ KB, a \ knowledge \ base \\ t, a \ counter, \ initially \ 0, \ indicating \ time \\ \hline TELL(KB, MAKE-PERCEPT-SENTENCE( \ percept, t)) \\ action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t)) \\ \hline TELL(KB, MAKE-ACTION-SENTENCE( \ action, t)) \\ t \leftarrow t + 1 \\ \textbf{return} \ action \end{array}
```

- 1. TELL KB what was perceived Uses a KRL to insert new sentences, representations of facts, into KB
- ASK KB what to do.
 Uses logical reasoning to examine actions and select best.

Wumpus world example

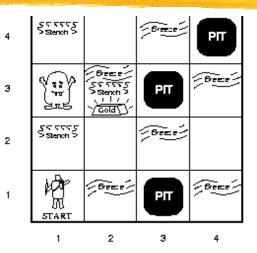
Percepts Breeze, Glitter, Smell

Actions Left turn, Right turn, Forward, Grab, Release, Shoot

<u>Goals</u> Get gold back to start without entering pit or wumpus square

Environment

Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Glitter if and only if gold is in the same square Shooting kills the wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up the gold if in the same square Releasing drops the gold in the same square



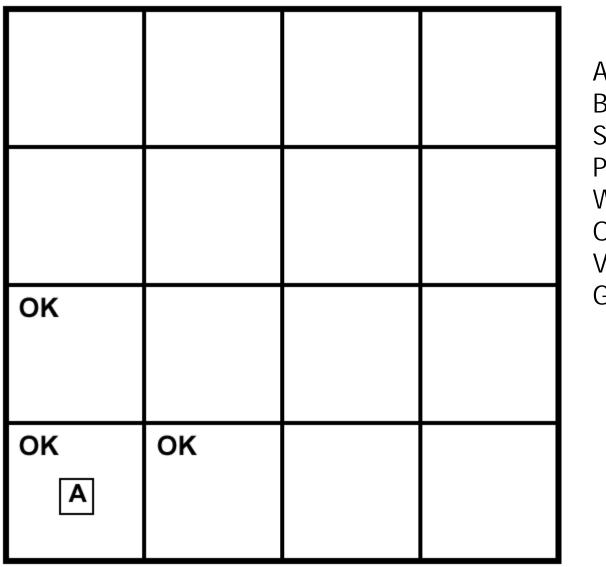
CS 561, Sessions 10-11

Wumpus world characterization

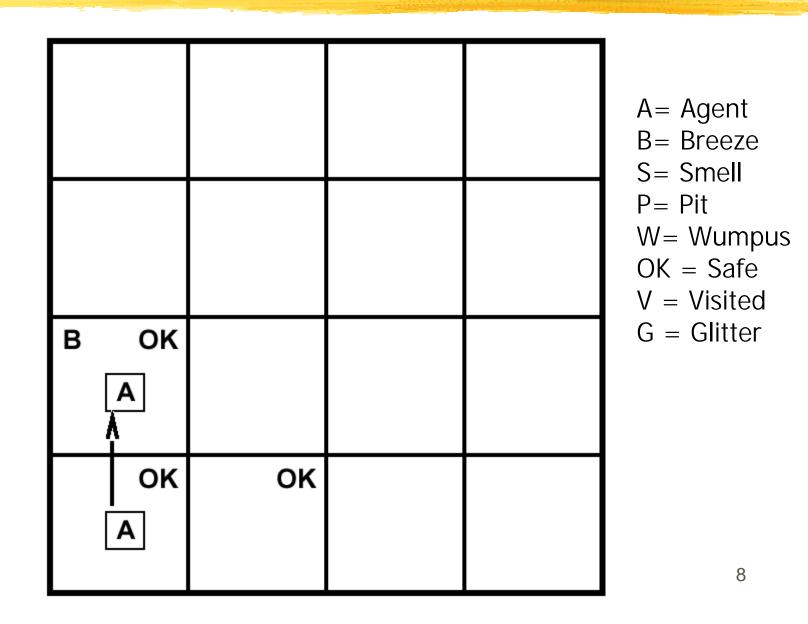
- Deterministic?
- Accessible?
- Static?
- Discrete?
- Episodic?

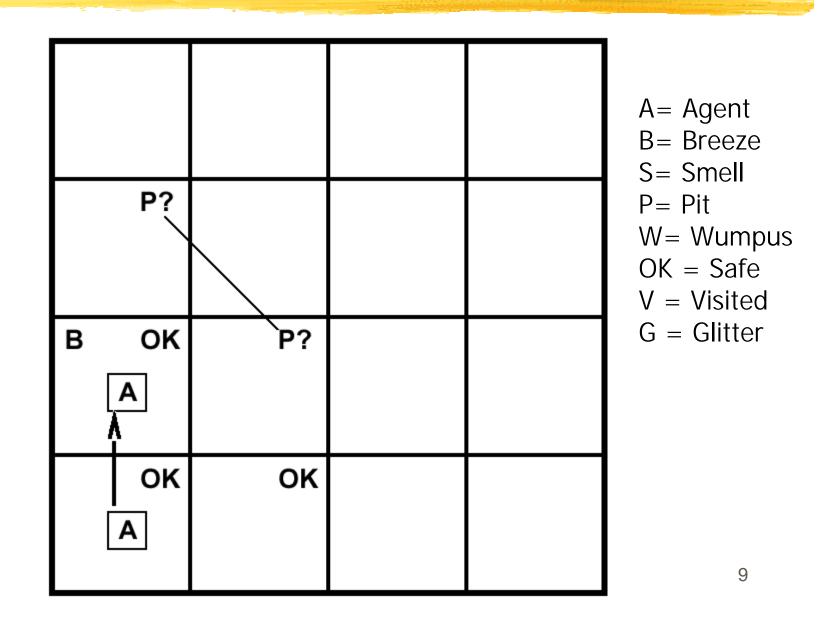
Wumpus world characterization

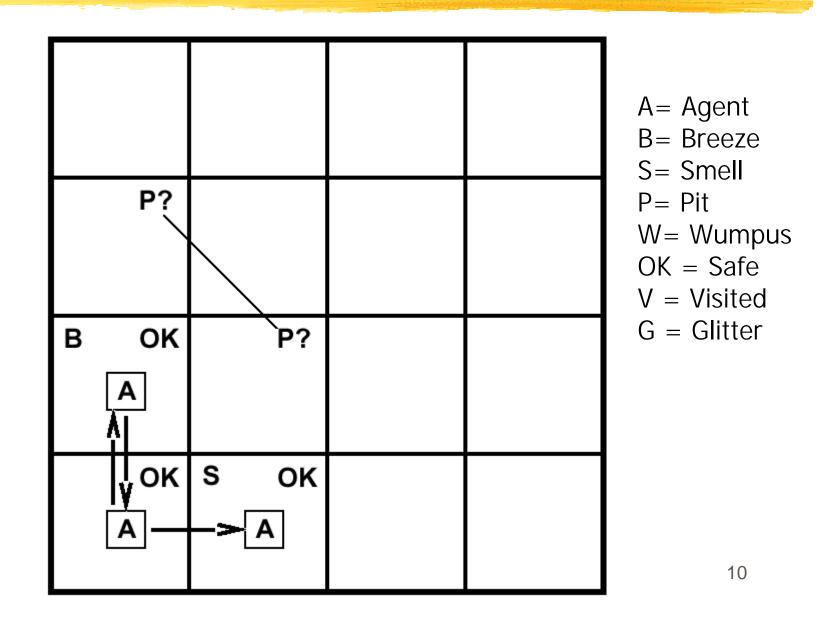
- Deterministic? Yes outcome exactly specified.
- Accessible? No only local perception.
- Static? Yes Wumpus and pits do not move.
- Discrete? Yes
- Episodic? (Yes) because static.

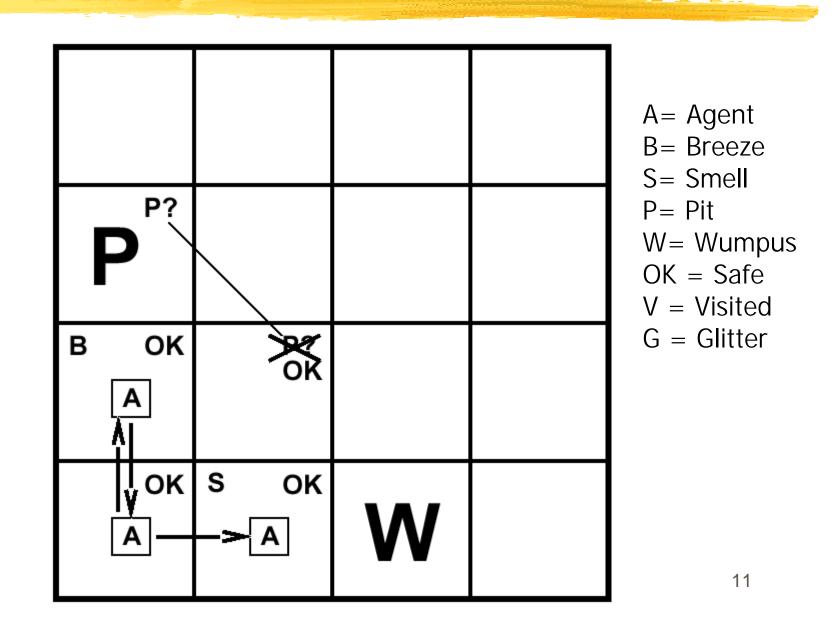


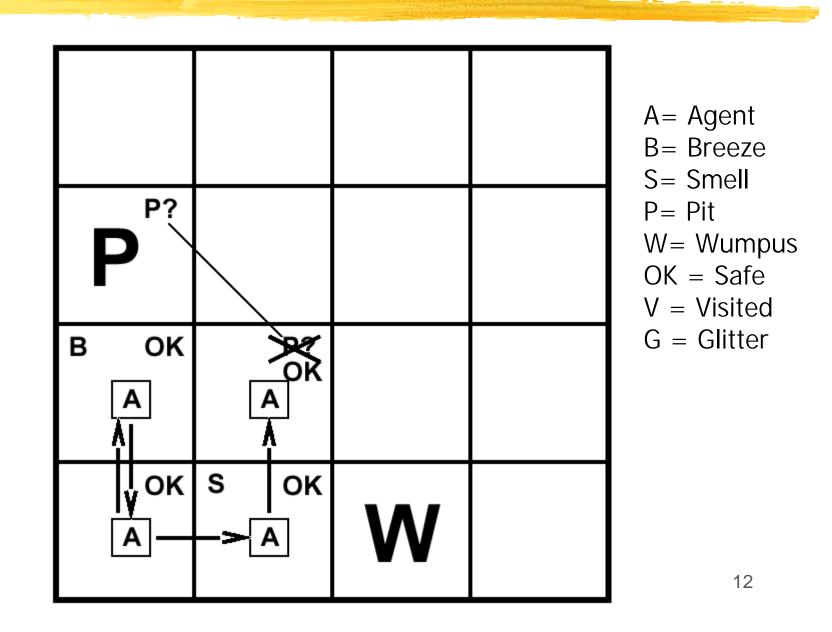
A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter

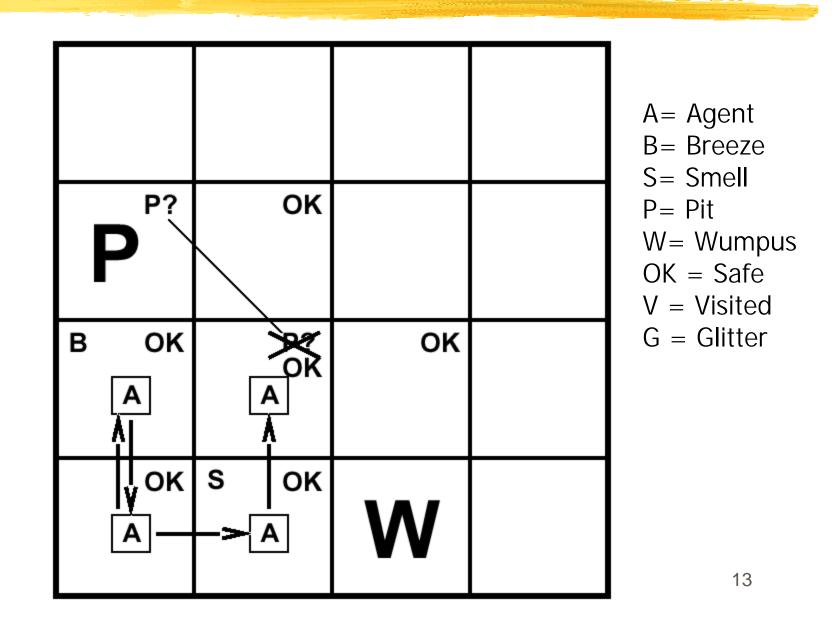


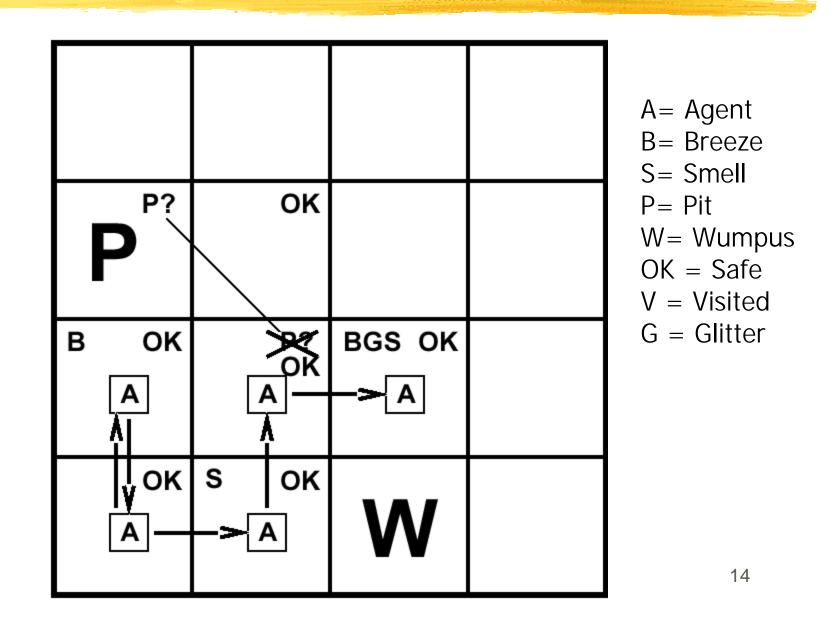




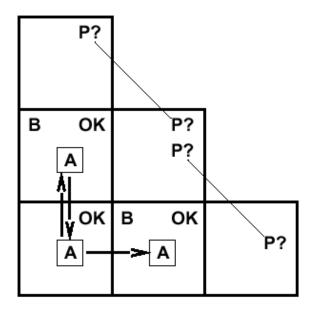






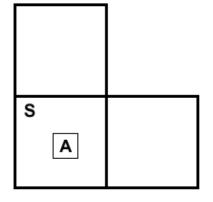


Other tight spots



Breeze in (1,2) and (2,1) \Rightarrow no safe actions

Assuming pits uniformly distributed, (2,2) is most likely to have a pit



Another example solution

1,4	2,4	3,4	4,4		1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3	 P = Pit S = Stench V = Visited W = Wumpus 	1,3	2,3	3,3	4,3
1,2 ОК	2,2	3,2	4,2		1,2 OK	^{2,2} P?	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1		1,1 V OK	2,1 A B OK	^{3,1} P?	4,1

No perception \rightarrow 1,2 and 2,1 OK

Move to 2,1

B in 2,1 \rightarrow 2,2 or 3,1 P?

1,1 V \rightarrow no P in 1,1

Move to 1,2 (only option)

CS 561, Sessions 10-11

Example solution

1,4	2,4	3,4	4,4	A= AgentB= BreezeG= Glitter, GoldOK= Safe square	1,4	2,4 P ?	3,4	4,4
^{1,3} w!	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus	^{1,3} w!	2,3 A S G B	^{3,3} P?	4,3
1,2 A S OK	2,2 OK	3,2	4,2		^{1,2} S V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 V OK	^{3,1} P!	4,1		1,1 V OK	^{2,1} B V OK	^{3,1} P!	4,1

S and No S when in 2,1 \rightarrow 1,3 or 1,2 has W

1,2 OK \rightarrow 1,3 W

No B in 1,2 \rightarrow 2,2 OK & 3,1 P

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

<u>Semantics</u> define the "meaning" of sentences; i.e., define <u>truth</u> of a sentence in a world

E.g., the language of arithmetic

 $x+2 \ge y$ is a sentence; x2+y > is not a sentence

 $x+2 \ge y$ is true iff the number x+2 is no less than the number y

 $x+2 \ge y$ is true in a world where x=7, y=1 $x+2 \ge y$ is false in a world where x=0, y=6

Logics are characterized by what they commit to as "primitives"

Ontological commitment: what exists-facts? objects? time? beliefs?

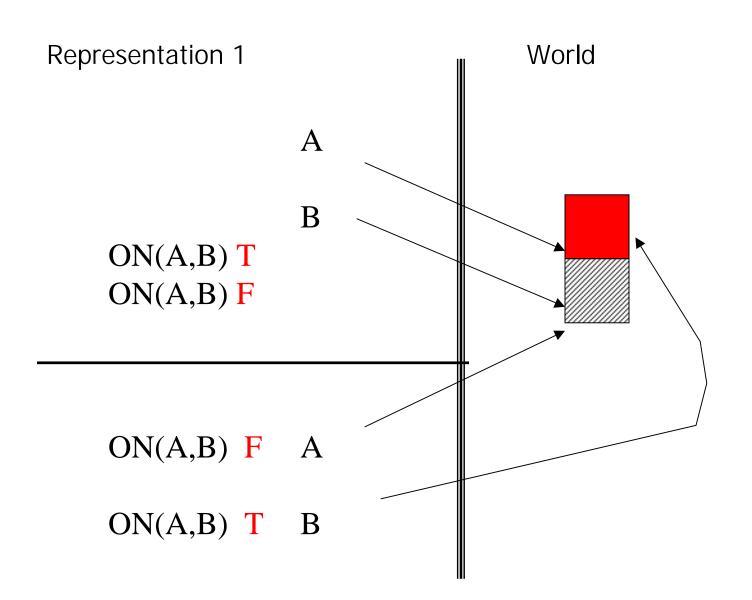
Epistemological commitment: what states of knowledge?

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief 01
Fuzzy logic	degree of truth	degree of belief 01

The Semantic Wall

Physical Symbol System World +BLOCKA+ +BLOCKB+ +BLOCKC+ P₁:(IS_ON +BLOCKA+ +BLOCKB+) P₂:((IS_RED +BLOCKA+) 20

Truth depends on Interpretation



21

Entailment

 $KB \models \alpha$

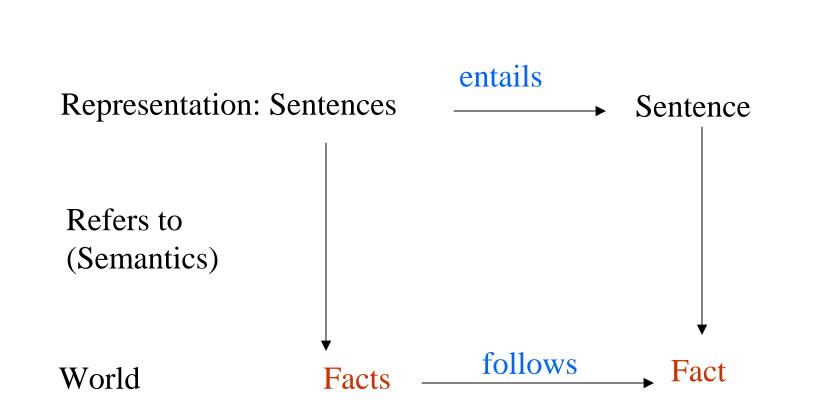
Knowledge base KB <u>entails</u> sentence α if and only if α is true in all worlds where KB is true

E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"

Entailment is different than inference

CS 561, Sessions 10-11

Logic as a representation of the World



Models

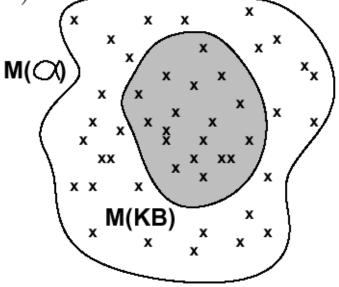
Logicians typically think in terms of <u>models</u>, which are formally structured worlds with respect to which truth can be evaluated

We say m is a <u>model</u> of a sentence α if α is true in m

 $M(\alpha)$ is the set of all models of α

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

E.g. KB = Giants won and Reds won $\alpha = \text{Giants won}$



Inference

 $KB \vdash_i \alpha =$ sentence α can be derived from KB by procedure i

```
Soundness: i is sound if
whenever KB \vdash_i \alpha, it is also true that KB \models \alpha
Completeness: i is complete if
```

whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the KB.

Basic symbols

• Expressions only evaluate to either "true" or "false."

- P "P is true"
- ¬P "P is false" negation
 P V Q "either P is true or Q is true or both" disjunction
 P ^ Q "both P and Q are true" conjunction
 P => Q "if P is true, the Q is true" implication
 P ⇔ Q "P and Q are either both true or both false" equivalence

Propositional logic: syntax

Propositional logic is the simplest logic

- The proposition symbols P_1 , P_2 etc are sentences If S is a sentence, $\neg S$ is a sentence If S_1 and S_2 is a sentence, $S_1 \land S_2$ is a sentence If S_1 and S_2 is a sentence, $S_1 \lor S_2$ is a sentence
- If S_1 and S_2 is a sentence, $S_1 \Rightarrow S_2$ is a sentence
- If S_1 and S_2 is a sentence, $S_1 \Leftrightarrow S_2$ is a sentence

Propositional logic: semantics

Each model specifies true/false for each proposition symbol

E.g. A B CTrue True False

Rules for evaluating truth with respect to a model m:

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true <u>and</u>	S_2	is true
$S_1 \lor S_2$	is true iff	S_1	is true <u>or</u>	S_2	is true
$S_1 \Rightarrow S_2$	is true iff	S_1	is false <u>or</u>	S_2	is true
i.e.,	is false iff	S_1	is true <u>and</u>	S_2	is false
$S_1 \Leftrightarrow S_2$	is true iff	$S_1 \Rightarrow S_2$	is true <u>and</u>	$S_2 \Rightarrow S_1$	is true

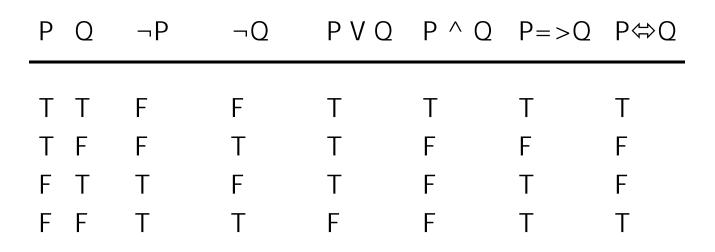
Truth tables

- Truth value: whether a statement is true or false.
- Truth table: complete list of truth values for a statement given all possible values of the individual atomic expressions.

Example:

Р	Q	ΡVQ
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Truth tables for basic connectives



Propositional logic: basic manipulation rules

• $\neg(\neg A) = A$

. . .

- $\neg(A \land B) = (\neg A) \lor (\neg B)$
- $\neg(A \lor B) = (\neg A) \land (\neg B)$
- $A \land (B \lor C) = (A \land B) \lor (A \land C)$
- $A => B = (\neg A) \vee B$
- $\neg(A => B) = A \land (\neg B)$
- $A \Leftrightarrow B = (A \Rightarrow B) \land (B \Rightarrow A)$
- $\neg(A \Leftrightarrow B) = (A \land (\neg B))V(B \land (\neg A))$ using negated and & or

- Double negation
- Negated "and" Negated "or"

Distributivity of $^{\circ}$ on V by definition using negated or by definition

Propositional inference: enumeration method

Let $\alpha = A \lor B$ and $KB = (A \lor C) \land (B \lor \neg C)$

Is it the case that $KB \models \alpha$?

Check all possible models— α must be true wherever KB is t

A	B	C	$A \lor C$	$B \vee \neg C$	KB	α
False	False	False				
False	False	True				
False	True	False				
False	True	True				
True	False	False				
True	False	True				
True	True	False				
True	True	True				

Enumeration: Solution

A	B	C	$A \lor C$	$B \vee \neg C$	KB	α
False	False	False	False	True	False	False
False	False	True	True	False	False	False
False	True	False	False	True	False	True
False	True	True	True	True	True	True
True	False	False	True	True	True	True
True	False	True	True	False	False	True
True	True	False	True	True	True	True
True	True	True	True	True	True	True

Propositional inference: normal forms

Other approaches to inference use syntactic operations on sentences, often expressed in standardized forms

<u>Conjunctive Normal Form</u> (CNF—universal) conjunction of <u>disjunctions of literals</u> clauses E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$ "product of sums of simple variables or negated simple variables"

"sum of products of simple variables or negated simple variables"

 $\mathsf{E}.\mathsf{g}.,\ (A \wedge B) \vee (A \wedge \neg C) \vee (A \wedge \neg D) \vee (\neg B \wedge \neg C) \vee (\neg B \wedge \neg D)$

Horn Form (restricted)

conjunction of Horn clauses (clauses with ≤ 1 positive literal) E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$ Often written as set of implications: $B \Rightarrow A$ and $(C \land D) \Rightarrow B$

Deriving expressions from functions

- Given a boolean function in truth table form, find a propositional logic expression for it that uses only V, ^ and ¬.
- Idea: We can easily do it by disjoining the "T" rows of the truth table.

Example: XOR function

P Q RESULT T T F T F T P^(¬Q) F T T (¬P)^Q F F F

 $\mathsf{RESULT} = (\mathsf{P} \land (\neg \mathsf{Q})) \lor ((\neg \mathsf{P}) \land \mathsf{Q})$

A more formal approach

- To construct a logical expression in disjunctive normal form from a truth table:
- Build a "minterm" for each row of the table, where:
 - For each variable whose value is T in that row, include the variable in the minterm
 - For each variable whose value is F in that row, include the negation of the variable in the minterm
 - Link variables in minterm by conjunctions

- The expression consists of the disjunction of all minterms.

Example: adder with carry

Takes 3 variables in: x, y and ci (carry-in); yields 2 results: sum (s) and carryout (co). To get you used to other notations, here we assume T = 1, F = 0, V = OR, $^{-} = AND$, $^{-} = NOT$.

x	У	ci	со	3	
0 0 0 1 1 1	_	0 1 0 1	1	0 1 1 0 1 0	s : NOT x AND NOT y AND ci s : NOT x AND y AND NOT ci co: NOT x AND y AND ci s : x AND NOT y AND NOT ci co: x AND NOT y AND ci co: x AND y AND NOT ci
1	1	1	1	1	co,s: x AND y AND ci

The logical expression for co is:

(NOT x AND y AND ci) OR (x AND NOT y AND ci) OR (x AND y AND NOT ci) OR (x AND y AND ci)

The logical expression for s is:

```
(NOT x AND NOT y AND ci) OR (NOT x AND y AND NOT ci)
OR (x AND NOT y AND NOT ci) OR (x AND y AND ci)
```

37

Tautologies

• Logical expressions that are always true. Can be simplified out.

Examples:

T T V A A V $(\neg A)$ $\neg (A \land (\neg A))$ A \Leftrightarrow A ((P V Q) \Leftrightarrow P) V $(\neg P \land Q)$ (P \Leftrightarrow Q) => (P => Q)

Validity and satisfiability

A sentence is <u>valid</u> if it is true in <u>all</u> models e.g., $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow$

Validity is connected to inference via the <u>Deduction</u> <u>Theorem</u> $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is <u>satisfiable</u> if it is true in <u>some</u> model e.g., $A \lor B$, C

A sentence is <u>unsatisfiable</u> if it is true in <u>no</u> models e.g., $A \land \neg A$

Satisfiability is connected to inference via the following:

 $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable i.e., prove α by *reductio ad absurdum*

Proof methods

Proof methods divide into (roughly) two kinds:

Model checking

truth table enumeration (sound and complete for propositional) heuristic search in model space (sound but incomplete) e.g., the GSAT algorithm (Ex. **i**.15)

Application of inference rules

Legitimate (sound) generation of new sentences from old <u>Proof</u> = a sequence of inference rule applications Can use inference rules as operators in a standard search alg.

Inference Rules

 Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

♦ And-Elimination: (From a conjunction, you can infer any of the conjuncts.) $\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n$

 α_i

♦ And-Introduction: (From a list of sentences, you can infer their conjunction.)

 $\frac{\alpha_1, \alpha_2, \ldots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}$

Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

Ouble-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

 $\neg \neg \alpha$

æ

Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$\frac{\alpha \lor \beta, \qquad \neg \beta}{\alpha}$$

 \diamond **Resolution**: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{\alpha \lor \beta, \quad \neg \beta \lor \gamma}{\alpha \lor \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

CS 561, Sessions 10-11

Wumpus world: example

- Facts: Percepts inject (TELL) facts into the KB
 - [stench at 1,1 and 2,1] \rightarrow S1,1 ; S2,1
- **Rules:** if square has no stench then neither the square or adjacent square contain the wumpus
 - R1: $!S1,1 \Rightarrow !W1,1 \land !W1,2 \land !W2,1$
 - R2: $!S2,1 \Rightarrow !W1,1 \land !W2,1 \land !W2,2 \land !W3,1$
 - ...
- Inference:
 - KB contains !S1,1 then using Modus Ponens we infer !W1,1 ∧ !W1,2 ∧ !W2,1
 - Using And-Elimination we get: !W1,1 !W1,2 !W2,1
 - ...

Limitations of Propositional Logic

- 1. It is too weak, i.e., has very limited expressiveness:
- Each rule has to be represented for each situation:
 e.g., "don't go forward if the wumpus is in front of you" takes 64 rules
- 2. It cannot keep track of changes:
- If one needs to track changes, e.g., where the agent has been before then we need a timed-version of each rule. To track 100 steps we'll then need 6400 rules for the previous example.

Its hard to write and maintain such a huge rule-base Inference becomes intractable

Summary

Logical agents apply <u>inference</u> to a <u>knowledge base</u> to derive new information and make decisions

Basic concepts of logic:

- <u>syntax</u>: formal structure of <u>sentences</u>
- <u>semantics</u>: <u>truth</u> of sentences wrt <u>models</u>
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Propositional logic suffices for some of these tasks

Truth table method is sound and complete for propositional logic

Next time

• First-order logic: [AIMA] Chapter 7