Overview and summary

We have discussed...

- What AI and intelligent agents are
- How to develop Al systems
- How to solve problems using search
- How to play games as an application/extension of search
- How to build basic agents that reason logically,
using propositional logic
- How to write more powerful logic statements with first-order logic
- How to properly engineer a knowledge base
- How to reason logically using first-order logic inference
- Examples of logical reasoning systems, such as theorem provers
- How to plan
- Expert systems
- Reasoning under uncertainty, and also under fuzzyness
- What challenges remain

Acting Humanly: The Turing Test

- Alan Turing's 1950 article Computing Machinery and Intelligence discussed conditions for considering a machine to be intelligent
- "Can machines think?" $\leftarrow \rightarrow$ "Can machines behave intelligently?"
- The Turing test (The Imitation Game): Operational definition of intelligence.

- Computer needs to posses: Natural language processing, Knowledge representation, Automated reasoning, and Machine learning

What would a computer need to pass the Turing test?

- Natural language processing: to communicate with examiner.
- Knowledge representation: to store and retrieve information provided before or during interrogation.
- Automated reasoning: to use the stored information to answer questions and to draw new conclusions.
- Machine learning: to adapt to new circumstances and to detect and extrapolate patterns.
- Vision (for Total Turing test): to recognize the examiner's actions and various objects presented by the examiner.
- Motor control (total test): to act upon objects as requested.
- Other senses (total test): such as audition, smell, touch, etc.

What would a computer need to pass the Turing test?

- Natural language processing: to communicate with examiner.
- Knowledge representation: to store and retrier -blemr ation provided before or during interrogatior
- Automated reasoning: to use th core questions and to draw new conc Main
- Machine learning: to adapt to new circumstances and to detect and extrapolate patterns.
- Vision (for Total Turing test): to recognize the examiner's actions and various objects presented by the examiner.
- Motor control (total test): to act upon objects as requested.
- Other senses (total test): such as audition, smell, touch, etc.

What is an (Intelligent) Agent?

- Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through its effectors to maximize progress towards its goals.
- PAGE (Percepts, Actions, Goals, Environment)
- Task-specific \& specialized: well-defined goals and environment

Environment types

Environment	Accessible	Deterministic	Episodic	Static	Discrete
Operating System					
Virtual Reality					
Office Environment					
Mars					

Environment types

Environment	Accessible	Deterministic	Episodic	Static	Discrete
Operating System	Yes	Yes	No	No	Yes
Virtual Reality	Yes	Yes	Yes/No	No	Yes/No
Office Environment	No	No	No	No	No
Mars	No	Semi	No	Semi	No

The environment types largely determine the agent design.

Agent types

- Reflex agents
- Reflex agents with internal states
- Goal-based agents
- Utility-based agents

Reflex agents

Reflex agents w/ state

Goal-based agents

Utility-based agents

How can we design \& implement agents?

- Need to study knowledge representation and reasoning algorithms
- Getting started with simple cases: search, game playing

Problem-Solving Agent

```
function Simple-Problem-Solving-AGENT \((p)\) returns an action
    inputs: \(p\), a percept
    static: \(s\), an action sequence, initially empty
            state, some description of the current world state
            \(g\), a goal, initially null
            problem, a problem formulation
    state \(\leftarrow\) UPDATE-STATE \((\) state,\(p)\)
    if \(s\) is empty then
        \(g \leftarrow\) FORMULATE-GOAL(state)
        problem \(\leftarrow\) FORMULATE-PROBLEM \((\) state,\(g)\)
        \(s \leftarrow \mathrm{SEARCH}(\) problem \()\)
    action \(\leftarrow\) RECOMMENDATION \((\) s, state \()\)
    \(s \leftarrow \operatorname{REMAINDER}(s\), state \()\)
    return action
```

Note: This is offline problem-solving. Online problem-solving involves acting w/o complete knowledge of the problem and environment

Problem types

- Single-state problem: deterministic, accessible Agent knows everything about world, thus can calculate optimal action sequence to reach goal state.
- Multiple-state problem: deterministic, inaccessible Agent must reason about sequences of actions and states assumed while working towards goal state.
- Contingency problem: nondeterministic, inaccessible
- Must use sensors during execution
- Solution is a tree or policy
- Often interleave search and execution
- Exploration problem: unknown state space

Discover and learn about environment while taking actions.

Search algorithms

Basic idea:

offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem

loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree
end

Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure nodes \leftarrow make-queue(make-node(initial-state[problem])) loop do
if node is empty then return failure
node \leftarrow Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node nodes \leftarrow Queuing-Fn(nodes, Expand(node, Operators[problem])) end

Queuing-Fn(queue, elements) is a queuing function that inserts a set of elements into the queue and determines the order of node expansion. Varieties of the queuing function produce varieties of the search algorithm.

Solution: is a sequence of operators that bring you from current state to the goal state.

Encapsulating state information in nodes

A state is a (representation of) a physical configuration A node is a data structure constituting part of a search tree includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the Operators (or SuccessorFn) of the problem to create the corresponding states.

Complexity

- Why worry about complexity of algorithms?
> because a problem may be solvable in principle but may take too long to solve in practice
- How can we evaluate the complexity of algorithms?
$>$ through asymptotic analysis, i.e., estimate time (or number of operations) necessary to solve an instance of size n of a problem when n tends towards infinity

Why is exponential complexity "hard"?

It means that the number of operations necessary to compute the exact solution of the problem grows exponentially with the size of the problem (here, the number of cities).

- $\exp (1)$
- $\exp (10)$
- $\exp (100)$
- $\exp (500)$
- $\exp (250,000)$
- Fastest computer
$=2.72$
$=2.2010^{4} \quad$ (daily salesman trip)
$=2.6910^{43} \quad$ (monthly salesman planning)
$=1.4010^{217} \quad$ (music band worldwide tour)
$=10^{108,573} \quad$ (fedex, postal services)
$=10^{12}$ operations/second

In general, exponential-complexity problems cannot be solved for any but the smallest instances!

Landau symbols

f is dominated by g :

$$
f \in O(g) \Leftrightarrow \exists k, f(n) \underset{n \rightarrow \infty}{\leq} k g(n) \Leftrightarrow \frac{f}{g} \text { is bounded }
$$

f is negligible compared to g :

$$
f \in o(g) \Leftrightarrow \forall k, f(n) \underset{n \rightarrow \infty}{\leq} k g(n) \Leftrightarrow \frac{f(n)}{g(n)} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Polynomial-time hierarchy

- From Handbook of Brain

Theory \& Neural Networks
(Arbib, ed.;
MIT Press 1995).

AC^{0} : can be solved using gates of constant depth
$N C^{1}$: can be solved in logarithmic depth using 2-input gates
NC: can be solved by small, fast parallel computer
P : can be solved in polynomial time
P-complete: hardest problems in P; if one of them can be proven to be $N C$, then $P=N C$
NP: non-polynomial algorithms
NP-complete: hardest NP problems; if one of them can be proven to be

$$
P \text {, then } N P=P
$$

PH : polynomial-time hierarchy

Search strategies

Uninformed: Use only information available in the problem formulation

- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening

I nformed: Use heuristics to guide the search

- Greedy search
- A* search

I terative I mprovement: Progressively improve single current state

- Hill climbing
- Simulated annealing

Search strategies

Uninformed: Use only information available in the problem formulation

- Breadth-first - expand shallowest node first; successors at end of queue
- Uniform-cost - expand least-cost node; order queue by path cost
- Depth-first - expand deepest node first; successors at front of queue
- Depth-limited - depth-first with limit on node depth
- Iterative deepening - iteratively increase depth limit in depth-limited search

I nformed: Use heuristics to guide the search

- Greedy search - queue first nodes that maximize heuristic "desirability" based on estimated path cost from current node to goal
- A* search - queue first nodes that minimize sum of path cost so far and estimated path cost to goal

I terative I mprovement: Progressively improve single current state

- Hill climbing - select successor with highest "value"
- Simulated annealing - may accept successors with lower value, to escape local optima

Example: Traveling from Arad To Bucharest

CS 561, Session 30

Breadth-first search

Breadth-first search

Breadth-first search

Uniform-cost search

Uniform-cost search

Uniform-cost search

Depth-first search

Depth-first search

Depth-first search

I.e., depth-first search can perform infinite cyclic excursions Need a finite, non-cyclic search space (or repeated-state checking)

Iterative deepening search $l=0$

> Arsd

Informed search: Best-first search

- Idea:
use an evaluation function for each node; estimate of "desirability"
\Rightarrow expand most desirable unexpanded node.
- Implementation:

QueueingFn $=$ insert successors in decreasing order of desirability

- Special cases:
greedy search
A* search

Greedy search

- Estimation function:
$h(n)=$ estimate of cost from n to goal (heuristic)
- For example:

$$
h_{S L D}(n)=\text { straight-line distance from } n \text { to Bucharest }
$$

- Greedy search expands first the node that appears to be closest to the goal, according to $h(n)$.

A* search

- Idea: avoid expanding paths that are already expensive
evaluation function: $f(n)=g(n)+h(n) \quad$ with:
$g(n)$ - cost so far to reach n
$h(n)$ - estimated cost to goal from n
$f(n)$ - estimated total cost of path through n to goal
- A^{*} search uses an admissible heuristic, that is,
$h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n.
For example: $h_{S L D}(n)$ never overestimates actual road distance.
- Theorem: A* search is optimal

Comparing uninformed search strategies

Criterion	Brea first	Unifo cost	Depthfirst	Depthlimited	Itera deep	Bidirectional (if applicable)
Time	$b^{\wedge} d$	$\mathrm{b}^{\wedge} \mathrm{d}$	$\mathrm{b}^{\wedge} \mathrm{m}$	$b ヘ$	$b^{\wedge} d$	$b^{\wedge}(\mathrm{d} / 2)$
Space	$b^{\wedge} d$	$\mathrm{b}^{\wedge} \mathrm{d}$	bm	bl	bd	$b^{\wedge}(d / 2)$
Optimal?	Yes	Yes	No	No	Yes	Yes
Complete?	Yes	Yes	No Y	if $1 \geq d$	Yes	Yes

- b- max branching factor of the search tree
- d - depth of the least-cost solution
- m - max depth of the state-space (may be infinity)
- / - depth cutoff

Comparing uninformed search strategies

Criterion	Greedy	A^{*}
Time	$b^{\wedge} \mathrm{m}$ (at worst)	$\mathrm{b}^{\wedge} \mathrm{m}$ (at worst)
Space	$\mathrm{b}^{\wedge} \mathrm{m}$ (at worst)	$\mathrm{b}^{\wedge} \mathrm{m}$ (at worst)
Optimal?	No	Yes
Complete?	No	Yes

Iterative improvement

- In many optimization problems, path is irrelevant; the goal state itself is the solution.
- In such cases, can use iterative improvement algorithms: keep a single "current" state, and try to improve it.

Hill climbing (or gradient ascent/descent)

- Iteratively maximize "value" of current state, by replacing it by successor state that has highest value, as long as possible.
"Like climbing Everest in thick fog with amnesia"

```
function Hill-ClimbiNG(problem) returns a solution state
    inputs: problem, a problem
    local variables: current, a node
            next, a node
    current }\leftarrow\mathrm{ MAKE-NODE(InitiAL-STATE[problem])
    loop do
        next \leftarrowa highest-valued successor of current
        if Value[next] < Value[current] then return current
        curvent \leftarrow next
    end
```


Simulated Annealing

Consider how one might get a ball-bearing traveling along the curve to "probably end up" in the deepest minimum. The idea is to shake the box "about h hard" - then the ball is more likely to go from D to C than from C to D. So, on average, the ball should end up in C's valley.

Simulated annealing algorithm

- Idea: Escape local extrema by allowing "bad moves," but gradually decrease their size and frequency.
function Simulated-Annealing(p roblem, schedule) returns a solution state inputs: problern, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling the probability of downward steps
current \leftarrow Make-Node $($ Initial-State $[$ problem $]$)
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule $[t]$
if $T=0$ then return current
$n e x t \leftarrow$ a randomly selected successor of current
$\Delta E \leftarrow \operatorname{Value}[n e x t]$ - Value [current $]$
if $\Delta E>0$ then current \leftarrow next
Note: goal here is to maximize E .
else current \leftarrow next only with probability $e^{\Delta E / T}$

Note on simulated annealing: limit cases

- Boltzmann distribution: accept "bad move" with $\Delta \mathrm{E}<0$ (goal is to maximize E) with probability $\mathrm{P}(\Delta \mathrm{E})=\exp (\Delta \mathrm{E} / \mathrm{T})$
- If T is large:

$$
\begin{aligned}
& \Delta \mathrm{E}<0 \\
& \Delta \mathrm{E} / \mathrm{T}<0 \text { and very small } \\
& \exp (\Delta \mathrm{E} / \mathrm{T}) \text { close to } 1 \\
& \text { accept bad move with high probability }
\end{aligned}
$$

Random walk

- If T is near 0: $\quad \Delta \mathrm{E}<0$
$\Delta \mathrm{E} / \mathrm{T}<0$ and very large
$\exp (\Delta E / T)$ close to 0
accept bad move with low probability
Deterministic down-hill

The GA Cycle

Is search applicable to game playing?

- Abstraction: To describe a game we must capture every relevant aspect of the game. Such as:
- Chess
- Tic-tac-toe
- Accessible environments: Such games are characterized by perfect information
- Search: game-playing then consists of a search through possible game positions
- Unpredictable opponent: introduces uncertainty thus gameplaying must deal with contingency problems

Searching for the next move

- Complexity: many games have a huge search space
- Chess: $b=35, m=100 \Rightarrow$ nodes $=35^{100}$
if each node takes about 1 ns to explore then each move will take about 10^{50} millennia to calculate.
- Resource (e.g., time, memory) limit: optimal solution not feasible/possible, thus must approximate

1. Pruning: makes the search more efficient by discarding portions of the search tree that cannot improve quality result.
2. Evaluation functions: heuristics to evaluate utility of a state without exhaustive search.

The minimax algorithm

- Perfect play for deterministic environments with perfect information
- Basic idea: choose move with highest minimax value $=$ best achievable payoff against best play
- Algorithm:

1. Generate game tree completely
2. Determine utility of each terminal state
3. Propagate the utility values upward in the three by applying MIN and MAX operators on the nodes in the current level
4. At the root node use minimax decision to select the move with the max (of the min) utility value

- Steps 2 and 3 in the algorithm assume that the opponent will play perfectly.

minimax $=$ maximum of the minimum

$\alpha-\beta$ pruning: search cutoff

- Pruning: eliminating a branch of the search tree from consideration without exhaustive examination of each node
- $\alpha-\beta$ pruning: the basic idea is to prune portions of the search tree that cannot improve the utility value of the max or min node, by just considering the values of nodes seen so far.
- Does it work? Yes, in roughly cuts the branching factor from b to $\sqrt{ }$ b resulting in double as far look-ahead than pure minimax
- Important note: pruning does NOT affect the final result!

$\alpha-\beta$ pruning: example

$\alpha-\beta$ pruning: example

$\alpha-\beta$ pruning: example

$\alpha-\beta$ pruning: example

MAX

MIN

Nondeterministic games: the element of chance

expectimax and expectimin, expected values over all possible outcomes

Nondeterministic games: the element of chance

Summary on games

Games are fun to work on! (and dangerous)
They illustrate several important points about AI
\diamond perfection is unattainable \Rightarrow must approximate
\diamond good idea to think about what to think about
\diamond uncertainty constrains the assignment of values to states
Games are to Al as grand prix racing is to automobile design

Knowledge-Based Agent

Domain independent algorithms

Domain specific content

- Agent that uses prior or acquired knowledge to achieve its goals
- Can make more efficient decisions
- Can make informed decisions
- Knowledge Base (KB): contains a set of representations of facts about the Agent's environment
- Each representation is called a sentence
- Use some knowledge representation language, to TELL it what to know e.g., (temperature 72F)
- ASK agent to query what to do
- Agent can use inference to deduce new facts from TELLed facts

Generic knowledge-based agent

```
function KB-AGENT( percept) returns an action
    static: KB, a knowledge base
            t, a counter, initially 0, indicating time
    Tell(KB,Make-Percert-Sentence(percept, t))
    action}\leftarrow\operatorname{Ask}(KB,MAKE-ACtion-Query(t))
    Tell(KB, Make-Action-Sentence(action, t))
    t\leftarrowt+1
    return action
```

1. TELL KB what was perceived

Uses a KRL to insert new sentences, representations of facts, into KB
2. ASK KB what to do.

Uses logical reasoning to examine actions and select best.

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language
Semantics define the "meaning" of sentences;
i.e., define truth of a sentence in a world
E.g., the language of arithmetic
$x+2 \geq y$ is a sentence; $x 2+y>$ is not a sentence
$x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
$x+2 \geq y$ is true in a world where $x=7, y=1$
$x+2 \geq y$ is false in a world where $x=0, y=6$

Types of logic

Logics are characterized by what they commit to as "primitives"
Ontological commitment: what exists-facts? objects? time? beliefs?
Epistemological commitment: what states of knowledge?

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $0 \ldots 1$
Fuzzy logic	degree of truth	degree of belief $0 \ldots 1$

Entailment

$$
K B \models \alpha
$$

Knowledge base $K B$ entails sentence α
if and only if
α is true in all worlds where $K B$ is true
E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"

Inference

$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i
Soundness: i is sound if
whenever $K B \vdash_{i} \alpha$, it is also true that $K B \models \alpha$
Completeness: i is complete if
whenever $K B \models \alpha$, it is also true that $K B \vdash_{i} \alpha$
Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the $K B$.

Validity and satisfiability

A sentence is valid if it is true in all models
e.g., $A \vee \neg A, \quad A \Rightarrow A, \quad(A \wedge(A \Rightarrow B)) \Rightarrow$

Validity is connected to inference via the Deduction Theorem
$K B \models \alpha$ if and only if $(K B \Rightarrow \alpha)$ is valid
A sentence is satisfiable if it is true in some model
e.g., $A \vee B$, C

A sentence is unsatisfiable if it is true in no models
e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following: $K B \models \alpha$ if and only if ($K B \wedge \neg \alpha$) is unsatisfiable
i.e., prove α by reductio ad absurdum

Propositional logic: semantics

Each model specifies true/false for each proposition symbol

| E.g. | A B C
 True True False,$~$ |
| :---: | :---: | :---: |

Rules for evaluating truth with respect to a model m :

$\neg S$	is true iff	S	is false	
$S_{1} \wedge S_{2}$	is true iff	S_{1}	is true and	S_{2}

Propositional inference: normal forms

Other approaches to inference use syntactic operations on sentences, often expressed in standardized forms

Conjunctive Normal Form (CNF—universal) conjunction of $\underbrace{\text { disjunctions of literals }}_{\text {clauses }}$ E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Disjunctive Normal Form (DNF—universal)
disjunction of $\underbrace{\text { conjunctions of literals }}_{\text {terms }}$
E.g., $(A \wedge B) \vee(A \wedge \neg C) \vee(A \wedge \neg D) \vee(\neg B \wedge \neg C) \vee(\neg B \wedge \neg D)$

Horn Form (restricted)
conjunction of Horn clauses (clauses with ≤ 1 positive literal)
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Often written as set of implications:
$B \Rightarrow A$ and $(C \wedge D) \Rightarrow B$
"product of sums of simple variables or negated simple variables"
"sum of products of simple variables or negated simple variables"
.

Proof methods

Proof methods divide into (roughly) two kinds:

Model checking
truth table enumeration (sound and complete for propositional)
heuristic search in model space (sound but incomplete)
e.g., the GSAT algorithm (Ex. ©.15)

Application of inference rules
Legitimate (sound) generation of new sentences from old Proof $=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.

Inference rules

\diamond Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$
\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}
$$

\diamond And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$
\frac{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}}{\alpha_{i}}
$$

\diamond And-Introduction: (From a list of sentences, you can infer their conjunction.)

$$
\frac{\alpha_{1}, \alpha_{2}, \ldots, \quad \alpha_{n}}{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}}
$$

\diamond Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$
\frac{\alpha_{i}}{\alpha_{1} \vee \alpha_{2} \vee \ldots \vee \alpha_{n}}
$$

\diamond Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

$$
\frac{\neg \neg \alpha}{\alpha}
$$

Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

\diamond Resolution: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$
\frac{\alpha \vee \beta, \quad \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \text { or equivalently } \quad \frac{\neg \alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}
$$

Limitations of Propositional Logic

1. It is too weak, i.e., has very limited expressiveness:

- Each rule has to be represented for each situation:
e.g., "don't go forward if the wumpus is in front of you" takes 64 rules

2. It cannot keep track of changes:

- If one needs to track changes, e.g., where the agent has been before then we need a timed-version of each rule. To track 100 steps we'll then need 6400 rules for the previous example.

Its hard to write and maintain such a huge rule-base I nference becomes intractable

First-order logic (FOL)

- Ontological commitments:
- Objects: wheel, door, body, engine, seat, car, passenger, driver
- Relations: Inside(car, passenger), Beside(driver, passenger)
- Functions: ColorOf(car)
- Properties: Color(car), IsOpen(door), IsOn(engine)
- Functions are relations with single value for each object

Universal quantification (for all): \forall

\forall <variables> <sentence>

- "Every one in the 561a class is smart":
$\forall x \operatorname{In}(561 \mathrm{a}, x) \Rightarrow \operatorname{Smart}(x)$
- $\forall \mathrm{P}$ corresponds to the conjunction of instantiations of P
$\operatorname{In}(561 a$, Manos) \Rightarrow Smart(Manos) \wedge
$\operatorname{In}(561 a, D a n) \Rightarrow \operatorname{Smart}(D a n) \wedge$

In(561a, Clinton) \Rightarrow Smart(Mike)

- \Rightarrow is a natural connective to use with \forall
- Common mistake: to use \wedge in conjunction with \forall e.g: $\forall x \ln (561 a, x) \wedge \operatorname{Smart}(x)$ means "every one is in 561a and everyone is smart"

Existential quantification (there exists): \exists

$\exists<$ variables> <sentence>

- "Someone in the 561a class is smart".
$\exists x \ln (561 \mathrm{a}, x) \wedge \operatorname{Smart}(x)$
- $\exists \mathrm{P}$ corresponds to the disjunction of instantiations of \mathbf{P}

In(561a, Manos) ^ Smart(Manos) \vee $\operatorname{In}(561 a, D a n) \wedge$ Smart(Dan) \vee

In(561a, Clinton) ^ Smart(Mike)
\wedge is a natural connective to use with \exists

- Common mistake: to use \Rightarrow in conjunction with \exists
e.g: $\exists x \operatorname{In}(561 a, x) \Rightarrow \operatorname{Smart}(x)$
is true if there is anyone that is not in 561a! (remember, false \Rightarrow true is valid).

Properties of quantifiers

$\forall x \forall y$ is the same as $\forall y \forall x \quad$ (why??)
$\exists x \exists y$ is the same as $\exists y \exists x \quad$ (why??)
$\exists x \forall y$ is not the same as $\forall y \exists x$
$\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"
$\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
Quantifier duality: each can be expressed using the other

$$
\begin{array}{lr}
\forall x \operatorname{Likes}(x, \text { IceCream }) & \neg \exists x \neg \operatorname{Likes}(x, \text { IceCream }) \\
\exists x \operatorname{Likes}(x, \text { Broccoli }) & \neg \forall x \neg \operatorname{Likes}(x, \text { Broccoli })
\end{array}
$$

Example sentences

- Brothers are siblings
$\forall x, y \quad \operatorname{Brother}(\mathrm{x}, \mathrm{y}) \Rightarrow \operatorname{Sibling}(\mathrm{x}, \mathrm{y})$
- Sibling is transitive
$\forall x, y, z \quad$ Sibling $(x, y) \wedge$ Sibling $(y, z) \Rightarrow \operatorname{Sibling}(x, z)$
- One's mother is one's sibling's mother
$\forall \mathrm{m}, \mathrm{c} \quad \operatorname{Mother}(\mathrm{m}, \mathrm{c}) \wedge$ Sibling(c, d) $\Rightarrow \operatorname{Mother}(\mathrm{m}, \mathrm{d})$
- A first cousin is a child of a parent's sibling
$\forall \mathrm{c}, \mathrm{d} \quad$ FirstCousin $(\mathrm{c}, \mathrm{d}) \Leftrightarrow$
$\exists \mathrm{p}, \mathrm{ps} \operatorname{Parent}(\mathrm{p}, \mathrm{d}) \wedge \operatorname{Sibling}(\mathrm{p}, \mathrm{ps}) \wedge \operatorname{Parent}(\mathrm{ps}, \mathrm{c})$

Higher-order logic?

- First-order logic allows us to quantify over objects (= the first-order entities that exist in the world).
- Higher-order logic also allows quantification over relations and functions.
e.g., "two objects are equal iff all properties applied to them are equivalent":
$\forall x, y \quad(x=y) \Leftrightarrow(\forall p, p(x) \Leftrightarrow p(y))$
- Higher-order logics are more expressive than first-order; however, so far we have little understanding on how to effectively reason with sentences in higher-order logic.

Using the FOL Knowledge Base

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

Tell(KB, Percept ([Smell, Breeze, None $], 5)$)
$\operatorname{Ask}(K B, \exists a \operatorname{Action}(a, 5))$
I.e., does the KB entail any particular actions at $t=5$?

Answer: Yes, $\{a /$ Shoot $\} \quad \leftarrow$ substitution (binding list)
Given a sentence S and a substitution σ,
$S \sigma$ denotes the result of plugging σ into S; e.g.,
$S=\operatorname{Smarter}(x, y)$
$\sigma=\{x /$ Hillary,$y /$ Bill $\}$
S $\sigma=$ Smarter $($ Hillary, Bill $)$
$\operatorname{Ask}(\mathrm{KB}, \mathrm{S})$ returns some/all σ such that $K B \models S \sigma$

Wumpus world, FOL Knowledge Base

"Perception"
$\forall b, g, t$ Percept $([S m e l l, b, g], t) \Rightarrow \operatorname{Smelt}(t)$
$\forall s, b, t \operatorname{Percept}([s, b$, Glitter $], t) \Rightarrow$ AtGold (t)
Reflex: $\forall t$ AtGold $(t) \Rightarrow$ Action $(G r a b, t)$
Reflex with internal state: do we have the gold already?
$\forall t$ AtGold $(t) \wedge \neg$ Holding $($ Gold,$t) \Rightarrow$ Action $(G r a b, t)$
Holding (Gold, $t)$ cannot be observed
\Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:
$\forall l, t$ At $($ Agent $, l, t) \wedge S m e l t(t) \Rightarrow \operatorname{Smelly}(l)$
$\forall l, t$ At $($ Agent $, l, t) \wedge$ Breeze $(t) \Rightarrow$ Breezy (l)
Squares are breezy near a pit:
Diagnostic rule-infer cause from effect

$$
\forall y \operatorname{Breezy}(y) \Rightarrow \exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)
$$

Causal rule-infer effect from cause

$$
\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breez} y(y)
$$

Neither of these is complete-e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

$$
\forall y \operatorname{Breezy}(y) \Leftrightarrow[\exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)]
$$

Situation calculus

Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
Result (a, s) is the situation that results from doing a is s

Describing actions

"Effect" axiom-describe changes due to action
$\forall s$ AtGold $(s) \Rightarrow$ Holding $($ Gold, Result $(G r a b, s))$
"Frame" axiom-describe non-changes due to action
$\forall s$ HaveArrow $(s) \Rightarrow$ HaveArrow $(\operatorname{Result}($ Grab, $s))$
Frame problem: find an elegant way to handle non-change
(a) representation-avoid frame axioms
(b) inference-avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats-what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequenceswhat about the dust on the gold, wear and tear on gloves, ...

Describing actions (cont'd)

Successor-state axioms solve the representational frame problem
Each axiom is "about" a predicate (not an action per se):
P true afterwards $\Leftrightarrow \quad$ [an action made P true
$\checkmark \quad \mathrm{P}$ true already and no action made P false]
For holding the gold:
$\forall a, s$ Holding $($ Gold, Result $(a, s)) \Leftrightarrow$
$[(a=\operatorname{Grab} \wedge \operatorname{AtGold}(s))$
$\vee($ Holding $($ Gold,$s) \wedge a \neq$ Release $)]$

Planning

Initial condition in KB:

$$
\begin{aligned}
& \text { At }\left(\text { Agent },[1,1], S_{0}\right) \\
& \text { At }\left(\text { Gold, }[1,2], S_{0}\right)
\end{aligned}
$$

Query: $\operatorname{Ask}(K B, \exists s$ Holding $($ Gold, $s))$
i.e., in what situation will I be holding the gold?

Answer: $\left\{s / \operatorname{Result}\left(\right.\right.$ Grab, Result $\left(\right.$ Forward,$\left.\left.\left.S_{0}\right)\right)\right\}$
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_{0} and that S_{0} is the only situation described in the KB

Generating action sequences

Represent plans as action sequences $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$
PlanResult (p, s) is the result of executing p in s
Then the query $\operatorname{Ask}\left(K B, \exists p\right.$ Holding $\left.\left(\operatorname{Gold}, \operatorname{PlanResult}\left(p, S_{0}\right)\right)\right)$ has the solution $\{p /[$ Forward, Grab]\}

Definition of PlanResult in terms of Result:

```
\(\forall s\) PlanResult \((\square, s)=s\)
    \(\forall a, p, s\) PlanResult \(([a \mid p], s)=\operatorname{PlanResult}(p, \operatorname{Result}(a, s))\)
```

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary on FOL

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world
Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

Knowledge Engineer

- Populates KB with facts and relations
- Must study and understand domain to pick important objects and relationships
- Main steps:

Decide what to talk about
Decide on vocabulary of predicates, functions \& constants
Encode general knowledge about domain
Encode description of specific problem instance
Pose queries to inference procedure and get answers

Knowledge engineering vs. programming

Knowledge Engineering

1. Choosing a logic
2. Building knowledge base
3. Implementing proof theory
4. Inferring new facts

Programming

Choosing programming language
Writing program
Choosing/writing compiler
Running program

Why knowledge engineering rather than programming?
Less work: just specify objects and relationships known to be true, but leave it to the inference engine to figure out how to solve a problem using the known facts.

Towards a general ontology

- Develop good representations for:
- categories
- measures
- composite objects
- time, space and change
- events and processes
- physical objects
- substances
- mental objects and beliefs

Inference in First-Order Logic

- Proofs - extend propositional logic inference to deal with quantifiers
- Unification
- Generalized modus ponens
- Forward and backward chaining - inference rules and reasoning program
- Completeness - Gödel's theorem: for FOL, any sentence entailed by another set of sentences can be proved from that set
- Resolution - inference procedure that is complete for any set of sentences
- Logic programming

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

- Universal Elimination (UE):
for any sentence α, variable \times and ground term τ,

```
\forallx \alpha
e.g., from }\forallx\mathrm{ Likes( }x\mathrm{ , Candy) and {x/J oe}
we can infer Likes(J oe, Candy)
```

- Existential Elimination (EE): for any sentence α, variable x and constant symbol k not in KB,
$\frac{\exists x \quad \alpha}{\alpha\{x / k\}}$
e.g., from $\exists x \operatorname{Kill}(x$, Victim) we can infer

Kill(Murderer, Victim), if Murderer new symbol

- Existential I ntroduction (El): for any sentence α, variable \times not in α and ground term g in α,

$$
\begin{array}{ll}
\frac{\alpha}{\exists x \alpha\{g / x\}} & \text { e.g., from Likes(J oe, Candy) we can infer } \\
\exists x \text { Likes(} \times, \text { Candy) }
\end{array}
$$

Generalized Modus Ponens (GMP)

$$
\frac{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime}, \quad\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \sigma} \quad \text { where } p_{i}{ }^{\prime} \sigma=p_{i} \sigma \text { for all } i
$$

$$
\text { E.g. } p_{1}^{\prime}=\text { Faster(Bob,Pat) }
$$

$$
p_{2}^{\prime}=\text { Faster }(\text { Pat,Steve })
$$

$$
p_{1} \wedge p_{2} \Rightarrow q=\text { Faster }(x, y) \wedge \text { Faster }(y, z) \Rightarrow \text { Faster }(x, z)
$$

$$
\sigma=\{x / \text { Bob }, y / \text { Pat }, z / \text { Steve }\}
$$

$$
q \sigma=\text { Faster }(\text { Bob }, \text { Steve })
$$

GMP used with KB of definite clauses (exactly one positive literal): either a single atomic sentence or
(conjunction of atomic sentences) \Rightarrow (atomic sentence)
All variables assumed universally quantified

Forward chaining

When a new fact p is added to the KB for each rule such that p unifies with a premise
if the other premises are known
then add the conclusion to the KB and continue chaining
Forward chaining is data-driven
e.g., inferring properties and categories from percepts

Backward chaining

When a query q is asked
if a matching fact q^{\prime} is known, return the unifier
for each rule whose consequent q^{\prime} matches q
attempt to prove each premise of the rule by backward chaining
(Some added complications in keeping track of the unifiers)
(More complications help to avoid infinite loops)
Two versions: find any solution, find all solutions
Backward chaining is the basis for logic programming, e.g., Prolog

Resolution

Entailment in first-order logic is only semidecidable:
can find a proof of α if $K B \models \alpha$
cannot always prove that $K B \not \models \alpha$
Cf. Halting Problem: proof procedure may be about to terminate with success or failure, or may go on for ever

Resolution is a refutation procedure:
to prove $K B \models \alpha$, show that $K B \wedge \neg \alpha$ is unsatisfiable
Resolution uses $K B, \neg \alpha$ in CNF (conjunction of clauses)
Resolution inference rule combines two clauses to make a new one:

Inference continues until an empty clause is derived (contradiction)

Resolution inference rule

Basic propositional version:

$$
\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \text { or equivalently } \quad \frac{\neg \alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}
$$

Full first-order version:

$$
\frac{p_{1} \vee \ldots p_{j} \ldots \vee p_{m},}{q_{1} \vee \ldots q_{k} \ldots \vee q_{n}} \frac{\left(p_{1} \vee \ldots p_{j-1} \vee p_{j+1} \ldots p_{m} \vee q_{1} \ldots q_{k-1} \vee q_{k+1} \ldots \vee q_{n}\right) \sigma}{}
$$

where $p_{j} \sigma=\neg q_{k} \sigma$
For example,

$$
\begin{aligned}
& \neg \operatorname{Rich}(x) \vee \operatorname{Unhappy}(x) \\
& \operatorname{Rich}(M e) \\
& \hline \operatorname{Unhappy}(\mathrm{Me})
\end{aligned}
$$

with $\sigma=\{x / M e\}$

Resolution proof

To prove α :

- negate it
- convert to CNF
- add to CNF KB
- infer contradiction
E.g., to prove Rich $(m e)$, add $\neg \operatorname{Rich}(m e)$ to the CNF KB

```
\neg P h D ( x ) \vee ~ H i g h l y Q u a l i f i e d ~ ( x )
PhD(x)\vee EarlyEarnings(x)
\neg H i g h l y Q u a l i f i e d ( x ) \vee ~ R i c h ( x )
\arlyEarnings(x)\vee Rich(x)
```


Logical reasoning systems

- Theorem provers and logic programming languages
- Production systems
- Frame systems and semantic networks
- Description logic systems

Logical reasoning systems

- Theorem provers and logic programming languages - Provers: use resolution to prove sentences in full FOL. Languages: use backward chaining on restricted set of FOL constructs.
- Production systems - based on implications, with consequents interpreted as action (e.g., insertion \& deletion in KB). Based on forward chaining + conflict resolution if several possible actions.
- Frame systems and semantic networks - objects as nodes in a graph, nodes organized as taxonomy, links represent binary relations.
- Description logic systems - evolved from semantic nets. Reason with object classes \& relations among them.

Membership functions: S-function

- The S-function can be used to define fuzzy sets
- $\mathrm{S}(x, a, b, c)=$
- 0
- $2(x-\mathrm{a} / \mathrm{c}-\mathrm{a})^{2}$
for $a \leq x \leq b$
- $1-2(x-c / c-a)^{2}$ for $b \leq x \leq c$
- 1
for $x \leq a$
for $x \geq c$

CS 561, Session 30

Membership functions: Π-Function

- $\Pi(x, a, b)=$
- $\mathrm{S}(x, b-a, b-a / 2, b) \quad$ for $x \leq b$
- $1-\mathrm{S}(x, b, b+a / 2, a+b)$ for $x \geq b$
E.g., close (to a)

Linguistic Hedges

- Modifying the meaning of a fuzzy set using hedges such as very, more or less, slightly, etc.
- Very $F=F^{2}$
tall
- More or less $F=F^{1 / 2}$
- etc.

Fuzzy set operators

- Equality
$\mathrm{A}=\mathrm{B}$
$\mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{B}}(\mathrm{x})$
for all $x \in X$
- Complement

A'

$$
\mu_{\mathrm{A}^{\prime}}(\mathrm{x})=1-\mu_{\mathrm{A}}(\mathrm{x})
$$

for all $x \in X$

- Containment
$\mathrm{A} \subseteq \mathrm{B}$
$\mu_{\mathrm{A}}(\mathrm{x}) \leq \mu_{\mathrm{B}}(\mathrm{x})$
for all $x \in X$
- Union
$A \cup B$

$$
\mu_{A \cup B}(x)=\max \left(\mu_{A}(x), \mu_{B}(x)\right) \quad \text { for all } x \in X
$$

- Intersection
$\mathrm{A} \cap \mathrm{B}$

$$
\mu_{A \cap B}(x)=\min \left(\mu_{A}(x), \mu_{B}(x)\right) \quad \text { for all } x \in X
$$

What we have so far

- Can TELL KB about new percepts about the world
- KB maintains model of the current world state
- Can ASK KB about any fact that can be inferred from KB

How can we use these components to build a planning agent,
i.e., an agent that constructs plans that can achieve its goals, and that then executes these plans?

Search vs. planning

Consider the task get milk, bananas, and a cordless drill
Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate

Types of planners

- Situation space planner: search through possible situations
- Progression planner: start with initial state, apply operators until goal is reached

Problem: high branching factor!

- Regression planner: start from goal state and apply operators until start state reached

Why desirable? usually many more operators are applicable to initial state than to goal state.
Difficulty: when want to achieve a conjunction of goals

Initial STRIPS algorithm: situation-space regression planner

A Simple Planning Agent

```
function SIMPLE-PLANNI NG-AGENT(percept) returns an action
    static: KB, a knowledge base (includes action descriptions)
        p, a plan (initially, NoPlan)
        t, a time counter (initially 0)
    local variables:G, a goal
        current, a current state description
    TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
    current \leftarrow STATE-DESCRIPTION(KB, t)
    if p=NoPlan then
    G\leftarrowASK(KB, MAKE-GOAL-QUERY(t))
    p\leftarrow IDEAL-PLANNER(current, G, KB)
    if p = NoPlan or p is empty then
        action }\leftarrow\textrm{NoOp
    else
        action }\leftarrow\textrm{FIRST}(p
    p}\leftarrow\operatorname{REST}(p
    TELL(KB, MAKE-ACTION-SENTENCE(action, t))
    t}\leftarrow\textrm{t}+
    return action
```


STRIPS operators

Tidily arranged actions descriptions, restricted language
Action: Buy (x)
Precondition: $\operatorname{At}(p), \operatorname{Sells}(p, x)$
Effect: Have (x)
[Note: this abstracts away many important details!]
Restricted language \Rightarrow efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

Graphical notation:

$$
\begin{aligned}
& \operatorname{At}(p) \operatorname{Sells}(p, x) \\
& \begin{array}{|c|}
\hline \operatorname{Buy}(\mathbf{x}) \\
\operatorname{Have}(x)
\end{array}
\end{aligned}
$$

Partially ordered plans

A plan is complete iff every precondition is achieved
A precondition is achieved iff it is the effect of an earlier step and no possibly intervening step undoes it

Plan

We formally define a plan as a data structure consisting of:

- Set of plan steps (each is an operator for the problem)
- Set of step ordering constraints
e.g., $A \prec B \quad$ means " A before B "
- Set of variable binding constraints
e.g., $v=x \quad$ where v variable and x constant or other variable
- Set of causal links
e.g., $A \xrightarrow{C} B \quad$ means "A achieves C for B "

POP algorithm sketch

function POP (initial, goal, operators) returns plan

```
plan}\leftarrow\mathrm{ -Make-Minimal-Plan(initial,goal)
```

loop do
if Solution? (plan) then return plan
$S_{\text {need }}, c \leftarrow$ Select-Subgoal $(p l a n)$
Choose-Operator(plan, opetatots, $S_{\text {need }}, c$)
Resolve-Threats (plan)
end
function Select-Subgoal (plan) returns $S_{\text {need }}$, c
pick a plan step $S_{\text {need }}$ from Steps (plan)
with a precondition c that has not been achieved return $S_{\text {need }}, c$

POP algorithm (cont.)

```
procedure Choose-Operator(plan,operators, }\mp@subsup{S}{\mathrm{ need , c)}}{\mathrm{ ( )}
    choo ie a step Sadd from operators or Steps(plan) that has c as an effect
    if there is no such step then fail
    add the causal link Sadd }\xrightarrow{}{c}\mp@subsup{S}{\mathrm{ need }}{}\mathrm{ to LinkS( plan)
    add the ordering constraint Sadd }\prec\mp@subsup{S}{\mathrm{ need }}{}\mathrm{ to OrderingS( plan)
    if Sadd is a newly added step from operators then
        add S Sadd to Steps( plan)
    add Start \prec Sadd }\prec\mathrm{ Finish to Orderings(plan)
```

procedure Resolve-Threats(plan)
for each $S_{\text {threat }}$ that threatens a link $S_{i} \xrightarrow{c} S_{j}$ in $\operatorname{Links}($ plan $)$ do
choo ie either
Demotion: Add $S_{\text {threat }} \prec S_{i}$ to Orderings $($ plan $)$
Promotion: Add $S_{j} \prec S_{\text {threat }}$ to Orderings (plan)
if not Consistent (plan) then fail
end

POP is sound, complete, and systematic (no repetition)
Extensions for disjunction, universals, negation, conditionals

Warren McCulloch and Walter Pitts (1943)

- A McCulloch-Pitts neuron operates on a discrete time-scale, $\mathrm{t}=0,1,2,3, \ldots \quad$ with time tick equal to one refractory period

- At each time step, an input or output is

$$
\text { on or off - } 1 \text { or } 0 \text {, respectively. }
$$

- Each connection or synapse from the output of one neuron to the input of another, has an attached weight.

Multi-layer Perceptron Classifier

Bayes' rule

Product rule $P(A \wedge B)=P(A \mid B) P(B)=P(B \mid A) P(A)$

$$
\Rightarrow \underline{\text { Bayes' rule }} P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Why is this useful???
For assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

E.g., let M be meningitis, S be stiff neck:

$$
P(M \mid S)=\frac{P(S \mid M) P(M)}{P(S)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

Note: posterior probability of meningitis still very small!

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

Note: $\leq k$ parents $\Rightarrow O\left(d^{k} n\right)$ numbers vs. $O\left(d^{n}\right)$

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Some problems remain...

- Vision
- Audition / speech processing
- Natural language processing
- Touch, smell, balance and other senses
- Motor control

They are extensively studied in other courses.

Computer Perception

- Perception: provides an agent information about its environment. Generates feedback. Usually proceeds in the following steps.

1. Sensors: hardware that provides raw measurements of properties of the environment
2. Ultrasonic Sensor/Sonar: provides distance data
3. Light detectors: provide data about intensity of light
4. Camera: generates a picture of the environment
5. Signal processing: to process the raw sensor data in order to extract certain features, e.g., color, shape, distance, velocity, etc.
6. Object recognition: Combines features to form a model of an object
7. And so on to higher abstraction levels

Perception for what?

- I nteraction with the environment, e.g., manipulation, navigation
- Process control, e.g., temperature control
- Quality control, e.g., electronics inspection, mechanical parts
- Diagnosis, e.g., diabetes
- Restoration, of e.g., buildings
- Modeling, of e.g., parts, buildings, etc.
- Surveillance, banks, parking lots, etc.
- And much, much more

