

���

IBM Software Development Kit for
Multicore Acceleration v3.0
Basic Linear Algebra Subprograms
Programmer’s Guide and API Reference
Version 1.0
DRAFT

September 2007
This edition applies to the version 3, release 0 of the IBM Software Development Kit for
Multicore Acceleration
© Copyright International Business Machines Corporation 2007.
All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Table of Contents

PREFACE..iii

About this publication.. iii
Intended audience... iii
Conventions .. iii

Typographical conventions .. iii
Related information ... iii

Part I. Overview..1
Chapter 1. BLAS Introduction ..2

Part II. Configuring BLAS...4
Chapter 2. Installing and Configuring BLAS ..5

Description of Packages ..5
Installation Sequence ..7

Part III. Programming with BLAS..8
Chapter 3. Programming ...9

Basic Structure of BLAS Library ..9
Usage of BLAS Library (PPE-Interface)...9
Usage of BLAS SPE-Library ..10
Tuning BLAS library for performance...10
Programming tips to achieve maximum performance..................................12

Chapter 4. Programming for Cell BE ...13
SPE Thread Creation...13
Support of User-specified SPE and Memory Callbacks...............................13
Debugging Tips..14

Part IV. BLAS API Reference...15
PPE API...16
SPE API...17

sscal_spu / dscal_spu ..18
scopy_spu / dcopy_spu..19
saxpy_spu / daxpy_spu..20
sdot_spu / ddot_spu...21
isamax_spu / idamax_spu..22
sgemv_spu / dgemv_spu ...23
sgemm_spu / dgemm_spu...25
ssyrk_64x64 ...26
strsm_spu / dtrsm_spu...27
strsm_64x64...29

Additional APIs ..31
SPE management API ...31
Memory management API..39

Part V. Appendixes..42
Appendix A. Accessibility..43
Appendix B. Notices ...44

© Copyright IBM Corp. 2007 – DRAFT ii

PREFACE
About this publication

This publication describes in detail how to configure the BLAS library and how to
program applications using it on the IBM Software Development Kit (SDK) for
Multicore Acceleration. It contains detailed reference information about the APIs
for the library as well as sample applications showing usage of these APIs.

Intended audience
The target audience for this document is application programmers using the IBM
Software Development Kit (SDK) for Multicore Acceleration. The reader is
expected to have a basic understanding of programming on the Cell platform and
common terminology used with Cell BE.

Conventions

Typographical conventions
The following table explains the typographical conventions used in this
document.

Table 1. Typographical conventions

Typeface Indicates Example
Bold Lowercase commands, library

functions.
 void sscal_spu (float *sx,
float sa, int n)

Italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new
terms.

The following example shows
how a test program, test_name
can be run

Monospace Examples of program code or
command strings.

 int main()

Related information
All the documents listed in this section will be available with IBM Software
Development Kit (SDK) for Multicore Acceleration. Newer version of some of
the documents can be found in the respective links given.

© Copyright IBM Corp. 2007 – DRAFT iii

Cell BE

There is a set of tutorial and reference documentation for the Cell BE stored in the
IBM online technical library at:
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine

Cell Broadband Engine Architecture

Cell Broadband Engine Programming Handbook

PPU & SPU C/C++ Language Extension Specification

Synergistic Processor Unit (SPU) Instruction Set Architecture

Cell Broadband Engine Linux Reference Implementation Application Binary
Interface Specification

Cell BE programming using the SDK

IBM Software Development Kit (SDK) for Multicore Acceleration v3.0
Installation Guide

IBM Software Development Kit (SDK) for Multicore Acceleration v3.0
Programmer’s Guide

Cell Broadband Engine Programming Tutorial

SIMD Math Library Specification for Cell Broadband Engine Architecture

IBM Full-System Simulator

IBM Full-System Simulator User’s Guide

IBM Full-System Simulator Command Reference

Performance Analysis with the IBM Full-System Simulator

BLAS
Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard, August
2001 http://www.netlib.org/blas/blast-forum/blas-report.pdf

A Set of Level 3 Basic Linear Algebra Subprograms, Jack Dongarra, Jeremy Du
Croz, Iain Duff, Sven Hammarling, August 1998,
http://www.netlib.org/blas/blas3-paper.ps

Basic Linear Algebra Subprograms – A quick reference guide, May 1997,
http://www.netlib.org/blas/blasqr.pdf

© Copyright IBM Corp. 2007 – DRAFT iv

http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/30B3520C93F437AB87257060006FFE5E
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blas3-paper.ps
http://www.netlib.org/blas/blasqr.pdf

Part I. Overview

© Copyright IBM Corp. 2007 – DRAFT 1

Chapter 1. BLAS Introduction

The BLAS (Basic Linear Algebra Subprograms) library is based upon a published
standard interface (See the BLAS Technical Forum Standard document available
at http://www.netlib.org/blas/blast-forum/blas-report.pdf) for commonly used
linear algebra operations in high-performance computing (HPC) and other
scientific domains. It is widely used as the basis for other high quality linear
algebra software, for example LAPACK and ScaLAPACK. The Linpack (HPL)
benchmark largely depends on a single BLAS routine (DGEMM) for good
performance.

The BLAS API is available as standard ANSI C and standard FORTRAN 77/90
interfaces. BLAS implementations are also available in open-source (netlib.org).
Based on its functionality, BLAS is divided into three levels:

• Level 1 routines are for scalar and vector operations.

• Level 2 routines are for matrix-vector operations

• Level 3 routines are for matrix-matrix operations.

 Each routine has four versions – real single precision, real double precision,
complex single precision and complex double precision, represented by prefixing
S, D, C and Z respectively to the routine name. The BLAS library in the IBM
Software Development Kit (SDK) for Multicore Acceleration supports only real
single precision and real double precision versions (hereafter referred to as SP and
DP respectively). All SP and DP routines in the three levels of standard BLAS are
supported on the Power Processing Element (PPE). These are available as PPE
APIs and conform to the standard BLAS interface. (Refer to
http://www.netlib.org/blas/blasqr.pdf) Some of theses routines have been
optimized using the Synergistic Processing Elements (SPEs) and these show a
marked increase in performance in comparison to the corresponding versions
implemented solely on the PPE. These optimized routines have an SPE interface
in addition to the PPE interface; however, the SPE interface does not conform to
the standard BLAS interface and provides a restricted version of the standard
BLAS interface. The following routines have been optimized to use the SPEs;
moreover, the single precision versions of these routines have been further
optimized for maximum performance using various features of the SPE (e.g.,
SIMD, Dual Issue, etc.):

Level 1:

• SSCAL, DSCAL

• SCOPY, DCOPY

• ISAMAX, IDAMAX

© Copyright IBM Corp. 2007 – DRAFT 2

http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blasqr.pdf

• SAXPY, DAXPY

• SDOT, DDOT

Level 2:

• SGEMV, DGEMV (TRANS=’No Transpose’ and INCY=1)

Level 3:

• SGEMM, DGEMM

• SSYRK, DSYRK (Only for UPLO=’Lower’ and TRANS=’No
Transpose’)

• STRSM, DTRSM (Only for SIDE=’Right’, UPLO=’Lower’,
TRANS=’Transpose’ and DIAG=’Non-Unit’)

These routines support implementations of BLAS-3 based Cholesky and BLAS-1
based LU factorization.

The parameter restrictions, as mentioned above for some of the optimized BLAS
level 2 and 3 routines, apply to the FORTRAN compatible C interface for these
routines which accepts input matrices stored in column-major order.

© Copyright IBM Corp. 2007 – DRAFT 3

Part II. Configuring BLAS

© Copyright IBM Corp. 2007 – DRAFT 4

Chapter 2. Installing and Configuring BLAS
The following sections describe the installation and configuration of BLAS
library.

Description of Packages
The BLAS library can be installed on various platforms using the following
packages:

1. blas-3.0-x.ppc.rpm

Purpose: This rpm will install BLAS library ‘libblas.so.x’.

Platform: PowerPC Architecture™ and IBM BladeCenter® QS21.

Contents:
/usr/lib/libblas.so.x : BLAS library

2. blas-devel-3.0-x.ppc.rpm

Purpose: This rpm installs supporting files such as header files and sample
applications of BLAS required by the library.

Platform: PowerPC Architecture™ and IBM BladeCenter® QS21.

Contents:
/usr/include/blas.h: Contains prototypes of all BLAS Level 1, 2 and 3 (SP and
DP) functions that have a PPE API in the library. PPE API refers to Standard
BLAS API on the PPE.

/usr/include/blas_callback.h: Contains prototypes of functions that can be used to
register user-specified SPE Thread creation and Memory allocation callbacks.

/usr/include/cblas.h: Contains prototypes of all the C-interface versions of BLAS
Level 1, 2 and 3 (SP and DP) functions that have a PPE API in the library.

/usr/lib/libblas.so: Soft link to libblas.so.x

/usr/spu/include/blas_s.h: Contains prototypes of selected functions of BLAS
Level 1, 2 and 3 (SP and DP) that have an SPE API in the library. These functions
have limited functionality and are not as generic as the PPE API.

/usr/spu/lib/libblas.a: BLAS SPE library.

/opt/cell/sdk/src/blas.tar: Compressed file of BLAS samples .

3. blas-3.0-x.ppc64.rpm

Purpose: This rpm installs the BLAS library libblas.so.x.

Platform: PowerPC Architecture™-64 bit and IBM BladeCenter® QS21.

© Copyright IBM Corp. 2007 – DRAFT 5

Contents:

/usr/lib/libblas.so.x : BLAS library

4. blas-devel-3.0-x.ppc64.rpm

Purpose: This rpm installs supporting files such as header files and sample
applications of BLAS for developing sample applications using BLAS library.

Platform: PowerPC Architecture™-64 bit and IBM BladeCenter® QS21.

Contents:
/usr/include/blas.h: Contains prototypes of all BLAS Level 1, 2 and 3 (SP and
DP) functions supported in the library with PPE API.

/usr/include/blas_callback.h: Contains prototypes of functions that can be used to
register user-specified SPE Thread creation and Memory allocation callbacks.

/usr/include/cblas.h: Contains prototypes of all C-interface versions of BLAS
level 1, 2 and 3 (SP and DP) functions supported in the library with PPE API.

/usr/lib/libblas.so: Soft link to libblas.so.x

/usr/spu/include/blas_s.h: Contains prototypes of selected functions of BLAS
Level 1, 2 and 3 (SP and DP) that have an SPE API in the library. These functions
have limited functionality and are not as generic as the PPE API.

/usr/spu/lib/libblas.a: BLAS SPU library.

/opt/cell/sdk/src/blas.tar: Compressed file of BLAS samples.

5. blas-cross-devel-3.0-x.noarch.rpm

Purpose: This rpm installs the BLAS library and supporting files such as header
files and sample applications of BLAS required by the library.

Platform: Other platforms, such as x86 series.

Contents:
/opt/cell/sysroot/usr/include/blas.h: Contains prototypes of all BLAS Level 1, 2
and 3 (SP and DP) functions supported in the library with PPE API.

/opt/cell/sysroot/usr/include/blas_callback.h: Contains prototypes of functions that
can be used to register user-specified SPE Thread creation and Memory allocation
callbacks.

/opt/cell/sysroot/usr/include/cblas.h: Contains prototypes of all C-interface
versions of BLAS level 1, 2 and 3 (SP and DP) functions supported in the library
with PPE API.

/opt/cell/sysroot/usr/lib/libblas.so: Soft link to libblas.so.x

/opt/cell/sysroot/usr/lib/libblas.so.x: BLAS library

opt/cell/sysroot/usr/lib64/libblas.so: Soft link to libblas.so.x (64 bit)

© Copyright IBM Corp. 2007 – DRAFT 6

/opt/cell/sysroot/usr/lib64/libblas.so.x: BLAS library (64 bit)

/opt/cell/sysroot/usr/spu/include/blas_s.h: Contains prototypes of selected
functions of BLAS Level 1, 2 and 3 (SP and DP) that have an SPE API in the
library. These functions have limited functionality and are not as generic as the
PPE API.

/usr/spu/lib/libblas.a: BLAS SPU library.

/opt/cell/sdk/src/blas.tar: Compressed file of BLAS samples.

Installation Sequence
Use the following sections to install the BLAS library.

Platform: PowerPC Architecture™ and IBM BladeCenter® QS21.

Install the following packages in order, using “rpm –ivh”:

 blas-3.0-x.ppc.rpm

 blas-devel-3.0-x.ppc.rpm

Platform: PowerPC Architecture™-64 bit and IBM BladeCenter® QS21.

Install the following packages in order, using “rpm –ivh”:

 blas-3.0-x.ppc64.rpm

 blas-devel-3.0-x.ppc64.rpm

Platform: Other platforms, such as x86 series.

To install on other platforms such as x86 series, install the following package
using “rpm –ivh”:

 blas-cross-devel-3.0-x.noarch.rpm

Note: Make sure to install blas-3.0-x.xxx.rpm before you install blas-devel-3.0-
x.xxx.rpm.

© Copyright IBM Corp. 2007 – DRAFT 7

Part III. Programming with BLAS

© Copyright IBM Corp. 2007 – DRAFT 8

Chapter 3. Programming
The following sections provide information about programming with the BLAS
library.

Basic Structure of BLAS Library
The BLAS Library has two components: PPE interface and SPE interface.
PPE applications can use the standard BLAS PPE API (set forth by BLAS
Technical Forum Standard, see documents listed under “BLAS” in the “Related
Information” section) and the SPE programs can directly use the SPE API. A
detailed description of the SPE interface is provided in the API reference section.

Usage of BLAS Library (PPE-Interface)
The following sample application demonstrates the usage of the BLAS-PPE
library. This application program invokes the scopy and sdot routines, using the
BLAS-PPE library.

#include <blas.h>
#define BUF_SIZE 32

/********************** MAIN ROUTINE **********************/
int main()
{
 int i,j ;
 int entries_x, entries_y ;
 float sa=0.1;
 float *sx, *sy ;
 int incx=1, incy=2;
 int n = BUF_SIZE;
 double result;

 entries_x = n * incx ;
 entries_y = n * incy ;

 sx = (float *) _malloc_align(entries_x * sizeof(float), 7) ;
 sy = (float *) _malloc_align(entries_y * sizeof(float), 7) ;

 for(i = 0 ; i < entries_x ; i++)
 sx[i] = (float) (i) ;
 j = entries_y - 1 ;
 for(i = 0 ; i < entries_y ; i++,j--)
 sy[i] = (float) (j) ;

 scopy_(&n, sx, &incx, sy, &incy) ;
 result = sdot_(&n, sx, &incx, sy, &incy) ;

© Copyright IBM Corp. 2007 – DRAFT 9

 return 0;
}

Usage of BLAS SPE-Library

The following sample application demonstrates the usage of the BLAS-SPE library. This
application program invokes sdot, using the BLAS-SPE library.

#include <blas_s.h>
#define BUF_SIZE 32

float buf_x[BUF_SIZE] __attribute__ ((aligned (16))) ;
float buf_y[BUF_SIZE] __attribute__ ((aligned (16))) ;

/********************** MAIN ROUTINE **********************/
int main()
{
 int size, k ;
 float sum = 0.0 ;
 size = BUF_SIZE;

 for(k=0;k<size;k++)
 {
 buf_x[k] = (float) k ;
 buf_y[k] = buf_x[k] ;
 }

 sum = sdot_spu(buf_x, buf_y, size) ;

 return 0 ;
}

Tuning BLAS library for performance
The BLAS library provides additional features for customizing the library. You
can use these features to effectively utilize the available resources and potentially
achieve higher performance.

The optimized BLAS level 3 routines utilize extra space for suitably reorganizing
the matrices. It is advisable to use huge pages for storing the input/output matrices
as well as for storing the reorganized matrices in BLAS level 3. Moreover, for
achieving better performance, it is beneficial to reuse the allocated space across
multiple BLAS calls, rather than allocate fresh memory space with every call to
the routine. This reuse of allocated space becomes especially useful when
operating on small matrices. To overcome this overhead for small matrices, a pre-
allocated space, called swap space, is created only once with huge pages (and
touched on the PPE). You can specify the size of swap space with the
environment variable BLAS_SWAP_SIZE. By default no swap space is created.

© Copyright IBM Corp. 2007 – DRAFT 10

When any optimized BLAS3 routine is called and if the extra space required for
reorganizing the input matrices is less than the pre-allocated swap space, this
swap space is used by the routine to reorganize the input matrices (instead of
allocating new space).

The idea is to use swap space up to 16 MB (single huge page size) - this takes
care of extra space requirement for small matrices. The user can achieve
considerable performance improvement for small matrices through the use of
swap space.

Environment Variables
There are many environment variables available to customize the launching of
SPE and memory allocation in the BLAS library. However, for full control, you
can register and use your own SPE and Memory callbacks (described in the
following sections). The following table lists the environment variables:

 Variable Name Purpose

 BLAS_NUMSPES

Specifies the number of SPEs to use.
The default is 8 (SPEs in a single
node).

 BLAS_USE_HUGEPAGE

Specifies if the library should use huge
pages or heap for allocating new space
for reorganizing input matrices in
BLAS3 routines. The default is to use
huge pages. Set the variable to 0 to use
heap instead.

 BLAS_HUGE_PAGE_SIZE Specifies the huge page size to use, in
KB. The default value is 16384 KB
(16 MB). The huge page size on the
system can be found in the file
/proc/meminfo.

 BLAS_HUGE_FILE Specifies the name of the file to be
used for allocating new space using
huge pages in BLAS3 routines. The
default filename is /huge/blas_lib.bin.

 BLAS_NUMA_NODE

Specifies the NUMA node on which
SPEs are launched by default and
memory is allocated by default. The
default NUMA node is -1 which
indicates no NUMA binding.

 BLAS_SWAP_SIZE Specifies the size of swap space, in
KB. The default is not to use swap
space.

 BLAS_SWAP_NUMA_NODE

Specifies the NUMA node on which
swap space is allocated. The default

© Copyright IBM Corp. 2007 – DRAFT 11

NUMA node is -1 which indicates no
NUMA binding.

 BLAS_SWAP_HUGE_FILE

Specifies the name of the file that will
be used to allocate swap space using
huge pages. The default filename is
/huge/blas_lib_swap.bin.

The following example shows how a test program, test_name, can be run with 5
SPEs, using binding on NUMA node 0 and using 12MB of swap space on the
same NUMA node:

env BLAS_NUMSPES=5 BLAS_NUMA_NODE=0
BLAS_SWAP_SIZE=12288 BLAS_SWAP_NUMA_NODE=0 ./test_name

Programming tips to achieve maximum performance
Use the following tips to leverage maximum performance from the BLAS library:

1) Make the matrices/vectors 128 byte aligned – Memory access is more
efficient when the data is 128 byte aligned.

2) Use huge pages to store vectors and matrices. By default, the library uses this
feature for memory allocation done within the library.

3) Use NUMA binding for the application and the library. Set the
BLAS_NUMA_NODE environment variable to enable this feature for the
library. BLAS_NUMA_NODE can be set to 0 or 1 for a dual node system. An
application can enable NUMA binding either using the command line NUMA
policy tool numactl or NUMA policy API libnuma provided on Linux.

4) Use the swap space feature, described in the earlier section, for matrices
smaller than 1K, with appropriate NUMA binding.

5) The library gives better performance while working on vectors and matrices
of large sizes. Performance of optimized routines is better when the stride
value is 1. Level 3 routines show good performance when the number of rows
and columns are a multiple of 64 for Single Precision (SP) and 32 for Double
Precision (DP).

© Copyright IBM Corp. 2007 – DRAFT 12

Chapter 4. Programming for Cell BE

This chapter describes the mechanisms available in the BLAS library that offer
more control to advanced programmers for management of SPEs and system
memory.

The default SPE and Memory management mechanism in the BLAS library can
be partially customized by the use of environment variables as discussed
previously. However for more control, an application can design its own
mechanism for managing available SPE resources and system memory to be used
by BLAS routines in the library.

SPE Thread Creation
When a pre-built BLAS application binary (executable) is run with the BLAS
library, the library internally manages SPE resources available on the system
using the default SPE management routines. This is also true for the other BLAS
applications that do not intend to manage the SPEs and want to use default SPE
management provided by the BLAS library. The sample application in the “Usage
of BLAS Library (PPE-Interface)” section in “Chapter 3 – Programming” is an
example of this. For such applications, you can partially control the behavior of
BLAS library by using certain environment variables as described in the
“Environment Variables” section.

Support of User-specified SPE and Memory Callbacks
Instead of using default SPE management functions defined in the BLAS library,
a BLAS application can register its own SPE thread management routines (for
example, for creating/destroying SPE threads, SPE program loading or context
creation) with the registration function blas_register_spe()1 provided by the
BLAS library.

As mentioned earlier, the optimized level 3 routines in the library utilize some
extra space for suitably reorganizing the input matrices. The library uses default
memory management routines to allocate/de-allocate this extra space.

Similar to the user-specified SPE management routines, you can also specify
custom memory management routines. Instead of using the default memory
management functions defined in BLAS library, a BLAS application can register
its own memory allocation/de-allocation routines for allocating new space for
reorganizing the input matrices. To do this, use the registration function
blas_register_mem()1.

1 See the “Additional APIs” section under “BLAS API Reference” for more details on the APIs provided
by BLAS library to register user-specified SPE and Memory management callbacks.

© Copyright IBM Corp. 2007 – DRAFT 13

Default SPE and memory management routines defined in the BLAS library are
registered when you do not register any routines.

Debugging Tips

Use the following steps to debug common errors encountered in programming
with the BLAS library:

1) For using huge pages, the library assumes that a filesystem of type hugetlbfs is
mounted on /huge directory. In case hugetlbfs filesystem is mounted on some
other directory, you should change the name of the huge page files appropriately
using the environment variables BLAS_HUGE_FILE and
BLAS_SWAP_HUGE_FILE.

2) If you receive a bus error, check that sufficient memory is available on the
system. The optimized BLAS level 3 routines require additional space. This space
is allocated with huge pages. If there are insufficient huge pages in the system,
there is a possibility of receiving a bus error at the time of execution. You can set
the environment variable BLAS_USE_HUGEPAGE to 0 to use heap for memory
allocation instead of huge pages.

3) When using the SPE API, make sure the alignment and parameter constraints
are met. The results can be unpredictable if these constraints are not satisfied.

© Copyright IBM Corp. 2007 – DRAFT 14

Part IV. BLAS API Reference

The BLAS library provides two sets of interfaces - a PPE interface and an SPE
interface. The PPE interface conforms to the Standard BLAS interface. The
library also provides additional functions to customize the library.

© Copyright IBM Corp. 2007 – DRAFT 15

PPE API

PPE API is available for all SP and DP standard BLAS routines. The current PPE
API does not support complex single precision and complex double precision
versions of BLAS routines. The PPE API conforms to the existing standard
interface defined by the BLAS Technical Forum. The library offers both a C
interface and a standard FORTRAN compatible C interface to BLAS routines at
the PPE level. Prototypes of the routines in C interface can be found in cblas.h
and FORTRAN compatible C interface in blas.h. Detailed documentation of
these routines is available at http://www.netlib.org/blas/blast-forum/blas-
report.pdf. For further information regarding BLAS, refer to netlib documentation
on www.netlib.org.

© Copyright IBM Corp. 2007 – DRAFT 16

http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf

SPE API

The library provides an SPE API only for certain routines. This API does not
conform to the existing BLAS standard. There are constraints on the functionality
(range of strides, sizes, etc) supported by these routines. Prototypes of these
routines are listed in blas_s.h. The following sections provide detailed
descriptions of the routines that are part of this API.

© Copyright IBM Corp. 2007 – DRAFT 17

sscal_spu / dscal_spu

Description
This BLAS 1 routine scales a vector by a constant. The following operation is
performed in scaling:

 xx α←

where x is a vector and α is a constant. Unlike the equivalent PPE API, the SPE
interface is designed for stride 1 only, wherein n consecutive elements, starting
with first element, get scaled. The routine has limitations on the n value and
vector alignment. n value should be a multiple of 16 for DP and 32 for SP. The x
vector must be aligned at a 16 byte boundary.

Syntax
void sscal_spu (float *sx, float sa, int n)

void dscal_spu (double *dx, double da, int n)

Parameters
 sx/dx Pointer to vector of floats/doubles to scale
 sa/da Float/double constant to scale vector elements with
 n Integer storing number of vector elements to scale.

(Must be a multiple of 32 for SP and 16 for DP)

Example
#define len 1024
float buf_x[len] __attribute__ ((aligned (16))) ;

int main()
{
 int size=len, k ;

 float alpha = 0.6476 ;

 for(k=0;k<size;k++)
 {
 buf_x[k] = (float)k ;
 }

 sscal_spu(buf_x, alpha, size) ;

 return 0 ;
}

© Copyright IBM Corp. 2007 – DRAFT 18

scopy_spu / dcopy_spu

Description
This BLAS 1 routine copies a vector from source to destination. The following
operation is performed in copy:

xy ←

where x and y are vectors. Unlike the equivalent PPE API, this routine supports
only stride 1, wherein n consecutive elements, starting with first element, get
copied.

Syntax
void scopy_spu (float *sx, float *sy, int n)

void dcopy_spu (double *dx, double *dy, int n)

Parameters
 sx/dx Pointer to source vector of floats/doubles
 sy/dy Pointer to destination vector of floats/doubles
 n Integer storing number of vector elements to copy.

Example
#define len 1000

int main()
{
 int size=len, k ;
 float buf_x[len] ;
 float buf_y[len] ;

 for(k=0;k<size;k++)
 {
 buf_x[k] = (float)k ;
 }

 scopy_spu(buf_x, buf_y, size) ;

 return 0 ;
}

© Copyright IBM Corp. 2007 – DRAFT 19

saxpy_spu / daxpy_spu

Description
This BLAS 1 routine scales a source vector and element-wise adds it to the
destination vector. The following operation is performed in scale and add:

yxy +← α

where x, y are vectors and α is a constant. Unlike the equivalent PPE API, the
SPE interface is designed for stride 1 only, wherein n consecutive elements,
starting with first element, get operated on. This routine has limitations on the n
value and vector alignment supported. n value should be a multiple of 32 for DP
and 64 for SP. The x and y vectors must be aligned at a 16 byte boundary.

Syntax
void saxpy_spu (float *sx, float *sy, float sa, int n)

void daxpy_spu (double *dx, double *dy, double da, int n)

Parameters
 sx/dx Pointer to source vector (x) of floats/doubles
 sy/dy Pointer to destination vector (y) of floats/doubles
 sa/da Float/double constant to scale elements of vector x with
 n Integer storing number of vector elements to scale and

add.

Example
#define len 1024
float buf_x[len] __attribute__ ((aligned (16))) ;
float buf_y[len] __attribute__ ((aligned (16))) ;

int main()
{
 int size=len, k ;
 float alpha = 0.6476 ;

 for(k=0; k<size; k++)
 {
 buf_x[k] = (float)k ;
 buf_y[k] = (float)(k * 0.23) ;
 }

 saxpy_spu(buf_x, buf_y, alpha, size) ;
 return 0 ;
}

© Copyright IBM Corp. 2007 – DRAFT 20

sdot_spu / ddot_spu

Description
This BLAS 1 routine performs dot product of two vectors. The following
operation is performed in dot product:

yxresult ⋅←

where x and y are vectors. Unlike the equivalent PPE API, the SPE interface is
designed for stride 1 only, wherein n consecutive elements, starting with first
element, get operated on. This routine has limitations on the n value and vector
alignment. n value should be a multiple of 16 for DP and 32 for SP. The x and y
vector must be aligned at a 16 byte boundary.

Syntax
float sdot_spu (float *sx, float *sy, int n)

double ddot_spu (double *dx, double *dy, int n)

Parameters
 sx/dx Pointer to first vector (x) of floats/doubles
 sy/dy Pointer to second vector (y) of floats/doubles
 n Integer storing number of vector elements

Return Values
 float/double Dot product of the two vectors

Example
#define len 1024
float buf_x[len] __attribute__ ((aligned (16))) ;
float buf_y[len] __attribute__ ((aligned (16))) ;

int main()
{
 int size = len, k ;
 float sum = 0.0 ;

 for(k=0;k<size;k++)
 {
 buf_x[k] = (float) k;
 buf_y[k] = buf_x[k];
 }

 sum = sdot_spu(buf_x, buf_y, size) ;
 return 0 ;
}

© Copyright IBM Corp. 2007 – DRAFT 21

isamax_spu / idamax_spu

Description
This BLAS 1 routine determines the (first occurring) index of the largest element
in a vector. The following operation is performed in vector max index:

])[max(][..1 ixkxtskresult st =←

where x is a vector. The routine is designed for stride 1 only, wherein n
consecutive elements, starting with first element, get operated on. This routine has
limitations on the n value and vector alignment. n value should be a multiple of 16
for DP and 64 for SP. The x vector must be aligned at a 16 byte boundary.

Syntax
int isamax_spu (float *sx, int n)

int idamax_spu (double *dx, int n)

Parameters
 sx/dx Pointer to vector (x) of floats/doubles
 n Integer storing number of vector elements

Return Values
 int Index of (first occurring) largest element. (Indices start

with 0.)

Example
#define len 1024
float buf_x[len] __attribute__ ((aligned (16))) ;

int main()
{
 int size=len, k ;

 int index ;

 for(k=0;k<size;k++)
 {
 buf_x[k] = (float) k;
 }
 index = isamax_spu(buf_x, size) ;
 return 0 ;
}

© Copyright IBM Corp. 2007 – DRAFT 22

sgemv_spu / dgemv_spu

Description
This BLAS 2 routine multiplies a matrix and a vector, adding the result to a
resultant vector with suitable scaling. The following operation is performed:

yxAy +← α

where x and y are vectors, A is a matrix and α is a scalar.

Unlike equivalent PPE interface, the SPE interface for this routine only supports
stride (increment) of one for vectors x and y. m must be a multiple of 32 for SP
and 16 for DP. n must be a multiple of 8 for SP and 4 for DP. All the input vectors
and matrix must be 16-byte aligned.

Syntax
void sgemv_spu (int m, int n, float alpha, float *a, float *x, float *y)

void dgemv_spu (int m, int n, double alpha, double *a, double *x, double *y)

Parameters
 m Integer specifying number of rows in matrix A
 n Integer specifying number of columns in matrix A
 alpha Float/double storing constant to scale the matrix product

AX.
 a Pointer to matrix A
 x Pointer to vector X
 y Pointer to vector Y

Example
#define M 512
#define N 32

float Y[M] __attribute__ ((aligned (16))) ;
float A[M*N] __attribute__ ((aligned (16))) ;
float X[N] __attribute__ ((aligned (16))) ;

int main()
{
 int k ;
 float alpha = 1.2;

 for(k = 0; k < M; k++)
 Y[k] = (float) k;

 for(k = 0; k < M*N; k++)
 A[k] = (float) k;

 for(k = 0; k < N; k++)
 X[k] = (float) k;

© Copyright IBM Corp. 2007 – DRAFT 23

 sgemv_spu(M, N, alpha, A, X, Y);

 return 0;
}

© Copyright IBM Corp. 2007 – DRAFT 24

sgemm_spu / dgemm_spu

Description
This BLAS 3 routine multiplies two matrices, A and B and adds the result to the
resultant matrix C, after suitable scaling. The following operation is performed:

 CBAC +←

where A, B and C are matrices. The matrices must be 16-byte aligned and stored
in row major order. m must be multiple of 4 for SP and 2 for DP. n must be
multiple of 16 for SP and 4 for DP. k must be multiple of 4 for SP and 2 for DP.

Syntax
void sgemm_spu (int m, int n, int k, float *a, float *b, float *c)

void dgemm_spu (int m, int n, int k, double *a, double *b, double *c)

Parameters
 m Integer specifying number of rows in matrices A and C.
 n Integer specifying number of columns in matrices B

and C
 k Integer specifying number of columns in matrix A and

rows in matrix B.
 a Pointer to matrix A
 b Pointer to matrix B
 c Pointer to matrix C

Example
#define M 64
#define N 16
#define K 32

float A[M * K] __attribute__((aligned (16))) ;
float B[K * N] __attribute__((aligned (16))) ;
float C[M * N] __attribute__((aligned (16))) ;

int main()
{
 int i, j;

 for(i = 0 ; i < M ; i++)
 for(j = 0; j < N ; j++)
 C[(N * i) + j] = (float) i ;

 /* Similar code to fill in other

matrix arrays */

 sgemm_spu(M, N, K, A, B, C) ;
 return 0;
}

© Copyright IBM Corp. 2007 – DRAFT 25

ssyrk_64x64

Description
This BLAS 3 routine multiplies matrix, A with its transpose AT and adds the
result to the resultant matrix C, after suitable scaling.

 The following operation is performed:

where only the lower triangular elements of C matrix are updated (the remaining
elements remain unchanged).

The matrices must be 16-byte aligned and stored in row major order. Unlike the
equivalent PPE API, this routine supports only SP version (ssyrk). Also, the
matrices must be of size 64x64.

Syntax
 void ssyrk_64x64(float *blkA, float *blkC, float *Alpha)

Parameters
 blkA Pointer to input matrix A
 blkC Pointer to input matrix C; This matrix is updated with

result
 Alpha Pointer to scalar value with which Matrix A is scaled.

Example
#define MY_M 64
#define MY_N 64

float myA[MY_M * MY_N] __attribute__((aligned (16)));
float myC[MY_M * MY_M] __attribute__((aligned (16)));

int main()
{
 int i,j ;
 float alpha = 2.0;

 for(i = 0 ; i < MY_M ; i++)
 for(j = 0; j < MY_N ; j++)
 myA[(MY_N * i) + j] = (float)i ;

 for(i = 0 ; i < MY_M ; i++)
 for(j = 0 ; j < MY_M ; j++)
 myC[(MY_M * i) + j] = (float)i ;

 ssyrk_64x64(myA, myC , &alpha) ;

 return 0;
}

© Copyright IBM Corp. 2007 – DRAFT 26

strsm_spu / dtrsm_spu

Description
This BLAS 3 routine solves a system of equations involving a triangular matrix
with multiple right hand sides. The following equation is solved and the result is
updated in matrix B:

 BAX =
where A is lower triangular n x n matrix and B is a n x m regular matrix. This
routine has certain limitations in the values supported for matrix sizes and
alignment of the matrix. n must be a multiple of 4 for SP and 2 for DP. m must be
a multiple of 8 for SP and 4 for DP. Matrices A and B must be aligned at a 16
byte boundary and must be stored in row-major.

Syntax
void strsm_spu (int m, int n, float *a, float *b)

void dtrsm_spu (int m, int n, double *a, double *b)

Parameters
 m Integer specifying number of columns of matrix B.
 n Integer specifying number of rows of matrix B.
 a Pointer to matrix A
 b Pointer to matrix B

Example
#define MY_M 32
#define MY_N 32

float myA[MY_N * MY_N] __attribute__((aligned (16))
) ;
float myB[MY_N * MY_M] __attribute__((aligned (16))
) ;

int main()
{
 int i,j,k ;

 for(i = 0 ; i < MY_N ; i++)
 {
 for(j = 0; j <= i ; j++)
 myA[(MY_N * i) + j] = (float)(i + 1) ;
 for(j = i+1; j < MY_N ; j++)
 myA[(MY_N * i) + j] = 0 ;
 }

 for(i = 0 ; i < MY_N ; i++)

© Copyright IBM Corp. 2007 – DRAFT 27

 for(j = 0 ; j < MY_M ; j++)
 myB[(MY_M * i) + j] =
 (float)(i+1)*(j +1);

 strsm_spu(MY_M, MY_N, myA, myB) ;

 return 0;

}

See Also
strsm_64x64

© Copyright IBM Corp. 2007 – DRAFT 28

strsm_64x64

Description
This BLAS 3 routine solves a system of equations involving a triangular matrix
with multiple right hand sides. The following equation is solved and the result is
updated in matrix B:

 BAX =
where A is lower triangular 64 x 64 matrix and B is a 64 x 64 regular matrix. This
routine is similar in operation to strsm_spu but is designed specifically for matrix
size of 64x64. Hence better performance is got for 64x64 matrices when this
routine is used rather than the more generic strsm_spu. Matrices A and B must be
aligned at a 16 byte boundary and must be stored in row-major.

Syntax
void strsm_64x64 (float *a, float *b)

Parameters
 a Pointer to matrix A
 b Pointer to matrix B

Example
#define MY_M 64
#define MY_N 64

float myA[MY_N * MY_N] __attribute__((aligned (16))
) ;
float myB[MY_N * MY_M] __attribute__((aligned (16))
) ;

int main()
{
 int i,j,k ;

 for(i = 0 ; i < MY_N ; i++)
 {
 for(j = 0; j <= i ; j++)
 myA[(MY_N * i) + j] = (float)(i + 1) ;
 for(j = i+1; j < MY_N ; j++)
 myA[(MY_N * i) + j] = 0 ;
 }

 for(i = 0 ; i < MY_N ; i++)
 for(j = 0 ; j < MY_M ; j++)
 myB[(MY_M * i) + j] =
 (float)(i+1)*(j +1);

© Copyright IBM Corp. 2007 – DRAFT 29

 strsm_64x64(myA, myB) ;

 return 0;

}

See Also
strsm_spu

© Copyright IBM Corp. 2007 – DRAFT 30

Additional APIs
The default SPE and memory management mechanism in the BLAS library can
be partially customized by the use of environment variables as discussed
previously. However for more control over the use of available SPE resources and
memory allocation/de-allocation strategy, an application can design its own
mechanism for managing available SPE resources and allocating memory to be
used by BLAS routines in the library.

The library provides some additional APIs that can be used to customize the
library. These additional APIs can be used for the registration of custom SPE and
memory management callbacks. The additional APIs can be divided into two
parts: SPE management API for customizing the use of SPE resources and
Memory management API for customizing Memory allocation/de-allocation
mechanism used in the BLAS library.

Data types and prototypes of functions provided by these APIs are listed in the
blas_callback.h file, which is installed with the blas-devel RPM.

SPE management API
This API can be used to register user-defined SPE management routines.
Registered routines are then used inside the BLAS library for creating SPE
threads, loading and running SPE programs, destroying SPE threads etc. These
registered routines override the default SPE management mechanism inside the
BLAS library.

The following data types and functions are provided as part of this API:

spes_info_handle_t

spe_info_handle_t
These two data structures are a simple typedef to void.

spes_info_handle_t is used as a handle to access information about all the SPEs
that will be used by BLAS library. spe_info_handle_t is used as a handle to
access information about a single SPE in the pool of multiple SPEs that is used by
BLAS library.

The user provides a pointer to spes_info_handle_t when registering SPE callback
routines. spes_info_handle_t* is used as a pointer to user-defined data structure
that contains information about all the SPEs to be used in BLAS library. The
BLAS library passes the provided spes_info_handle_t* to registered callback
routines.

Example

For example a user can define following structure to store the information about
the SPEs:

© Copyright IBM Corp. 2007 – DRAFT 31

/* Data structure to store information about a single SPE */
typedef struct {
 spe_context_ptr_t spe_ctxt ;
 pthread_t pts ;
 spe_program_handle_t *spe_ph ;
 unsigned int entry ;
 unsigned int runflags ;
 void *argp ;
 void *envp ;
} blas_spe_info ;

/* Data structure to store information about multiple SPEs */
typedef struct {
 int num_spes ;
 blas_spe_info spe[16] ;
} blas_spes_info ;

/* Define a variable that will store information about all
 the SPEs to be used in BLAS library */
blas_spes_info si_user;

/* Get a pointer of type spes_info_handle_t* that can be
 used to access information about all the SPEs */
spes_info_handle_t *spes_info = (spes_info_handle_t*)(&si_user);

/* Using spes_info, get a pointer of type spe_info_handle_t*
 that can be used to access information about a single SPE
 with index spe_index in the list of all SPEs */
spe_info_handle_t *single_spe_info =
 (spe_info_handle_t*)(&spes_info->spe[spe_index]);

/* spes_info will be passed to BLAS library when registering
 SPE callback routines */
blas_register_spe(spes_info, <SPE callback routines>);

BLAS_NUM_SPES_CB
This is a callback function prototype that is registered to obtain the maximum
number of SPEs to be used in the BLAS library.

Syntax
int (*BLAS_NUM_SPES_CB) (spes_info_handle_t *spes_info);

Parameters
spes_info A pointer passed to the BLAS library when this callback

is registered. The BLAS library passes this pointer to the
callback while invoking it.

Return Values
int Number of SPEs that will be used in the BLAS library.

© Copyright IBM Corp. 2007 – DRAFT 32

Example

int get_num_spes_user(spes_info_handle_t* spes_ptr)
{
 blas_spes_info *spes = (blas_spes_info*) spes_ptr;
 return spes->num_spes;
}

/* Register user-defined callback function */
blas_register_spe(spes_info /* spes_info_handle_t* */,
 get_num_spes_user,
 <Other SPE callback routines>);

BLAS_GET_SPE_INFO_CB
This is a callback function prototype that is registered to obtain the information
about a single SPE from the pool of SPEs used inside the BLAS library.

This single SPE information is used when loading and running the SPE program
to this SPE.

Syntax
spe_info_handle_t*

(*BLAS_GET_SPE_INFO_CB) (spes_info_handle_t *spes_info, int index);

Parameters
spes_info A pointer passed to the BLAS library when this callback

is registered. The BLAS library passes this pointer to the
callback while invoking it. This pointer points to private
user data containing information about all the SPEs that
user wants to use in the BLAS library.

index Index of the SPE that will identify a single SPE in the
data pointed to by spes_info. The BLAS library will first
invoke the registered callback routine of type
BLAS_NUM_SPES_CB to get the total number of SPEs
(num_spes) and then pass index in the range of 0 to
(num_spes-1) to this callback.

Return Values
spe_info_handle_t* Pointer to a private user data containing information

about a single SPE.

Example
spe_info_handle_t*
get_spe_info_user(spes_info_handle_t *spes_ptr, int index)
{
 blas_spes_info *spes = (blas_spes_info*) spes_ptr;
 return (spe_info_handle_t*) (&spes->spe[index]);
}

© Copyright IBM Corp. 2007 – DRAFT 33

/* Register user-defined callback function */
blas_register_spe(spes_info /* spes_info_handle_t* */,
 get_spe_info_user,
 <Other SPE callback routines>);

BLAS_SPE_SCHEDULE_CB
This is a callback function prototype that is registered to schedule a given SPE
main program to be loaded and run on a single SPE.

Syntax
void

(*BLAS_SPE_SCHEDULE_CB) (spe_info_handle_t *single_spe_info,

 spe_program_handle_t *spe_program,

 unsigned int runflags,

 void *argp, void *envp);

Parameters
single_spe_info Pointer to private user data containing information about

a single SPE. The BLAS library obtains this pointer
internally by invoking the registered callback routine of
type BLAS_GET_SPE_INFO_CB. The returned pointer
is then passed to this callback.

spe_program A valid address of a mapped SPE main program. SPE
program pointed to by spe_program is loaded to the
local store of the SPE identified by ‘single_spe_info’

runflags A bitmask that can be used to request certain specific
behavior while executing the spe_program on the SPE
identified by single_spe_info. Zero is passed for this
currently.

argp A pointer to BLAS routine specific data.
envp Pointer to environment specific data of SPE program.

NULL is passed for this currently.

Example

void spe_schedule_user(spe_info_handle_t* spe_ptr,
 spe_program_handle_t *spe_ph,
 unsigned int runflags,

void *argp, void *envp)
{
 blas_spe_info *spe = (blas_spe_info*) spe_ptr;

 /* Code to launch SPEs with specified parameters */
}

© Copyright IBM Corp. 2007 – DRAFT 34

/* Register user-defined callback function */
blas_register_spe(spes_info /* spes_info_handle_t* */,
 spe_schedule_user,

<Other SPE callback routines>);

BLAS_SPE_WAIT_CB
This is a callback function prototype that is registered to wait for the completion
of a running SPE program on a single SPE, i.e., until the SPE is finished
executing the SPE program and is available for reuse.

For a particular SPE, the BLAS routine first invokes callback of type
BLAS_SPE_SCHEDULE_CB for scheduling an SPE program to be loaded and
run, followed by invoking callback of type BLAS_SPE_WAIT_CB to wait until
the SPE is done.

Syntax
 void (*BLAS_SPE_WAIT_CB) (spe_info_handle_t *single_spe_info);

Parameters
single_spe_info Pointer to a private user data containing information

about a single SPE. The BLAS library obtains this
pointer internally by invoking the registered callback
routine of type BLAS_GET_SPE_INFO_CB. The
returned pointer is then passed to this callback.

Example
void spe_wait_job_user(spe_info_handle_t* spe_ptr)
{
 blas_spe_info *spe = (blas_spe_info*) spe_ptr;

 /* Code to wait until completion of SPE program
 is indicated.
 */
}

/* Register user-defined callback function */
blas_register_spe(spes_info /* spes_info_handle_t* */,
 spe_wait_job_user,
 <Other SPE callback routines>);

BLAS_REGISTER_SPE

Description
This function registers the user-specified SPE callback routines to be used by
BLAS library for managing SPEs instead of using default SPE management
routines.

© Copyright IBM Corp. 2007 – DRAFT 35

None of the input parameters to this function can be NULL. If any of the input
parameters is NULL, the function will simply return without performing any
registration. A warning is displayed to standard output in this case.

Call this function only once to register the custom SPE callback routines. In case
SPE callback registration has already been done before, the function terminates
the application by calling abort().

Syntax
void

blas_register_spe(spes_info_handle_t *spes_info,

 BLAS_SPE_SCHEDULE_CB spe_schedule_function,

 BLAS_SPE_WAIT_CB spe_wait_function,

 BLAS_NUM_SPES_CB num_spes_function,

 BLAS_GET_SPE_INFO_CB get_spe_info_function);

Parameters
spes_info A pointer to user-defined data which contains

information about all the SPEs to be used in the BLAS
library. The BLAS library passes this pointer to
registered callback routines while invoking these
routines.

spe_schedule_function A pointer to user-defined function for scheduling an
SPE program to be loaded and run on a single SPE.

spe_wait_function A pointer to user-defined function to be used for
waiting on a single SPE to finish execution.

num_spes_function A pointer to user-defined function to be used for
obtaining number of SPEs that is used.

get_spe_info_function A pointer to user-defined function to be used for
getting the information about a single SPE.

Example
For an example of this function, see the sample application blas-
examples/blas_thread/, contained in the BLAS examples compressed file
(blas.tar), which is installed with the blas-devel RPM. The following code
outlines the basic structure of this sample application:

#include <blas.h>
#include <blas_callback.h>

typedef struct {
 spe_context_ptr_t spe_ctxt ;
 pthread_t pts ;
 pthread_mutex_t m ;
 pthread_cond_t c ;

© Copyright IBM Corp. 2007 – DRAFT 36

 spe_program_handle_t *spe_ph ;
 unsigned int entry ;
 unsigned int runflags ;
 void *argp ;
 void *envp ;
 spe_stop_info_t *stopinfo ;
 unsigned int scheduled ;
 unsigned int processed ;
} blas_spe_info ;

typedef struct {
 int num_spes ;
 blas_spe_info spe[16] ;
} blas_spes_info ;

blas_spes_info si_user;

int init_spes_user()
{
 int i ;
 void *blas_thread(void *) ;
 char *ns = getenv("BLAS_NUMSPES") ;
 si_user.num_spes = (ns) ? atoi(ns) : MAX_SPES ;

 for (i = 0 ; i < si_user.num_spes ; i++)
 {
 si_user.spe[i].spe_ctxt = spe_context_create(

0, NULL) ;

 /* Code to initialize other fields of
 si_user.spe[i]
 */

 pthread_create(&si_user.spe[i].pts, NULL,

blas_thread, &si_user.spe[i]) ;
 }

 return 0 ;
}

int cleanup_spes_user()
{
 int i ;
 for (i = 0 ; i < si_user.num_spes ; i++)
 {
 /* Cleanup code */
 pthread_join(si_user.spe[i].pts, NULL) ;
 /* Cleanup code */
 }

 return 0 ;
}

spes_info_handle_t* get_spes_info_user()
{
 return (spes_info_handle_t*) (&si_user) ;
}

spe_info_handle_t*
get_spe_info_user(spes_info_handle_t *spes_ptr, int index)
{
 blas_spes_info *spes = (blas_spes_info*) spes_ptr;
 return (spe_info_handle_t*) (&spes->spe[index]);
}

© Copyright IBM Corp. 2007 – DRAFT 37

int get_num_spes_user(spes_info_handle_t* spes_ptr)
{
 blas_spes_info *spes = (blas_spes_info*) spes_ptr;
 return spes->num_spes;
}

void *blas_thread(void *spe_ptr)
{
 blas_spe_info *spe = (blas_spe_info *) spe_ptr ;
 while(1)
 {
 /* Wait on condition until some SPE program
 is available for running.
 */

 /* Come out of the infinite while loop
 and exit if NULL spe program is passed.
 */

 spe_program_load(spe->spe_ctxt, spe->spe_ph) ;
 spe_context_run(spe->spe_ctxt, &spe->entry,

 spe->runflags,
 spe->argp, spe->envp, NULL) ;

 /* Code to indicate the completion of SPE
 program.

 */
 }

 return NULL ;
}

void spe_wait_job_user(spe_info_handle_t* spe_ptr)
{
 blas_spe_info *spe = (blas_spe_info*) spe_ptr;

 /* Code to wait until completion of SPE program
 is indicated.
 */
}

void spe_schedule_user(spe_info_handle_t* spe_ptr,
 spe_program_handle_t *spe_ph,
 unsigned int runflags,

void *argp, void *envp)
{
 blas_spe_info *spe = (blas_spe_info*) spe_ptr;

 /* Some code here */

 spe->entry = SPE_DEFAULT_ENTRY ;
 spe->spe_ph = spe_ph ;
 spe->runflags = runflags ;
 spe->argp = argp ;
 spe->envp = envp ;

 /* Code to Signal SPE thread indicating that an SPE
 program is available for running.
 */
}

int main()
{

© Copyright IBM Corp. 2007 – DRAFT 38

/* Some code here */
blas_register_spe(get_spes_info_user(), spe_schedule_user,

 spe_wait_job_user, get_num_spes_user,
 get_spe_info_user);

 init_spes_user();

 /* Invoke blas routines */
 scopy_(…);
 sgemm_(…);
 …

 cleanup_spes_user();

 return 0;
}

See Also
See example code in Memory management API section.

SPE management with multi-threaded applications
The ability to register and use application-defined SPE management functions
inside the BLAS library becomes particularly useful with multi-threaded BLAS
applications where multiple application threads invoke BLAS routines. With the
help of custom SPE management routines, the multi-threaded application can
easily distribute SPE resources available on the system to multiple application
threads in the desired manner.

An example of a multi-threaded BLAS application registering its own SPE
management functions is available in the blas-examples/blas_thread/ directory
contained in the BLAS examples compressed file (blas.tar), which is installed
with the blas-devel RPM.

Memory management API
This API can be used to register user-specified custom memory management
routines. Registered routines are then used inside the BLAS library for
allocating/de-allocating memory overriding default memory management
routines.

The following functions are provided with this API:

BLAS_Malloc_CB
This is a callback function prototype that can be registered to allocate aligned
memory space.

Syntax
void* (*BLAS_Malloc_CB) (size_t size);

© Copyright IBM Corp. 2007 – DRAFT 39

Parameters
size Memory size in bytes to be allocated.

Return Values
void* Pointer to allocated aligned memory. Allocated memory space

must be aligned to 128-byte boundary. This pointer must be
NULL if request fails.

BLAS_Free_CB
This is a callback function prototype that can be registered to de-allocate memory.

Syntax
void (*BLAS_Free_CB) (void* ptr);

Parameters
ptr Pointer to a memory space that needs to be released. This

pointer is returned by a previous call to memory
allocation callback routine of type BLAS_Malloc_CB.

BLAS_REGISTER_MEM

Description
This function registers the user-specified Memory callback routines to be used by
the BLAS library for allocating/de-allocating memory instead of using the default
memory management routines.

Syntax
void blas_register_mem(BLAS_Malloc_CB malloc_function,

 BLAS_Free_CB free_function);

Parameters
malloc_function A pointer to user-defined function used to allocate 128-

byte aligned memory.
free_function A pointer to user-defined function used to de-allocate

memory.

Example
#include <stddef.h>

#include <stdint.h>

#include <blas.h>

© Copyright IBM Corp. 2007 – DRAFT 40

#include <blas_callback.h>

/* For allocating aligned memory from heap */

#include <malloc_align.h>

#include <free_align.h>

/* User defined memory allocation routines. These routines

 MUST return 128-byte aligned memory.

*/

void* malloc_user(size_t size)

{

 return _malloc_align(size, 7);

}

void free_user(void *ptr)

{

 _free_align(ptr);

}

int main()

{

 /* Some code here */

 blas_register_mem(malloc_user, free_user);

 /* Invoke blas routines.

 BLAS level 3 routines like sgemm will now use registered

 routines malloc_user/free_user for allocation/de-

 allocation of 128-byte aligned memory

 */

 sgemm_(…);

 sgemv_(…);

 …

 return 0;

}

See Also
See the sample application blas-examples/blas_thread/ contained in the BLAS
examples compressed file (blas.tar), which is installed with the blas-devel RPM.

© Copyright IBM Corp. 2007 – DRAFT 41

Part V. Appendixes

© Copyright IBM Corp. 2007 – DRAFT 42

Appendix A. Accessibility

Accessibility features help users who have a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

• Keyboard-only operation
• Interfaces that are commonly used by screen readers
• Keys that are tactilely discernible and do not activate just by touching them
• Industry-standard devices for ports and connectors
• The attachment of alternative input and output devices

IBM® and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able/ for more
information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2007 – DRAFT 43

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you. This information could
include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

© Copyright IBM Corp. 2007 – DRAFT 44

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee. The licensed program described in this
document and all licensed material available for it are provided by IBM under terms
of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Trademarks

IBM and the IBM logo are registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

PowerPC Architecture is a trademark of IBM Corporation in the United States, other
countries, or both.

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer
Entertainment, Inc., in the United States, other countries, or both and is used under
license therefrom

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2007 – DRAFT 45

