
Software Development Kit for Multicore Acceleration

Version 3.0

Data Communication and Synchronization

for Cell

Programmer’s Guide and API Reference

Version 1.0

DRAFT

SC33-8407-00

���

Software Development Kit for Multicore Acceleration

Version 3.0

Data Communication and Synchronization

for Cell

Programmer’s Guide and API Reference

Version 1.0

DRAFT

SC33-8407-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 93.

Edition notice

This edition applies to version 1.0, release 1.0 of the Data Communication and Synchronization Programmer’s Guide and

API Reference and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2007 - DRAFT. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this publication v

How to send your comments v

Chapter 1. Overview 1

Chapter 2. Installing and configuring

DaCS 3

Installation 3

Chapter 3. Programming with DaCS . . . 5

DaCS API functions 5

Building a DaCS application 6

Chapter 4. Initializing and closing down

the DaCS library 7

dacs_runtime_init 8

dacs_runtime_exit 9

Chapter 5. Reservation services 11

dacs_get_num_ avail_children 11

dacs_reserve_children 12

dacs_release_de_list 13

Chapter 6. Process management . . . 15

dacs_de_start 15

dacs_num_processes_supported 17

dacs_num_processes_running 18

dacs_de_wait 19

dacs_de_test 20

Chapter 7. Group functions 21

Definitions 21

Group design 21

Group usage scenario 22

Initialization 22

Operation 22

Termination 22

Group owner functions 23

dacs_group_init 23

dacs_group_add_member 24

dacs_group_close 25

dacs_group_destroy 26

Group member functions 26

dacs_group_accept 27

dacs_group_leave 28

Process synchronization 28

dacs_barrier_wait 29

Chapter 8. Data communication 31

Remote Direct Memory Access (rDMA) 31

dacs_remote_mem_create 32

dacs_remote_mem_share 33

dacs_remote_mem_accept 34

dacs_remote_mem_release 35

dacs_remote_mem_destroy 36

dacs_remote_mem_query 37

rDMA block transfers 37

dacs_put 38

dacs_get 40

rDMA list transfers 41

dacs_put_list 42

dacs_get_list 45

Message passing 47

dacs_send 48

dacs_recv 49

Mailboxes 50

dacs_mailbox_write 51

dacs_mailbox_read 52

dacs_mailbox_test 53

Chapter 9. Wait identifier management

services 55

dacs_wid_reserve 55

dacs_wid_release 56

Chapter 10. Transfer completion 57

dacs_test 57

dacs_wait 58

Chapter 11. Locking Primitives 59

dacs_mutex_init 60

dacs_mutex_share 61

dacs_mutex_accept 62

dacs_mutex_lock 63

dacs_mutex_try_lock 64

dacs_mutex_unlock 65

dacs_mutex_release 66

dacs_mutex_destroy 67

Chapter 12. Error handling 69

User error handler example 69

dacs_errhandler_reg 71

dacs_strerror 72

dacs_error_num 73

dacs_error_code 74

dacs_error_str 75

dacs_error_de 76

dacs_error_pid 77

Appendix A. Data types 79

Appendix B. DaCS DE types 81

Appendix C. Performance and debug

trace 83

Trace control 83

© Copyright IBM Corp. 2007 - DRAFT iii

Appendix D. DaCS trace events 85

DaCS API hooks 85

DaCS performance hooks 86

Appendix E. Error codes 89

Appendix F. Accessibility features . . . 91

Notices 93

Trademarks 95

Terms and conditions 96

Related documentation 97

Glossary 99

Index 101

iv DaCS for Cell Programmer’s Guide and API Reference - DRAFT

About this publication

This programmer’s guide provides detailed information regarding the use of the

Data Communication and Synchronization library APIs. It contains an overview of

the Data Communication and Synchronization library, detailed reference

information about the APIs, and usage information for programming with the

APIs.

For information about the accessibility features of this product, see Appendix F,

“Accessibility features,” on page 91.

Who should use this book

This book is intended for use by accelerated library developers and compute

kernel developers.

Related information

See “Related documentation” on page 97.

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this publication, send your

comments using Resource Link™ at http://www.ibm.com/servers/resourcelink.

Click Feedback on the navigation pane. Be sure to include the name of the book,

the form number of the book, and the specific location of the text you are

commenting on (for example, a page number or table number).

© Copyright IBM Corp. 2007 - DRAFT v

http://www.ibm.com/servers/resourcelink

vi DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 1. Overview

The Data Communication and Synchronization (DaCS) library provides a set of

services which ease the development of applications and application frameworks

in a heterogeneous multi-tiered system (for example a hierarchical memory

system). The DaCS services are implemented as a set of APIs providing an

architecturally neutral layer for application developers on a variety of multi-core

systems. One of the key abstractions that further differentiates DaCS from other

programming frameworks is a hierarchical topology of processing elements, each

referred to as a DaCS Element (DE). Within the hierarchy each DE can serve one or

both of the following roles:

 A general purpose processing element, acting as a supervisor, control or master

processor. This type of element usually runs a full operating system and

manages jobs running on other DEs. This is referred to as a Host Element (HE).

 A general or special purpose processing element running tasks assigned by an

HE. This is referred to as an Accelerator Element (AE).

The DaCS services provide the functionality needed to perform these roles and can

be divided into the following categories:

Resource reservation

The resource reservation services allow an HE to reserve AEs below itself

in the hierarchy. The APIs abstract the specifics of the reservation system

(O/S, middleware, etc.) to allocate resources for an HE. Once reserved, the

AEs can be used by the HE to execute tasks for accelerated applications.

Process management

The process management services provide the means for an HE to execute

and manage accelerated applications on AEs, including, but not limited to,

remote process launch, and remote error notification.

Group management

The group management services provide the means to designate dynamic

groups of processes for participation in collective operations. In SDK 3.0

this is limited to process execution synchronization (barrier).

Remote memory

The remote memory services provide the means to create, share, transfer

data to, and transfer data from a remote memory segment. The data

transfers are performed using a one-sided put/get remote direct memory

access (rDMA) model. These services also provide the ability to

scatter/gather lists of data, and provide optional enforcement of ordering

for the data transfers.

Message passing

The message passing services provide the means for passing messages

asynchronously, using a two-sided send/receive model. Messages are

passed point-to-point from one process to another.

Mailboxes

The mailbox services provide a simple interface for synchronous transfer of

small (32-bit) messages from one process to another.

© Copyright IBM Corp. 2007 - DRAFT 1

Process Synchronization

The process synchronization services provide the means to coordinate or

synchronize process execution. In SDK 3.0 this is limited to the barrier

synchronization primitive.

Data Synchronization

The data synchronization services provide the means to synchronize and

serialize data access. These include management of wait identifiers for

synchronizing data transfers, as well as mutex primitives for data

serialization.

Error Handling

The error handling services enable the user to register error handlers and

gather error information.

2 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 2. Installing and configuring DaCS

The DaCS library should be installed as a component of the Cell BE Software

Development Kit. Once it is installed no further configuration is necessary.

Installation

Several packages are available that provide the means to develop, deploy and

debug DaCS applications on your Cell BE system. The following table shows the

package names with a short description:

 Table 1.

Package Description

dacs-3.0.#-#.ppc64.rpm DaCS Runtime - Contains the optimized

PPU shared library.

dacs-3.0.#-#.src.rpm DaCS Source - Source code for the DaCS

libraries.

dacs-devel-3.0.#-#.ppc64.rpm DaCS Development - Contains the header

files, optimized static PPU and SPU libraries,

and debug libraries (PPU and SPU, static

and shared).

dacs-cross-devel-3.0.#-#.noarch.rpm DaCS Cross Development - Contains the

header files and libraries needed for

cross-architecture development.

dacs-debuginfo-3.0#-#.ppc64.rpm DaCS Debug Symbols - Contains the

debugging symbols for the DaCS runtime

library.

dacs-trace-3.0.#-#.ppc64.rpm DaCS Trace Enabled Runtime - Contains the

trace enabled PPU shared library.

dacs-trace-debuginfo-3.0.#-#.ppc64.rpm DaCS Trace Debug Symbols - Contains the

debugging symbols for the DaCS

trace-enabled runtime library.

dacs-trace-devel-3.0.#-#.ppc64.rpm DaCS Trace Enabled Development -

Contains the header files and trace-enabled

PPU and SPU static libraries.

dacsman-3.#-#.noarch.rpm DaCS man pages.

See the SDK 3.0 Installation Guide for detailed installation and configuration

information.

© Copyright IBM Corp. 2007 - DRAFT 3

4 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 3. Programming with DaCS

How to compile and build applications which use DaCS

Process Management Model

When working with the host and accelerators there has to be a way to uniquely

identify the participants that are communicating. From an architectural perspective,

each accelerator could have multiple processes simultaneously running, so it is not

enough simply to identify the accelerator. Instead the unit of execution on the

accelerator (the DaCS Process) must be identified using its DaCS Element Id (DE

id) and its Process Id (Pid). The DE Id is retrieved when the accelerator is reserved

(using dacs_reserve_children()) and the Pid when the process is started (using

dacs_de_start()). Since the parent is not reserved and a process is not started on it

two constants are provided to identify the parent DACS_DE_PARENT and

DACS_PID_PARENT. Similarly, to identifying the calling process itself, the constants

DACS_DE_SELF and DACS_PID_SELF are provided.

Resource Sharing Model

The APIs supporting the locking primitives, remote memory access, and groups

follow a consistent pattern of creation, sharing, usage and destruction:

v Creation: An object is created which will be shared with other DEs, for example

with dacs_remote_mem_create().

v Sharing: The object created is then shared by linked share and accept calls. The

creator shares the item (for instance with dacs_remote_mem_share()), and the DE

it is shared with accepts it (in this example with dacs_remote_mem_accept()).

These calls must be paired. When one is invoked it waits for the other to occur.

This is done for each DE the share is actioned with.

v Usage: This may require closure (such as in the case of groups) or it the object

may immediately be available for use. For instance remote memory can

immediately be used for put and get.

v Destruction: The DEs that have accepted an item can release the item when they

are done with it (for example by calling dacs_remote_mem_release()). The

release does not block, but notifies the creator that it is not longer being used

and cleans up any local storage. The creator does a destroy (in this case

dacs_remote_mem_destroy()) which will wait for all of the DEs it has shared

with to release the item, and then destroy the shared item.

v

DaCS API functions

The DaCS library API services are provided as functions in the C language. The

protocols and constants required are made available to the compiler by including

the DaCS header file dacs.h as:

#include <dacs.h>

In general the return value from these functions is an error code (see Appendix E,

“Error codes,” on page 89). Data is returned within parameters passed to the

functions.

© Copyright IBM Corp. 2007 - DRAFT 5

Note: Implementations may provide options, restrictions and error codes that are

not specified here.

Note: When more than one error condition is present it is not guaranteed which

one will be reported.

To make these services accessible to the runtime code each process must create a

DaCS environment. This is done by calling the special initialization service

dacs_runtime_init(). When this service returns the environment is set up so that

all other DaCS function calls can be invoked.

When the DaCS environment is no longer required the process must call

dacs_runtime_exit() to free all resources used by the environment.

Building a DaCS application

Three versions of the DaCS libraries are provided with the DaCS packages:

optimized, debug and traced. The optimized libraries have minimal error checking

and are intended for production use. The debug libraries have much more error

checking than the optimized libraries and are intended to be used during

application development. The traced libraries are the optimized libraries with

performance and debug trace hooks in them. These are intended to be used to

debug functional and performance problems that might be encountered. The traced

libraries use the interfaces provided by the Performance Debug Tool (PDT) and

require that this tool be installed. See Appendix C, “Performance and debug trace,”

on page 83 for more information on configuring and using traced libraries.

Both static and shared libraries are provided for the PPU but only static libraries

are provided for the SPU. The desired library is selected by linking to the chosen

library in the appropriate path. The static library is named libdacs.a, and the

shared library is libdacs.so. The locations of these are:

 Table 2.

Description PPU Library Path SPU Library Path

Optimized /usr/lib64 /usr/spu/lib

Debug /usr/lib64/dacs/debug /usr/spu/lib/dacs/debug

Traced /usr/lib64/dacs/trace /usr/spu/lib/dacs/trace

6 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 4. Initializing and closing down the DaCS library

The dacs_runtime_init and dacs_runtime_exit services initialize and close down

access to the DaCS library.

Call dacs_runtime_init() before you use any other DaCS services, and do not use

any DaCS services after you have called dacs_runtime_exit().

Calling dacs_runtime_exit() on an AE causes the communications between the AE

and HE to be stopped. Calling dacs_runtime_init() after dacs_runtime_exit()

will fail because once communications are stopped they can only be initiated by

the HE calling dacs_de_start() to start a new process.

© Copyright IBM Corp. 2007 - DRAFT 7

dacs_runtime_init

NAME

dacs_runtime_init - Initialize all runtime services for DaCS.

SYNOPSIS

DACS_ERR_T dacs_runtime_init (void *, void *)

 Call parameters

All parameters must be set to NULL for SDK 3.0. Passing in a value other than NULL will

result in the error DACS_ERR_INVALID_ADDR.

DESCRIPTION

The dacs_runtime_init service initializes all runtime services for DaCS.

Note: This service must be called for every process before any other DaCS services

can be used. All other DaCS services will return DACS_ERR_NOT_INITIALIZED if

called before this service.
A host process may call this service more than once, provided there is a call to

dacs_runtime_exit() in between. An accelerator process may only call this service

once, even if there is an intervening call to dacs_runtime_exit().

RETURN VALUE

The dacs_runtime_init service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: invalid pointer.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_INITIALIZED: DaCS is already initialized.

SEE ALSO

dacs_runtime_exit(3)

8 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_runtime_exit

NAME

dacs_runtime_exit - Close down all runtime services for DaCS.

SYNOPSIS

DACS_ERR_T dacs_runtime_exit (void)

 Parameters

None

DESCRIPTION

The dacs_runtime_exit service closes down and destroys all runtime services,

processes, transfers, and memory used by DACS. After calling this service, no

other DaCS services can be used until another dacs_runtime_init() is performed.

Calling dacs_runtime_init() after a dacs_runtime_exit() is only support for a

host process.

RETURN VALUE

The dacs_runtime_exit service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_DACSD_FAILURE: unable to communicate with DaCSd.

SEE ALSO

dacs_runtime_init(3)

Chapter 4. Initializing and closing down the DaCS library 9

10 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 5. Reservation services

In the DaCS environment, hosts and accelerators have a hierarchical parent-child

relationship. This hierarchy forms a logical topology of parents, children, and

peers. In SDK 3.0 only child-related APIs are defined and supported.

dacs_get_num_ avail_children

NAME

dacs_get_num_ avail_children - Return the number of children of the specified

type available to be reserved.

SYNOPSIS

DACS_ERR_T dacs_get_num_ avail_children (DACS_DE_TYPE_T type, uint32_t

*num_children)

 Call parameter

type The type of children to report. In SDK 3.0 this must be:

v DACS_DE_SPE.

 Return parameter

*num_children The number of available children. This may be zero if either no

children of the requested type exist, or children exist but

cannot be reserved.

DESCRIPTION

The dacs_get_num_avail_children service returns the number of children of the

caller of the specified type that are available for reservation.

Note: This service returns the number of children that were available at the time

of the call. The actual number can change any time after the call. The number of

children is only returned upon success.

RETURN VALUE

The dacs_get_num_avail_children service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: invalid pointer.

v DACS_ERR_INVALID_ATTR: invalid flag or enumerated constant.

SEE ALSO

dacs_reserve_children(3), dacs_release_delist(3)

© Copyright IBM Corp. 2007 - DRAFT 11

dacs_reserve_children

NAME

dacs_reserve_children - Reserve children of a specified type.

SYNOPSIS

DACS_ERR_T dacs_reserve_children (DACS_DE_TYPE_T type, uint32_t

*num_children , de_id_t *de_list)

 Call parameters

type The type of children to report. In SDK 3.0 this must be:

v DACS_DE_SPE.

*num_children A pointer to the number of children requested.

 Return parameters

*num_children A pointer to the number of children actually reserved. This

may be less than or equal to the number requested.

*de_list A pointer to a location where the list of reserved children is

returned. The space for this list must be allocated by the caller

and must have enough room for num_children entries.

DESCRIPTION

The dacs_reserve_children service attempts to reserve the requested number of

children of the specified type. The actual number reserved may be less than or

equal to the number requested. The actual number and list of reserved children is

returned to the caller.

RETURN VALUE

The dacs_reserve_children service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ATTR: invalid flag or enumerated constant.

v DACS_ERR_INVALID_ADDR: invalid pointer.

v DACS_ERR_INVALID_SIZE: number of children requested must be greater than zero.

SEE ALSO

dacs_get_num_avail_children(3), dacs_release_delist(3)

12 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_release_de_list

NAME

dacs_release_de_list - Release the reservations for a list of DEs.

SYNOPSIS

DACS_ERR_T dacs_release_de_list (uint32_t num_des , de_id_t *de_list)

 Call parameters

num_des The number of DEs in the list.

*de_list A pointer to the list of DEs to release.

DESCRIPTION

The dacs_release_de_list service releases the reservation for the specified list of

DEs. On successful return all DEs in the list are released (made available). On

failure none of the DEs in the list are released.

RETURN VALUE

The dacs_release_de_list service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: invalid pointer.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_RESOURCE_BUSY: the resource is in use.

v DACS_ERR_INVALID_SIZE: invalid list size.

SEE ALSO

dacs_get_num_avail_children(3), dacs_reserve_children(3)

Chapter 5. Reservation services 13

14 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 6. Process management

This chapter describes the functions for starting, stopping and monitoring

processes on DEs.

dacs_de_start

NAME

dacs_de_start - Start a process on a DE.

SYNOPSIS

DACS_ERR_T dacs_de_start (de_id_t de, void *prog, char const **argv, char const

**envv, DACS_PROC_CREATION_FLAG_T creation_flags, dacs_process_id_t *pid)

 Call parameters

de The target DE where the program will execute.

*prog A pointer to the program text to execute. What this points to is

platform-dependent, and also dependent on the

creation_flags parameter.

**argv A pointer to an array of pointers to argument strings (the

argument list), terminated by a NULL pointer.

**envv A pointer to an array of pointers to environment variable

strings (the environment list), terminated by a NULL pointer.

creation_flags An implementation-specific flag that specifies how the

executable program is found. This can be any of:

v DACS_PROC_LOCAL_FILE: a fully qualified pathname,

v DACS_PROC_LOCAL_FILE_LIST: a list of fully qualified

pathnames,

v DACS_PROC_REMOTE_FILE: a fully qualified path on a remote

system, or

v DACS_PROC_EMBEDDED: the handle of an embedded executable

image.

 Return parameter

*pid A pointer to a location where the process id is stored on

successful return.

DESCRIPTION

The dacs_de_start service starts a process on the specified DE. The service can be

called several times to start one or more processes on the same DE. The number of

processes that can be started on a particular DE is platform and implementation

dependent.

RETURN VALUE

The dacs_de_start service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: a pointer is invalid.

© Copyright IBM Corp. 2007 - DRAFT 15

v DACS_ERR_INVALID_ATTR: a flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_PROHIBITED: the operation is prohibited by the implementation.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target DE.

v DACS_ERR_PROC_LIMIT: the maximum number of processes supported has been

reached.

v DACS_ERR_INVALID_PROG: the specified program could not be executed.

v DACS_ERR_INVALID_ARGV: argv is too large or invalid.

v DACS_ERR_INVALID_ENV: envv is too large or invalid.

SEE ALSO

dacs_num_processes_supported(3), dacs_num_processes_running(3),

dacs_de_wait(3), dacs_de_test(3)

16 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_num_processes_supported

NAME

dacs_num_processes_supported - Return the number of processes that can be

started on a DE.

SYNOPSIS

DACS_ERR_T dacs_num_processes_supported (de_id_t de, uint32_t

*num_processes)

 Call parameter

de The DE to query.

 Return parameter

*num_processes A pointer to a location where the maximum number of

processes that can be started on this DE is stored.

Note: In SDK 3.0 only one process is supported per DE.

DESCRIPTION

The dacs_num_processes_supported service returns the number of simultaneous

processes that can be started on the specified DE. The target DE must have been

reserved by the caller.

RETURN VALUE

The dacs_num_processes_supported service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target de.

SEE ALSO

dacs_de_start(3), dacs_num_processes_running(3), dacs_de_wait(3), dacs_de_test(3)

Chapter 6. Process management 17

dacs_num_processes_running

NAME

dacs_num_processes_running - Return the number of processes currently running

on a DE.

SYNOPSIS

DACS_ERR_T dacs_num_processes_running (de_id_t de, uint32_t *num_processes

)

 Call parameter

de The DE to query.

 Return parameter

*num_processes A pointer to a location where the number of processes

currently running on the target DE is stored.

DESCRIPTION

The dacs_num_processes_running service returns the number of processes currently

running on the specified DE. This includes all processes that have been started

(with dacs_de_start()) and have not yet had their exit status reaped (with

dacs_de_test() or dacs_de_wait()). The target DE must have been reserved by the

caller.

RETURN VALUE

The dacs_num_processes_running service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target de.

SEE ALSO

dacs_de_start(3), dacs_num_processes_supported(3), dacs_de_wait(3),

dacs_de_test(3)

18 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_de_wait

NAME

dacs_de_wait - Block the caller waiting for a process running on a DE to finish.

SYNOPSIS

DACS_ERR_T dacs_de_wait (de_id_t de, dacs_process_id_t pid, int32_t

*exit_status)

 Call parameters

de The target DE.

pid The target process.

 Return parameter

*exit_status A pointer to a location where the exit code is stored (if

DACS_STS_PROC_FINISHED or DACS_STS_PROC_FAILED) or the

signal number (if DACS_STS_PROC_ABORTED).

DESCRIPTION

The dacs_de_wait service returns the status of the target process, if it was

successful, or an error code.. If the process is running at the time of the call, the

call blocks until it finishes execution. If the process has finished execution at the

time of the call, the call does not block.

When this service or dacs_de_test() detects a finished, failed, or aborted status,

the status is reaped. Once the status of a process has been reaped, subsequent calls

to query its status will fail with DACS_ERR_INVALID_PID.

RETURN VALUE

The dacs_de_wait service returns an error indicator defined as:

v DACS_STS_PROC_FINISHED: the process finished execution without error.

v DACS_STS_PROC_FAILED: the process exited with a failure.

v DACS_STS_PROC_ABORTED: the process terminated abnormally. The

platform-specific exception code is returned in exit_status. For Linux/UNIX this

is the signal number which caused the termination.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to a valid process.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target process.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

SEE ALSO

dacs_de_start(3), dacs_num_processes_supported(3),

dacs_num_processes_running(3), dacs_de_test(3)

Chapter 6. Process management 19

dacs_de_test

NAME

dacs_de_test - Test the status of a process.

SYNOPSIS

DACS_ERR_T dacs_de_test (de_id_t de, dacs_process_id_t pid, int32_t *exit_status

)

 Call parameters

de The target DE.

pid The target process.

 Return parameter

*exit_status A pointer to a location where the exit code is stored (if

DACS_STS_PROC_FINISHED or DACS_STS_PROC_FAILED) or the

signal number (if DACS_STS_PROC_ABORTED).

Note: If the return value is DACS_STS_PROC_RUNNING then the exit_status is not

modified.

DESCRIPTION

The dacs_de_test service returns the status of the target process, if it was

successful, or an error code.

When this service or dacs_de_wait() detects a finished, failed, or aborted status,

the status is reaped. Once the status of a process has been reaped, subsequent calls

to query its status will fail with DACS_ERR_INVALID_PID.

RETURN VALUE

The dacs_de_test service returns an error indicator defined as:

v DACS_STS_PROC_RUNNING: the process is still running.

v DACS_STS_PROC_FINISHED: the process finished execution without error.

v DACS_STS_PROC_FAILED: the process exited with a failure.

v DACS_STS_PROC_ABORTED: the process terminated abnormally. The

platform-specific exception code is returned in exit_status. For Linux/UNIX this

is the signal number which caused the termination.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to a valid process.

v DACS_ERR_INVALID_TARGET: the operation is not allowed for the target process.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

SEE ALSO

dacs_de_start(3), dacs_num_processes_supported(3),

dacs_num_processes_running(3), dacs_de_wait(3)

20 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 7. Group functions

Group functions allow you to organize processes into groups so that they can be

treated as a single entity.

Definitions

Group

A group is a collection of related processes that share a common set of resources. A

process is an identifiable unit of execution.

A group is referred to by a handle. The handle may be a pointer, offset, index or

any other unique identifier of the group.

Group Member

A group member is a process, uniquely identifiable by its DE and PID

combination.

The members of a group work together to perform a common task, through the

use of shared resources. Being a member of a group requires participation in group

activities.

Group design

Membership

In DaCS membership is by invitation only. A process cannot declare itself a

member of a group; it must be added by the group creator. This works on the basis

that the creator of a group resource knows which processes will be participating in

the use of the resource. The member being added to a group must also cooperate

by accepting membership, and must make a request to leave a group.

Group Leader/Owner

Groups can only be created on an HE. The HE, by creating a group, implicitly

becomes the group owner. This does not imply membership or participation in the

group. The group owner is responsible for adding and removing members from

the group. It is also responsible for allocating resources to be shared with the

group. When the group is no longer needed, and all members have left, the owner

then has the responsibility of destroying the group.

Barriers

Certain resources require a group in order to work properly. One such resource is a

barrier. Without a known and fixed set of participants barriers cannot work

properly. For this reason the concept of groups is necessary.

Barriers provide synchronization of a fixed number of participants. Groups are

required in order for the barrier functionality to properly track barrier quora.

Barriers are an implied resource associated with being in a group; they are not

allocated, initialized, shared or destroyed.

© Copyright IBM Corp. 2007 - DRAFT 21

Group usage scenario

Group operations can be classified into three stages: initialization, operation and

termination. An example showing the services used in these stages follows.

Initialization

The following steps, in this order, would be used by the group owner and

members to create and join a group.

 Owner Members

Create the group:

dacs_group_init(&group, flags);

This creates an opaque group handle. The

handle will then used by all members

during group operations.

Add members (identified by DE and PID) to

the group, one by one:

dacs_group_add_member(de, pid, group);

Accept their addition, individually:

dacs_group_accept(de, pid, group);

(Optional) Add itself to the group:

dacs_group_add_member(DACS_DE_SELF,

 DACS_PID_SELF, group);

(This does not require an accept response.)

Close the initialization of the group:

dacs_group_close(group);

Operation

Group operations are controlled by barriers. These are used to synchronize the

processing by different members of the group. If it is necessary to ensure that no

member enters a new stage of processing before other members are ready then

each member must make a call:Each member will then be blocked until all

members have made this call. When the last member is accounted for all members

will be released.

 Owner Members

Wait on barrier, individually:

dacs_barrier_wait(group);

Termination

The following steps, in this order, would be used by the group owner and

members to remove a group.

 Owner Members

Destroy the group:

dacs_group_destroy(group);

22 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Owner Members

Leave the group, individually:

dacs_group_leave(group);

Group owner functions

dacs_group_init

NAME

dacs_group_init - Initialize a DaCS group.

SYNOPSIS

DACS_ERR_T dacs_group_init (dacs_group_t *group, uint32_t flags)

 Call parameter

flags Flags for group initialization.

 Return parameter

*group A pointer to a group handle which is filled in upon successful

return.

Note: In SDK 3.0 no flags will be supported and the flags value passed in must be

zero.

DESCRIPTION

The dacs_group_init service initializes a DaCS group and returns a handle to the

group. The calling process is the owner of the group. The owner process is not a

member of the group by default, but may add itself as a member.

RETURN VALUE

The dacs_group_init service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: could not allocate required resources.

SEE ALSO

dacs_group_add_member(3), dacs_group_close(3), dacs_group_destroy(3),

dacs_group_accept(3), dacs_group_leave(3), dacs_barrier_wait(3)

Chapter 7. Group functions 23

dacs_group_add_member

NAME

dacs_group_add_member - Add a member to a DaCS group.

SYNOPSIS

DACS_ERR_T dacs_group_add_member (de_id_t de, dacs_process_id_t pid,

dacs_group_t group)

 Call parameters

de The DE ID of the member to add. The group owner may

specify a value of DACS_DE_SELF to add itself.

pid The process ID of the member to add. The group owner may

specify a value of DACS_PID_SELF to add itself.

group The handle of the group to which the new member is to be

added.

DESCRIPTION

The dacs_group_add_member service adds the specified de/pid as a member of the

specified group. This service can only be called by the process which owns the

group. If the owner process is adding itself the service returns immediately. If the

member to be added is not the owner of the group this service blocks, waiting for

an associated dacs_group_accept() call from the new member.

RETURN VALUE

The dacs_group_add_member service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid group.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_GROUP_CLOSED: the group is closed.

v DACS_ERR_GROUP_DUPLICATE: the specified process is already a member of the

specified group.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

SEE ALSO

dacs_group_init(3), dacs_group_close(3), dacs_group_destroy(3),

dacs_group_accept(3), dacs_group_leave(3), dacs_barrier_wait(3)

24 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_group_close

NAME

dacs_group_close - Close a DaCS group.

SYNOPSIS

DACS_ERR_T dacs_group_close (dacs_group_t group)

 Call parameter

group The handle of the group to close.

DESCRIPTION

The dacs_group_close service closes the initialization of the specified group. Once

closed, new members cannot be added to the group. The specified group must

have been initialized with dacs_group_init(). This service may only be called by

the owner of the group. Group collective operations will block until the group is

closed.

RETURN VALUE

The dacs_group_close service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid group.

v DACS_ERR_NOT_OWNER: the caller is not the owner of the group.

v DACS_ERR_GROUP_CLOSED: the group is already closed.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_destroy(3),

dacs_group_accept(3), dacs_group_leave(3), dacs_barrier_wait(3)

Chapter 7. Group functions 25

dacs_group_destroy

NAME

dacs_group_destroy - Remove a DaCS group.

SYNOPSIS

DACS_ERR_T dacs_group_destroy (dacs_group_t *group)

 Call parameter

*group A pointer to the handle of the group to remove.

DESCRIPTION

The dacs_group_destroy service removes the specified group and invalidates the

handle. This service may only be called by the owner of the group, and blocks

until all other members have left the group. If the calling process is the owner of

the group and also a member of the group it is implicitly removed from the group

when it is destroyed

RETURN VALUE

The dacs_group_destroy service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid group.

v DACS_ERR_NOT_OWNER: the caller is not the owner of the group.

v DACS_ERR_GROUP_OPEN: the group has not been closed.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_close(3),

dacs_group_accept(3), dacs_group_leave(3), dacs_barrier_wait(3)

Group member functions

Group member functions allow processes to join or leave groups created by other

processes.

26 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_group_accept

NAME

dacs_group_accept - Accept membership to a DaCS group.

SYNOPSIS

DACS_ERR_T dacs_group_accept (de_id_t de, dacs_process_id_t pid,

dacs_group_t *group)

 Call parameters

de The DE ID of the group owner.

pid The process ID of the group owner.

 Return parameter

*group A pointer to the handle of the group to be filled in.

DESCRIPTION

The dacs_group_accept service accepts membership to a group and returns the

group handle. For each dacs_group_accept() call there must be an associated

dacs_group_add_member() call by the owner of the group. This service blocks until

the caller has been added to the group by the group owner.

RETURN VALUE

The dacs_group_accept service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified pid does not refer to an active process.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_TARGET: the operation not allowed for the target process.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_close(3),

dacs_group_destroy(3), dacs_group_leave(3), dacs_barrier_wait(3)

Chapter 7. Group functions 27

dacs_group_leave

NAME

dacs_group_leave - Request from a member to leave a DaCS group.

SYNOPSIS

DACS_ERR_T dacs_group_leave (dacs_group_t *group)

 Call parameter

*group A pointer to the handle of the group to leave.

DESCRIPTION

The dacs_group_leave service removes the calling process from the specified

group. All members other than the owner must leave the group before it can be

destroyed. The specified group handle is invalidated upon successful return. This

service does not block unless the group is not yet closed.

RETURN VALUE

The dacs_group_leave service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid DaCS

group.

v DACS_ERR_OWNER: the owner of the group may not leave it.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_close(3),

dacs_group_destroy(3), dacs_group_accept(3), dacs_barrier_wait(3)

Process synchronization

The process synchronization services provide a means to coordinate or synchronize

process execution.

28 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_barrier_wait

NAME

dacs_barrier_wait - Synchronize members of a group.

SYNOPSIS

DACS_ERR_T dacs_barrier_wait (dacs_group_t group)

 Call parameter

group The handle of the group with which to synchronize.

DESCRIPTION

The dacs_barrier_wait service blocks the caller on a group barrier until all

members in the group have reached the barrier. The caller must be a member of

the specified group.

RETURN VALUE

The dacs_barrier_wait service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_HANDLE: the group handle does not refer to a valid DaCS

group.

SEE ALSO

dacs_group_init(3), dacs_group_add_member(3), dacs_group_close(3),

dacs_group_destroy(3), dacs_group_accept(3), dacs_group_leave(3)

Chapter 7. Group functions 29

30 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 8. Data communication

The data communication services transfer data from one process to another. To

accommodate transfers across systems with different data representation formats

(endian-ness), the services provide an option for byte swapping. The types of byte

swapping supported are:

DACS_BYTE_SWAP_DISABLE

no byte-swapping .

DACS_BYTE_SWAP_HALF_WORD

byte-swapping for halfwords (2 bytes).

DACS_BYTE_SWAP_WORD

byte-swapping for words (4 bytes).

DACS_BYTE_SWAP_DOUBLE_WORD

byte-swapping for double words (8 bytes).

Different platforms and implementations may also have different alignment

restrictions for the data being transferred. The data communication services will

return the DACS_ERR_NOT_ALIGNED error code when those alignment restrictions are

not met.

Note: For DaCS on Cell BE the services support data transfers of any size other

than zero. DaCS enforces no size limit, so the size of transfer that can actually be

performed is only restricted by the inherent system limitations. Data transfers that

are smaller than 16 bytes must be aligned according to the size of the transfer,

rounded down to the nearest power of two at or below the size. Data transfers that

are 16 bytes or larger must be 16 byte aligned. For DMA list operations, however,

the transfer size for each element must be a multiple of 16.

The data communication services require that the caller specify either the source or

destination DE and PID, as appropriate. As a convenience to the programmer, the

special values DACS_DE_PARENT and DACS_PID_PARENT are defined, which can be

used to refer to the parent DE and PID respectively. The special

values DACS_DE_SELF and DACS_PID_SELF are also provided for those interfaces

where the caller is the target of the operation.

Note: In SDK 3.0 direct communication is only allowed between a parent and its

children. Attempts to communicate to a process which is not the parent or child of

the initiator will result in an error of DACS_ERR_INVALID_TARGET.

Three different data communication models are supported: remote direct memory

access (rDMA), message passing, and mailboxes.

Remote Direct Memory Access (rDMA)

Managing Remote Memory.

The remote memory management services provide the means for sharing memory

regions with remote processes. A memory region is made available to remote

consumers using a share/accept model whereby the owner of the memory creates

and shares a remote memory handle which is then accepted and used by remote

processes.

© Copyright IBM Corp. 2007 - DRAFT 31

Note: With the exception of dacs_remote_mem_query(), the DaCS memory transfer

services can only be used by the remote processes, and only after they have

accepted a share. The owner of the shared memory cannot use these services.

dacs_remote_mem_create

NAME

dacs_remote_mem_create - Designate a region in the memory space of the current

process for access by remote processes.

SYNOPSIS

DACS_ERR_T dacs_remote_mem_create (void *addr, uint64_t size,

DACS_MEMORY_ACCESS_MODE_T access_mode, dacs_remote_mem_t *mem)

 Call parameters

*addr A pointer to the base address of the memory region to be

shared.

size The size of the memory region in bytes.

access_mode The access mode to be given to the memory region. This may

be:

v DACS_READ_ONLY,

v DACS_WRITE_ONLY, or

v DACS_READ_WRITE.

 Return parameter

*mem A pointer to a remote memory handle to be filled in.

DESCRIPTION

The dacs_remote_mem_create service creates and returns a handle associated with

the given memory region. The returned handle can be used with the

dacs_remote_mem_share() and dacs_remote_mem_accept() services to share and

gain access to remote shared memory.

RETURN VALUE

The service dacs_remote_mem_create returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_INVALID_SIZE: a size of zero was requested.

SEE ALSO

dacs_remote_mem_share(3), dacs_remote_mem_accept(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3)

32 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_remote_mem_share

NAME

dacs_remote_mem_share - Pass a memory handle from the current process to a

remote process.

SYNOPSIS

DACS_ERR_T dacs_remote_mem_share (de_id_t dst_de, dacs_process_id_t

dst_pid, dacs_remote_mem_t mem)

 Call parameters

dst_de The target DE for the share.

dst_pid The target process for the share.

mem The handle of the remote memory to be shared.

DESCRIPTION

The dacs_remote_mem_share service shares the specified remote memory handle

from the current process to the remote process specified by dst_de and dst_pid.

This service then blocks, waiting for a matching call to the dacs_remote_mem_accept

service on the remote side.

RETURN VALUE

The dacs_remote_mem_share service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NOT_OWNER: this operation is only valid for the owner of the resource.

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_accept(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3)

Chapter 8. Data communication 33

dacs_remote_mem_accept

NAME

dacs_remote_mem_accept - Accept a memory handle from a remote process.

SYNOPSIS

DACS_ERR_T dacs_remote_mem_accept (de_id_t src_de, dacs_process_id_t

src_pid, dacs_remote_mem_t *mem)

 Call parameters

src_de The source DE which is sharing the remote memory handle.

src_pid The source process which is sharing the remote memory

handle.

 Return parameter

*mem A pointer to the accepted memory handle.

DESCRIPTION

The dacs_remote_mem_accept service blocks the caller until it receives a remote

memory handle from an associated dacs_remote_mem_share() call. The remote

memory handle is filled in upon successful return.

RETURN VALUE

The dacs_remote_mem_accept service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate the required resources.

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_share(3),

dacs_remote_mem_release(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3)

34 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_remote_mem_release

NAME

dacs_remote_mem_release - Release a previously accepted remote memory handle.

SYNOPSIS

DACS_ERR_T dacs_remote_mem_release (dacs_remote_mem_t *mem)

 Call parameter

*mem A pointer to the remote memory handle.

DESCRIPTION

The dacs_remote_mem_release service releases a previously accepted remote

memory object and invalidates the handle. When all accepters have released the

object it may be destroyed by its owner. This service does not block.

RETURN VALUE

The dacs_remote_mem_release service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the specified handle does not refer to a valid remote

memory object.

v DACS_ERR_OWNER: this operation is not valid for the owner of the resource.

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_share(3),

dacs_remote_mem_accept(3), dacs_remote_mem_destroy(3),

dacs_remote_mem_query(3)

Chapter 8. Data communication 35

dacs_remote_mem_destroy

NAME

dacs_remote_mem_destroy - Invalidate sharing of a specified memory region.

SYNOPSIS

DACS_ERR_T dacs_remote_mem_destroy (dacs_remote_mem_t *mem)

 Call parameter

*mem A pointer to a remote memory handle.

DESCRIPTION

The dacs_remote_mem_destroy service invalidates the sharing of a specific memory

region which has been created by dacs_remote_mem_create(). Only the creator of

the memory region may destroy it. This service blocks until all users of the

memory region have released it.

RETURN VALUE

The dacs_remote_mem_destroy service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NOT_OWNER: this operation is only valid for the owner of the resource.

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_share(3),

dacs_remote_mem_accept(3), dacs_remote_mem_release(3),

dacs_remote_mem_query(3)

36 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_remote_mem_query

NAME

dacs_remote_mem_query - Query the attributes of a remote memory region.

SYNOPSIS

DACS_ERR_T dacs_remote_mem_query (dacs_remote_mem_t mem,

DACS_REMOTE_MEM_ATTR_T attr, uint64_t *value)

 Call parameters

mem The handle of the remote memory area to query.

attr The attribute to be queried. This may be one of:

 DACS_REMOTE_MEM_SIZE,

 DACS_REMOTE_MEM_ADDR, or

 DACS_REMOTE_MEM_ACCESS_MODE.

 Return parameter

*value A pointer to the location where the attribute value is to be

returned. If the requested attribute is

DACS_REMOTE_MEM_ACCESS_MODE, the output value will

be one of:

 DACS_READ_ONLY,

 DACS_WRITE_ONLY, or

 DACS_READ_WRITE.

DESCRIPTION

The dacs_remote_mem_query service queries the attributes of the specified remote

memory region. The memory region being queried must have been created or

accepted by the caller.

RETURN VALUE

The dacs_remote_mem_query service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_HANDLE: the specified handle is invalid.

SEE ALSO

dacs_remote_mem_create(3), dacs_remote_mem_share(3),

dacs_remote_mem_accept(3), dacs_remote_mem_release(3),

dacs_remote_mem_destroy(3)

rDMA block transfers

The DMA services provide a means to perform direct memory accesses to and

from remote memory.

Chapter 8. Data communication 37

dacs_put

NAME

dacs_put - Initiate a data transfer from local memory to remote memory.

SYNOPSIS

DACS_ERR_T dacs_put (dacs_remote_mem_t dst_remote_mem, uint64_t

dst_remote_mem_offset, void *src_addr, uint64_t size, dacs_wid_t wid,

DACS_ORDER_ATTR_T order_attr, DACS_BYTE_SWAP_T swap)

 Call parameters

dst_remote_mem The remote memory handle of the destination buffer.

dst_remote_mem_offset The offset into the remote buffer where the put is to be

performed.

*src_addr A pointer to the source memory buffer.

size The size of the transfer.

wid The communications wait identifier.

order_attr An ordering attribute. Possible values are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is

delayed until all previously issued DMA operations to the

same DE using the same wid have completed.

v DACS_ORDER_ATTR_BARRIER: execution of this command and

all subsequent DMA operations are delayed until all

previously issued DMA operations to the same DE using the

same wid have completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

swap The little-endian or big-endian byte-swapping flag.Possible

values are:

v DACS_BYTE_SWAP_DISABLE,

v DACS_BYTE_SWAP_HALF_WORD,

v DACS_BYTE_SWAP_WORD or

v DACS_BYTE_SWAP_DOUBLE_WORD.

See Chapter 8, “Data communication,” on page 31 for details.

DESCRIPTION

The dacs_put service initiates data transfer from the caller memory, specified by

src_addr, to the target memory, specified by dst_remote_mem and

remote_mem_offset. This operation is non-blocking (the call initiates the transfer,

but the transfer may continue after the call returns). To ensure that the transfer has

completed on the DE, so that the local buffer can be reused or changed, you

should issue a call to dacs_wait() or dacs_test() with the same wait identifier.

The target remote memory region must have been previously accepted by the

caller with a call to dacs_remote_mem_accept().

Note: The user of the dacs_put() and dacs_get() methods is the process that

accepted the memory handle. The owner of the remote memory cannot use these

functions.

38 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

RETURN VALUE

The dacs_put service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_BUF_OVERFLOW: the buffer has overflowed - the specified offset or size

exceed the bounds of the target buffer.

v DACS_ERR_NOT_ALIGNED: the buffer is not aligned correctly for the size of the

transfer.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_SIZE: the size was zero or not supported by the platform.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NO_PERM: the resource attributes do not allow this operation.

SEE ALSO

dacs_get(3), dacs_put_list(3), dacs_get_list(3), dacs_test(3), dacs_wait(3)

Chapter 8. Data communication 39

dacs_get

NAME

dacs_get - Get data from remote memory to local memory.

SYNOPSIS

DACS_ERR_T dacs_get (void *dst_addr, dacs_remote_mem_t src_remote_mem,

uint64_t src_remote_mem_offset, uint64_t size, dacs_wid_t wid,

DACS_ORDER_ATTR_T order_attr, DACS_BYTE_SWAP_T swap)

 Call parameters

*dst_addr A pointer to the base address of the destination memory

buffer.

src_remote_mem The remote memory handle of the source buffer.

src_remote_mem_offset The offset into the offset in remote buffer where the get is to

start.

size The size of the transfer.

wid A communications wait identifier.

order_attr An ordering attribute. Possible values are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is

delayed until all previously issued DMA operations to the

same DE using the same wid have completed.

v DACS_ORDER_ATTR_BARRIER: execution of this command and

all subsequent DMA operations are delayed until all

previously issued DMA operations to the same DE using the

same wid have completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

swap The little-endian or big-endian byte-swapping flag.Possible

values are:

v DACS_BYTE_SWAP_DISABLE,

v DACS_BYTE_SWAP_HALF_WORD,

v DACS_BYTE_SWAP_WORD or

v DACS_BYTE_SWAP_DOUBLE_WORD.

See Chapter 8, “Data communication,” on page 31 for details.

DESCRIPTION

The dacs_get service returns data from the target memory, specified by

src_remote_mem and src_remote_mem_offset, to the caller memory, specified by

dst_addr. This operation is non-blocking (the call initiates the transfer, but the

transfer may continue after the call returns). To ensure that the transfer has

completed you should issue a call to dacs_wait() or dacs_test() with the same

wait identifier.

The target remote memory region must have been previously accepted by the

caller using a call to dacs_remote_mem_accept().

Note: The user of the dacs_put() and dacs_get() methods is the process that

accepted the memory handle. The owner of the remote memory cannot use these

functions.

40 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

RETURN VALUE

The dacs_get service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_BUF_OVERFLOW: the buffer has overflowed - the specified offset and size

exceed the bounds of the target buffer.

v DACS_ERR_NOT_ALIGNED: the buffer is not aligned properly for its size.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_SIZE: the size is zero or not supported by the platform.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NO_PERM: the resource attributes do not allow this operation.

SEE ALSO

dacs_put(3), dacs_put_list(3), dacs_get_list(3), dacs_test(3), dacs_wait(3),

rDMA list transfers

The DMA list services enable scatter/gather operations between non-contiguous

regions of memory and one contiguous region of memory.

The list services operate on DMA list elements. A list element is defined as a tuple

{offset, size}, where offset is a 64-bit offset into the remote memory block, and size is

the size of the block.

Note: The size of the transfer specified by each list element must be a multiple of

16 bytes and must be 16 byte aligned.

Chapter 8. Data communication 41

dacs_put_list

NAME

dacs_put_list - Push data from local memory blocks to a remote memory area.

SYNOPSIS

DACS_ERR_T dacs_put_list (dacs_remote_mem_t dst_remote_mem,

dacs_dma_list_t *dst_dma_list, uint32_t dst_list_size, void *src_addr, dacs_dma_list_t

*src_dma_list, uint32_t src_list_size, dacs_wid_t wid, DACS_ORDER_ATTR_T

order_attr, DACS_BYTE_SWAP_T swap)

 Call parameters

dst_remote_mem The remote memory handle for the destination buffer.

*dst_dma_list A pointer to a list of entries describing the transfer locations in

the destination buffer.

dst_list_size The number of elements in the destination DMA list.

src_addr The base address of the source memory buffer.

*src_dma_list A pointer to a list of entries describing the transfer locations in

the source buffer.

src_list_size The number of elements in the source DMA list.

wid The communications wait identifier associated with this

transfer.

order_attr Ordering attribute. Possible values are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is

delayed until all previously issued DMA operations to the

same DE using the same wid have completed.

v DACS_ORDER_ATTR_BARRIER: execution of this operation and all

subsequent DMA operations are delayed until all previously

issued DMA operations to the same DE using the same wid

have completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

swap The little-endian or big-endian byte-swapping flag.Possible

values are:

v DACS_BYTE_SWAP_DISABLE,

v DACS_BYTE_SWAP_HALF_WORD,

v DACS_BYTE_SWAP_WORD or

v DACS_BYTE_SWAP_DOUBLE_WORD.

See Chapter 8, “Data communication,” on page 31 for details.

DESCRIPTION

The dacs_put_list service pushes data from the memory blocks specified in the

src_dma_list to the remote memory area referenced by the dst_remote_mem handle

using the specified dst_dma_list.The interface supports the specification of two

DMA lists, one of which must contain a single element. This applies to both Scatter

(src_list_size=1) and Gather to Remote (dst_list_size=1) operations.

The source address for each DMA operation is an effective address formed by the

sum of src_addr and the offset specified in each DMA list element. The

assumption is that all of the source data is in a contiguous buffer starting at

src_addr. For cases where the source data may not be in a contiguous buffer with

a known base address, a source address of zero may be specified. In this case the

actual address of the data can be used as the offset in the DMA list element.

42 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

This is an asynchronous service in that the data transfers are only initiated (but not

completed) when it returns. To ensure completion of the transfer on this DE you

must make a call to dacs_wait() or dacs_test() with the same wait identifier. This

ensures that the local buffers and transfer list parameter can be changed or reused.

The target remote memory region must have been previously accepted by the

caller with a call to dacs_remote_mem_accept().

DataD

DataC

DataB

DataA

DataD

DataC

DataB

DataA

src_list[3]

src_list[2]

src_list[1]

src_list[0]

dst_list[0]

DataD

DataC

DataB

DataA

src_list[0]

dst_list[3]

dst_list[2]

dst_list[1]

dst_list[0]

DataD

DataC

DataB

DataA

dacs_put_list - Scatter (src_list_size = 1 dst_list_size = 4)

Local Memory Remote Memory

Local Memory Remote Memory

Dacs_put_list - Gather to Remote (src_list_size = 4 dst_list_size = 1)

Put list to a remote memory region with src_list_size = 1

Chapter 8. Data communication 43

RETURN VALUE

The dacs_put_list service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_BUF_OVERFLOW: the buffer has overflowed - the specified offset or size of

one or more list elements exceed the bounds of the target buffer.

v DACS_ERR_NOT_ALIGNED: the buffer is not aligned correctly for the size of the

transfer.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_SIZE: the size is zero or not supported by the platform.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_NO_PERM: the resource attributes do not allow this operation.

SEE ALSO

dacs_put(3), dacs_get(3), dacs_get_list(3), dacs_test(3), dacs_wait(3),

44 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_get_list

NAME

dacs_get_list - Get data from a remote memory area and place it in local buffers.

SYNOPSIS

DACS_ERR_T dacs_get_list (void *dst_addr, dacs_dma_list_t *dst_dma_list,

uint32_t dst_list_size, dacs_remote_mem_t src_remote_mem, dacs_dma_list_t

*src_dma_list, uint32_t src_list_size, dacs_wid_t wid, DACS_ORDER_ATTR_T

order_attr, DACS_BYTE_SWAP_T swap)

 Call parameters

*dst_addr A pointer to the base address of the destination memory

buffer.

*dst_dma_list A pointer to a list of entries describing transfer locations in the

destination buffer.

dst_list_size The number of elements in the destination DMA list.

src_remote_mem A handle for the remote source memory buffer.

*src_dma_list A pointer to a list of entries describing transfer locations in the

source buffer.

src_list_size The number of elements in the source DMA list.

wid The communication wait identifier associated with this

transfer.

order_attr Ordering attribute. Possible values are:

v DACS_ORDER_ATTR_FENCE: execution of this operation is

delayed until all previously issued DMA operations to the

same DE using the same wid have completed.

v DACS_ORDER_ATTR_BARRIER: execution of this operation and all

subsequent DMA operations are delayed until all previously

issued DMA operations to the same DE using the same wid

have been completed.

v DACS_ORDER_ATTR_NONE: no ordering is enforced.

swap The little-endian or big-endian byte-swapping flag.Possible

values are:

v DACS_BYTE_SWAP_DISABLE,

v DACS_BYTE_SWAP_HALF_WORD,

v DACS_BYTE_SWAP_WORD or

v DACS_BYTE_SWAP_DOUBLE_WORD.

See Chapter 8, “Data communication,” on page 31 for details.

DESCRIPTION

The dacs_get_list service gets data from the remote memory area referenced by

the dst_remote_mem struct, using the specified dma_list, and places it in the buffers

specified by dst_dma_list.The interface supports the specification of two DMA

lists, one of which must contain a single element. This applies to both Gather

(dst_list_size=1) and Scatter to local (src_list_size=1) operations.

The destination address for each DMA operation is an effective address formed by

the sum of dst_addr and the offset specified in each DMA list element. The

assumption is that the destination buffers for the data are all within a contiguous

buffer starting at dst_addr. For cases where the destination buffers may not be in a

contiguous buffer with a known base address, a destination address of zero may

be specified. In this case the actual address of the destination buffer can be used as

Chapter 8. Data communication 45

the offset in the DMA list element.

This is an asynchronous service in that the data transfers are only initiated (but not

completed) when it returns. To ensure completion of the transfer you should make

a call to dacs_wait() or dacs_test() passing the wait identifier.

The target remote memory region must have been previously accepted by the

caller with a call to dacs_remote_mem_accept().

DataD

DataC

DataB

DataA

DataD

DataC

DataB

DataA

dst_list[3]

dst_list[2]

dst_list[1]

dst_list[0]

src_list[0]

DataD

DataC

DataB

DataA

dst_list[0]

src_list[3]

src_list[2]

src_list[1]

src_list[0]

DataD

DataC

DataB

DataA

dacs_get_list - Gather (src_list_size = 4 dst_list_size = 1)

Local Memory Remote Memory

Local Memory Remote Memory

dacs_get_list - Scatter to local (src_list_size = 1 dst_list_size = 4)

Get list from a remote memory region with source list size = 1

46 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

RETURN VALUE

The dacs_get_list service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_BUF_OVERFLOW: the buffer has overflowed - the specified offset or size of

one or more list elements exceed the bounds of the target buffer.

v DACS_ERR_NOT_ALIGNED: the buffer is not aligned correctly for the size of the

transfer.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_SIZE: the size is zero or not supported by the platform.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_HANDLE: the remote memory handle is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_NO_PERM: the resource attributes do not allow this operation.

SEE ALSO

dacs_put(3), dacs_get(3), dacs_put_list(3), dacs_test(3), dacs_wait(3),

Message passing

The messaging passing services provide two way communications using the

familiar send/recv model. These services are asynchronous, but can be

synchronized using the dacs_test() and dacs_wait() services as needed.

Chapter 8. Data communication 47

dacs_send

NAME

dacs_send - send a message to another process

SYNOPSIS

DACS_ERR_T dacs_send (void *src_data, uint32_t size, de_id_t dst_de,

dacs_process_id_t dst_pid, uint32_t stream, dacs_wid_t wid, DACS_BYTE_SWAP_T

swap)

 Call parameters

*src_data A pointer to the beginning of the source (send) message buffer.

size The size of the message buffer.

dst_de The message destination DE.

dst_pid The message destination process.

stream The identifier of the stream on which the message is to be sent.

wid A wait identifier.

swap The little-endian or big-endian byte-swapping flag.Possible values are:

v DACS_BYTE_SWAP_DISABLE,

v DACS_BYTE_SWAP_HALF_WORD,

v DACS_BYTE_SWAP_WORD or

v DACS_BYTE_SWAP_DOUBLE_WORD.

See Chapter 8, “Data communication,” on page 31 for details.

DESCRIPTION

The dacs_send service asynchronously sends a message to another process. Upon

successful return a send operation is either pending or in progress. Use

dacs_test() or dacs_wait() to test for completion on this DE, so that the local

buffer can be reused or changed..

Note: The size of the buffer at the destination process must be greater than or

equal to amount of data sent; otherwise the send operation fails silently. This error

will later be reported by dacs_test() or dacs_wait() as DACS_ERR_BUF_OVERFLOW.

RETURN VALUE

The dacs_send service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_NOT_ALIGNED: the requested data transfer does not have proper

alignment for its size.

v DACS_ERR_INVALID_SIZE: the size is zero or not supported by the platform.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_STREAM: the stream identifier is invalid.

48 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

SEE ALSO

dacs_recv(3), dacs_wait(3), dacs_test(3)

dacs_recv

NAME

dacs_recv - receive a message from another process

SYNOPSIS

DACS_ERR_T dacs_recv (void *dst_data, uint32_t size, de_id_t src_de,

dacs_process_id_t src_pid, uint32_t stream, dacs_wid_t wid, DACS_BYTE_SWAP_T

swap)

 Call parameters

*dst_data A pointer to the beginning of the destination (receive) data buffer.

size The size of the message buffer.

src_de The message source DE.

src_pid The message source process.

stream The stream on which to receive the message, or DACS_STREAM_ALL.

wid A wait identifier.

swap The little-endian or big-endian byte-swapping flag.Possible values are:

v DACS_BYTE_SWAP_DISABLE,

v DACS_BYTE_SWAP_HALF_WORD,

v DACS_BYTE_SWAP_WORD or

v DACS_BYTE_SWAP_DOUBLE_WORD.

See Chapter 8, “Data communication,” on page 31 for details.

 Return parameter

*dst_data The pointer to the received data buffer.

DESCRIPTION

The dacs_recv service asynchronously receives a message from another process.

Upon successful return a receive operation is either pending or in progress. You

should use dacs_test() or dacs_wait() to test for completion.

The number of bytes sent by the source process must be less than or equal to the

local buffer size, otherwise the receive operation fails.

Stream identifiers are used to select messages for reception. A message will be

received if the stream identifier of the message matches the stream identifier

specified to dacs_recv(), or if DACS_STREAM_ALL is specified. Stream identifier

values must be between 0 and DACS_STREAM_UB inclusive.

The swap flag must be the same at both ends of the transfer. If not the completion

test (dacs_test() or dacs_wait()) will fail with DACS_ERR_BYTESWAP_MISMATCH, and

no data is transferred.

Chapter 8. Data communication 49

RETURN VALUE

The dacs_recv service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

v DACS_ERR_NOT_ALIGNED: the buffer is not aligned properly for the size of the

transfer.

v DACS_ERR_INVALID_SIZE: the size is zero or not supported by the platform.

v DACS_ERR_INVALID_WID: the wait identifier is invalid.

v DACS_ERR_INVALID_STREAM: the stream identifier is invalid.

SEE ALSO

dacs_send(3), dacs_wait(3), dacs_test(3)

Mailboxes

The mailbox services provide a simple method of passing a single 32-bit unsigned

word between processes. These services use a blocking read/write model. The

mailbox is a FIFO queue with an implementation-specific depth.

Mailboxes are between a host (parent) and an accelerator process (DE id and Pid).

Each mailbox has two sets of slots. One set is written to by the host and read by

the accelerator process, and the other is written to by the accelerator process and

read by the host. A host with a single accelerator running a single process will

have one mailbox with 4 slots in each set. A host with two accelerators, each

running a single process, will have two mailboxes each with 4 slots in each set.

Thus the host will have 4 slots in one mailbox for mail coming from one

accelerator process and 4 slots in another mailbox for mail coming from the other

accelerator process.

Note: Byte-swapping is done automatically if required. A DE cannot write to its

own mailbox and can only read from its own mailbox. Any attempt to do

otherwise returns an error.

The mailbox depth is limited to 4 (host) and 4 (accelerator).

50 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_mailbox_write

NAME

dacs_mailbox_write - Send a single variable to another process.

SYNOPSIS

DACS_ERR_T dacs_mailbox_write (uint32_t *msg, de_id_t dst_de,

dacs_process_id_t dst_pid)

 Call parameters

*msg A pointer to the message to write.

dst_de The message destination DE.

dst_pid The destination process id.

DESCRIPTION

The dacs_mailbox_write service writes a single 32-bit unsigned integer to the

specified target mailbox. There are an number of mailbox slots for each process;

this number is defined by the implementation. If the destination has an empty

mailbox slot this service returns immediately. Otherwise this service blocks until a

slot becomes available.

RETURN VALUE

The dacs_mailbox_write service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

SEE ALSO

dacs_mailbox_read(3), dacs_mailbox_test(3)

Chapter 8. Data communication 51

dacs_mailbox_read

NAME

dacs_mailbox_read - Receive a single variable from another process.

SYNOPSIS

DACS_ERR_T dacs_mailbox_read (uint32_t *msg, de_id_t src_de,

dacs_process_id_t src_pid)

 Call parameters

src_de The message source DE.

src_pid The message source process.

 Return parameter

*msg A pointer to the message received.

DESCRIPTION

The dacs_mailbox_read service reads a single 32-bit unsigned integer from the

specified source mailbox. There are a number of mailbox slots for each process; this

number is defined by the implementation. If the source does not have any pending

mailbox messages this service call blocks until one arrives.

RETURN VALUE

The dacs_mailbox_read service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: operation not allowed for the target process.

SEE ALSO

dacs_mailbox_write(3), dacs_mailbox_test(3)

52 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_mailbox_test

NAME

dacs_mailbox_test - Test if a mailbox access will succeed.

SYNOPSIS

DACS_ERR_T dacs_mailbox_test (DACS_TEST_MAILBOX_T rw_flag, de_id_t

de, dacs_process_id_t pid, int32_t *mbox_status)

 Call parameters

rw_flag Flag to indicate which mailbox to test:

v DACS_TEST_MAILBOX_READ: test the read mailbox to see if a call

to dacs_mailbox_read() will block, or

v DACS_TEST_MAILBOX_WRITE: test the write mailbox to see if a

call to dacs_mailbox_write() will block.

de The DE owning the mailbox to test.

pid The process owning the mailbox to test

 Return parameter

*mbox_status A pointer to the location where the mailbox status is returned. The

contents are:

 set to zero if the mailbox will block, or

 set to non-zero if the mailbox will not block.

DESCRIPTION

The dacs_mailbox_test service allows the programmer to test if the mailbox will

block before calling dacs_mailbox_read() or dacs_mailbox_write().

RETURN VALUE

The dacs_mailbox_test service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

SEE ALSO

dacs_mailbox_read(3), dacs_mailbox_write(3)

Chapter 8. Data communication 53

54 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 9. Wait identifier management services

These services are intended to manage wait identifiers (WIDs), which are used to

synchronize data communication. A WID is required for the data communication

services, and is used to test for completion of asynchronous data transfers.

dacs_wid_reserve

NAME

dacs_wid_reserve - Reserve a wait identifier.

SYNOPSIS

DACS_ERR_T dacs_wid_reserve (dacs_wid_t *wid)

 Return parameter

*wid A pointer to the reserved wait identifier.

DESCRIPTION

The dacs_wid_reserve service reserves a wait identifier.

RETURN VALUE

The dacs_wid_release service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NO_WIDS: no wait identifiers are available.

SEE ALSO

dacs_wid_release(3)

© Copyright IBM Corp. 2007 - DRAFT 55

dacs_wid_release

NAME

dacs_wid_release - Release a reserved wait identifier.

SYNOPSIS

DACS_ERR_T dacs_wid_release (dacs_wid_t *wid)

 Call parameter

*wid A pointer to the wait identifier to be released.

DESCRIPTION

The dacs_wid_release service releases the reserved wait identifier. If a data

transfer using the wait identifier is still active, an error is returned and the wait

identifier is not released.

RETURN VALUE

The dacs_wid_release service returns an error indicator defined as:

v DACS_SUCCESS: normal return; the wait identifier was invalidated.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_WID_ACTIVE: a data transfer involving the wait identifier is still active.

v DACS_ERR_INVALID_WID: the specified wait identifier is not reserved.

SEE ALSO

dacs_wid_reserve(3)

56 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 10. Transfer completion

A wait identifier is reserved and assigned to a data communication operation when

it is started. These routines test the wait identifier to see if the communication

operation has completed.

dacs_test

NAME

dacs_test - Test if communication operations have finished on this DE so the

parameters can be changed or reused.

SYNOPSIS

DACS_ERR_T dacs_test (dacs_wid _t wid)

 Call parameter

wid A communication wait identifier

DESCRIPTION

The dacs_test service checks the data transfers for the given communication wait

identifier and returns their status.

RETURN VALUE

The dacs_test service returns an error indicator defined as:

v DACS_WID_READY: all data transfers have completed.

v DACS_WID_BUSY: one or more data transfers have not completed.

v DACS_WID_NOT_ACTIVE: there are no outstanding transfers to test.

v DACS_ERR_INVALID_WID: the specified wait identifier is invalid.

v DACS_ERR_BYTESWAP_MISMATCH: the Little-endian / Big-endian architectures at the

ends of the transfer are incompatible.

v DACS_ERR_BUF_OVERFLOW: the data to be transferred is too large for the receive

buffer.

SEE ALSO

dacs_wait(3), dacs_put(3), dacs_get(3), dacs_put_list(3), dacs_get_list(3)

© Copyright IBM Corp. 2007 - DRAFT 57

dacs_wait

NAME

dacs_wait - Wait for a communications operation to finish.Wait for communication

operations to finish on this DE so the parameters can be changed or reused.

SYNOPSIS

DACS_ERR_T dacs_wait (dacs_wid_t wid)

 Call parameter

wid A communication wait identifier

DESCRIPTION

The dacs_wait service blocks the caller, waiting for outstanding data transfers for

the given wait identifier to complete. It returns when all outstanding transfers are

finished. If one or more of the transfers fails, the first failure encountered is

reported.

RETURN VALUE

The dacs_wait service returns an error indicator defined as:

v DACS_WID_READY: all data transfers have completed.

v DACS_WID_NOT_ACTIVE: there are no outstanding transfers to test.

v DACS_ERR_INVALID_WID: the specified wait identifier is invalid.

v DACS_ERR_BYTESWAP_MISMATCH: the Little-endian / Big-endian architectures at the

ends of the transfer are incompatible.

v DACS_ERR_BUF_OVERFLOW: the data to be transferred is too large for the receive

buffer.

SEE ALSO

dacs_test(3), dacs_put(3), dacs_get(3), dacs_put_list(3), dacs_get_list(3)

58 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 11. Locking Primitives

Shared data accesses can be serialized with DaCS by using a mutual exclusion

primitive (mutex) to protect critical sections. A mutex can be hosted on any DE

memory space and can be local or remote relative to the process calling these

services.

The significant features of a mutex are:

v the mutex is not recursive,

v it is held by a particular DE/PID and that DE/PID is the only one that can

unlock it, and

v the lock is not thread based within the DE/PID. Any thread in the locking

DE/PID can unlock the mutex.

The services which process a mutex fall into two categories:

mutex management services, for managing the mutex shared resource, which

include dacs_mutex_init(), dacs_mutex_share(), dacs_mutex_accept(),

dacs_mutex_release() and dacs_mutex_destroy(), and

mutex locking services, for locking and unlocking a mutex, which include

dacs_mutex_lock(), dacs_mutex_unlock() and dacs_mutex_try_lock().

© Copyright IBM Corp. 2007 - DRAFT 59

dacs_mutex_init

NAME

dacs_mutex_init - Initialize a mutual exclusion variable.

SYNOPSIS

DACS_ERR_T dacs_mutex_init (dacs_mutex_t *mutex)

 Return parameter

*mutex A pointer to a newly initialized mutex handle.

DESCRIPTION

The dacs_mutex_init service initializes a mutual exclusion variable and returns a

handle to it.

RETURN VALUE

The dacs_mutex_init service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

SEE ALSO

dacs_mutex_share(3), dacs_mutex_accept(3), dacs_mutex_lock(3),

dacs_mutex_try_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

60 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_mutex_share

NAME

dacs_mutex_share - Share a mutual exclusion variable with a remote process.

SYNOPSIS

DACS_ERR_T dacs_mutex_share (de_id_t dst_de, dacs_process_id_t dst_pid,

dacs_mutex_t mutex)

 Call parameters

dst_de The target DE for the share.

dst_pid The target process for the share.

mutex The handle of the mutex that is to be shared.

DESCRIPTION

The dacs_mutex_share service shares the specified mutual exclusion variable

between the current process and the remote process specified by dst_de and

dst_pid. This service blocks the caller, waiting for the remote process to call

dacs_mutex_accept() to accept the mutex.

RETURN VALUE

The dacs_mutex_share service returns an error indicator defined as:

v DACS_SUCCESS: normal return; sharing succeeded.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_PID: the specified PID does not refer to an active process.

v DACS_ERR_TARGET: this operation is not allowed for the target process.

v DACS_ERR_HANDLE: the specified mutex handle is not valid.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_accept(3), dacs_mutex_lock(3),

dacs_mutex_try_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

Chapter 11. Locking Primitives 61

dacs_mutex_accept

NAME

dacs_mutex_accept - Receive a share on a mutual exclusion variable from a remote

process.

SYNOPSIS

DACS_ERR_T dacs_mutex_accept (de_id_t src_de, dacs_process_id_t src_pid,

dacs_mutex_t *mutex)

 Call parameters

src_de The source DE which is sharing the mutex handle.

src_pid The source PID which is sharing the mutex handle.

 Return parameter

*mutex A pointer to the handle of the accepted mutex.

DESCRIPTION

The dacs_mutex_accept service receives a mutual exclusion variable from a remote

process. The service blocks until the remote process shares the mutex with a call to

dacs_mutex_share().

RETURN VALUE

The dacs_mutex_accept service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_DE: the specified DE is either invalid or not reserved.

v DACS_ERR_INVALID_PID: the specified PID does not refer to an active process.

v DACS_ERR_INVALID_TARGET: this operation is not allowed for the target process.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_lock(3),

dacs_mutex_try_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

62 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_mutex_lock

NAME

dacs_mutex_lock - Acquire a lock on a mutual exclusion variable.

SYNOPSIS

DACS_ERR_T dacs_mutex_lock (dacs_mutex_t mutex)

 Call parameter

mutex The handle of the mutex to lock.

DESCRIPTION

The dacs_mutex_lock service acquires the specified mutex. The caller must either

be the owner of the mutex, or have previously accepted the mutex with a call to

dacs_mutex_accept(). This service blocks the caller until the mutex is acquired.

RETURN VALUE

The dacs_mutex_lock service returns an error indicator defined as:

v DACS_SUCCESS: normal return; lock succeeded.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is not valid.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_try_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

Chapter 11. Locking Primitives 63

dacs_mutex_try_lock

NAME

dacs_mutex_try_lock - Attempt to acquire a lock on a mutual exclusion variable.

SYNOPSIS

DACS_ERR_T dacs_mutex_try_lock (dacs_mutex_t mutex)

 Call parameter

mutex The handle of the mutex to lock.

DESCRIPTION

The dacs_mutex_try_lock service attempts to acquire a lock on a mutex. The caller

must either be the owner of the mutex, or have previously accepted the mutex

with a call to dacs_mutex_accept(). If the mutex is available for locking, this

service gets the lock and returns. If a lock on the mutex is not available, this

method returns with a DACS_ERR_MUTEX_BUSY status.

RETURN VALUE

The dacs_mutex_try_lock service returns an error indicator defined as:

v DACS_SUCCESS: normal return; lock was acquired.

v DACS_ERR_MUTEX_BUSY: the mutex is not available.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is not valid.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_lock(3), dacs_mutex_unlock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

64 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_mutex_unlock

NAME

dacs_mutex_unlock - Unlock a mutual exclusion variable.

SYNOPSIS

DACS_ERR_T dacs_mutex_unlock (dacs_mutex_t mutex)

 Call parameter

mutex The handle of the mutex to unlock.

DESCRIPTION

The dacs_mutex_unlock service unlocks a mutex. The caller must either be the

owner of the mutex, or have previously accepted the mutex with a call to

dacs_mutex_accept().

RETURN VALUE

The dacs_mutex_unlock service returns an error indicator defined as:

v DACS_SUCCESS: normal return; unlock succeeded.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is not valid.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_lock(3), dacs_mutex_try_lock(3), dacs_mutex_release(3),

dacs_mutex_destroy(3)

Chapter 11. Locking Primitives 65

dacs_mutex_release

NAME

dacs_mutex_release - Release a mutual exclusion variable.

SYNOPSIS

DACS_ERR_T dacs_mutex_release (dacs_mutex_t *mutex)

 Call parameter

*mutex A pointer to the handle of the mutex to release.

DESCRIPTION

The dacs_mutex_release service releases a previously accepted mutex object and

invalidates the handle. When all accepters have released the mutex, it may be

destroyed by its owner. This service does not block.

The release will succeed whether or not the mutex is held by the caller.

RETURN VALUE

The dacs_mutex_release service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is invalid.

v DACS_ERR_OWNER: this operation is not allowed for the owner of the resource.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_lock(3), dacs_mutex_try_lock(3), dacs_mutex_unlock(3),

dacs_mutex_destroy(3)

66 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_mutex_destroy

NAME

dacs_mutex_destroy - Destroy a mutual exclusion variable.

SYNOPSIS

DACS_ERR_T dacs_mutex_destroy (dacs_mutex_t *mutex)

 Call parameter

mutex A pointer to the handle of the mutex to destroy.

DESCRIPTION

The dacs_mutex_destroy service destroys the specified mutex and invalidates the

handle. This service blocks until all users of the mutex have released it. The mutex

may only be destroyed by the process that initialized it (the owner).

The destroy will succeed whether or not the mutex is held by its owner.

RETURN VALUE

The dacs_mutex_destroy service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_HANDLE: the specified mutex handle is invalid.

v DACS_ERR_NOT_OWNER: this operation is only valid for the owner of the resource.

SEE ALSO

dacs_mutex_init(3), dacs_mutex_share(3), dacs_mutex_accept(3),

dacs_mutex_lock(3), dacs_mutex_try_lock(3), dacs_mutex_unlock(3),

dacs_mutex_release(3)

Chapter 11. Locking Primitives 67

68 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Chapter 12. Error handling

DaCS provides support for registration of user-created error handlers which are

called under certain error conditions. The error handlers can be called for

synchronous or asynchronous errors.

In SDK 3.0 any synchronous error reported to the error handlers will cause the

process to abort. This will happen when DaCS has detected a fatal error from

which it cannot recover. Asynchronous errors include child failures (host process)

and termination requests from a parent (accelerator process). Abnormal child

termination will cause the parent to abort after calling all registered error handlers.

A normal child exit with a non-zero status will be reported asynchronously to the

error handlers, but will not cause the process to abort. This allows the parent

process to determine if the non-zero exit represents an error condition.

When it is called a user error handler is passed an error object describing the error,

which can be inspected using services provided. The error object contains the DE

and PID of the failing process. These can be used to call dacs_de_test() to reap its

status and so allow another process to be started on that DE.

The DaCS library uses the SIGTERM signal for handling asynchronous errors and

termination requests. A dedicated error handling thread is created in

dacs_runtime_init() for this purpose. Applications using the DaCS library should

not create any application threads before calling dacs_runtime_init(), and no

application thread should unmask this signal.

User error handler example

User error handler registration

For this example we’re going to create an user error handler called my_errhandler.

Once this has been defined we can register the user error handler using the

dacs_errhandler_reg API:

dacs_rc= dacs_errhandler_reg((dacs_error_handler_t)&my_errhandler,0);

Note: If the address of my_errhandler is not passed or the cast to

dacs_error_handler_t is omitted the compiler will produce warnings.

User error handler code:

/**

Example of a user error handler

This includes invocations of additional functions of

the passed "dacs_error_t" error parameter

**/

int my_errhandler(dacs_error_t error){

 /*need local variables for passback of values */

 DACS_ERR_T dacs_rc=0;

 DACS_ERR_T dacs_error_rc;//hold code for error

 de_id_t de=0;

 dacs_process_id_t pid=0;

 uint32_t code = 0;

 const char * error_string;

 /* Get the DACS_ERR_T in the error to learn what happened */

© Copyright IBM Corp. 2007 - DRAFT 69

printf("\n\n--in my_dacs_errhandler\n");

 dacs_error_rc=dacs_rc=dacs_error_num(error);

 printf(" dacs_error_num indicates DACS_ERR_T=%d %s\n",

 dacs_rc,dacs_strerror(dacs_rc));

 /* Get the exit code in the error to learn what happened */

 dacs_rc=dacs_error_code(error,&code);

 if(dacs_rc){//if error invoking dacs_error_code

 printf(" dacs_error_code call had error DACS_ERR_T=%d %s\n",

 dacs_rc,dacs_strerror(dacs_rc));

 }

 else {

 if (DACS_STS_PROC_ABORTED==dacs_error_rc){

 printf(" dacs_error_code signal signal=%d ",code);

 }

 else if (DACS_STS_PROC_FAILED==dacs_error_rc){

 printf(" dacs_error_code exit code=%d\n",code);

 }

 else {//else reason is different than aborted or failed

 printf(" dacs_error_code exit/signal code=%d\n",code);

 }

 }

 /* Get the error string in the error to learn what happened */

 dacs_rc=dacs_error_str(error,&error_string);

 if(dacs_rc){//if error invoking dacs_error_str

 printf(" dacs_error_str call had error DACS_ERR_T=%d %s\n",

 dacs_rc,dacs_strerror(dacs_rc));

 }

 else {

 printf(" dacs_error_str=%s\n",error_string);

 }

 /* what DE had this error ? */

 dacs_rc=dacs_error_de(error,&de);

 if(dacs_rc){//if error invoking dacs_error_de

 printf(" dacs_error_de call had error DACS_ERR_T=%d %s\n",

 dacs_rc,dacs_strerror(dacs_rc));

 }

 else {

 printf(" dacs_error_de=%08x\n",de);

 }

 /* what was the dacs_process_id_t? */

 dacs_rc=dacs_error_pid(error,&pid);

 if(dacs_rc){//if error invoking dacs_error_pid

 printf(" dacs_error_pid call had error"

 "DACS_ERR_T=%d %s\n",dacs_rc,dacs_strerror(dacs_rc));

 }

 else {

 printf(" dacs_error_pid=%ld\n",pid);

 }

 printf("exiting user error handler\n\n");

 return 0;//in SDK 3.0, return value is ignored

}

 User error handler output

Example output if the accelerator program exits with a return code of 9:

--in my_dacs_errhandler

 dacs_error_num indicates DACS_ERR_T=4 DACS_STS_PROC_FAILED

 dacs_error_code exit code=9

 dacs_error_str=DACS_STS_PROC_FAILED

 dacs_error_de=01020200

 dacs_error_pid=5503

exiting user error handler

70 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Example output if the accelerator program aborts:

--in my_dacs_errhandler

 dacs_error_num indicates DACS_ERR_T=5 DACS_STS_PROC_ABORTED

 dacs_error_code signal signal=6 dacs_error_str=DACS_STS_PROC_ABORTED

 dacs_error_de=01020200

 dacs_error_pid=5894

exiting user error handler

dacs_errhandler_reg

NAME

dacs_errhandler_reg - Register an error handler to be called when an asynchronous

or fatal error occurs.

SYNOPSIS

DACS_ERR_T dacs_errhandler_reg (dacs_error_handler_t handler, uint32_t flags)

 Call parameters

handler A pointer to an error handling function. This function will be

passed the error object containing the error information, and

returns a boolean indicating whether termination is requested

or not. For fatal internal errors the process will be terminated

without consideration for the handler’s return value.

flags Flags for error handling options.

Note: In SDK 3.0 no flags are supported: the flags value

passed in must be 0 (zero).

The prototype of the handler is:

int (*dacs_error_handler_t)(dacs_error_t error)

The user-registered handler must accept a handle to an error object, and return 1

(one) or 0 (zero) to indicate whether the error is deemed fatal or not.

DESCRIPTION

The dacs_errhandler_reg service registers an error handler. This handler will then

be called whenever an asynchronous DaCS process fails, or a synchronous DaCS

process encounters a fatal error.

Note: In SDK 3.0 the return value from the user handler will be ignored in all

cases.

Note: If the error handler is coded in the form

int my_errhandler(dacs_error_t error)

then write the registration as

dacs_rc=dacs_errhandler_reg((dacs_error_handler_t)&my_errhandler,0);

where dacs_rc has been declared as a variable of type DACS_ERROR_T.

Chapter 12. Error handling 71

RETURN VALUE

The dacs_errhandler_reg service returns an error indicator defined as:

v DACS_SUCCESS: normal return.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

v DACS_ERR_INVALID_ATTR: the flag or enumerated constant is invalid.

v DACS_ERR_NO_RESOURCE: unable to allocate required resources.

SEE ALSO

dacs_strerror(3), dacs_error_num(3), dacs_error_code(3), dacs_error_str(3),

dacs_error_de(3), dacs_error_pid(3)

dacs_strerror

NAME

dacs_strerror - Return a pointer to a string describing an error.

SYNOPSIS

const char * dacs_strerror (DACS_ERR_T errcode)

 Call parameter

errcode An error code that was returned by a DaCS API.

DESCRIPTION

The dacs_strerror service returns a pointer to the error string for the given error

code. The input error code can be any error returned by the DaCS API.

RETURN VALUE

The dacs_strerror service returns the error string for the given error code, or NULL

if no string was found.

SEE ALSO

dacs_errhandler_reg(3), dacs_error_num(3), dacs_error_code(3), dacs_error_str(3),

dacs_error_de(3), dacs_error_pid(3)

72 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_error_num

NAME

dacs_error_num - Return the error code for the specified error handle.

SYNOPSIS

DACS_ERR_T dacs_error_num (dacs_error_t error)

 Call parameter

error An error handle.

DESCRIPTION

The dacs_error_num service returns the error code associated with the specified

error handle.

RETURN VALUE

The dacs_error_num service returns a DaCS error code, or

DACS_ERR_INVALID_HANDLE if the given handle does not refer to a valid error object.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_code(3), dacs_error_str(3),

dacs_error_de(3), dacs_error_pid(3)

Chapter 12. Error handling 73

dacs_error_code

NAME

dacs_error_code - Retrieve the extended error code from the specified error object.

SYNOPSIS

DACS_ERR_T dacs_error_code (dacs_error_t error , uint32_t *code)

 Call parameter

error An error handle.

 Return parameter

*code A pointer to the error code.

DESCRIPTION

The dacs_error_code service retrieves the platform-specific extended error code

from the specified error object.

RETURN VALUE

The dacs_error_code service returns an error indicator defined as:

v DACS_SUCCESS: normal return; error code is returned in code.

v DACS_ERR_INVALID_HANDLE: the error handle is invalid.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_num(3), dacs_error_str(3),

dacs_error_de(3), dacs_error_pid(3)

74 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_error_str

NAME

dacs_error_str - Retrieve the error string for the specified error object.

SYNOPSIS

DACS_ERR_T dacs_error_str (dacs_error_t error, const char **errstr)

 Call parameter

error An error handle.

 Return parameter

**errstr A pointer to the error string.

DESCRIPTION

The dacs_error_str service returns the error string associated with the specified

error. This is the string that is returned from dacs_strerror().

RETURN VALUE

The dacs_error_str service returns an error indicator defined as:

v DACS_SUCCESS: normal return: a pointer to the error string is passed back in

errstr.

v DACS_ERR_INVALID_HANDLE: the specified error handle is invalid.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_num(3), dacs_error_code(3),

dacs_error_de(3), dacs_error_pid(3)

Chapter 12. Error handling 75

dacs_error_de

NAME

dacs_error_de - Retrieve the originating DE for the specified error object.

SYNOPSIS

DACS_ERR_T dacs_error_de (dacs_error_t error, de_id_t *de)

 Call parameter

error An error handle.

 Return parameter

*de A pointer indicating the DE which was the source of the error.

DESCRIPTION

The dacs_error_de service returns the originating DE for the specified error object.

RETURN VALUE

The dacs_error_de service returns an error indicator defined as:

v DACS_SUCCESS: normal return: the originating DE is passed back in de.

v DACS_ERR_INVALID_HANDLE: the specified error handle is invalid.

v DACS_ERR_INVALID_ADDR: the pointer is invalid.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_num(3), dacs_error_code(3),

dacs_error_str(3), dacs_error_pid(3)

76 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

dacs_error_pid

NAME

dacs_error_pid - Retrieve the originating PID for the specified error object.

SYNOPSIS

DACS_ERR_T dacs_error_pid (dacs_error_t error, dacs_process_id_t *pid)

 Call parameter

error An error handle.

 Return parameter

*pid A pointer indicating the PID which was the source of the error.

DESCRIPTION

The dacs_error_pid service returns the originating PID for the specified error

object.

RETURN VALUE

The dacs_error_pid service returns an error indicator defined as:

v DACS_SUCCESS: normal return; the originating PID is passed back in pid.

v DACS_ERR_INVALID_HANDLE: the specified error handle is invalid.

SEE ALSO

dacs_errhandler_reg(3), dacs_strerror(3), dacs_error_num(3), dacs_error_code(3),

dacs_error_str(3), dacs_error_de(3)

Chapter 12. Error handling 77

78 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Appendix A. Data types

Data type declarations in this document follow the C99 (ISO/IEC 9899:1999)

convention. In addition, the following data types are defined in dacs.h:

dacs_remote_mem_t

A handle to a memory region specified for use by other remote processes

dacs_dma_list_t

This structure describes a dma_list_element in 64 bit addressing mode

v uint64_t offset: 64-bit offset into the dacs_remote_mem_t block

v uint64_t size: size of the buffer to be transferred, in bytes
typedef struct dma_list

{

 uint64_t_t offset;

 uint64_t size;

} dacs_dma_list_t;

dacs_error_t

This is an opaque handle which refers to an error object. A handle of this

type is passed to the user-registered handler.

int (*dacs_error_handler_t)(dacs_error_t error)

The user-registered handler must accept a handle to an error object and

return 1 or 0 to indicate whether the error is deemed fatal.

© Copyright IBM Corp. 2007 - DRAFT 79

80 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Appendix B. DaCS DE types

The current DaCS Element (DE) types in the current supported DaCS topology are

listed below.

DACS_DE_SYSTEMX

The supervising host for a node.

DACS_DE_CELL_BLADE

An entire Cell BE blade. If a program is run on this DE, it has 16 SPE

children, and the DACS_DE_CBE elements are not allowed to execute any

processes. Some applications may find this configuration useful.

DACS_DE_CBE

Cell BE Blade Engine. A Cell BE Blade contains two of these. If used this

way, a Cell BE has 8 SPE children. As with the DACS_DE_CELL_BLADE, if

processes are running on a DACS_DE_CBE element, no processes are allowed

on the parent DACS_DE_CELL_BLADE. Running processes on a Cell BE node

allows finer control of memory and processor affinity and may increase

performance.

DACS_DE_SPE

Cell BE Synergistic Processing Element.

© Copyright IBM Corp. 2007 - DRAFT 81

82 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Appendix C. Performance and debug trace

The Performance Debugging Tool (PDT) provides trace data necessary to debug

functional and performance problems for applications using the DaCS library.

Versions of the DaCS libraries built with PDT trace hooks enabled are delivered

with SDK 3.0.

Installing and running the PDT

The libraries with the trace hooks enabled are packaged in separate -trace named

packages. The trace enabled libraries install to a subdirectory named dacs/trace in

the library install directory. These packages and the PDT are included in the SDK

3.0 package but may not be installed by default. Please refer to the PDT user’s

guide for full instructions on how to install PDT, and how to set the correct

environment variables to cause trace events to be generated. Included in the DaCS

trace package is an example PDT configuration file which shows the available trace

events that can be enabled or disabled.

Trace control

When a PDT-enabled application starts, PDT reads its configuration from a file.

The PDT configuration for DaCS is separate from the configuration for your job.

Environment variable

PDT supports an environment variable (PDT_CONFIG_FILE) which allows you to

specify the relative or full path to a configuration file. DaCS will ship an example

configuration file which lists all of the DaCS groups and events and allows you to

turn selected items on or off as desired. This will be shipped as:

/usr/share/pdt/config/pdt_dacs_config_cell.xml

In order to see the trace events the application must be built with the trace-enabled

libraries. To see SPE events the application’s SPE code must be rebuilt with special

compile settings (see the PDT User’s Guide for specifics) and needs to be linked

with /usr/spu/lib/dacs/trace/libdacs.a, the trace-enabled DaCS SPU library code.

To see PPE events the application must use the trace-enabled DaCS PPU code. If

the application is using the static PPU library then it must be re-linked with

/usr/lib64/dacs/trace/libdacs.a, the trace-enabled DaCS PPU library code. If the

application was built using the shared PPU library then no re-linking is needed. In

that case the library path must be changed to point to the trace-enabled PPU code

as well as the PDT trace library, by setting the environment before running the

application:

LD_LIBRARY_PATH=/usr/lib64/dacs/trace:/usr/lib64/trace

© Copyright IBM Corp. 2007 - DRAFT 83

84 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Appendix D. DaCS trace events

Where inputs or outputs are pointers to scalar types, both the pointer and the

contents will be traced. To avoid any extra overhead of checking for NULL

pointers, the trace code will only trace contents for pointers that are either required

to be non-NULL by the API spec. or already have appropriate checks in the library.

The contents of aggregate types will not be traced unless the entire object is passed

in as an argument.

In general, there will be two trace hooks per API. The first will trace the input

parameters and the second will trace the output values as well as the time interval

of the API call. The performance hooks will generally have entry and exit hooks so

the post-processing tools can show the time deltas. Note that the performance

hooks are also debug hooks and will be enabled when either category is enabled.

DaCS API hooks

 Table 3. Trace hooks enabled by LIBDACS group (0x04) in the config file.

Hook identifier Traced values

_DACS_BARRIER_WAIT_ENTRY group

_DACS_BARRIER_WAIT_EXIT_INTERVAL retcode

_DACS_DE_KILL_ENTRY deid, pid

_DACS_DE_KILL_EXIT_INTERVAL retcode

_DACS_DE_START_ENTRY deid, text, argv, envv, creation_flags, p_pid

_DACS_DE_START_EXIT_INTERVAL retcode, pid

_DACS_DE_TEST_ENTRY deid, pid, p_exit_status

_DACS_DE_TEST_EXIT_INTERVAL retcode, exit_status

_DACS_DE_WAIT_ENTRY deid, pid, p_exit_status

_DACS_DE_WAIT_EXIT_INTERVAL retcode, exit_status

_DACS_GENERIC_DEBUG long1, long2, long3, long4, long5, long6, long7, long8, long9,

long10

_DACS_GET_ENTRY dst_addr, src, src_offset, size, wid, order_attr, swap

_DACS_GET_EXIT_INTERVAL retcode

_DACS_GET_LIST_ENTRY dst_addr, dst_dma_list, dst_list_size, src_remote_mem,

src_dma_list, src_list_size, wid, order_attr, swap

_DACS_GET_LIST_EXIT_INTERVAL retcode

_DACS_MBOX_READ_ENTRY msg, src_de, src_pid

_DACS_MBOX_READ_EXIT_INTERVAL retcode

_DACS_MBOX_TEST_ENTRY rw_flag, deid, pid, p_mbox_status

_DACS_MBOX_TEST_EXIT_INTERVAL retcode, result

_DACS_MBOX_WRITE_ENTRY msg, dst_de, dst_pid

_DACS_MBOX_WRITE_EXIT_INTERVAL retcode

_DACS_MUTEX_ACCEPT_ENTRY deid, pid, mutex

_DACS_MUTEX_ACCEPT_EXIT_INTERVAL retcode

© Copyright IBM Corp. 2007 - DRAFT 85

Table 3. Trace hooks enabled by LIBDACS group (0x04) in the config file. (continued)

Hook identifier Traced values

_DACS_MUTEX_DESTROY_ENTRY mutex

_DACS_MUTEX_DESTROY_EXIT_INTERVAL retcode

_DACS_MUTEX_INIT_ENTRY mutex

_DACS_MUTEX_INIT_EXIT_INTERVAL retcode

_DACS_MUTEX_LOCK_ENTRY mutex

_DACS_MUTEX_LOCK_EXIT_INTERVAL retcode

_DACS_MUTEX_RELEASE_ENTRY mutex

_DACS_MUTEX_RELEASE_EXIT_INTERVAL retcode

_DACS_MUTEX_SHARE_ENTRY deid, pid, mutex

_DACS_MUTEX_SHARE_EXIT_INTERVAL retcode

_DACS_MUTEX_TRY_LOCK_ENTRY mutex

_DACS_MUTEX_TRY_LOCK_EXIT_INTERVAL retcode

_DACS_MUTEX_UNLOCK_ENTRY mutex

_DACS_MUTEX_UNLOCK_EXIT_INTERVAL retcode

_DACS_PUT_ENTRY dst, dst_offset, src_addr, size, wid, order_attr, swap

_DACS_PUT_EXIT_INTERVAL retcode

_DACS_PUT_LIST_ENTRY dst, dst_dma_list, dma_list_size, src_addr, src_dma_list,

src_list_size, wid, order_attr, swap

_DACS_PUT_LIST_EXIT_INTERVAL retcode

_DACS_RMEM_ACCEPT_ENTRY src_de, src_pid, remote_mem

_DACS_RMEM_ACCEPT_EXIT_INTERVAL retcode

_DACS_RMEM_CREATE_ENTRY addr, size, mode, local_mem

_DACS_RMEM_CREATE_EXIT_INTERVAL retcode

_DACS_RMEM_DESTROY_ENTRY remote_mem

_DACS_RMEM_DESTROY_EXIT_INTERVAL retcode

_DACS_RMEM_RELEASE_ENTRY remote_mem

_DACS_RMEM_RELEASE_EXIT_INTERVAL retcode

_DACS_RMEM_SHARE_ENTRY dst, dst_pid, local_mem

_DACS_RMEM_SHARE_EXIT_INTERVAL retcode

_DACS_RUNTIME_EXIT_ENTRY zero

_DACS_RUNTIME_EXIT_EXIT_INTERVAL retcode

_DACS_RUNTIME_INIT_ENTRY argp, envp

_DACS_RUNTIME_INIT_EXIT_INTERVAL retcode

DaCS performance hooks

The COUNTERS and TIMERS hooks contain data that are accumulated during the

DaCS calls. These data and trace events are reported by the dacs_runtime_exit()

function.

86 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Table 4. Trace hooks enabled by LIBDACS_GROUP group (0x06) in the config file.

Hook identifier Traced values

_DACS_COUNTERS1 dacs_de_starts, dacs_de_waits, dacs_put_count, dacs_get_count,

dacs_put_bytes, dacs_get_bytes, dacs_send_count,

dacs_recv_count, dacs_send_bytes, dacs_recv_bytes

_DACS_COUNTERS2 dacs_mutex_try_success, dacs_mutex_try_failure, dacs_x1,

dacs_x2

_DACS_HOST_MUTEX_INIT lock

_DACS_HOST_MUTEX_LOCK lock, miss

_DACS_HOST_MUTEX_TRYLOCK lock, ret

_DACS_HOST_MUTEX_UNLOCK lock

_DACS_PERF_GENERIC_DEBUG long1, long2, long3, long4, long5, long6, long7, long8, long9,

long10

_DACS_SPE_MUTEX_INIT lock

_DACS_SPE_MUTEX_LOCK lock, miss

_DACS_SPE_MUTEX_TRYLOCK lock, ret

_DACS_SPE_MUTEX_UNLOCK lock

_DACS_TIMERS dacs_put, dacs_put_list, dacs_wait, dacs_send, dacs_recv,

dacs_mutex_lock, dacs_barrier_wait, dacs_mbox_read,

dacs_mbox_write, dacs_x

Appendix D. DaCS trace events 87

88 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Appendix E. Error codes

This section describes the DaCS error codes

All error codes which may be issued by DaCS APIs are listed here:

DACS_ERR_BUF_OVERFLOW: Buffer overflow

 - the specified offset or size exceed the bounds of the target buffer.

DACS_ERR_BYTESWAP_MISMATCH: The byte swap flags on the source and target

 do not match.

DACS_ERR_GROUP_CLOSED: The group is closed.

DACS_ERR_GROUP_DUPLICATE: The specified process is already a member of the

 specified group.

DACS_ERR_GROUP_OPEN: The group has not been closed.

DACS_ERR_INITIALIZED: DaCS is already initialized.

DACS_ERR_INVALID_ARGV: The value of argv is too large or invalid.

DACS_ERR_INVALID_ADDR: The pointer is invalid.

DACS_ERR_INVALID_ATTR: The flag or enumerated constant is invalid.

DACS_ERR_INVALID_DE: The specified DE is either invalid or not reserved.

DACS_ERR_INVALID_ENV: The value of env is too large or invalid.

DACS_ERR_INVALID_HANDLE: The handle is invalid.

DACS_ERR_INVALID_PID: The specified PID does not refer to a valid process.

DACS_ERR_INVALID_PROG: Unable to execute the specified program.

DACS_ERR_INVALID_SIZE: The size is zero or is not supported by the platform.

DACS_ERR_INVALID_STREAM: The stream identifier is invalid.

DACS_ERR_INVALID_TARGET: This operation is not allowed for the target DE or process.

DACS_ERR_INVALID_WID: The wait identifier is invalid.

DACS_ERR_MUTEX_BUSY: The mutex is not available.

DACS_ERR_NO_PERM: The process does not have the appropriate privilege

 or the resource attributes do not allow the operation.

DACS_ERR_NO_RESOURCE: Unable to allocate required resources.

DACS_ERR_NO_WIDS: No more wait identifiers are available to be reserved.

DACS_ERR_NOT_ALIGNED: The buffer is incorrectly aligned for the size of the data.

DACS_ERR_NOT_INITIALIZED: DaCS has not been initialized.

DACS_ERR_NOT_OWNER: This operation is only permitted for the owner of the resource.

DACS_ERR_OWNER: This operation is not permitted for the owner of the resource.

DACS_ERR_PROC_LIMIT: The maximum number of processes supported has been reached.

DACS_ERR_PROHIBITED: This operation is prohibited by the implementation.

DACS_ERR_RESOURCE_BUSY: The specified resource is in use.

DACS_ERR_WID_ACTIVE: A data transfer involving the wait identifier is still active.

DACS_ERR_WID_NOT_ACTIVE: There are no outstanding transfers to test.

DACS_STS_PROC_ABORTED: The process terminated abnormally.

DACS_STS_PROC_FAILED: The process exited with a failure.

DACS_STS_PROC_FINISHED: The process finished execution without error.

DACS_STS_PROC_RUNNING: The process is still running.

DACS_SUCCESS: The API returned successfully.

DACS_WID_READY: All data transfers have completed.

DACS_WID_BUSY: One or more data transfers have not completed.

DACS_WID_NOT_ACTIVE: There are no outstanding transfers to test.

© Copyright IBM Corp. 2007 - DRAFT 89

90 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Appendix F. Accessibility features

IBM® and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2007 - DRAFT 91

http://www.ibm.com/able/

92 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Notices

This information was developed for products and services offered in the U.S.A.

The manufacturer may not offer the products, services, or features discussed in this

document in other countries. Consult the manufacturer’s representative for

information on the products and services currently available in your area. Any

reference to the manufacturer’s product, program, or service is not intended to

state or imply that only that product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any

intellectual property right of the manufacturer may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any product,

program, or service.

The manufacturer may have patents or pending patent applications covering

subject matter described in this document. The furnishing of this document does

not give you any license to these patents. You can send license inquiries, in

writing, to the manufacturer.

For license inquiries regarding double-byte (DBCS) information, contact the

Intellectual Property Department in your country or send inquiries, in writing, to

the manufacturer.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: THIS

INFORMATION IS PROVIDED “AS IS ” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may

not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. The manufacturer may make

improvements and/or changes in the product(s) and/or the program(s) described

in this publication at any time without notice.

Any references in this information to Web sites not owned by the manufacturer are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials for

this product and use of those Web sites is at your own risk.

The manufacturer may use or distribute any of the information you supply in any

way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact the manufacturer.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

© Copyright IBM Corp. 2007 - DRAFT 93

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, IBM License Agreement for

Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning products not produced by this manufacturer was obtained

from the suppliers of those products, their published announcements or other

publicly available sources. This manufacturer has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims

related to products not produced by this manufacturer. Questions on the

capabilities of products not produced by this manufacturer should be addressed to

the suppliers of those products.

All statements regarding the manufacturer’s future direction or intent are subject to

change or withdrawal without notice, and represent goals and objectives only.

The manufacturer’s prices shown are the manufacturer’s suggested retail prices, are

current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to the

manufacturer, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. The manufacturer, therefore,

cannot guarantee or imply reliability, serviceability, or function of these programs.

CODE LICENSE AND DISCLAIMER INFORMATION:

The manufacturer grants you a nonexclusive copyright license to use all

programming code examples from which you can generate similar function

tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE

EXCLUDED, THE MANUFACTURER, ITS PROGRAM DEVELOPERS AND

SUPPLIERS, MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR

94 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR

TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS THE MANUFACTURER, ITS PROGRAM

DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF THE FOLLOWING, EVEN

IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY

ECONOMIC CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED

SAVINGS.

 SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF

DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL

OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

IBM

developerWorks

PowerPC

PowerPC® Architecture

Resource Link

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Cell Broadband Engine™ and Cell/B.E.™ are trademarks of Sony Computer

Entertainment, Inc., in the United States, other countries, or both and is used under

license therefrom.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Notices 95

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

96 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the developerWorks® Web

site located at:

http://www-128.ibm.com/developerworks/power/cell/

Click on the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v SPU Assembly Language Specification

v SPU Application Binary Interface Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

Programming

v Cell Broadband Engine Programming Handbook

v Programming Tutorial

v SDK for Multicore Acceleration Version 3.0 Programmer’s Guide

Library

v SPE Runtime Management library

v SPE Runtime Management library Version 1.2 to Version 2.0 Migration Guide

v Accelerated Library Framework for Cell Programmer’s Guide and API Reference

v Accelerated Library Framework for Hybrid-x86 Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Programmer’s Guide and API

Reference

v Data Communication and Synchronization for Hybrid-x86 Programmer’s Guide and

API Reference

v SIMD Math Library Specification

v Monte Carlo Library API Reference Manual (Prototype)

Installation

v SDK for Multicore Acceleration Version 3.0 Installation Guide

© Copyright IBM Corp. 2007 - DRAFT 97

http://www-128.ibm.com/developerworks/power/cell/

IBM XL C/C++ Compiler and IBM XL Fortran Compiler

Detail about documentation for the compilers is available on the developerWorks

Web site.

Draft comment

Should we name the documentation here? What is it?

IBM Full-System Simulator and debugging documentation

Detail about documentation for the simulator and debugging tools is available on

the developerWorks Web site.

Draft comment

Should we name the documentation here? What is it?

PowerPC Base

v PowerPC Architecture™ Book, Version 2.02

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual Version 2.07c

98 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Glossary

Accelerator

General or special purpose processing element in

a hybrid system. An accelerator might have a

multi-level architecture with both host elements

and accelerator elements. An accelerator, as

defined here, is a hierarchy with potentially

multiple layers of hosts and accelerators. An

accelerator element is always associated with one

host. Aside from its direct host, an accelerator

cannot communicate with other processing

elements in the system. The memory subsystem

of the accelerator can be viewed as distinct and

independent from a host. This is referred to as the

subordinate in a cluster collective.

All-reduce operation

Output from multiple accelerators is reduced and

combined into one output.

cluster

A collection of nodes.

Compute kernel

Part of the accelerator code that does stateless

computation task on one piece of input data and

generates corresponding output results.

Compute task

An accelerator execution image that consists of a

compute kernel linked with the accelerated

library framework accelerator runtime library.

DaCS Element

A general or special purpose processing element

in a topology. This refers specifically to the

physical unit in the topology. A DE can serve as a

Host or an Accelerator.

DE

See DaCS element.

de_id

A unique number assigned to the physical

processing element in a topology. The de_id is

usually assigned (or derived) when the node is

powered up. It should not change until the node

is powered down again.

group

A group construct specifies a collection of DaCS

DEs and processes in a system.

handle

A handle is an abstraction of a data object;

usually a pointer to a structure.

Host

A general purpose processing element in a hybrid

system. A host can have multiple accelerators

attached to it. This is often referred to as the

master node in a cluster collective.

Main thread

The main thread of the application. In many

cases, Cell/B.E. architecture programs are

multi-threaded using multiple SPEs running

concurrently. A typical scenario is that the

application consists of a main thread that creates

as many SPE threads as needed and the

application organizes them.

node

A node is a functional unit in the system

topology, consisting of one host together with all

the accelerators connected as children in the

topology (this includes any children of

accelerators).

parent

The parent of a DE is the DE that resides

immediately above it in the topology tree.

© Copyright IBM Corp. 2007 - DRAFT 99

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell/B.E. processor.

process

A process is a standard UNIX-type process with a

separate address space.

SIMD

Single Instruction Multiple Data. Processing in

which a single instruction operates on multiple

data elements that make up a vector data-type.

Also known as vector processing. This style of

programming implements data-level parallelism.

SPMD

Single Program Multiple Data. A common style of

parallel computing. All processes use the same

program, but each has its own data.

SPE

Synergistic Processor Element. Extends the

PowerPC 64 architecture by acting as cooperative

offload processors (synergistic processors), with

the direct memory access (DMA) and

synchronization mechanisms to communicate

with them (memory flow control), and with

enhancements for real-time management. There

are 8 SPEs on each Cell/B.E. processor.

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

System X

This is a project-neutral description of the

supervising system for a node.

thread

A sequence of instructions executed within the

global context (shared memory space and other

global resources) of a process that has created

(spawned) the thread. Multiple threads (including

multiple instances of the same sequence of

instructions) can run simultaneously if each

thread has its own architectural state (registers,

program counter, flags, and other program-visible

state). Each SPE can support only a single thread

at any one time. Multiple SPEs can

simultaneously support multiple threads. The PPE

supports two threads at any one time, without the

need for software to create the threads. It does

this by duplicating the architectural state. A

thread is typically created by the pthreads library.

topology

A topology is a configuration of DaCS elements in

a system. The topology specifies how the different

processing elements in a system are related to

each other. DaCS assumes a tree topology: each

DE has at most one parent.

Work block

A basic unit of data to be managed by the

framework. It consists of one piece of the

partitioned data, the corresponding output buffer,

and related parameters. A work block is

associated with a task. A task can have as many

work blocks as necessary.

Work queue

An internal data structure of the accelerated

library framework that holds the lists of work

blocks to be processed by the active instances of

the compute task.

100 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

Index

D
dacs_barrier_wait 29

dacs_de_start 15

dacs_de_test 20

dacs_de_wait 19

dacs_errhandler_reg 71

dacs_error_code 74

dacs_error_de 76

dacs_error_num 73

dacs_error_pid 77

dacs_error_str 75

dacs_get 40

dacs_get_list 45

dacs_get_num_avail_children 11

dacs_group_accept 27

dacs_group_add_member 24

dacs_group_close 25

dacs_group_destroy 26

dacs_group_init 23

dacs_group_leave 28

dacs_mailbox_read 52

dacs_mailbox_test 53

dacs_mailbox_write 51

dacs_mutex_accept 62

dacs_mutex_destroy 67

dacs_mutex_init 60

dacs_mutex_lock 63

dacs_mutex_release 66

dacs_mutex_share 61

dacs_mutex_try_lock 64

dacs_mutex_unlock 65

dacs_num_processes_running 18

dacs_num_processes_supported 17

dacs_put 38

dacs_put_list 42

dacs_recv 49

dacs_release_de_list 13

dacs_remote_mem_accept 34

dacs_remote_mem_create 32

dacs_remote_mem_destroy 36

dacs_remote_mem_query 37

dacs_remote_mem_release 35

dacs_remote_mem_share 33

dacs_reserve_children 12

dacs_runtime_exit 9

dacs_runtime_init 8

dacs_send 48

dacs_strerror 72

dacs_test 57

dacs_wait 58

dacs_wid_release 56

dacs_wid_reserve 55

documentation 97

E
error handler 71

S
SDK documentation 97

SIGTERM 69

© Copyright IBM Corp. 2007 - DRAFT 101

102 DaCS for Cell Programmer’s Guide and API Reference - DRAFT

����

Printed in USA

SC33-8407-00

	Contents
	About this publication
	How to send your comments

	Chapter 1. Overview
	Chapter 2. Installing and configuring DaCS
	Installation

	Chapter 3. Programming with DaCS
	DaCS API functions
	Building a DaCS application

	Chapter 4. Initializing and closing down the DaCS library
	dacs_runtime_init
	dacs_runtime_exit

	Chapter 5. Reservation services
	dacs_get_num_ avail_children
	dacs_reserve_children
	dacs_release_de_list

	Chapter 6. Process management
	dacs_de_start
	dacs_num_processes_supported
	dacs_num_processes_running
	dacs_de_wait
	dacs_de_test

	Chapter 7. Group functions
	Definitions
	Group design
	Group usage scenario
	Initialization
	Operation
	Termination

	Group owner functions
	dacs_group_init
	dacs_group_add_member
	dacs_group_close
	dacs_group_destroy

	Group member functions
	dacs_group_accept
	dacs_group_leave

	Process synchronization
	dacs_barrier_wait

	Chapter 8. Data communication
	Remote Direct Memory Access (rDMA)
	dacs_remote_mem_create
	dacs_remote_mem_share
	dacs_remote_mem_accept
	dacs_remote_mem_release
	dacs_remote_mem_destroy
	dacs_remote_mem_query

	rDMA block transfers
	dacs_put
	dacs_get

	rDMA list transfers
	dacs_put_list
	dacs_get_list

	Message passing
	dacs_send
	dacs_recv

	Mailboxes
	dacs_mailbox_write
	dacs_mailbox_read
	dacs_mailbox_test

	Chapter 9. Wait identifier management services
	dacs_wid_reserve
	dacs_wid_release

	Chapter 10. Transfer completion
	dacs_test
	dacs_wait

	Chapter 11. Locking Primitives
	dacs_mutex_init
	dacs_mutex_share
	dacs_mutex_accept
	dacs_mutex_lock
	dacs_mutex_try_lock
	dacs_mutex_unlock
	dacs_mutex_release
	dacs_mutex_destroy

	Chapter 12. Error handling
	User error handler example
	dacs_errhandler_reg
	dacs_strerror
	dacs_error_num
	dacs_error_code
	dacs_error_str
	dacs_error_de
	dacs_error_pid

	Appendix A. Data types
	Appendix B. DaCS DE types
	Appendix C. Performance and debug trace
	Trace control

	Appendix D. DaCS trace events
	DaCS API hooks
	DaCS performance hooks

	Appendix E. Error codes
	Appendix F. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Related documentation
	Glossary
	Index

