
ibm.com/redbooks

Draft Document for Review February 15, 2008 4:59 pm SG24-7575-00

Programming the Cell
Broadband Engine
Examples and Best Practices

Abraham Arevalo
Ricardo M. Matinata

Maharaja Pandian
Eitan Peri

Kurtis Ruby
Francois Thomas

Chris Almond

Practical code development and porting
examples included

Make the most of SDK 3.0 debug and
performance tools

Understand and apply different
programming models and
strategies

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Programming the Cell Broadband Engine:
Examples and Best Practices

December 2007

International Technical Support Organization

Draft Document for Review February 15, 2008 4:59 pm 7575edno.fm

SG24-7575-00

7575edno.fm Draft Document for Review February 15, 2008 4:59 pm

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2007)

This edition applies to Version 3.0 of the IBM Cell Broadband Engine SDK, and the IBM
BladeCenter QS-21 platform.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xvii.

Draft Document for Review February 15, 2008 4:59 pm 7575TOC.fm
Contents

Preface . xi
The team that wrote this book . xi
Acknowledgements . xiii
Become a published author . xiv
Comments welcome. xv

Notices . xvii
Trademarks . xviii

Part 1. Introduction to the Cell Broadband Engine . 1

Chapter 1. Cell Broadband Engine Overview . 3
1.1 Motivation . 4
1.2 Scaling the three performance-limiting walls . 6

1.2.1 Scaling the power-limitation wall . 6
1.2.2 Scaling the memory-limitation wall . 7
1.2.3 Scaling the frequency-limitation wall . 7
1.2.4 How the Cell Broadband Engine overcomes performance limitations 8

1.3 Hardware Environment . 8
1.3.1 The Processor Elements. 8
1.3.2 The Element Interconnect Bus . 9
1.3.3 Memory Interface Controller . 10
1.3.4 Cell Broadband Engine Interface Unit . 10

1.4 Programming Environment . 12
1.4.1 Instruction Sets . 12
1.4.2 Storage Domains and Interfaces. 12
1.4.3 Bit Ordering and Numbering . 15
1.4.4 Runtime Environment . 15

Chapter 2. IBM SDK for Multicore Acceleration . 17
2.1 Compilers . 17

2.1.1 GNU Toolchain . 18
2.1.2 IBM XLC/C++ Compiler. 18
2.1.3 GNU ADA Compiler . 18
2.1.4 IBM XL Fortran for Multicore Acceleration for Linux 18

2.2 IBM Full System Simulator . 19
2.2.1 System root image for Simulator. 20
© Copyright IBM Corp. 2007. All rights reserved. iii

7575TOC.fm Draft Document for Review February 15, 2008 4:59 pm
2.3 Linux Kernel . 20
2.4 Cell BE Libraries . 20

2.4.1 SPE Runtime Management Library. 20
2.4.2 SIMD Math Library . 20
2.4.3 Mathematical Acceleration Subsystem (MASS) libraries 21
2.4.4 Basic Linear Algebra Subprograms (BLAS) 21
2.4.5 ALF Library . 22
2.4.6 Data Communication and Synchronization library (DaCS) 22

2.5 Code examples and example libraries . 23
2.6 Performance Tools . 23

2.6.1 SPU Timing Tool . 23
2.6.2 OProfile . 24
2.6.3 Cell-perf-counter tool. 24
2.6.4 Performance Debug Tool (PDT) . 24
2.6.5 Feedback Directed Program Restructuring (FDPR-Pro) 24
2.6.6 Visual Performance Analyzer (VPA) . 25

2.7 IBM Eclipse IDE for the SDK. 25
2.8 Hybrid-x86 programming model . 26

Part 2. Programming Environment . 27

Chapter 3. Enabling applications on the Cell BE . 29
3.1 Concepts and terminology. 31

3.1.1 The computation kernels. 32
3.1.2 Important Cell BE features . 35
3.1.3 The parallel programming models. 36
3.1.4 The Cell BE programming frameworks . 39

3.2 Does the Cell BE fit the application requirements? 46
3.2.1 Higher performance/watt . 47
3.2.2 Opportunities for parallelism . 47
3.2.3 Algorithm match . 47
3.2.4 Ready to make the effort?. 49

3.3 Which parallel programming model ? . 51
3.3.1 Parallel programming models basics . 52
3.3.2 Chip or board level parallelism . 54
3.3.3 More on the host-accelerator model . 57
3.3.4 Summary. 58

3.4 Which Cell BE programming framework to use ? 60
3.5 The application enablement process. 61

3.5.1 Performance tuning for Cell BE programs . 64
3.6 A few scenarios . 65
3.7 Design patterns for Cell BE programming. 69

3.7.1 Shared queue . 69
iv Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575TOC.fm
3.7.2 Indirect addressing . 70
3.7.3 Pipeline . 71
3.7.4 Multi-SPE software cache . 72
3.7.5 Plugin . 72

Chapter 4. Cell BE programming . 75
4.1 Task parallelism and PPE programming . 78

4.1.1 PPE architecture and PPU programming . 79
4.1.2 Task parallelism and managing SPE threads 83
4.1.3 Creating SPEs affinity using gang. 93

4.2 Storage domains, channels and MMIO interfaces 95
4.2.1 Storage domains . 96
4.2.2 MFC channels and MMIO interfaces and queues. 98
4.2.3 SPU programming methods to access MFC’s channel interface . . 100
4.2.4 PPU programming methods to access MFC’s MMIO interface. . . . 104

4.3 Data transfer . 109
4.3.1 DMA commands . 111
4.3.2 SPE initiated DMA transfer between LS and main storage. 119
4.3.3 PPU initiated DMA transfer between LS and main storage 137
4.3.4 Direct problem state access and LS to LS transfer. 143
4.3.5 Facilitate random data access using SPU software cache 146
4.3.6 Automatic software caching on SPE . 155
4.3.7 Efficient data transfers by overlapping DMA and computation 157
4.3.8 Improving page hit ratio using huge pages 163
4.3.9 Improving memory access using NUMA . 168

4.4 Inter-processor communication . 174
4.4.1 Mailboxes . 176
4.4.2 Signal notification . 187
4.4.3 SPE events . 199
4.4.4 Using atomic unit and the atomic cache . 206

4.5 Shared storage synchronizing and data ordering 213
4.5.1 Shared Storage model . 216
4.5.2 Atomic synchronization . 229
4.5.3 Using sync library facilities . 234
4.5.4 Practical examples using ordering and synchronization mechanisms .

235
4.6 SPU programming. 240

4.6.1 Architecture overview and its impact on programming 241
4.6.2 SPU instruction set and C/C++ language extensions (intrinsics) . . 244
4.6.3 Compiler directives . 251
4.6.4 SIMD programming . 253
4.6.5 Auto-SIMDizing by compiler . 264
4.6.6 Using scalars and converting between different vector types 271
 Contents v

7575TOC.fm Draft Document for Review February 15, 2008 4:59 pm
4.6.7 Code transfer using SPU code overlay . 276
4.6.8 Eliminating and predicting branches . 277

4.7 Frameworks and domain-specific libraries . 283
4.7.1 DaCS - Data Communication and Synchronization 284
4.7.2 ALF - Accelerated Library Framework . 291
4.7.3 Domain-specific libraries . 309

4.8 Programming guidelines . 313
4.8.1 General guidelines . 313
4.8.2 SPE programming guidelines . 314
4.8.3 Data transfers and synchronization guidelines 318
4.8.4 Inter-processor communication. 320

Chapter 5. Programming Tools and Debugging Techniques 323
5.1 Tools Taxonomy and basic Time line approach.. 324

5.1.1 Dual Toolchain . 324
5.1.2 Typical Tools Flow . 325

5.2 Compiling and Building . 326
5.2.1 Compilers: gcc . 327
5.2.2 Compilers: xlc . 332
5.2.3 Building . 337

5.3 Debugger. 338
5.3.1 Debugger: gdb . 338

5.4 Simulator . 347
5.4.1 Setting up and Bringing up . 348
5.4.2 Operating the GUI . 350

5.5 IBM Multi core Acceleration Integrated Development Environment 354
5.5.1 Step 1: Projects. 355
5.5.2 Step 2: Choosing Target Environments with Remote Tools 360
5.5.3 Step 3: Debugger . 362

5.6 Performance Tools . 369
5.6.1 Typical Performance Tuning Cycle . 370
5.6.2 CPC. 371
5.6.3 OProfile . 377
5.6.4 Performance Debugging Tool (PDT). 381
5.6.5 FDPR-Pro . 390
5.6.6 Visual Performance Analyzer . 394

Chapter 6. Using Performance Tools. 411
6.1 Practical case: FFT16M Analysis . 412

6.1.1 The FFT16M . 412
6.1.2 Prepare and Build for profiling. 412
6.1.3 Creating and working with profile data . 416
6.1.4 Creating and working with trace data . 432
vi Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575TOC.fm
Chapter 7. Programming in distributed environments 439
7.1 Hybrid Programming Models in SDK 3.0. 440

7.1.1 Hybrid DaCS . 443
7.1.2 Hybrid ALF . 456
7.1.3 DAV - Dynamic Application Virtualization . 468

Part 3. Application Re-engineering . 491

Chapter 8. Case study: Monte Carlo Simulation 493
8.1 Monte Carlo simulation for option pricing . 495
8.2 Methods to generate Gaussian(normal) random variables 496
8.3 Parallel and vector implementation of Monte Carlo algorithm on Cell. . . 498

8.3.1 Logical steps . 498
8.3.2 Sample code for European option on SPU 503

8.4 Generating Gaussian random numbers on SPUs 505
8.5 Improving the performance . 512

Chapter 9. Case study: Implementing an FFT algorithm 515
9.1 Motivation for an FFT algorithm . 516
9.2 Development Process . 516

9.2.1 Code . 517
9.2.2 Test . 518
9.2.3 Verify . 518

9.3 Development Stages . 520
9.3.1 x86 implementation . 520
9.3.2 Port to PowerPC . 520
9.3.3 Single SPU . 521
9.3.4 DMA Optimization . 522
9.3.5 Using multiple SPUs . 523

9.4 Strategies for using SIMD . 524
9.4.1 Striping multiple problems across a vector 524
9.4.2 Synthesizing vectors by loop unrolling . 524
9.4.3 Measuring and tweaking performance . 525

Part 4. Systems . 533

Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration. . . . 535
10.1 BladeCenter QS21 Characteristics . 536
10.2 Installing the Operating System . 537

10.2.1 Important Considerations . 537
10.2.2 Managing and accessing the Blade server 538
10.2.3 Installing through Network Storage . 541
10.2.4 Example for installing through network storage 544
 Contents vii

7575TOC.fm Draft Document for Review February 15, 2008 4:59 pm
10.3 Installing SDK3.0 on BladeCenter QS21. 554
10.3.1 Pre-installation steps. 557
10.3.2 Installation Steps. 558
10.3.3 Post-Installation Steps . 559

10.4 Firmware considerations . 560
10.4.1 Updating firmware for the BladeCenter QS21. 560

10.5 Options for managing multiple blades . 564
10.5.1 Distributed Image Management . 564
10.5.2 Extreme Cluster Administration Toolkit . 583

10.6 Method for installing a minimized distribution . 587
10.6.1 During installation . 588
10.6.2 Post-installation package removal . 590
10.6.3 Shutting off services . 597

Part 5. Appendixes . 599

Appendix A. SDK 3.0 Topic Index . 601

Appendix B. Additional material . 609
Locating the Web material . 610
Using the Web material . 610

How to use the Web material . 610
Additional material content . 611
DaCS programming example . 611

DaCS synthetic example. 611
Task parallelism and PPE programming examples . 612

Simple PPU vector/SIMD code . 612
Running a single SPE . 612
Running multiple SPEs concurrently . 613

Data transfer examples . 613
Direct SPE access ‘get’ example . 613
SPU initiated basic DMA between LS and main storage 613
SPU initiated DMA list transfers between LS and main storage 613
PPU initiated DMA transfers between LS and main storage. 614
Direct PPE access to LS of some SPE . 614
Multistage pipeline using LS to LS DMA transfer 614
SPU software managed cache . 614
Double buffering . 615
Huge pages. 615

Inter-processor communication examples . 615
Simple mailbox . 615
Simple signals . 616
PPE event handler . 616
viii Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575TOC.fm
SPU programming examples . 616
SPE loop unrolling. 616
SPE SOA loop unrolling . 616
SPE scalar to vector conversion using insert and extract intrinsics . . . 617
SPE scalar to vector conversion using unions . 617

Related publications . 619
IBM Redbooks . 619
Other publications . 619
Online resources . 621
How to get Redbooks . 621
Help from IBM . 621

Index . 623
 Contents ix

7575TOC.fm Draft Document for Review February 15, 2008 4:59 pm
x Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575pref.fm
Preface

In this IBM® Redbooks publication we introduce, and show in detail, samples
from real-world application development projects and provide tips and best
practices for programming the Cell Broadband Engine™ applications. We
provide an introduction to the Cell Broadband Engine platform and the describe
the content and packaging of the IBM Software Development Kit (SDK) version
3.0 for Multicore Acceleration. This SDK provides all the tools and resources
necessary to build applications that run IBM QS21 and QS20 Blade Servers.

There are chapters and sections in the Redbook that show in-depth and
real-world useage of tools and resources found in the SDK.

In a chapter at the end of this book we provide some installation, configuration
and administration tips and best practices for the IBM BladeCenter QS21.
Discussion of supporting software provided by IBM Alphaworks is also provided.

This redbook was written for developers and programmers, customers, IBM
Business Partners, and the IBM and Cell Broadband Engine community who
need in depth technical understanding of how to develop applications using the
Cell Broadband Engine SDK 3.0.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Austin Center.

Abraham Arevalo is a Software Engineer the Linux Technology Center's Test
Department in Austin, Texas. He has worked on ensuring quality and functional
performance of RHEL5.1 and Fedora 7 distributions on BladeCenter QS20 and
QS21s. Additionally, Abraham has been involved on other Cell related projects
including expanding Cell's presence on consumer electronics. He has prior
experience working with hardware development mostly with System on Chip
design.

Ricardo M. Matinata is an Advisory Software Engineer for the Linux Technology
Center, in IBM Systems and Technology Group at IBM Brazil. He has over 10
years of experience in software research and development. He has been part of
the global Cell BE SDK development team, in the area Toolchain (IDE), for
almost two years. His areas of expertise include system software and application
© Copyright IBM Corp. 2007. All rights reserved. xi

7575pref.fm Draft Document for Review February 15, 2008 4:59 pm
development for both product and open source types of projects, Linux,
programming models, development tools, debugging and networking.

Maharaja (Raj) Pandian is a High Performance Computing specialist working on
scientific applications in the IBM WW Advanced Client Technology (A.C.T!)
Center, Poughkeepsie, NY. He has twenty years of experience in high
performance computing, software development, and market support. He holds a
Ph.D. in Applied Mathematics from University of Texas, Arlington. His areas of
expertise include parallel algorithms for distributed memory system and
symmetric multiprocessor system, numerical methods for partial differential
equations, performance optimization, and benchmarking. He has worked with
engineering analysis ISV applications such as MSC/NASTRAN (Finite Element
Analysis) and Fluent (Computational Fluid Dynamics) for several years. Also, he
has worked with weather modeling applications on IBM AIX and Linux clusters.
Currently, he is developing and benchmarking Financial Sector Services
applications on the Cell BE.

Eitan Peri works in IBM Haifa Research Lab as the technical lead for Cell BE
pre-sales activities in Israel. He holds a B.Sc. in Computer Engineering from
Israel Institute of Technology (the Technion), and M.Sc. in Biomedical
Engineering from Tel-Aviv University, where he specialized in brain imaging
analysis. He has 9 years of experience in real time programming, chip design
and chip verification. His areas of expertise include Cell BE programming and
consulting, application parallelization and optimization, algorithm performance
analysis, and medical imaging. He is currently working on projects focusing on
porting applications to the Cell BE architecture within the health care, computer
graphics, aerospace and defense industries.

Kurtis Ruby is a software consultant with IBM Lab Services at IBM Rochester,
Minnesota. He has over twenty-five years of experience in various programming
assignments in IBM. He holds a degree in Mathematics from Iowa State
University. His expertise includes Cell Broadband Engine programming annd
consulting.

Francois Thomas is an IBM Certified IT Specialist working on HPC pre-sales in
the Deep Computing Europe organization in France. He has 18 years of
experience in the field of scientific and technical computing. He holds a PhD in
Physics from ENSAM/Paris VI University. His areas of expertise include
application code tuning and parallelization as well as Linux clusters
management. He works with weather forecast institutions in Europe and on
enabling petroleum engineering ISV applications to the Linux on POWER
platform.
xii Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575pref.fm
Production of this IBM Redbook was managed by:

Chris Almond, an ITSO Project Leader and IT Architect based at the ITSO
Center in Austin, Texas. In his current role, he specializes in managing content
development projects focused on Linux®, AIX 5L systems engineering, and other
innovation programs. He has a total of 17 years of IT industry experience,
including the last eight with IBM.

Acknowledgements

This IBM Redbooks publication would not have been possible without the
generous support and contributions provided many IBMers.

First, the authoring team would like to gratefully acknowledge the critical support
and sponsorship for this project provided by the following IBMers:

� Tanaz Sowdagar, Marketing Manager, Systems and Technology Group

� Jeffrey Scheel, Blue Gene Software Program Manager and Software
Architect, Systems and Technology Group

� Daniel Brokenshire, Senior Technical Staff Member and Software Architect,
Quasar/Cell BE Software Development, Systems and Technology Group

� Paula Richards, Director, Global Engineering Solutions, Systems and
Technology Group

� Rebecca Austen, Director, Systems Software, Systems and Technology
Group

We would also like to thank the following IBMers for their significant input to this
project during the development and technical review process:

� Marina Biberstein, Research Scientist, Haifa Reseach Lab, IBM Research
� Michael Brutman, Solutions Architect, Lab Services, IBM Systems and

Technology Group
� Dean Burdick, Developer, Cell Software Development, IBM Systems and

Technology Group
� Catherine Crawford, Senior Technical Staff Member and Chief Architect,

Next Generation Systems Software, IBM Systems and Technology Group
� Bruce D’Amora, Research Scientist, Systems Engineering, IBM Research
� Matthew Drahzal, Software Architect, Deep Computing, IBM Systems and

Technology Group
� Matthias Fritsch, Enterprise System Development, IBM Systems and

Technology Group
� Gad Haber, Manager, Performance Analysis and Optimization Technology,

Haifa Reseach Lab, IBM Research
 Preface xiii

7575pref.fm Draft Document for Review February 15, 2008 4:59 pm
� Francesco Iorio, Solutions Architect, Next Generation Computing, IBM
Software Group

� Kirk Jordan, Solutions Executive, Deep Computing and Emerging HPC
Technologies, IBM Systems and Technology Group

� Melvin Kendrick, Manager, Cell Ecosystem Technical Enablement, IBM
Systems and Technology Group

� Mark Mendell, Team Lead, Cell BE Compiler Development, IBM Software
Group

� Michael P. Perrone, Ph.D., Manager Cell Solutions, IBM Systems and
Technology Group

� Juan Jose Porta, Executive Architect HPC & e-Science Platforms, IBM
Systems and Technology Group

� Uzi Shvadron, Research Scientist, Cell BE Performance Tools, Haifa
Reseach Lab, IBM Research

� Van To, Advisory Software Engineer, Cell BE & Next Generation Computing
Systems, IBM Systems and Technology Group

� Duc J Vianney, Ph. D, Technical Education Lead, Cell BE Ecosystem &
Solutions Enablement, IBM Systems and Technology Group

� Brian Watt, Systems Development, Quasar Design Center Development,
IBM Systems and Technology Group

� Ulrich Weigand, Developer, Linux on Cell BE, IBM Systems and Technology
Group

� Cornell Wright, Developer, Cell Software Development, IBM Systems and
Technology Group

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xiv Programming the Cell Broadband Engine: Examples and Best Practices

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Draft Document for Review February 15, 2008 4:59 pm 7575pref.fm
Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks® in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

7575pref.fm Draft Document for Review February 15, 2008 4:59 pm
xvi Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575spec.fm
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. xvii

7575spec.fm Draft Document for Review February 15, 2008 4:59 pm
Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
^®
eServer™
xSeries®

AIX®
BladeCenter®
IBM®
PowerPC Architecture™

PowerPC®
POWER™
Redbooks®
System x™

The following terms are trademarks of other companies:

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer Entertainment, Inc., in the United
States, other countries, or both and is used under license therefrom.

Snapshot, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance,
Inc. in the U.S. and other countries.

AMD, AMD Opteron, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro
Devices, Inc.

Flex, and Portable Document Format (PDF) are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, other countries, or both.

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Excel, Fluent, Microsoft, Visual Basic, Visual C++, Windows, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel, Intel Centrino, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

MultiCore Plus is a trademark of Mercury Computer Systems, Inc. in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of others.
xviii Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575PART_OVERVIEW.fm
Part 1 Introduction to the
Cell Broadband
Engine

The Cell Broadband Engine (CELL BE) is a new class of mult-core processors
being brought to the consumer and business market. It has a radically different
design than those offered by other consumer and business chip makers in the
global market. This radical departure warrants a brief discussion of the CELL BE
hardware and software architecture.

There is also a brief discusson of the IBM Software Development Kit (SDK) for
Multicore Acceleration from a content and packaging perspective. These
discussions complement the in-depth content of the remaining chapters of this
Redbook.

Part 1
© Copyright IBM Corp. 2007. All rights reserved. 1

7575PART_OVERVIEW.fm Draft Document for Review February 15, 2008 4:59 pm
2 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm
Chapter 1. Cell Broadband Engine
Overview

The Cell BE processor is the first implementation of a new multiprocessor family
conforming to the Cell Broadband Engine Architecture (CBEA). The CBEA and
the Cell BE processor are the result of a collaboration between Sony, Toshiba,
and IBM known as STI, formally begun in early 2001. Although the Cell BE
processor is initially intended for applications in media-rich consumer-electronics
devices such as game consoles and high-definition televisions, the architecture
has been designed to enable fundamental advances in processor performance.
These advances are expected to support a broad range of applications in both
commercial and scientific fields.

Figure 1-1 on page 4 shows a block diagram of the Cell BE processor hardware.

1

© Copyright IBM Corp. 2007. All rights reserved. 3

7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 1-1 Cell Broadband Engine Overview

1.1 Motivation

The Cell Broadband Engine Architecture has been designed to support a very
broad range ofapplications. The first implementation is a single-chip
multiprocessor with nine processor elements operating on a shared memory
model, as shown in Figure 1-1 on page 4. In this respect, the Cell BE processor
extends current trends in PC and server processors. The most distinguishing
feature of the Cell BE processor is that, although all processor elements can
share or access all available memory, their function is specialized into two types:
the Power Processor Element (PPE) and the Synergistic Processor Element
(SPE). The Cell BE processor has one PPE and eight SPEs.

The first type of processor element, the PPE, contains a 64-bit PowerPC®
Architecture™ core. It complies with the 64-bit PowerPC Architecture and can
run 32-bit and 64-bit operating systems and applications. The second type of
processor element, the SPE, is optimized for running compute-intensive SIMD
applications; it is not optimized for running an operating system.

The SPEs are independent processor elements, each running their own
individual application programs or threads. Each SPE has full access to shared
memory, including the memory-mapped I/O space implemented by multiple DMA
units. There is a mutual dependence between the PPE and the SPEs. The SPEs
depend on the PPE to run the operating system, and, in many cases, the
top-level thread control for an application. The PPE depends on the SPEs to
provide the bulk of the application performance.
4 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm
The SPEs are designed to be programmed in high-level languages, such as (but
certainly not limited to) C/C++. They support a rich instruction set that includes
extensive SIMD functionality. However, like conventional processors with SIMD
extensions, use of SIMD data types is preferred, not mandatory. For
programming convenience, the PPE also supports the standard PowerPC
Architecture instructions and the vector/SIMD multimedia extensions.

To an application programmer, the Cell BE processor looks like a single core,
dual threaded processor with 8 additional cores each having their own local
store. The PPE is more adept than the SPEs at control-intensive tasks and
quicker at task switching. The SPEs are more adept at compute-intensive tasks
and slower than the PPE at task switching. However, either processor element is
capable of both types of functions. This specialization is a significant factor
accounting for the order-of-magnitude improvement in peak computational
performance and chip-area-and-power efficiency that the Cell BE processor
achieves over conventional PC processors.

The more significant difference between the SPE and PPE lies in how they
access memory. The PPE accesses main storage (the effective-address space)
with load and store instructions that move data between main storage and a
private register file, the contents of which may be cached. PPE memory access
is like that of a convential processor technology, which is found on convential
machines. The SPEs, in contrast, access main storage with direct memory
access (DMA) commands that move data and instructions between main storage
and a private local memory, called a local store or local storage (LS). An SPE’s
instruction-fetches and load and store instructions access its private LS rather
than shared main storage, and the LS has no associated cache. This 3-level
organization of storage (register file, LS, main storage), with asynchronous DMA
transfers between LS and main storage, is a radical break from conventional
architecture and programming models, because it explicitly parallelizes
computation with the transfers of data and instructions that feed computation and
store the results of computation in main storage.

One of the motivations for this radical change is that memory latency, measured
in processor cycles, has gone up several hundredfold from about the years 1980
to 2000. The result is that application performance is, in most cases, limited by
memory latency rather than peak compute capability or peak bandwidth. When a
sequential program on a conventional architecture performs a load instruction
that misses in the caches, program execution can come to a halt for several
hundred cycles (techniques such as hardware threading can attempt to hide
these stalls, but it does not help single threaded applications). Compared to this
penalty, the few cycles it takes to set up a DMA transfer for an SPE are a much
better trade-off, especially considering the fact that each of the eight SPE’s DMA
controller can have up to 16 DMA transfer in flight simultaneously. Anticpating
DMA needs efficently can provide “just in time delivery” of data which many
 Chapter 1. Cell Broadband Engine Overview 5

7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm
reduce this stall or eliminate them entirely. Conventional processors, even with
deep and costly speculation, manage to get, at best, a handful of independent
memory accesses in flight.

One of the SPE’s DMA transfer methods supports a list (such as a scatter-gather
list) of DMA transfers that is constructed in an SPE’s local store, so that the
SPE’s DMA controller can process the list asynchronously while the SPE
operates on previously transferred data. In several cases, this approach to
accessing memory has led to application performance exceeding that of
conventional processors by almost two orders of magnitude significantly more
than one would expect from the peak performance ratio (approximately 10x)
between the Cell BE processor and conventional PC processors. The DMA
transfers can be set up and controlled by the SPE that is sourcing or receiving
the data, or in some circumstances by the PPE or another SPE.

1.2 Scaling the three performance-limiting walls

The Cell Broadband Engine overcomes three important limiters of contemporary
microprocessor performance: power use, memory use, and processor frequency.

1.2.1 Scaling the power-limitation wall

Increasingly, microprocessor performance is limited by achievable power
dissipation rather than by the number of available integrated-circuit resources
(transistors and wires).

Therefore, the only way to significantly increase the performance of
microprocessors is to improve power efficiency at about the same rate as the
performance increase.

One way to increase power efficiency is to differentiate between:

� processors optimized to run an operating system and control-intensive code,
and

� processors optimized to run compute-intensive applications.

The Cell Broadband Engine does this by providing a general-purpose PPE to run
the operating system and other control-plane code, and eight SPEs specialized
for computing data-rich (data-plane) applications. The specialized SPEs are
more compute efficient because they have simpler hardware implementations.
The hardware does not devote transistors to branch prediction, out of order
execution, speculative execution, shadow registers and register renaming,
6 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm
extensive pipeline interlocks, etc. By weight, more of the transistors are used for
computation than in conventional processor cores.

1.2.2 Scaling the memory-limitation wall

On multi-gigahertz symmetric multiprocessors (even those with integrated
memory controllers) latency to DRAM memory is currently approaching 1,000
cycles.

As a result, program performance is dominated by the activity of moving data
between main storage (the effective-address space that includes main memory)
and the processor. Increasingly, compilers and even application writers must
manage this movement of data explicitly, even though the hardware cache
mechanisms are supposed to relieve them of this task.

The Cell Broadband Engine’s SPEs use two mechanisms to deal with long
main-memory latencies:

� 3-level memory structure (main storage, local stores in each SPE, and large
register files in each SPE),

� asynchronous DMA transfers between main storage and local stores.

These features allow programmers to schedule simultaneous data and code
transfers to cover long latencies effectively. Because of this organization, the Cell
Broadband Engine can usefully support 128 simultaneous transfers between the
eight SPE local stores and main storage. This surpasses the number of
simultaneous transfers on conventional processors by a factor of almost twenty.

1.2.3 Scaling the frequency-limitation wall

Conventional processors require increasingly deeper instruction pipelines to
achieve higher operating frequencies. This technique has reached a point of
diminishing returns – and even negative returns if power is taken into account.

By specializing the PPE and the SPEs for control and compute-intensive tasks,
respectively, the Cell Broadband Engine Architecture, on which the Cell
Broadband Engine is based, allows both the PPE and the SPEs to be designed
for high frequency without excessive overhead. The PPE achieves efficiency
primarily by executing two threads simultaneously rather than by optimizing
single-thread performance.

Each SPE achieves efficiency by using a large register file, which supports many
simultaneous in-process instructions without the overhead of register-renaming
or out-of-order processing. Each SPE also achieves efficiency by using
 Chapter 1. Cell Broadband Engine Overview 7

7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm
asynchronous DMA transfers, which support many concurrent memory
operations without the overhead of speculation.

1.2.4 How the Cell Broadband Engine overcomes performance
limitations

By optimizing control-plane and data-plane processors individually, the Cell
Broadband Engine alleviates the problems posed by the power, memory, and
frequency limitations.

The net result is a processor that, at the power budget of a conventional PC
processor, can provide approximately ten-fold the peak performance of a
conventional processor. Of course, actual application performance varies. Some
applications may benefit little from the SPEs, whereas others show a
performance increase well in excess of ten-fold. In general, compute-intensive
applications that use 32-bit or smaller data formats (such as single-precision
floating-point and integer) are excellent candidates for the Cell Broadband
Engine.

1.3 Hardware Environment

In the following sections we describe the different components in the Cell BE
hardware environment.

1.3.1 The Processor Elements

Figure 1-1 on page 4 shows a high-level block diagram of the Cell BE processor
hardware. There is one PPE and there are eight identical SPEs. All processor
elements are connected to each other and to the on-chip memory and I/O
controllers by the memory-coherent element interconnect bus (EIB).

The PPE contains a 64-bit, dual-thread PowerPC Architecture RISC core and
supports a PowerPC virtual-memory subsystem. It has 32 KB level-1 (L1)
instruction and data caches and a 512 KB level-2 (L2) unified (instruction and
data) cache. It is intended primarily for control processing, running operating
systems, managing system resources, and managing SPE threads. It can run
existing PowerPC Architecture software and is well-suited to executing
system-control code. The instruction set for the PPE is an extended version of
the PowerPC instruction set. It includes the vector/SIMD multimedia extensions
and associated C/C++ intrinsic extensions.
8 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm
The eight identical SPEs are single-instruction, multiple-data (SIMD) processor
elements that are optimized for data-rich operations allocated to them by the
PPE. Each SPE contains a RISC core, 256 KB software-controlled LS for
instructions and data, and a 128-bit, 128-entry unified register file. The SPEs
support a special SIMD instruction set the Synergistic Processor Unit Instruction
Set Architecture and a unique set of commands for managing DMA transfers and
interprocessor messaging and control. SPE DMA transfers access main storage
using PowerPC effective addresses. As in the PPE, SPE address translation is
governed by PowerPC Architecture segment and page tables, which are loaded
into the SPEs by privileged software running on the PPE. The SPEs are not
intended to run an operating system.

An SPE controls DMA transfers and communicates with the system by means of
channels that are implemented in and managed by the SPE’s memory flow
controller (MFC). The channels are unidirectional message-passing interfaces.
The PPE and other devices in the system, including other SPEs, can also access
this MFC state through the MFC’s memory-mapped I/O (MMIO) registers and
queues, which are visible to software in the main-storage address space.

1.3.2 The Element Interconnect Bus

The element interconnect bus (EIB) is the communication path for commands
and data between all processor elements on the Cell BE processor and the
on-chip controllers for memory and I/O. The EIB supports full memory-coherent
and symmetric multiprocessor (SMP) operations. Thus, a Cell BE processor is
designed to be ganged coherently with other Cell BE processors to produce a
cluster.

The EIB consists of four 16-byte-wide data rings. Each ring transfers 128 bytes
(one PPE cache line) at a time. Each processor element has one on-ramp and
one off-ramp. Processor elements can drive and receive data simultaneously.
Figure 1-1 on page 4 shows the unit ID numbers of each element and the order
in which the elements are connected to the EIB. The connection order is
important to programmers seeking to minimize the latency of transfers on the
EIB: latency is a function of the number of connection hops, such that transfers
between adjacent elements have the shortest latencies and transfers between
elements separated by six hops have the longest latencies.

The EIB’s internal maximum bandwidth is 96 bytes per processor-clock cycle.
Multiple transfers can be in-process concurrently on each ring, including more
than 100 outstanding DMA memory transfer requests between main storage and
the SPEs in either direction. This requests also may include SPE memory to and
from the I/O space. The EIB does not support any particular qualityof-service
(QoS) behavior other than to guarantee forward progress. However, a resource
allocation management (RAM) facility, shown in Figure 1-1 on page 4, resides in
 Chapter 1. Cell Broadband Engine Overview 9

7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm
the EIB. Privileged software can use it to regulate the rate at which resource
requesters (the PPE, SPEs, and I/O devices) can use memory and I/O
resources.

1.3.3 Memory Interface Controller

The on-chip memory interface controller (MIC) provides the interface between
the EIB and physical memory. The IBM Bladecenter QS20 supports one or two
Rambus extreme data rate (XDR) memory interfaces, which together support
between 64 MB and 64 GB of XDR DRAM memory. The IBM Bladecenter QS21
uses normal DDR memory and additional hardware logic to implement the MIC.

Memory accesses on each interface are 1 to 8, 16, 32, 64, or 128 bytes, with
coherent memoryordering. Up to 64 reads and 64 writes can be queued. The
resource-allocation token manager provides feedback about queue levels.

The MIC has multiple software-controlled modes, including fast-path mode (for
improved latency when command queues are empty), high-priority read (for
prioritizing SPE reads in front of allother reads), early read (for starting a read
before a previous write completes), speculative read, and slow mode (for power
management). The MIC implements a closed-page controller (bank rows are
closed after being read, written, or refreshed), memory initialization, and memory
scrubbing.

The XDR DRAM memory is ECC-protected, with multi-bit error detection and
optional single-bit error correction. It also supports write-masking, initial and
periodic timing calibration. It also supports write-masking, initial and periodic
timing calibration, dynamic width control, sub-page activation, dynamic clock
gating, and 4, 8, or 16 banks.

1.3.4 Cell Broadband Engine Interface Unit

The on-chip Cell Broadband Engine interface (BEI) unit supports I/O interfacing.
It includes a bus interface controller (BIC), I/O controller (IOC), and internal
interrupt controller (IIC), as defined in the Cell Broadband Engine Architecture
document. It manages data transfers between the EIB and I/O devices and
provides I/O address translation and command processing.

The BEI supports two Rambus FlexIO interfaces. One of the two interfaces
(IOIF1) supports only a noncoherent I/O interface (IOIF) protocol, which is
suitable for I/O devices. The other interface (IOIF0, also called BIF/IOIF0) is
software-selectable between the noncoherent IOIF protocol and the
memory-coherent Cell Broadband Engine interface (BIF) protocol. The BIF
protocol is the EIB’s internal protocol. It can be used to coherently extend the
10 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm
EIB, through IOIF0, to another memory-coherent device, that can be another Cell
BE processor.
 Chapter 1. Cell Broadband Engine Overview 11

7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm
1.4 Programming Environment

In the following sections we provide an overview of the programming
environment.

1.4.1 Instruction Sets

The instruction set for the PPE is an extended version of the PowerPC
Architecture instruction set. The extensions consist of the vector/SIMD
multimedia extensions, a few additions and changes to PowerPC Architecture
instructions, and C/C++ intrinsics for the vector/SIMD multimedia extensions.

The instruction set for the SPEs is a new SIMD instruction set, the Synergistic
Processor Unit Instruction Set Architecture, with accompanying C/C++ intrinsics,
and a unique set of commands for managing DMA transfer, external events,
interprocessor messaging, and other functions. The instruction set for the SPEs
is similar to that of the PPE’s vector/SIMD multimedia extensions, in the sense
that they operate on SIMD vectors. However, the two vector instruction sets are
distinct, and programs for the PPE and SPEs are often compiled by different
compilers generating code streams for two entirely different instruction sets.

Although most coding for the Cell BE processor will probably be done in a
high-level language like C or C++, an understanding of the PPE and SPE
machine instructions adds considerably to a software developer’s ability to
produce efficient, optimized code. This is particularly true because most of the
C/C++ intrinsics have a mnemonic that relates directly to the underlying
assemblylanguage mnemonic.

1.4.2 Storage Domains and Interfaces

The Cell BE processor has two types of storage domains one main-storage
domain and eight SPE local-storage (LS) domains, as shown in Figure 1-2 on
page 13. In addition, each SPE has a channel interface for communication
between its synergistic processor unit (SPU) and its MFC. The main-storage
domain, which is the entire effective-address space, can be configured by PPE
privileged software to be shared by all processor elements and memory-mapped
devices in the system1. An MFC’s state is accessed by its associated SPU
through the channel interface, and this state can also be accessed by the PPE
and other devices (including other SPEs) by means of the MFC’s MMIO registers
in the main-storage space. An SPU’s LS can also be accessed by the PPE and
other devices through the main-storage space in a non-coherent manner. The
PPE accesses the mainstorage space through its PowerPC processor storage
subsystem (PPSS).
12 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm
Figure 1-2 Storage and Domain Interfaces

The address-translation mechanisms used in the main-storage domain are
described in Section 4 Virtual Storage Environment on page 77. The channel
domain is described in Section 19 DMA Transfers and Interprocessor
Communication on page 507. An SPE’s SPU can fetch instructions only from its
own LS, and load and store instructions executed by the SPU can only access
the LS. SPU software uses LS addresses (not main storage effective addresses)
to do this. Each SPE’s MFC contains a DMA controller. DMA transfer requests
contain both an LS address and an effective address, thereby facilitating
transfers between the domains.

Data transfer between an SPE Local Store and Main Storage is performed by the
Memory Flow Controller that is local to the SPE. Software running on an SPE
 Chapter 1. Cell Broadband Engine Overview 13

7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm
sends commands to its MFC using the private channel interface. The MFC can
also be manipulated by remote SPEs, the PPE, or IO devices using memory
mapped IO. Software running on the associated SPE interacts with its own MFC
through its channel interface. The channels support enqueueing of DMA
commands and other facilities, such as mailbox and signal-notification
messages. Software running on the PPE or another SPE can interact with an
MFC through MMIO registers, which are associated with the channels and visible
in the mainstorage space.

Each MFC maintains and processes two independent command queues for DMA
and other commands one queue for its associated SPU, and another queue for
other devices accessing the SPE through the main-storage space. Each MFC
can process multiple in-progress DMA commands. Each MFC can also
autonomously manage a sequence of DMA transfers in response to a DMA list
command from its associated SPU (but not from the PPE or other SPEs). Each
DMA command is tagged with a tag group ID that allows software to check or
wait on the completion of commands in a particular tag group.

The MFCs support naturally aligned DMA transfer sizes of 1, 2, 4, or 8 bytes, and
multiples of 16 bytes, with a maximum transfer size of 16 KB per DMA transfer.
DMA list commands can initiate up to 2048 such DMA transfers. Peak transfer
performance is achieved if both the effective addresses and the LS addresses
are 128-byte aligned and the size of the transfer is an even multiple of 128 bytes.

Each MFC has a synergistic memory management (SMM) unit that processes
address-translation and access-permission information supplied by the PPE
operating system. To process an effective address provided by a DMA command,
the SMM uses essentially the same addresstranslation and protection
mechanism used by the memory management unit (MMU) in the PPE’s
PowerPC processor storage subsystem (PPSS)2. Thus, DMA transfers are
coherent with respect to system storage, and the attributes of system storage are
governed by the page and segment tables of the PowerPC Architecture.
14 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm
1.4.3 Bit Ordering and Numbering

Figure 1-3 Big-Endian Byte and Bit Ordering

Storage of data and instructions in the Cell BE processor uses big-endian
ordering, which has the following characteristics:

� Most-significant byte stored at the lowest address, and least-significant byte
stored at the highest address.

� Bit numbering within a byte goes from most-significant bit (bit 0) to
least-significant bit (bit n).

This differs from some other big-endian processors.

A summary of the byte-ordering and bit-ordering in memory and the
bit-numbering conventions is shown in Figure 1-3 on page 15.

Neither the PPE nor the SPEs, including their MFCs, support little-endian
byte-ordering. The MFC’s DMA transfers are simply byte moves, without regard
to the numeric significance of any byte. Thus, the big-endian or little-endian issue
becomes irrelevant to the actual movement of a block of data. The byte-order
mapping only becomes significant when data is loaded or interpreted by a
processor element or an MFC.

1.4.4 Runtime Environment

The PPE runs PowerPC Architecture applications and operating systems, which
can include both PowerPC Architecture instructions and vector/SIMD multimedia
extension instructions. To use all of the Cell BE processor’s features, the PPE
requires an operating system that supports these features, such as
multiprocessing with the SPEs, access to the PPE vector/SIMD multimedia
extension operations, the Cell BE interrupt controller, and all the other functions
provided by the Cell BE processor.
 Chapter 1. Cell Broadband Engine Overview 15

7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm
The PPE runs PowerPC Architecture applications and operating systems, which
can include both PowerPC Architecture instructions and vector/SIMD multimedia
extension instructions. To use all of the Cell BE processor’s features, the PPE
requires an operating system that supports these features, such as
multiprocessing with the SPEs, access to the PPE vector/SIMD multimedia
extension operations, the Cell BE interrupt controller, and all the other functions
provided by the Cell BE processor.

A main thread running on the PPE can interact directly with an SPE thread
through the SPE’s LS. It can interact indirectly through the main-storage space. A
thread can poll or sleep, waiting for SPE threads. The PPE thread can also
communicate through mailbox and signal events implemented in the hardware.

The operating system defines the mechanism and policy for selecting an
available SPE to schedule an SPU thread to run on. It must prioritize among all
the Cell BE applications in the system, and it must schedule SPE execution
independently from regular main threads. The operating system is also
responsible for runtime loading, passing parameters to SPE programs,
notification of SPE events and errors, and debugger support.
16 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO_SDK_CONTENT.fm
Chapter 2. IBM SDK for Multicore
Acceleration

This chapter provides a description of the software tools and libraries that are
found in the Cell Broadband Engine SDK. This chapter includes a brief
discussion of the following topics

� Compilers

� IBM Full System Simulator

� CELL BE Libraries

� Code examples and example libraries

� Performance tools

� IBM Eclipse IDE for the SDK

� Hybrid-x86 programming model

2.1 Compilers

There are a number of IBM supplied compilers as part of the IBM SDK for
Multicore Acceleration. This section breifly describes the IBM product compilers
and open source compilers in the SDK.

2

© Copyright IBM Corp. 2007. All rights reserved. 17

7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm
2.1.1 GNU Toolchain

The GNU toolchain, including compilers, the assembler, the linker, and
miscellaneous tools, is available for both the PPU and SPU instruction set
architectures. On the PPU it replaces the native GNU toolchain (which is generic
for PowerPC architectures) with a version that is tuned for the Cell PPU
processor core. The GNU compilers are the default compilers for the SDK.

The GNU toolchains run natively on Cell BE hardware, or as cross compilers on
PowerPC or x86 machines.

2.1.2 IBM XLC/C++ Compiler

IBM XL C/C++ for Multicore Acceleration for Linux is an advanced,
high-performance cross-compiler that is tuned for the CBEA. The XL C/C++
compiler, which is hosted on an x86, IBM PowerPC technology-based system, or
an IBM BladeCenter QS21, generates code for the PPU or SPU. The compiler
requires the GCC toolchain for the CBEA, which provides tools for
cross-assembling and cross-linking applications for both the PPE and SPE.

2.1.3 GNU ADA Compiler

The GNU toolchain also contains an implementation of the GNU ADA compiler.
This compiler comes in a navitve Cell BE and an x86 cross-compiler. This initial
version of this compiler supports code generation for the PPU processor.

2.1.4 IBM XL Fortran for Multicore Acceleration for Linux

IBM XL Fortran for Multicore Acceleration for Linux is the latest addition to the
IBM XL family of compilers. It adopts proven high-performance compiler
technologies used in its compiler family predecessors, and adds new features
tailored to exploit the unique performance capabilities of processors compliant
with the new Cell Broadband Engine architecture. This version of XL Fortran is a
cross-compiler. First, you compile your applications on an IBM System p
compilation host running Red Hat Enterprise Linux 5.1 (RHEL 5.1). Then you
move the executable application produced by the compiler onto a Cell BE system

Note: The IBM XLC/C++ compiler that comes with SDK 3 is an OpenMP
directed single source compiler that supports automatic program partitioning,
data virtualization, code overlay, and more. This version of the compiler is in
beta mode and users should not base production applications on this
compiler.
18 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO_SDK_CONTENT.fm
also running the RHEL 5.1 Linux distribution. The Cell B.E. system will be the
execution host where you will actually run your compiled application.

2.2 IBM Full System Simulator

The IBM Full-System Simulator (referred to as the simulator in this document) is
a software application that emulates the behavior of a full system that contains a
Cell BE processor. You can start a Linux operating system on the simulator and
simulating a two chip Cell/B.E. environement and run applications on the
simulated operating system. The simulator also supports the loading and running
of statically-linked executable programs and standalone tests without an
underlying operating system. There are other functions like debug output not
available on hardware.

The simulator infrastructure is designed for modeling processor and system-level
architecture at levels of abstraction, which vary from functional to performance
simulation models with a number of hybrid fidelity points in between:

Functional-only simulation: Models the program-visible effects of instructions
without modeling the time it takes to run these instructions. Functional-only
simulation assumes that each instruction can be run in a constant number of
cycles. Memory accesses are synchronous and are also performed in a constant
number of cycles.

This simulation model is useful for software development and debugging when a
precise measure of execution time is not significant. Functional simulation
proceeds much more rapidly than performance simulation, and so is also useful
for fast-forwarding to a specific point of interest.

Performance simulation: For system and application performance analysis, the
simulator provides performance simulation (also referred to as timing simulation).
A performance simulation model represents internal policies and mechanisms for
system components, such as arbiters, queues, and pipelines.

Operation latencies are modeled dynamically to account for both processing time
and resource constraints. Performance simulation models have been correlated
against hardware or other references to acceptable levels of tolerance.

The simulator for the Cell BE processor provides a cycle-accurate SPU core
model that can be used for performance analysis of computationally-intense
applications
 Chapter 2. IBM SDK for Multicore Acceleration 19

7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm
2.2.1 System root image for Simulator

The system root image for the simulator is a file that contains a disk image of
Fedora files, libraries, and binaries that can be used within the system simulator.
This disk image file is preloaded with a full range of Fedora utilities and also
includes all of the Cell BE Linux support libraries.

2.3 Linux Kernel

For the IBM BladeCenter QS21, the kernel is installed into the /boot directory,
yaboot.conf is modified and a reboot is required to activate this kernel. The
cellsdk install task is documented in the SDK Installation Guide.

2.4 Cell BE Libraries

In the following sections we describe various programming libraries.

2.4.1 SPE Runtime Management Library

The SPE Runtime Management Library (libspe) constitutes the standardized
low-level application programming interface (API) for application access to the
Cell BE SPEs. This library provides an API to manage SPEs that is neutral with
respect to the underlying operating system and its methods. Implementations of
this library can provide additional functionality that allows for access to operating
system or implementation-dependent aspects of SPE runtime management.
These capabilities are not subject to standardization and their use may lead to
non-portable code and dependencies on certain implemented versions of the
library.

2.4.2 SIMD Math Library

The traditional math functions are scalar instructions, and do not take advantage
of the powerful Single Instruction, Multiple Data (SIMD) vector instructions
available in both the PPU and SPU in the Cell BE Architecture. SIMD instructions
perform computations on short vectors of data in parallel, instead of on individual
scalar data elements. They often provide significant increases in program speed
because more computation can be done with fewer instructions.
20 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO_SDK_CONTENT.fm
2.4.3 Mathematical Acceleration Subsystem (MASS) libraries

The Mathematical Acceleration Subsystem (MASS) consists of libraries of
mathematical intrinsic functions, which are tuned specifically for optimum
performance on the Cell BE processor. Currently the 32-bit, 64-bit PPU, and SPU
libraries are supported.

These libraries:

� Include both scalar and vector functions v Are thread-safe v Support both 32-
and 64-bit compilations

� Offer improved performance over the corresponding standard system library
routines

� Are intended for use in applications where slight differences in accuracy or
handling of exceptional values can be tolerated

2.4.4 Basic Linear Algebra Subprograms (BLAS)

The BLAS (Basic Linear Algebra Subprograms) library is based upon a published
standard interface for commonly used linear algebra operations in
high-performance computing (HPC) and other scientific domains. It is widely
used as the basis for other high quality linear algebra software: for example
LAPACK and ScaLAPACK. The Linpack (HPL) benchmark largely depends on a
single BLAS routine (DGEMM) for good performance.

The BLAS API is available as standard ANSI C and standard FORTRAN 77/90
interfaces. BLAS implementations are also available in open-source (netlib.org).

The BLAS library in the IBM SDK for Multicore Acceleration supports only real
single precision and real double precision versions (hereafter referred to as SP
and DP respectively). All SP and DP routines in the three levels of standard
BLAS are supported on the Power Processing Element (PPE). These are
available as PPE APIs and conform to the standard BLAS interface.

Some of theses routines have been optimized using the Synergistic Processing
Elements (SPEs) and these show a marked increase in performance in
comparison to the corresponding versions implemented solely on the PPE.
These optimized routines have an SPE interface in addition to the PPE interface;
however, the SPE interface does not conform to the standard BLAS interface and
provides a restricted version of the standard BLAS interface. The following
routines have been optimized to use the SPEs; moreover, the single precision
versions of these routines have been further optimized for maximum
performance using various features of the SPE.
 Chapter 2. IBM SDK for Multicore Acceleration 21

7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm
2.4.5 ALF Library

The ALF provides a programming environment for data and task parallel
applications and libraries. The ALF API provides library developers with a set of
interfaces to simplify library development on heterogenous multi-core systems.
Library developers can use the provided framework to offload computationally
intensive work to the accelerators. More complex applications can be developed
by combining the several function offload libraries. Application programmers can
also choose to implement their applications directly to the ALF interface.

ALF supports the multiple-program-multiple-data (MPMD) programming module
where multiple programs can be scheduled to run on multiple accelerator
elements at the same time.

� The ALF functionality includes:

� Data transfer management

� Parallel task management

� Double buffering v Dynamic load balancing

2.4.6 Data Communication and Synchronization library (DaCS)

The DaCS library provides a set of services for handling process-to-process
communication in a heterogeneous multi-core system. In addition to the basic
message passing service these include:

� Mailbox services

� Resource reservation

� Process and process group management

� Process and data synchronization

� Remote memory services

� Error handling

The DaCS services are implemented as a set of APIs providing an architecturally
neutral layer for application developers They structure the processing elements,
referred to as DaCS Elements (DE), into a hierarchical topology. This includes
general purpose elements, referred to as Host Elements (HE), and special
processing elements, referred to as Accelerator Elements (AE). Host elements
usually run a full operating system and submit work to the specialized processes
which run in the Accelerator Elements.
22 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO_SDK_CONTENT.fm
2.5 Code examples and example libraries

The example libraries package provides a set of optimized library routines that
greatly reduce the development cost and enhance the performance of Cell BE
programs.

To demonstrate the versatility of the Cell BE architecture, a variety of
application-oriented libraries are included, such as:

� Fast Fourier Transform (FFT)

� Image processing

� Software managed cache

� Game math

� Matrix operation

� Multi-precision math

� Synchronization

� Vector

Additional examples and demos show how you can exploit the on-chip
computational capacity.

2.6 Performance Tools

The Cell/B.E. SDK supports many of the traditional Linux based performance
tools available. The performance tools (such as gprof) pertain specifically to the
PPE execution environement and do not support the SPE environment. The
following tools are special tools that support the PPE and/or SPE environment.

2.6.1 SPU Timing Tool

The SPU static timing tool, spu_timing, annotates an SPU assembly file with
scheduling, timing, and instruction issue estimates assuming a straight, linear
execution of the program which is useful for analyzing basic code blocks. The
tool generates a textual output of the execution pipeline of the SPE instruction
stream from this input assembly file. The output generated can show pipeline
stalls, which can be explained by looking at the subsequent instructions. Data
dependencies are pipeline hazards can be readily identified using this tool.
Lastly, it should be noted that this is a static analysis tool. It does not idenitify
branch behavior or memory transfer delays.
 Chapter 2. IBM SDK for Multicore Acceleration 23

7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm
2.6.2 OProfile

OProfile is a Linux tool that exists on other architectures besides the Cell/B.E.,
and that it has been extended to support the unique hardware on the PPU and
SPUs. It is a sampling based tool that does not require special source compile
flags to produce useful data reports.

The opreport tool produces the output report. Reports can be generated based
on the file names that correspond to the samples, symbol names or annotated
source code listings (special source compiler flags are required in this case).

2.6.3 Cell-perf-counter tool

The cell-perf-counter (cpc) tool is used for setting up and using the hardware
performance counters in the Cell BE processor. These counters allow you to see
how many times certain hardware events are occurring, which is useful if you are
analyzing the performance of software running on a Cell BE system. Hardware
events are available from all of the logical units within the Cell BE processor.
including the PPE, SPEs, interface bus, and memory and I/O controllers. Four
32-bit counters, which can also be configured as pairs of 16-bit counters, are
provided in the Cell BE performance monitoring unit (PMU) for counting these
events.

2.6.4 Performance Debug Tool (PDT)

The Cell BE PDT is to provide programmers with a means of analyzing the
execution of such a system and tracking problems in order to optimize execution
time and utilization of resources.

The PDT addresses performance debugging of one Cell BE board with two PPEs
that share the main memory, run under the same (Linux) operating system, and
share up to 16 SPEs. The PDT also enables event tracing on the Hybrid-x86.

2.6.5 Feedback Directed Program Restructuring (FDPR-Pro)

The Feedback Directed Program Restructuring for Linux on POWER tool
(FDPR-Pro or fdprpro) is a performance tuning utility that reduces the execution
time and the real memory utilization of user space application programs. It
optimizes the executable image of a program by collecting information on the
behavior of the program under a workload. It then creates a new version of that
program optimized for that workload. The new program typically runs faster and
uses less real memory than the original program and supports the Cell BE
environment.
24 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO_SDK_CONTENT.fm
2.6.6 Visual Performance Analyzer (VPA)

Visual Performance Analyzer (VPA) is an Eclipse-based performance
visualization toolkit. It consists of six major components::

� Profile Analyzer

� Code Analyzer

� Pipeline Analyzer

� Counter Analyzer

� Trace Analyzer

� Control Flow Analyzer

Profile Analyzer provides a powerful set of graphical and text-based views that
allow users to narrow down performance problems to a particular process,
thread, module, symbol, offset, instruction, or source line. Profile Analyzer
supports time-based system profiles (Tprofs) collected from a number of IBM
platforms and Linux profile tool oprofile. The Cell BE is now a fully supported
environment for VPA.

2.7 IBM Eclipse IDE for the SDK

IBM Eclipse IDE for the SDK is built upon the Eclipse and C Development Tools
(CDT) platform. It integrates the GNU tool chain, compilers, the Full-System
Simulator, and other development components to provide a comprehensive,
Eclipse-based development platform that simplifies development. The key
features include the following:

� A C/C++ editor that supports syntax highlighting, a customizable template,
and an outline window view for procedures, variables, declarations, and
functions that appear in source code

� A visual interface for the PPE and SPE combined GDB (GNU debugger) v
Seamless integration of the simulator into Eclipse

� Automatic builder, performance tools, and several other enhancements v
Remote launching, running and debugging on a BladeCenter QS21 v ALF
source code templates for programming models within IDE

� An ALF Code Generator to produce an ALF template package with C source
code and a readme.txt file

� A configuration option for both the Local Simulator and Remote Simulator
target environments that allows you to choose between launching a
simulation machine with the Cell BE processor or an enhanced
 Chapter 2. IBM SDK for Multicore Acceleration 25

7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm
CBEA-compliant processor with a fully pipelined, double precision SPE
processor

� Remote Cell BE and simulator BladeCenter support

� SPU timing integration v Automatic makefile generation for both GCC and
XLC projects

2.8 Hybrid-x86 programming model

The Cell Broadband Engine Architecture (CBEA) is an example of a multi-core
hybrid system on a chip. That is to say, heterogeneous cores integrated on a
single processor with an inherent memory hierarchy. Specifically, the synergistic
processing elements (SPEs) can be thought of as computational accelerators for
a more general purpose PPE core. These concepts of hybrid systems, memory
hierarchies and accelerators can be extended more generally to coupled I/O
devices, and examples of those systems exist today, for example, GPUs in PCIe
slots for workstations and desktops. Similarly, the Cell BE processors is being
used in systems as an accelerator, where computationally intensive workloads
well suited for the CBEA are off-loaded from a more standard processing node.
There are potentially many ways to move data and functions from a host
processor to an accelerator processor and vice versa.

In order to provide a consistent methodology and set of application programming
interfaces (APIs) for a variety of hybrid systems, including the Cell BE SoC hybrid
system, the SDK has implementations of the Cell BE multi-core data
communication and programming model libraries, Data and Communication
Synchronization and Accelerated Library Framework, which can be used on
x86/Linux host process systems with Cell BE-based accelerators. The current
implementation is over TCP/IP sockets is provided so that you can gain
experience with this programming style and focus on how to manage the
distribution of processing and data decomposition. For example, in the case of
hybrid programming when moving data point to point over a network, care must
be taken to maximize the computational work done on accelerator nodes
potentially with asynchronous or overlapping communication, given the potential
cost in communicating input and results.
26 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575PART_DEVENVIRONMENT.fm
Part 2 Programming
Environment

In this part of the book we provide in depth coverage of various programming
methods, tools, strategies, and adaptions to different computing workloads.

Part 2
© Copyright IBM Corp. 2007. All rights reserved. 27

7575PART_DEVENVIRONMENT.fm Draft Document for Review February 15, 2008 4:59 pm
28 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
Chapter 3. Enabling applications on the
Cell BE

This chapter describes the process of enabling an existing application on Cell BE
hardware. The aim is to provide guidance for choosing the best programming
model and framework for a given application. This is valuable information for
people actually developing applications and also to IT specialists who will have to
manage a Cell BE application enablement project.

We also include the case of a completely new application, being written from
scratch. This can be viewed as a special case of an application enablement,
where the starting point is not actual code, but only algorithms with no initial data
layout decisions. In a sense, this is an easier case as the options are completely
open and not biased by the current state of the code.

This chapter tries to answer a few questions:

� Should I enable this application on Cell BE hardware? Is it a good fit?

� If the answer to this question is yes, then which parallel programming model
should I use? The Cell BE, with its heterogenous design and software
controlled memory hierarchy offers new parallel programming paradigms to
complement the well established ones.

� Which Cell BE programming framework will best support the programming
model that was chosen for the application under study ?

3

© Copyright IBM Corp. 2007. All rights reserved. 29

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
Once these questions have been answered, it is time to do the hard work,
actually making the necessary code changes to exploit the Cell BE architecture.
We describe this process and show that it can be iterative and incremental.
These are two interesting features as we can use a step by step approach,
inserting checkpoints during the course of the porting project to track the
progress.

Finally, we present a few scenarios and make a first attempt at creating a set of
design patterns for Cell BE programming.

This chapter contains seven parts. We first define the concepts and terminology,
introducing:

� the computational kernels frequently found in applications,

� the distinctive features of the Cell BE, which are covered in great details in
“Cell BE programming” on page 75

� the parallel programming models,

� the Cell BE programming frameworks, described in “Cell BE programming” on
page 75 and Chapter 7, “Programming in distributed environments” on
page 439

Next we describe the relationship between computational kernels and the Cell
BE features on one hand and between parallel programming models and Cell BE
programming frameworks on the other hand.

We give examples of some of the most common parallel programming models
and contrast them in terms of control parallelism and data transfers. We make a
first attempt at presenting some design patterns for Cell BE programming
following a formalism used in other areas of computer sciences.
30 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
3.1 Concepts and terminology

Figure 3-1 on page 32 shows the concepts and how they are related. As the
figure shows, we describe an application has having one or more computational
kernels, and one or more potential parallel programming models. The
computational kernels exercise or stress one or more of the Cell BE features (the
Q1 connection). The different Cell BE features can either strongly or weakly
support the different parallel programming model choices (the Q2 connection).
And the chosen parallel programming model can be implemented on the Cell BE
using various programming frameworks (the Q3 connection).

To answer questions Q1 and Q2 the programmer needs to be able to match the
characteristics of the computational kernel and parallel programming model to
the strengths of the Cell BE. There are many programming frameworks available
for the Cell BE. Which one is best suited to implement the parallel programming
model that is chosen for the application? We provide advice to the programmer
for question Q3 in section 3.4, “Which Cell BE programming framework to use ?”
on page 60.
 Chapter 3. Enabling applications on the Cell BE 31

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 3-1 Overview of programming considerations and relations

3.1.1 The computation kernels

A study by David Patterson et al [1], complementing earlier work from Phillip
Colella [8], establishes that the computational characteristics and data
movement patterns of all applications in scientific computing, embedded
computing, desktop and server computing can be captured by no more than
thirteen different kernels1 : the “13 dwarfs” as they are named in this paper. This
work is based on a careful examination of the most popular benchmark suites:

� EEMBC2 for the embedded computing,

� SPEC3 int and fp for the desktop and server computing,
1 Intel® [9] also classifies applications in three categories named RMS for Recognition, Mining and

Synthesis to direct its research in computer architecture.
2 EEMBC : Embedded Microprocessor Benchmark Consortium.
32 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
� HPCC4and NAS5 parallel benchmarks for scientific computing,

as well as input from other domains : machine learning, database, computer
graphics and games. The first 7 dwarfs are the ones initially found by Phillip
Colella. The 6 remaining ones were identified by Patterson et al. The intent of the
paper is to help the parallel computing research community, in the academia and
the industry, by providing a limited set of patterns against which new ideas for
hardware and software can be evaluated.

We describe the “13 dwarfs” in Table 3-1, with some example applications or
benchmarks. This table is adapted from [1].

Table 3-1 The 13 dwarfs, description and examples

3 SPEC : Standard Performance Evaluation Consortium.
4 HPCC : High Performance Computing Challenge benchmarks.
5 NAS : NASA Advanced Supercomputing benchmarks

Dwarf name Description Example, application,
benchmark

Dense matrices BLAS, matrix-matrix
operations

HPCC:HPL, ScaLAPACK,
NAS:LU

Sparse matrices Matrix-vector operations
with sparse matrices

SuperLU, SpMV, NAS:CG

Spectral methods FFT transforms HPCC:FFT, NAS:FT,
FFTW

N-body methods Interactions between
particles, external, near
and far

NAMD, GROMACS

Structured grids Regular grids, can be
automatically refined

WRF, Cactus, NAS:MG

Unstructrured grids Irregular grids, finite
elements and nodes

ABAQUS, FIDAP
(Fluent™)

Map-reduce Independant data sets,
simple reduction at the end

Monte-Carlo, NAS:EP, Ray
tracing

Combinatorial logic Logical functions on large
data sets, encryption

AES, DES

Graph traversal Decision tree, searching XML parsing, Quicksort

Dynamic programming Hidden Markov models,
sequence alignment

BLAST
 Chapter 3. Enabling applications on the Cell BE 33

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
During the course of writing [1], IBM provided an additional classification for the
13 dwarfs by evaluating which factor was often limiting its performance, whether
it be the CPU, the memory latency or the memory bandwidth. Here is this table,
extracted from [1].

Table 3-2 Performance bottlenecks of the 13 dwarfs

Back-track and
Branch+Bound

Constraint optimization Simplex algorithm

Graphical models Hidden Markov models,
Bayesian networks

HMMER, bioinformatics,
genomics

Finite state machine XML transformation,
Huffman decoding

SPECInt:gcc

Dwarf Performance bottleneck (CPU, memory
bandwidth, memory latency

Dense matrices CPU limited

Sparse matrices CPU limited 50%, bandwidth limited 50%

Spectral methods Memory latency limited

N-body methods CPU limited

Structured grids Memory bandwidth limited

Unstructrured grids Memory latency limited

Map-reduce (unknown)a

Combinatorial logic Memory bandwidth limited for CRC, CPU
limited for cryptography

Graph traversal Memory latency limited

Dynamic programming Memory latency limited

Back-track and Branch+Bound (unknown)

Graphical models (unknown)

Finite state machine (unknown)

Dwarf name Description Example, application,
benchmark
34 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
The Cell BE brings improvements in all three directions : 9 cores on a chip
represent a lot of CPU power, the XDR memory subsystem is extremely capable
and the software managed memory hierarchy (DMA) is a new way of dealing with
the memory latency problem, quoted in this paper as the most critical one.

3.1.2 Important Cell BE features

Here we consider some features that are meaningful from an application
programmer’s point of view. Referring to Table 3-3 below, “Not so good” here only
means that the feature is probably going to incur more pain for the programmer
or that a code exercising this feature a lot will not perform as fast as expected.
The difference between “Good” or “Not so good” may also be related to the
relative performance advantage of the Cell BE over contemporary processors
from IBM or others. This analysis is based on current hardware implementation
at the time this book was written. This table is likely to change with future
products.

Most of the items below are described in great details in “Cell BE programming”
on page 75.

Table 3-3 The important Cell BE features as seen from a programmer’s perspective

a. Every method will ultimately have a performance bottleneck of some kind. At the time of
writing, specific performance bottlenecks for these “unknown” computational kernel types
as applied to the Cell BE platform are well understood yet.

Good Not so good

Large register file

DMA (memory latency hiding) a

a. See paragraph “Data transfer” on page 109

DMA latency

EIB bandwidth b

Memory performance Memory size

SIMD c Scalar performance (Scalar on Vector)

Local Store (latency/bandwidth) Local Store (limited size)

8 SPE per processor (high level of
achievable parallelism)

PPE performance

NUMA (good scaling) SMP scaling

Branching

Single precision floating point Double precision floating pointd
 Chapter 3. Enabling applications on the Cell BE 35

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
3.1.3 The parallel programming models

The parallel programming models abstract the hardware for the application
programmers. The purpose is to offer an idealized view of the current system
architectures, a view onto which applications can be mapped. This is pictured
below.

Figure 3-2 The programming model

b. See paragraph “Direct problem state access and LS to LS transfer” on page 143
c. See paragraph “SIMD programming” on page 253
d. This is expected to improve with the introduction of the Bladecenter QS-22

In general, the percentage of peak performance that can be achieved on the
Cell BE can be higher than for most general purpose processors thanks to the
large register file, the short Local Store latency, the software managed
memory hierarchy, the very high EIB bandwidth and the very capable memory
subsystem.
36 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
A parallel application tries to bind multiple resources for its own use : memory
and processors. The purpose is either to speed up the whole computation (more
processors) or to treat bigger problems (more memory). The work of parallelizing
an application involves:

� distributing the work across processors

� distributing the data if the memory is distributed

� synchronizing the sub-tasks, possibly through a shared data access if the
memory is shared

� communicating the data if the memory is distributed

Let’s take a look at the options for each of these components.

Work distribution
The first task is to find concurrency in the application, try to expose multiple
independent tasks and group them together inside execution threads.The options
are:

� independent tasks operating on largely independent data

� domain decomposition, where the whole data can be split in multiple
sub-domains, each of which being assigned to a single task

� streaming, where the same piece of data undergoes successive
transformations, each of which being performed by a single task, all tasks
being arranged in a string and passing data in a producer-consumer mode.
The amount of concurrency here is the number of different steps in the
computation.

Now, each parallel task can perform the work itself or it can call other processing
resources for assistance, this process being completely transparent to the rest of
the participating tasks. We find the following techniques:

� function offload, where the compute intensive part of the job is being
offloaded to a supposedly faster processor

� accelerator mode, a variant of the previous technique, where multiple
processors can be called to collectively speed up the computation

Data distribution
The data model is a very important part of the parallelization work. Currently, the
choices are between:

� shared memory, every execution thread has direct access to other threads’
memory contents.
 Chapter 3. Enabling applications on the Cell BE 37

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
� distributed memory, it is the opposite, each execution thread can only access
its own memory space. Specialized functions are required to import other
threads’ data into its own memory space.

� PGAS, Partitioned Global Address Space, where each piece of data must be
explicitly declared as either shared or local but within a unified address space.

Task synchronization
Sometimes, during the program execution, the parallel tasks will need to
synchronize. This can be realized though :

� messages or other asynchonous events emitted by other tasks

� locks or other synchronization primitives, for accessing a queue for example

� though transactional memory mechanisms

Data communication
In the case where the data is distributed, tasks will exchange information through
one of these two mechanisms:

� message passing, using send and receive primitives

� remote direct memory access (rDMA), sometimes defined as one-sided
communication

The programming models can further be classified according to the way each of
these tasks is being taken care of : explicitely by the programmer of implicitely by
the underlying runtime environment. The Table 3-4 lists a few common parallel
programming models and shows how they can be described according to what
was exposed above.

Table 3-4 A few parallel programming models

Programming
modela

Task
distribution

Data
distribution

Task
synchonization

Data
communication

MPI explicit explicit messages messages, can
do rDMA too

pthreads explicit n/a mutexes,
condition
variables

n/a

OpenMP implicit
(directives)t

n/a implicit
(directives)

n/a

UPC, CAF
(PGAS)

explicit explicit implicit implicit

X10 (PGAS) explicit explicit future, clocks implicit
38 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
Programming model composition
An application can make use of multiple programming models. This will incur
additional efforts but may be dictated by the hardware on which it is to be run. For
example, the MPI + OpenMP combination is quite common today for HPC
applications as it matches the Beowulf6 type of clusters, interconnecting small
SMP nodes (4, 8 way) with a high speed interconnection network

In this discussion about the parallel programming models, we have ignored the
instruction level (multiple execution units) and word level (SIMD) parallellisms.
They are to be considedred too of course to maximize the application
performance but usually do not interfere with the high level tasks of data and
work distribution.

3.1.4 The Cell BE programming frameworks

The Cell BE supports a wide of range of programming frameworks, from the most
basic ones, close to the hardware, to the most abstract ones.

At the lowest level, the Cell BE chip appears to the programmer as a distributed
memory cluster of 8+1 computational cores, with a ultra high speed interconnect
and a remote DMA engine on every core. On a single blade server, two Cell BE
chips can be viewed as either a single 16+2 cores compute resource (SMP
mode) or a NUMA machine with 2 NUMA nodes.

Multiple blade servers can then be gathered in a distributed cluster, a la Beowulf,
using a high speed interconnect network like 10G Ethernet or Infiniband. Such a
cluster is not any different, as far as programming is concerned, from a cluster of
Intel, AMD™ or POWER™ based SMP servers. Very likely the programming
model will be based on distributed memory programming using MPI as the
communication layer across blades.

An alternative arrangement is to have Cell BE blade servers serve only as
accelerator nodes for other systems. In this configuration, the application logic is
not managed at the Cell BE level but at the accelerated system level and the
dialog we are interested in is between the Cell BE and the system it provides
acceleration for.

StreamIt explicit explicit explicit implicit

a. Not all of these programming models are available for appropriate for the Cell BE platform

6 Clusters based on commodity hardware. See http://www.beowulf.org/overview/index.html

Programming
modela

Task
distribution

Data
distribution

Task
synchonization

Data
communication
 Chapter 3. Enabling applications on the Cell BE 39

http://www.beowulf.org/overview/index.html

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
The frameworks that are part of the IBM SDK for Multicore Acceleration are
described in greater details in paragraph “Frameworks and domain-specific
libraries” on page 283 and “Hybrid Programming Models in SDK 3.0” on
page 440. We only give here a brief overview.

libspe2, newlib
This is the lowest possible level for application programmers. The libspe2 and
newlib libraries let programmers deal with each feature of the Cell BE
architecture with full control. If we recap the main libspe2/newlib features, we
find:

� SPE context management for creating, running, scheduling and deleting SPE
contexts

� DMA primitives for accessing remote memory locations from the PPE and the
SPEs

� mailboxes, signal, events and synchronization functions for PPE-SPE and
SPE-SPE dialogs and control

� PPE assisted calls, a mechanism to have the PPE service requests from the
SPEs.

Using these libraries, any kind of parallel programming model can be
implemented. libspe2 is described in great details in “Task parallelism and PPE
programming” on page 78.

Software cache
Software cache can help implement a shared memory parallel programming
model when the data that the SPEs reference cannot be easily predicted. See
“Automatic software caching on SPE” on page 155 for more details.

DaCS, Data Communication and Synchronization
DaCS provides services to multi-tier applications using a hiearchy of processing
elements. A DaCS program can be either a Host Elements (HE) or an
Accelerator Element (AE) or both if multiple levels of acceleration are needed. An
AE can only communicate within its HE’s realm. A HE need not be of the same
type as its HEs. This is the hybrid model. DaCS will take care of the necessary

Important: Libspe2 is a framework for obtaining access to the SPEs. Mailbox,
DMAs, signals, etc., are much faster when using direct problem state. High
performance programs should avoid making frequent libspe calls since they
often utilize kernel services. As such, it is best to use libspe2 to get parallel
tasks started, then use the MFC HW facilities for application task
management, communications, and synchronization.
40 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
byte swapping if the data flows from a little endian machine to the big endian Cell
BE.

The typical DaCS services are :

� resource and process management, where a HE manipulates its AEs,

� group management, for defining groups within which synchronization events
like barriers can happen,

� message passing, using send and receive primitives,

� mailboxes,

� remote DMA operations,

� process synchronization using barriers

� data synchronization using mutexes to protect memory accesses

The DaCS services are implemented as an API for the Cell BE only version and
are complemented by a run time daemon for the hybrid case. For a complete
discussion, see “DaCS - Data Communication and Synchronization” on
page 284 and “Hybrid DaCS” on page 443.

MPI
MPI is not part of the IBM SDK for Multicore Acceleration but any implementation
for Linux on POWER will be able to run on the Cell BE, leveraging the PPE only.
The most common implementations are :

� MPICH/MPICH2, from Argonne National Laboratory,

� MVAPICH/MVAPICH2, from Ohio State University

� OpenMPI, from a large consortium involving, amongst others, IBM and Los
Alamos National Laboratory

There is no difference from a functional point of view between these MPI
implementations running on Cell BE and running on other platforms. MPI is
obviously a very widespread standard for writing distributed memory
applications. MPI, as opposed to DaCS, treats all tasks as equal and lets the
programmer decide if, later on, some tasks are to play a particular role in the
computation. MPI is implemented as an API and a runtime environment to
support all sorts of interconnexion mechanisms between the MPI tasks : shared
memory, sockets for TCP/IP networks or OpenIB (OFED) for Infiniband networks.

ALF, Accelerated Library Framework
An ALF program uses multiple ALF accelerator tasks to perform the compute
intensive part of the work. The general idea is to have the host program split the
work into multiple independent pieces, the so-called work blocks, described by a
 Chapter 3. Enabling applications on the Cell BE 41

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
computuation kernel, the input data they need as well as the output data they
produce. On the accelerator side, the programmer only has to code the
computational kernel, unwrap the input data and pack the output data when the
kernel has finished processing. In between, the runtime system is responsible for
managing the work blocks queue on the accelerated side and giving control to
the computational kernel upon receiving a new work block on the accelerator
side.

ALF imposes a clear separation between the application logic and control
running on the host task from the computational kernels that run on the
accelerator nodes, acting as service providers which are fed with input data and
echo back output data. The ALF runtime provides the following services “for free”
from the application programmer perspective :

� work blocks queue management,

� load balancing between accelerators,

� transparent DMA transfers, exploiting the data transfer list used to describe
the input and output data.

The table below summarizes the various duties :

Table 3-5 Work separation with ALF

ALF also offers more sophisticated mechanisms for managing multiple
computational kernels, express dependencies or tune further the data
movement. Just like DaCS, ALF can operate inside a Cell BE server or in hybrid
mode.

ALF is described in greater details in “ALF - Accelerated Library Framework” on
page 291 and “Hybrid ALF” on page 456.

Who does what

Host code writer program flow logic
manage accelerators
work blocks creation, input and output
data specified as a series of
address-type-length entries
manage communication and
synchronization with peer host tasks

Accelerator code writer computational kernel

ALF runtime schedule work blocks to accelerators
data transfer
42 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
DAV, IBM Dynamic Application Virtualization
Using DAV, an IBM offering available from Alphaworks, an application can benefit
from Cell BE acceleration without any source code changes. The original,
untouched application, is only directed to use a stub library that is dynamically
loaded and offloads the compute intense functions to a Cell BE. IBM DAV
currently supports C/C++ or Visual Basic® Applications (like Excel® 2007
spreadsheets) running under the Microsoft® Windows® operating system. IBM
DAV comes with tools to generate ad-hoc stub libraries based on the prototypes
of the offloaded functions on the client side and similar information on the server
side (the Cell BE system) where the actual functions are implemented. For the
main appplication, the Cell BE is completely hidden. Of course, the actual
implementation of the function on the Cell BE will use the existing programming
frameworks to maximize the application perfornance.

See 7.1.3, “DAV - Dynamic Application Virtualization” on page 468 for a more
complete description.

Workload specific libraries
The IBM SDK for Multicore Acceleration contains a few workload specialized
libraries. These are the BLAS library for linear algebra, libFFT for fast Fourier
transforms in 1D and 2D and libmc for random number generations.

OpenMP
The IBM SDK for Multicore Acceleration contains a technology preview of the XL
C/C++ single source compiler. Using this compiler completely hides the Cell BE
to the application programmer who can continue using OpenMP : a familiar
shared memory parallel programming model. The compiler runtime library takes
care of spawning threads of execution on the SPEs and manages the PPE
threads to SPE threads data movement and synchronization.

There are other groups or companies working on providing programming
frameworks for the Cell BE. They are briefly discussed here.

Mercury Computer Systems
Mercury has two main offerings for the Cell BE:

� MCF, the MultiCore Framework which implements the manager/worker model
with an input/output tile management akin to the ALF work blocks

� Multicore PlusTM SDK, which bundles MCF with additional signal processing
and FFT libraries (SAL, VSIPL), a trace library (TATL) and Open Source tools
for MPI communications (OpenMPI) and debugging (gdb)
 Chapter 3. Enabling applications on the Cell BE 43

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
PeakStream
The PeakStreamTM Platform offers an API, a generalize Array type and a Virtual
Machine environment that abstracts the programmer from the real hardware.
Data is moved back and forth between the application and the Virtual Machine
that accesses the Cell BE resources using an I/O interface. All the work in the
Virtual Machine is asynchronous from the main application perspective which
can keep on doing work before reading the data from the Virtual Machine. The
PeakStream Platform currently runs on the Cell BE, GPUs and traditional
homogeneous multi-core CPUs.

Code Sourcery
CodeSourcery offers Sourcery VSIPL++TM, a C++ implementation of the open
standard VSIPL++ library used in signal and image processing. The programmer
is freed from accessing the low level mechanisms of the Cell BE. This is taken
care of by the CodeSourcery runtime library.

The VSIPL (Vector Signal and Image Processing Library) contains routines for :

� linear algebra for real and complex values

� random numbers

� signal and image processing (FFT, convolutions, filters)

Code Sourcery also runs on GPU and multi-core general purpose CPU.

Gedae
Gedae tries to automate the software development by using a model-driven
approach. The algorithm is captured in a flow diagram that is then used by the
multiprocessor compiler to generate a code that will match both the targer
architecture and the data movements required by the application.

RapidMind
RapidMind works with standard C++ language constructs and augments the
language using specialized macro language functions. The whole integration
proceeds in three steps :

� replace float or int arrays by RapidMind equivalent types (Array, Value),

� capture the computations enclosed between the RapidMind keywords
Program BEGIN and END and convert them into object modules

� stream the recorded computations to the underlying harware using platform
specific constructs (Cell BE, CPU or GPU) when the modules are invoked

There are also research groups working on implementing other frameworks onto
the Cell BE. Worth noting are the efforts of the Barcelona Supercomputing teams
44 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
with CellSs (Cell Superscalar) and derivatives like SMPSs (SMP Superscalar)
and from Los Alamos National Laboratory with CellFS, based on concepts taken
from the Plan9 operating system.

In Figure 3-3 on page 45 we plot these frameworks on a scale ranging from the
closest to the hardware to the most abstract.

Figure 3-3 Relative positioning of the Cell programming frameworks

IBM DAV - Dynamic Application Virtualization is particular here. On the
accelerated program side (the client side in DAV terminology), the Cell BE is
completely hidden using the stub DLL mechanism. On the accelerator side (the
server side for DAV), any Cell BE programming model can be used to implement
the functions which have been offloaded from the client application.
 Chapter 3. Enabling applications on the Cell BE 45

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
3.2 Does the Cell BE fit the application requirements?

We will use the decision tree on Figure 3-4 on page 46 to answer this question.

Figure 3-4 Is the Cell BE a good fit for this application
46 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
3.2.1 Higher performance/watt

The main driver for enabling applications on the Cell BE is the need for a higher
level of performance per watt. This is a concern shared by many customers as is
reported by the IDC study referenced in [15]. Customers may be willing to :

� lower their electricity bills,

� overcome computer rooms limits in space, power and cooling,

� adopt a green strategy for their IT : a green ITtude,

� allow for more computing power for a given space and electrical power budget
as is often the case in embedded computing.

The design choices for the Cell BE exactly match these new requirements with a
power efficiency (expressed in peak Gflops per Watt) that is over two times better
than conventional general purpose processors.

3.2.2 Opportunities for parallelism

The Cell BE offers parallelism at four levels:

� across multiple System x™ servers in a hybrid environment. This is
expressed using MPI at the cluster level or some sort of grid computing
middleware.

� across multiple Cell BE chips/servers. Here we use MPI communication
between the Cell BE servers in the case of a homogeneous cluster of
standalone Cell BE servers or possibly ALF or DaCS for hybrid clusters.

� across multiple SPE inside the Cell BE chip/server, using libspe2, ALF, DaCS
or a single source compiler.

� at the word level with SIMD instructions on each SPE, using SIMD intrinsics
or the auto-SIMDization capabilities of the compilers.

The more parallel processing opportunities the application can leverage the
better.

3.2.3 Algorithm match

Here, we are looking for a match between the main computational kernels of the
application and the Cell BE strengths as listed on Table 3-3. As we have seen in
3.1.1, “The computation kernels” on page 32, most applications can be
characterized by a composition of the 13 “dwarfs” of Patterson et al [1]. It is
therefore important to know which kernels a given application is built with. This is
 Chapter 3. Enabling applications on the Cell BE 47

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
usually very easy to do as it is related to the numerical methods used in the
applications.

In a paper by Williams et al. [2], the authors have studied how the Cell BE
performs on four of the 13 “dwarfs” : denses matrices algebra, sparse matrices
algebra, spectral methods and structures grids. They compared the performance
of these kernels on a Cell BE with what they obtained on a superscalar processor
(AMD Opteron™), a VLIW processor (Intel Itanium2TM) and a vector processor
(Cray X1ETM). The results were found very interesting for the Cell BE, a very
good result as these kernels are extremely common in many HPC applications.

Other authors have reported successes for graphical models (bioinformatics,
HMMer [16]), dynamic programming (genomics, BLAST [17]), unstructured grids
(Finite Element Solvers [18], combinatorial logic (AES, DES [19]).

The map-reduce dwarf is embarrassingly parallel and is therefore a perfect fit for
the Cell BE. Examples can be found in ray-tracing or Monte-Carlo simulations.

The graph traversal dwarf is a more difficult target for the Cell BE due to random
memory accesses although some new sorting algorithms (AA-sort in [5]) have
been shown to exploit the Cell BE architecture.

The N-Body simulation does not seem yet ready for Cell BE exploitation although
research efforts are providing good early results [20].

The table summarizes the results of these studies. We present for each of the
“13 dwarfs”, its Cell BE affinity (from 1, poor to 5 excellent), and the Cell BE
features that are of most value for each kernel.

The algorithm match also depends on the data types that are being used. The
current Cell BE has a single precision floating point affinity. There will be much
larger memory and the enhanced double precision floating point capabilities in
later versions of Cell BE.

Table 3-6 tThe 13 dwarfs from Patterson et al. and their Cell BE affinity

Dwarf name Cell BE affinity
1, poor to 5, excellent

Main Cell BE features

Dense matrices 5 8 SPE per Cell BE
SIMD
large register file for deep unrolling
fused multiply-add

Sparse matrices 4 8 SPE per Cell BE
memory latency hiding with DMA
high memory sustainable load
48 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
As can be derived from the above table, the Cell BE is a good match for many of
the common computational kernels. This is the result of the design decisions that
were made to address the main bottlenecks : memory latency and throughput as
well as a very high computational density with 8 SPE per Cell BE each with a
very large register file and a extremely low local store latency (6 cycles compared
to 15 for current general purpose processors from Intel or AMD).

3.2.4 Ready to make the effort?

The Cell BE may be easy on the electricity bill but can be hard on the
programmer. Enabling an application on the Cell BE may result in very

Spectral methods 5 8 SPE per Cell BE
large register file
6 cycles Local Store latency
memory latency hiding with DMA

N-body methods ? ?

Structured grids 5 8 SPE per Cell BE
SIMD
high memory bandwidth
memory latency hiding with DMA

Unstructrured grids 3 8 SPE per Cell BE
high memory thruput

Map-reduce 5 8 SPE per Cell BE

Combinatorial logic 4 large register file

Graph traversal 2 memory latency hiding

Dynamic
programming

4 SIMD

Back-track and
Branch+Bound

? ?

Graphical models 5 8 SPE per Cell BE
SIMD

Finite state
machine

? ?

Dwarf name Cell BE affinity
1, poor to 5, excellent

Main Cell BE features
 Chapter 3. Enabling applications on the Cell BE 49

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
substantial algorithmic and coding efforts. But the results are usually worth the
efforts.

What are the alternatives ? The parallelization effort may have already been
done using OpenMP at the process level. In this case, using the prototype of the
XLC single source compiler might be the only viable alternative. Despite a very
high usability, these compilers are still far from providing the level of performance
that can be attained with native SPE programming. The portability of the code is
maintained and for some customers this might be a key requirement.

For new developments, it might be a good idea to use the higher level of
abstraction provided by the likes of Peakstream, Rapidmind or Streamit7. The
portability of the code is maintained between Cell BE, GPU and general
multi-core processors. But the application is tied to the development
environment, a different form of lock-in.

In the long run, new standardized languages may emerge. Projects like X108
from IBM or Chapel9 from Cray may become the preferred language for writing
applications to run on massively multi-core systems. Adopting new languages
has historically been a very slow process and even if we get a new language, that
still does not help the millions of lines of code written in C/C++ and Fortran.
Standard API for the host-accelerator model may be closer. ALF is a good
candidate. The very fast adoption of MPI in the mid 90s has proved that an API
can be just what we need to enable a wide range of applications.

But can we wait for these languages and standards to emerge? If the answer is
no and the decision has been taken to enable the application on Cell BE now,
here is a list of things to consider and possible workarounds when problems are
encountered.

Table 3-7 Things to consider when enabling an application on Cell BE

7 http://www.cag.csail.mit.edu/streamit
8 http://domino.research.ibm.com/comm/research_projects.nsf/pages/x10.index.html
9 http://chapel.cs.wahsington.edu

Topic Potential problem Workaround

Source code changes Portability concerns
Limit the scope of code
changes

The Cell BE API are standard C.
Approaches like host-accelerator can limit the
amount of source code changes

Operating systems Windows applications Cell BE runs Linux only. If the appplicaition runs on
Windows, we may want to use IBM DAV to offload
only the computational part to the Cell BE
50 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
3.3 Which parallel programming model ?

Large homogeneous compute clusters can be built by collecting standalone Cell
BE blade servers with an Infiniband interconnect. At this cluster level, the usual
distributed memory programming models such as MPI can be used. An
application that is already programmed using MPI is a very good start as we only
need to add Cell BE parallelism incrementally to fully exploit the Cell BE
potential.

Hybrid clusters are becoming increasingly popular as a means of building very
powerful configurations by incrementally upgrading existing clusters built with off
the shelf components. In this model, the MPI parallelism at the cluster level is
maintained but each task is now accelerated by one or more Cell BE.

Languages C/C++ fully supported
Fortran and ADA
supported
Other languages not
supported

Rewrite the compute intensive part in C
Use some sort of offloading for Java™ or VBA
applications running on Windows with IBM DAV

Libraries Not many libraries
supported yet
Little ISV support

Use the workload libraries provided by the IBM
SDK for Multicore Acceleration

Data types 8, 16, 32bit data well
supported
64bit float point
supported

Full speed double precision support soon to appear

Memory requirements Maximum is 2GB per
blade server

Use more smaller MPI tasks, on an IBM Blade
Server use a single MPI task with 16 SPE rather
than 2 MPI tasks with 8 SPE.
(This is subject to change as much larger memory
configuration per blade is due in future product
releases.)

Memory requirements LS size is 256k Large functions will need to be split
Will have to use overlay
Limit recursion (stack space)

I/O I/O intensive tasks Cell BE does not help I/O bound workloads.

Topic Potential problem Workaround
 Chapter 3. Enabling applications on the Cell BE 51

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
We will first describe the parallel programming models found in the literature and
then focus on the Cell BE chip or board level parallelism and the host-accelerator
model.

3.3.1 Parallel programming models basics

Mattson et al. in [4] define a taxonomy of parallel programming models. First they
define four “spaces” that the application programmer has to visit. They are
described in table 3-8 on 52.

Table 3-8 Four design spaces from Mattson et al.

The first space is very much application dependant. The implementation
mechanisms are described more detail in “Cell BE programming” on page 75
and Chapter 7, “Programming in distributed environments” on page 439.

In the algorithm space, Mattson et al. propose to look at three different ways of
decomposing the work, each with two modalities. This leads to six major
algorithm structures described in the table 3-9 on 52.

Table 3-9 lAlgorithm structures

Space Description

Finding concurrency Find parallel tasks
Group and order them

Algorithm structure Organize the tasks in processes

Supporting structure Code structures for tasks and data

Implementation
mechanisms

Low level mechanisms for managing and synchronizing
execution threads as well as data communication

Organization principle Organization sub-type Algorithm stucture

By tasks Linear Task parallelism

Recursive Divide and conquer

By data decomposition Linear Geometric decomposition

Recursive Tree

By data flow Regular Pipeline

Irregular Event-based coordination
52 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
Task parallelism occurs when multiple independant tasks can be scheduled in
parallel. Divide and conquer is applied when a problem can be recursively
treated by solving smaller sub-problems. Geometric decomposition is very
common when the we try to solve a partial differential equation which has been
discretized on a 2D or 3D grid and grid regions are assigned to processors.

As for the supporting structures, they identified four structures for organizing
tasks and three for organizing data. They are given side by side in table 3-10 on
53.

Table 3-10 Supporting structures for code and data

SPMD is the Single Program Multiple Data code structure well know to MPI
programmer. Although MPI does not impose the use of SPMD, this is a very
frequent consruct. Master/worker is sometimes called “bag of tasks” when a
master task distributes work elements independant of each other to a pool of
workers. Loop parallelism is a low level structure where the iterations of a loop
are shared between execution threads. Fork/Join is a model where a master
execution threads calls (fork) multiple paralel execution threads and wait for their
completion (join) before continuing with the sequential execution.

Shared data refers to the constructs necessary to share data between execution
threads. Shared queue is the coordination among tasks to process a queue of
work items. Distributed arrray addresses the decomposition of multi-dimensional
arrays into smaller sub-arrays that are spread across multiple execution units.

We will now look at how these map to the Cell BE and what needs to be looked at
to figure out the best parallel programming model for the application. There are
forces which are specific to the Cell BE that will influence the choice. They are
given here in no particular order of importance.

Table 3-11 Cell BE specific “forces”

Code structures Data structures

SPMD Shared data

Master/Worker Shared queue

Loop parallelism Distributed array

Fork/Join

Force

Heterogenous PPE/SPE

Distributed memory between SPE, shared memory view
possible by memory mapping the Local Store
 Chapter 3. Enabling applications on the Cell BE 53

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
3.3.2 Chip or board level parallelism

The Cell BE is a heterogenous, multi-core, distributed memory processor. It
offers many opportunities for parallel processing at the chip or board level. On
Figure 3-5 on page 55, we show the reach of multiple programming models. The
models can sometimes be classified as PPE-centric or SPE-centric. Although
this is a somewhat artificial distinction, it indicates that the application control is
either run more on the PPE side or on the SPE side.

SIMD

PPE slow compared to SPE

Software managed memory hierarchy

Limited size of the LS

Dynamic code loading (overlay)

High bandwidth on the EIB

Coherent shared memory

Large SPE context, startup time

Force
54 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
Figure 3-5 Various models on the Cell BE

We see here four different models :

� small single SPE program, where the whole code holds in the Local Store of a
single SPE,

� large single SPE program, one SPE program accessing system memory,

� small multi-SPE program,

� general Cell BE program with multiple SPE and PPE threads.

When multiple SPE are used, they can be arranged in a data parallel, streaming
mode, as depicted in Figure 3-6 on page 56.
 Chapter 3. Enabling applications on the Cell BE 55

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 3-6 The streaming model

Each piece of input data (I0, I1, ...) is streamed through one SPE to produce a
piece of output data (O0, O1, etc). The exact same code runs on all SPE.
Sophisticated load balancing mechanisms can be applied here to account for
differeing compute time per data chunk.

The SPE can also be arranged in a pipeline fashion, where the same piece of
data undergoes various transformations as it moves from one SPE to the other. A
general pipeline is shown on Figure 3-7 on page 57.
56 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
Figure 3-7 The pipeline model

The main benefit is that the we aggregate the code size of all the SPE
participating in the pipeline We also benefit from the huge EIB bandwidth to
transfer the data. One possible variation is to move the code instead of the data,
whichever is the easiest or smallest to move around. A good load balancing is
much more challenging as it relies on a constant per stage computational time.

3.3.3 More on the host-accelerator model

A common approach with Cell BE parallel programming is to use a function
offload mechanism akin to the RPC model. The application flows on the PPE and
only for selected, highly computational kernels do we call upon SPE acceleration.
This is the easiest from a program development perspective as it limits the scope
of source code changes and does not require much re-engineering at the
application logic level. This is very much a fork/join model and care must be
taken that we give enough work to the accelerator threads to compensate for the
startup time. This is typically implemented with specialized workload libraries like
BLAS, FFT or RNG for which there exists a Cell BE tuned version. BLAS is the
only library that could be considered a “drop in replacement” at this time.
 Chapter 3. Enabling applications on the Cell BE 57

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
A variation of this model is to have general purpose accelerator progams running
on the SPE, sitting in a loop, awaiting for being asked to provide services for the
PPE threads. Having persistent threads on each SPE eliminates the startup time
of SPE threads but requires that the accelerator programs be able to service
various requests for various functions, possibly incurring the use of dynamic code
uploading techniques. The ALF framework described in “ALF - Accelerated
Library Framework” on page 291 and “Hybrid ALF” on page 456 is one
implementation.

A general accelerator is shown in Figure 3-8.

Figure 3-8 Memory structure of an accelerator

An accelerator can implement multiple services (functions f1 to f4). Each function
may requires some “state” data, persistent across multiple invocations. The “live
data” is the data in and out of the accelerator for each invocation. It is important
to understand which is read, written or both to optimize the data transfers.

3.3.4 Summary

Among the various programming models and structures listed in tables 3-9 on 52
and 3-10 on 53, some will be easier to implement on Cell BE than others. The
tables 3-12, 3-13 and 3-14 summarize the Cell BE specific issues.

Table 3-12 Cell BE suitability of algorithm structures and specific issues

Algorithm structure Cell BE suitability
(1 : poor, 5 : excellent)

Things to look at

Task parallelism 5 Load balancing
Synchronization required for accessing the
queue of work items
58 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
Table 3-13 Cell BE Suitability of code structures and specific issues

Table 3-14 Data structures and Cell BE specific issues

Divide and conquer ? ?

Geometric decomposition 5 DMA and double buffering required
Code size

Tree 3 Random memory accesses

Pipeline 5 Load balancing
EIB exploitation
Move code or data ?

Event-based coordination 3 Code size, resulting code may be inefficent
because operation required is not know
until we get the even and data to process.

Algorithm structure Cell BE suitability
(1 : poor, 5 : excellent)

Things to look at

Code structure Cell BE suitability
(1 : poor, 5 : excellent)

Things to look at

SPMD 3 Code size
The whole application control may not fit in Local
Store and more PPE intervention may be
required.

Master/Worker 5 Load balancing
Synchronization required for accessing the
queue of work items

Loop parallelism 3 PPE centric
Task granularity
Shared memory synchronization

Fork/Join 5 Fits the accelerator model
Weigh the thread startup time with the amount of
work and data transfer needed

Data structure Things to look at

Shared data Synchronization for accessing shared data, memory
ordering and locks
 Chapter 3. Enabling applications on the Cell BE 59

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
3.4 Which Cell BE programming framework to use ?

We have now found which parallel programming model (work distribution, data
distribution and synchronization) we wish to apply to the application. We may
draw on more than one for a given application. We need to implement these
using the available Cell BE frameworks. Some frameworks are very general;
libspe2 with MFC services accessed through direct problem state (PPE) and
channels (SPE) being the most versatile. And some frameworks are very
specialized (ex. workload libraries). Choosing one is a matter of weighing the
features, the ease of implementation and the performance. There are also
application area specifics. For example, it seems that for radar applications,
Gedae is almost mandatory.

We list in table 3-15 the various parallel programming constructs and give for
each the most appropriate frameworks as a primary and secondary choices.

Table 3-15 Parallel programming constructs and frameworks

Shared queue From PPE managed to SPE self-managed work queues

Distributed array Data partitioning and DMA

Data structure Things to look at

Programming construct Primary Secondary, comments

MPI OpenMPI, nothing specific to the
Cell BE. This is a cluster/PPE level
construct.

MVAPICH, MPICH

pthreads pthreads supported on the PPE.
No direct support for a mapping
between PPE pthreads and SPE
pthreads. This would have to be
implemented using libspe.

OpenMP XLC single source compiler

UPC, CAF Not supported

X10 Not supported

Task parallelism libspe This is function offload, see Fork/Join
too
60 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
3.5 The application enablement process

The process of enabling an application on Cell BE can be incremental and
iterative. It is incremental in the sense that the hotspots of the application should
be moved progressively off the PPE to the SPE. It is iterative as for each hotspot,
the optimization can be refined at the SIMD, synchronization and data movement
levels until satisfactory levels of performance are obtained.

As for the starting point, a thorough profiling of the application on a general
purpose system (PPE is just fine for this) will give all the hotspots that need to be
looked at. Then, for each hotspot, we can write a multi-SPE implementation with
all the data transfer and synchronization between the PPE and the SPE. Once
this first implementation is working, we then turn to the SIMDization and tuning of
the SPE code. The last two steps can be repeated in a tight loop until we get a
good performance. We can repeat the same process for all the major hotspots.
This is shown in Figure 3-9.

Divide and conquer

Geometric decomposition ALF if data blocks can be
processed independantly

DaCS for more general data
decomposition

Tree software cache ?

Pipeline libspe DaCS, Streamit

Event-based coordination libspe

SPMD This is a PPE level consruct.

Master/Worker ALF libspe

Loop parallelism XLC single source compiler, with
OpenMP support

Fork/Join Workload specific libraries if they
exist and ALF otherwise. ALF can
be used to create new workload
specific libraries.

This is the accelerator model. Use
DAV if we need to accelerate a
Windows application.

Shared data DaCS MFC intrinsics, libsync

Shared queue DaCS MFC intrinsics, libsync

Distributed array ALF DaCS

Programming construct Primary Secondary, comments
 Chapter 3. Enabling applications on the Cell BE 61

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 3-9 General flow for enabling an application on Cell BE

The figure above will change a bit depending on the framework that was chosen.
If we are fortunate enough to have an application whose execution time is
dominated by a function that happens to be part of a workload specific library
62 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
that has been ported to Cell BE, then the process to follow is shown in
Figure 3-10 on page 63.

Figure 3-10 Implementing Cell BE tuned workload specific libraries

As for ALF, the process is described in Figure 3-11 on page 64.
 Chapter 3. Enabling applications on the Cell BE 63

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 3-11 Enabling a Cell BE application with ALF

3.5.1 Performance tuning for Cell BE programs

Enabling applications on Cell BE is all about getting the best performance. This
does not come for free and performance tuning is an integral part of the
application enablement. Chapters “Cell BE programming” on page 75 and
64 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
Chapter 7, “Programming in distributed environments” on page 439 give many
detailed performance tips for writing good SPE and PPE code. Mike Acton10 in
[25] gives very valuable advice using the experience he and his team at
Insomniac Games gathered in the process of developing video games for the
Sony Playstation 3 . His recommandations are reproduced below :

� let’s not hide the Cell BE architecture but exploit it instead

� for a succesful port to Cell BE :

– understand the architecture

– understand the data : movement, dependencies, generation, usage (read,
write, or read-write)

– do the hard work

� put more work on the SPE, less on the PPE

� do not to view the SPE as co-processors but rather view the PPE as a service
provider for the SPE

� ban scalar code on the SPE

� less PPE/SPE synchronization, use deferred updates, lock-free
synchonization (see “Shared storage synchronizing and data ordering” on
page 213) and perform dataflow management as much as possible from the
SPE.

3.6 A few scenarios

Here we review a few examples of Cell BE programs. In Figure 3-12 on page 66,
we show the program flow for a typical function offload to a workload library. We
picture the PPE thread, running useful work until it calls a function that is part of
the Cell BE tuned library. What happens then is that the library will start SPE
context and start execute the library code. The library on the SPE could be doing
any kind of inter-SPE communication, DMA accesses, etc as figured by the
cloud. Once the function has finished executing, the SPE contexts are terminated
and the PPE thread resumes execution on the PPE.

10 http://well.cellperformance.com
 Chapter 3. Enabling applications on the Cell BE 65

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 3-12 A typical work flow for Cell BE tuned workload libraries

Starting and terminating SPE contexts takes some time and we must ensure that
the time spent in the library far exceeds the SPE context startup time.

A variation of this scheme is when the application calls the library repeatedly. In
this case, it might be interesting to keep the library contexts running on the SPE
and just set them to work with a lightweight mailbox operation for example. This
is shown in Figure 3-13 on page 67.
66 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
Figure 3-13 Successive invocations of the same library
 Chapter 3. Enabling applications on the Cell BE 67

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
Here we have three successive invocations of the library with data1, data2 and
data3. The dotted lines indicate a SPE context that is active but waiting. This
arrangement minimizes the impact of the SPE contexts creation but it can only
work if the application has a single computational kernel that is called over and
over.

In Figure 3-14, we show the typical workflow of an ALF application. The PPE
thread will prepare the work blocks (numbered wb0 to wb12 here), and these will
execute on the SPE accelerators.

Figure 3-14 The ALF workflow
68 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
There is typically no communication between accelerators when they are
processing a work block and the ALF runtime takes care of balancing the work
among the accelerators. Also, the PPE thread may do useful work while the
accelerators are crunching though the work blocks.

3.7 Design patterns for Cell BE programming

Design patterns were first introduced by Christoper Alexander in the field of town
and building architecture. Gamma et al. in [3] applied the same principles to the
computer programming and this has proved a very useful tool since then.
Multiple definitions can be found for a pattern. In [4], Mattson et al. define a
pattern as a “good solution to a recurring problem in a particular context”. Marc
Snir, in [6], describes them as a “way to encode expertise”. Patterns are usually
characterized by :

� a name,

� a problem,

� the forces shaping the solution,

� a solution to the problem

Using the same formalism, we have started to build a list of design patterns
applied to Cell BE programming. This is clearly only a start and it is hoped that
new patterns will emerge as we gain more and more expertise in porting code to
the Cell BE environment.

We will look at five design patterns :

� a shared queue

� indirect addressing

� a pipeline

� multi-SPE software cache

� plugin

3.7.1 Shared queue

We wish to distribute work elements between multiple SPE. They are arranged in
a FIFO queue in PPE memory.
 Chapter 3. Enabling applications on the Cell BE 69

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
Forces
The two main forces are the need for a good load balance betwen the SPE and
minimal contention.

Solution
We can envision three solutions for dividing work between SPE. They are
described as follows.

Fixed work assignment
Each SPE is statically assigned the same amount of work elements. This incurs
no contention but may be a weak scheme if the time taken to process a work
element is not constant.

Master/Worker
The PPE assigns the work elements to the SPE. The PPE could give the pieces
of work one at a time to the SPE. When a SPE is finished with its piece of work, it
signals the PPEwhich then feeds the calling SPE with a new item, automatically
balancing the work. This scheme will be good for the load balance but may lead
to some contention if many SPE are being used as the PPE may be
overwhelmed by the task of assigning the work blocks.

Self managed by the SPE
The SPE will synchronize between themselves without PPE intervention. Once a
SPE is finished with its work item, it will grab the next piece of work from the
queue and process it. This is the best scheme as it ensures good load balance
and does not put any load on the PPE. The critical part of the scheme is to make
sure that the SPE remove work items off the queue atomically, possibly using the
MFC atomic operations or using features from the sync library provided with the
IBM SDK for Multicore Acceleration.

3.7.2 Indirect addressing

We wish to load in SPE memory a vector that is addressed through an index
array. This is common in sparse matrix-vector product that arise for example
when solving linear systems with conjugate gradients methods. The typical
construct is shown in Example 3-1 where the matrix is stored in CSR
(Compressed Sparce Row) format. This storage is described in [26].

Example 3-1 Matrix-vector product with a sparse matrix

float A[],x[],y[];
int ja[], idx[];
for(i=0;i<N;i++) {

for(j=ja[i];j<ja[i+1];j++) {
70 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
y[i]+=A[j]+x[idx[j]];
}

}

Forces
The index array by with the x vector is accessed leads to random memory
accesses.

Solution
However, the index array is known in advance and we can exploit this by using
software pipelining with a multi buffering scheme and DMA lists. This is
described in Figure 3-15.

Figure 3-15 Software pipeling and multi-buffering

We do not to show the accesses to the matrix A and the array y. They are
accessed sequentially and a simple multi-buffering scheme can also be applied.

3.7.3 Pipeline

We wish to arrange SPE contexts in a multi-stage pipeline manner.
 Chapter 3. Enabling applications on the Cell BE 71

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
Forces
We want to minimize the time it takes for the data to move from one pipeline
stage to the other.

Solution
Using affinity functions as described in “Direct problem state access and LS to
LS transfer” on page 143, we can make sure that successive SPE contexts are
ideally placed on the EIB to maximize the LS to LS transfer speed. An alternative
arrangement can be to move the code instead of the data, whichever is the
fastest. Very often, when the programming model is a pipeline, some state data
must reside on each stage and moving the function would also require moving
the state data.

3.7.4 Multi-SPE software cache

We wish to define a large software cache that gathers Local Storage space from
multiple participating SPEs.

Forces
We wish to push the software cache a bit further by allowing data to be cached
not necessarily in the SPE that encounters a “miss” but also in other SPE’s Local
Store. The idea here is to exploit the very high EIB bandwidth.

Solution
We do not have a solution for this yet. The first direction would be to look at
cache coherency protocols (MESI, MOESI, MESIF)11 in use today on multi
processor systems and try to adapt them to the Cell BE.

3.7.5 Plugin

We wish to process data whose contents, and therefore its associated treatment,
is discovered on the go.

Forces
This is similar to what happens with a Web browser when the flow of data coming
from the Web server contains data that requires the loading of external plugins to
be displayed. The challenge here is to be able to load on the SPE both the data
and the code to process it as the data is being discovered.

11 M=Modified, O=Owner, E=Exclusive, S=Shared, I=Invalid, F=Forwarding
72 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm
Solution
The Cell BE has overlay support already so this could be one solution. However,
there might be a better solution to this particular problem using dynamically
loaded code. We can imagine loading code together with data using exactly the
same DMA functions. Nothing in the SPE memory differentiates code from data.
This has been implemented successfully by Eric Christensen et al. in [27]. The
process is as follows :

1. compile the code,

2. dump the object code as binary,

3. load the binary code as data,

4. DMA the data (containing the code) just like regular data to the SPE, actual
data could also be loaded during the same DMA operation,

5. on the SPE jump to the address location where the code has been loaded to
pass the control to the plugin which has just been loaded.
 Chapter 3. Enabling applications on the Cell BE 73

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm
74 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Chapter 4. Cell BE programming

The goal of this chapter is to provide an introductory guide for how to program an
application on Cell BE. The chapter covers many aspects of Cell BE programing,
from low level programing using intrinsics to higher level programming using
frameworks that hide the processor unique architecture.

The chapter covers issues related to programming a single Cell BE processor or
a Cell BE base blade system (e.g. QS21) that contains two Cell BE processors
but shares the same operating system and memory map.

When describing the programming techniques we tried to keep a good balance
between two opposite and complementary approaches:

� Keep the programing as high level a possible in order to reduce the
development time and to produce a code which is as readable and simple as
possible. This can be done for example using the SDK’s C functions for
accessing the different Cell BE hardware mechanisms (DMA, mailboxes,
signals, etc.) and abstract high level libraries to manage the work with Cell BE
(e.g. DaCS, ALF, software managed cache).

� Use low level programing in sections in the code where performance is
critical. This can be done for example using the low level intrinsics which are
mapped to a single or small number of assembly instructions.

When describing those techniques we usually emphasize the cases in which
each of the approaches is suitable.

4

© Copyright IBM Corp. 2007. All rights reserved. 75

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
In addition, we tried to include a wide range of important issues related to Cell BE
programming, that till this point were described in several different documents.

The programming techniques and libraries that are covered in this section are
divided into sections according to the functionality within the program that they
perform. We hope this approach is useful for the program developer as it enables
to find the corresponding subject according to the current stage in development
or according to the specific part of the program that is currently implemented.

This chapter is divided into the following sections:

� “Task parallelism and PPE programming” on page 78 - describes how to
program the PPE and how to exploit task parallelism by distributing the work
between the SPEs.

� “Storage domains, channels and MMIO interfaces” on page 95 discusses the
different storage domains on the Cell BE and how either a PPE or SPE
program can access them. The section also discusses how to use the MFC
which is the main component for communicating between the processors and
transferring data using DMA. It is useful to be familiar with this subject when
deciding on the program’s data partioning or when there is a need to use the
MFC (as any Cell BE program does).

� “Data transfer” on page 109 discusses the various methods for performing
data transfers in Cell BE between the different available memories. Obviously
this is a key issue in any program development.

� “Inter-processor communication” on page 174 describes how to implement
communication mechanisms between the different processors that run the
Cell BE in parallel (e.g. mailbox, signals, events).

� “Shared storage synchronizing and data ordering” on page 213 discusses
how that data transfer of the different processors can be ordered and
synchronized. The Cell BE unique memory architecture requires the
programer to be aware of this issue which in many cases need to be handled
explicitly by the program using dedicated instructions.

� “SPU programming” on page 240 shows how to write an optimized SPU
program. The intention here for programing issues related only to programing
the SPU itself an without interacting with external components (e.g. PPE,
other SPEs, main storage).

� “Frameworks and domain-specific libraries” on page 283 discusses some
high level programing frameworks and libraries that aim to reduce the
development efforts and hide the Cell BE specific architecture (e.g. DaCS,
ALF and domain specific libraries). In some case using those frameworks
provide similar performance as programing using the low level libraries.

� “Programming guidelines” on page 313 provides a collection of programming
guidelines and tips.
76 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
– The section contains information gathered from various resources and
also new items that we added.

– It discuss issues that are described in details in other chapters. A
reference to the corresponding chapters is also mentioned.

– It may be a good idea for a programmer to read this chapter before starting
developing a new application in order to understand the different
consideration that need to be taken.
 Chapter 4. Cell BE programming 77

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
4.1 Task parallelism and PPE programming

The Cell BE has a single PowerPC Processor Element (PPE) which is intended
primarily for running operating system, control the application process, managing
system resources, and managing SPE threads. Execution of any user program
also starts on this processor, and the PPE program may later off-load some of its
functionality to run on one or more of the SPEs.

From the programming point of view, managing the work with the SPEs is similar
to working with Linux threads, and the SDK contains libraries that assist in
managing the code running on the SPE and communicate with this code during
execution.

The PPE itself is conforms to the PowerPC Architecture so programs written for
the PowerPC 970 processor, for example, should run on the Cell BE processor
without modification. In addition, most program that run on a Linux based power
system and uses the OS facilities should work properly on a Cell BE based
system. Such facilities include accessing the file system, using sockets and MPI
for communicate with remote nodes, and managing memory allocation.

It is important for the programmer to know that using the operating system
facilities in any Cell BE application always take place on the PPE. While an SPE
code may use those facilities, doing so will cause blocking the SPU code and let
the PPE handle the system request. Only when the PPE complete handling the
request, the SPE execution will continue.

In this section we cover the following topics:

� Chapter 4.1.1, “PPE architecture and PPU programming” on page 79
describes the PPE architecture and instruction set and general issues
regarding programming code that runs on the PPU.

� Chapter 4.1.2, “Task parallelism and managing SPE threads” on page 83
discuss how PPU code may implement task parallelism using SPE threads.
The section discuss how to create and execute those threads and how to
create affinity between groups of threads.

� Chapter 4.1.3, “Creating SPEs affinity using gang” on page 93 discuss how to
create affinity between SPE threads the meant to run together.

We include in this book the issues related to PPE programming that we found the
most important when running most Cell BE applications. However, in case he
reader is interested in learning more about this subject or need to know some
specific detail that is not covered in this section, a good starting point to do so
may be PowerPC Processor Element chapter in Cell Broadband Engine
Programming Handbook.
78 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
4.1.1 PPE architecture and PPU programming

Programming the PPU is similar to programming any Linux based program that
runs on a PowerPC processor system. Some of the key features of the PPE and
its PPU instructions set are:

� A general-purpose, dual-threaded, 64-bit RISC processor.

� Conforms to PowerPC Architecture with Vector/SIMD multimedia extensions.

� Uses 32 bits instructions that are word-aligned.

� Dual-threaded.

� Support Vector/SIMD Multimedia Extension 32 bits and word-aligned
instructions that works on 128 bits wide operands.

� 32 KB L1 instruction and data caches

� 512 KB L2 unified (instruction and data) cache.

� Cache line is 128 bytes.

� Instructions are executed in order.

The PPU supports two instruction sets: the PowerPC instruction set and the
Vector/SIMD Multimedia Extension instruction set. In most cases it is preferred to
use the eight SPEs to perform the massive SIMD operations and let the PPU
program managing the application flow. However, it may be useful in some cases
to add some SIMD computation on the PPU.

Although most of the coding for the Cell Broadband Engine will be in a high-level
language like C or C++, an understanding of the PPE architecture and PPU
instruction sets adds considerably to a developer’s ability to produce efficient,
optimized code. This is particularly true because C-language internals are
provided for some of the PPU’s instruction set. The following section discusses
the PPU intrinsics (C/C++ language extensions) and how to use them. This
section discuss both intrinsics that operate on scalars and also those that
operate on vector data type.

C/C++ language extensions (intrinsics)
The intrinsics are essentially inline assembly-language instructions, in the form of
function calls, that have syntax familiar to high-level programmers using the C
language. The intrinsics provide explicit control of the PPU instructions without
directly managing registers and scheduling instructions, as assembly-language
programming requires. The compilers that come with the SDK package supports
these C-language extensions.

Two main types of PPU intrinsics discussed in the following sections.
 Chapter 4. Cell BE programming 79

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Scalar intrinsics
A minimal set of specific intrinsics to make the PPU instruction set accessible
from the C programming language. Except for __setflm, each of these intrinsics
has a one-to-one assembly language mapping, unless compiled for a 32-bit ABI
in which the high and low halves of a 64-bit doubleword are maintained in
separate registers.

The most useful intrinsics under this category are those related to shared
memory access and synchronization and those related to cache management.
Efficient use of those intrinsic may assist in improving the overall performance of
the application.

The section “PPE ordering instructions” on page 217 discusses some of the
more important the intrinsics that are related to the shared memory access and
synchronization, such as ‘sync’, ‘lwsync’, ‘eieio’, and ‘isync’.

In addition, some of those scalar instruction provide access to the PPE registers
and internal data structures which enables the programmer to use some of the
PPE facilities.

All those intrinsics are declared in the ppu_intrinsics.h header file that need to
be included in order to use those intrinsics. They may be either defined within this
header as macros or implemented internally within the compiler.

By default, a call to an intrinsic with an out-of-range literal is reported by the
compiler as an error. Compilers may provide an option to issue a warning for
out-of-range literal values and use only the specified number of least significant
bits for the out-of-range argument.

The intrinsics do not have a specific ordering unless otherwise noted. The
intrinsics can be optimized by the compiler and be scheduled like any other
instruction.

Additional information about PPU scalar intrinsics can be found in the following
resources:

� PPU Specific Intrinsics chapter of C/C++ Language Extensions for Cell BE
Architecture document - a list of the available intrinsics and their meaning.

� PPE instruction sets chapter of the Cell Broadband Engine Programming
Tutorial document - a useful table that summarize those intrinsics.

Vector data types intrinsics
A set of intrinsics is provided in order to supports the Vector/SIMD multimedia
extension (VMX) instructions. Those instructions follow the AltiVecTM standard.
80 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
The VMX model adds a set of fundamental data types, called vector types. The
vector registers are 128 bits and can contain either sixteen 8-bit values (signed
or unsigned), eight 16-bit values (signed or unsigned). four 32-bit values (signed
or unsigned) or four single-precision IEEE-754 floating-point values.

The vector instructions include a reach set of operations that may be performed
on those vectors, including arithmetic operations, rounding and conversion,
floating-point estimate intrinsics, compare intrinsics, logical intrinsics, rotate and
shift Intrinsics, load and store intrinsics, pack and unpack intrinsics and more.

Vector/SIMD Multimedia Extension data types and Vector/SIMD Multimedia
Extension intrinsics can be used in a seamless way throughout a C-language
program. The programmer do not need to setup, to enter a special mode. The
intrinsics may be either defined as macros within the system header file or
implemented internally within the compiler.

In order to use PPU’s Vector/SIMD intrinsics the programmer should:

� Include system header file altivec.h which define the those intrinsics.

� Set -qaltivec and -qenablevmx flags in case XLC compilation is used.

� Set -mabi=altivec and -maltivec flags in case GCC compilation is used.

Example 4-1 demonstrates a simple PPU code that initiates two unsigned integer
vectors and add them while putting the results into third similar vector.

Example 4-1 Simple PPU Vector/SIMD code

#include <stdio.h>
#include <altivec.h>

typedef union {
int i[4];
vector unsigned int v;

} vec_u;

int main()
{

vec_u a, b, d;

a.v = (vector unsigned int){1,2,3,4};
b.v = (vector unsigned int){5,6,7,8};

Source code: The code of Example 4-1 is included in the additional material
that is provided with this book. See “Simple PPU vector/SIMD code” on
page 612 for more information.
 Chapter 4. Cell BE programming 81

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
d.v = vec_add(a.v,b.v);

return 0;
}

Additional information about PPU vector data type intrinsics can be found in the
following resources:

� AltiVec Technology Programming Interface Manual - a detailed description of
VMX intrinsics.

� Vector Multimedia Extension Intrinsics chapter of C/C++ Language
Extensions for Cell BE Architecture document - a list of the available
intrinsics and their meaning.

� PPE instruction sets chapter of the Cell Broadband Engine Programming
Tutorial document - a useful table that summarize those intrinsics.

In most cases it is preferred to use the eight SPEs to perform the massive SIMD
operations and let the PPU program managing the application flow. For that
practical reason, we didn’t discuss the issue of PPU Vector/SIMD operations in
detail as we discuss the SPU SIMD instructions (see Chapter 4.6.4, “SIMD
programming” on page 253).

However, it may be useful in some application to add some SIMD computation on
the PPU. Another case when SIMD operation may take place on the PPU side is
when a programmer start the application development on the PPU and optimize
it to use SIMD instructions, and only later port the application to the SPU. We
don’t recommend to use this approach in most cases as it seems to consume
more development time.

One of the reason for the additional time is that despite the strong similarity
between the PPU’s Vector/SIMD instructions set and SPU instruction, those
instructions set are different. Most of the PPU Vector/SIMD instructions have
equivalent SPU SIMD instructions and vice versus but not all.

SDK also provides as set of header files that aim to minimize the effort when
porting PPU program to the SPU and vice versus.

� vmx2spu.h - macros and inline functions to map PPU Vector/SIMD intrinsics to
generic SPU intrinsics.

� spu2vmx.h - macros and inline functions to map generic SPU intrinsics to PPU
Vector/SIMD intrinsics.
82 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� vec_types.h - a SPU header file which defines a set of single token vector
data types that are available on both the PPU and SPU. The SDK3.0 provides
both GCC and XLC versions of this header file.

In case the programmer would like to read more about this issue we recommend
to read SPU and PPU Vector Multimedia Extension Intrinsics chapter and
Header Files chapter in C/C++ Language Extensions for Cell BE Architecture
document.

While the Vector/SIMD intrinsics contains various basic mathematical functions
that are implemented by corresponding SIMD assembly instructions, more
complex mathematical functions are not supported by those intrinsics. The
SIMDmath library is provided in the SDK and address this issue by providing a
set of functions that extend the SIMD intrinsics and support additional common
mathematical functions. Similar to SIMD intrinsics, the library operates on short
128 bits vectors from different types.

The SIMDmath library is supported both by SPU and the PPU. The SPU version
of this library is discussed in Chapter , “SIMDmath library” on page 257. The
PPU version is similar, but the location of the library files are different:

� simdmath.h file is located in the /usr/spu/include directory

� inline headers are located in the /usr/spu/include/simdmath directory

� the library libsimdmath.a is located in the /usr/spu/lib directory.

4.1.2 Task parallelism and managing SPE threads

Programs running on the Cell BE typically partition the work among the eight
available SPE as each SPE is assigned with a different task and data to work on.
We suggest several programming models how to partition the work between the
SPEs in Chapter 3.3, “Which parallel programming model ?” on page 51.

However, regardless the programming model, the main thread of the program is
executed on the PPE which create sub-threads that run on the SPEs and off-load
some function of the main program (to be run on the SPEs). It depends on the
programming model how later the threads and tasks are managed, how the data
is transferred and how the different processors communicate.

Managing the code running on the SPEs on a Cell BE based system can be
done using the libspe library (SPE runtime management library) that is part of the
SDK package. This library provides standardized low-level application
programming interface (API) that enables application access the SPEs and run
some of the program threads on those SPEs.
 Chapter 4. Cell BE programming 83

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
In general, applications running on the Cell BE do not have control over the
physical SPE system resources as the operating system manages these
resources. Instead, applications manage and use software constructs called SPE
contexts. These SPE contexts are a logical representation of an SPE and holds
all persistent information about a logical SPE. The libspe library operates on
those contexts to manage the SPEs but the programmer should not access those
objects directly.

The operating system schedules SPE contexts from all running applications onto
the physical SPE resources in the system for execution according to the
scheduling priorities and policies associated with the runable SPE contexts.

The programer is advised to run the SPE contexts on separate Linux thread
which enables the operating system to actually run them parallel compare to the
PPE threads and parallel compare to other SPEs.

SPE Runtime Management library document contains a detailed description of
the API for managing the SPE threads. The library also implements API which
provides the means for communication and data transfer between PPE threads
and SPEs. For more information see 4.3, “Data transfer” on page 109 and 4.4,
“Inter-processor communication” on page 174.

When creating SPE thread, similar to Linux’s threads, the PPE program may
pass up to three parameters to this function. The parameters may be either 64
bits parameters or 128 bits vectors. Those parameter may be later used by the
code running on the SPE. One common use is to place in those parameters an
effective address of a control block that may be larger and contains additional
information. The SPE can use this address to fetch this control block into its local
store memory.

There are two main methods to load SPE programs:

1. Static loading of SPE object: statically compile the SPE object within the PPE
program. At run time, the object is can be accessed as an external pointer
that can be used by the programer to load the program into the local store.
The loading itself is implemented internally by the library API using DMA.

2. Dynamic loading of SPE executable: compile the SPE as stand alone
application. At run time open the executable file, map it into the main memory

Note: Re-scheduling SPE and performing the context switching usually
requires a fair amount of time as it required to store most of the 256 KB of the
local store in memory and reload it with the code and data of the new thread. It
is therefore recommended that application will not allow to do so by not
allocating more SPE threads then the number of physical SPEs that are
currently available (8 for a single Cell BE, 16 for QS20 or QS21 blade).
84 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
and then load it into the SPE’s local store. This method is more flexible as it
allow to decide on run time which program to load (e.g. depends on run time
parameters). Using this method saves linking the SPE program with the PPE
program at the cost of lost encapsulation such that the program is now a set
of files, not just a single executable

The following sections provides more information about the following subjects:

� “Running a single SPE program” on page 85 describe how to run code on a
single SPE using static loading of SPE object.

� “Producing a multi-threaded program using the SPEs” on page 89 describes
how to run code on multiple SPEs concurrently using dynamic loading of SPE
executable.

Running a single SPE program
This chapter describes how the user may run code on a single SPE. In this
example no Linux’s threads are used, so the PPE program blocks until the SPE
stops executing and the operating system returns from the system call that
invoked the SPE execution.

Example 4-2 covers the following topics for the PPU code, ordered according to
the same steps as executed in the code:

1. Initiate a control structure to point to input and output data buffers and initiate
SPU executable’s parameter to point to this structure (step 1in the code).

2. Create the SPE context using spe_context_create function.

3. Statically load the SPE object into the SPE context local store using
spe_program_load function.

4. Run the SPE context using spe_context_run function.

5. Optionally print the reason why the SPE stopped (obviously end of its main
function with return code 0 is the preferred one).

6. Destroy the SPE context using spe_context_destroy function.

The example covers the following topics for the SPU code:

� Use the parameters that the PPU code initiate in order to get the address a
control block, and get the control block from main storage to local store.

Example 4-3 on page 86 show the PPU code, Example 4-4 on page 88 shows
the SPU code while Example 4-2 on page 86 shows the common header file.

Please note that the libspe2.h header file should be included in order to run the
SPE program.
 Chapter 4. Cell BE programming 85

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 4-2 Running a single SPE - shared header file

// ==
// common.h file
// ==
#ifndef _COMMON_H_
#define _COMMON_H_

#define BUFF_SIZE 256

// the context that PPE forward to SPE
typedef struct{

uint64_t ea_in; // effective address of input buffer
uint64_t ea_out; // effective address of output buffer

} parm_context; // aligned to 16B

#endif // _COMMON_H_

Example 4-3 Running a single SPE - PPU code

#include <libspe2.h>

#include "common.h"

spe_program_handle_t spu_main; // a pointer to SPE object
spe_context_ptr_t spe_ctx; // SPE context

// data structures to work with the SPE
//==
volatile parm_context ctx __attribute__ ((aligned(16)));
volatile char in_data[BUFF_SIZE] __attribute__ ((aligned(128)));
volatile char out_data[BUFF_SIZE] __attribute__ ((aligned(128)));

// function for printing the reason for SPE thread to stop
// ===
void print_stop_reason(spe_stop_info_t *stop_info){

Source code: The code in Example 4-2, Example 4-3, and Example 4-4 is
included in the additional material that is provided with this book. See
“Running a single SPE” on page 612 for more information.
86 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// result is a union that holds the SPE output result
int result=stop_info->result.spe_exit_code;

 switch (stop_info->stop_reason) {
 case SPE_EXIT:
 printf(")PPE: SPE stop_reason=SPE_EXIT, exit_code=");
 break;
 case SPE_STOP_AND_SIGNAL:
 printf(")PPE: SPE stop_reason=SPE_STOP_AND_SIGNAL,
signal_code=");
 break;
 case SPE_RUNTIME_ERROR:
 printf(")PPE: SPE stop_reason=SPE_RUNTIME_ERROR,
runtime_error=");
 break;
 case SPE_RUNTIME_EXCEPTION:
 printf(")PPE: SPE stop_reason=SPE_RUNTIME_EXCEPTION,
runtime_exception=");
 break;
 case SPE_RUNTIME_FATAL:
 printf(")PPE: SPE stop_reason=SPE_RUNTIME_FATAL,
runtime_fatal=");
 break;
 case SPE_CALLBACK_ERROR:
 printf(")PPE: SPE stop_reason=SPE_CALLBACK_ERROR
callback_error=");
 break;
 default:
 printf(")PPE: SPE stop_reason=UNKNOWN, result=\n");
 break;
 }
 printf("%d, status=%d\n",result,stop_info->spu_status);
}

// main
//==
int main()
{
 spe_stop_info_t stop_info;

uint32_t entry = SPE_DEFAULT_ENTRY;

// STEP 1: initiate SPE control structure
ctx.ea_in = (uint64_t)in_data;
ctx.ea_out = (uint64_t)out_data;
 Chapter 4. Cell BE programming 87

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
// STEP 2: create SPE context
if ((spe_ctx = spe_context_create (0, NULL)) == NULL){

perror("Failed creating context"); exit(1);
}

// STEP 3: Load SPE object into SPE context local store
// (SPU’s executable file name is ‘spu_main’.
if (spe_program_load(spe_ctx, &spu_main)) {

perror("Failed loading program"); exit(1);
}

 // STEP 4: Run the SPE context (see ‘spu_pthread’ function above
 // Note: this a synchronous call to the operating system
 // which blocks until the SPE stops executing and the
 // operating system returns from the system call that
 // invoked the SPE execution.
 if(spe_context_run(spe_ctx,&entry,0,(void*)&ctx,NULL,&stop_info)<0){

perror ("Failed running context"); exit (1);
}

// STEP 5: Optionally print the SPE thread stop reason
print_stop_reason(&stop_info);

// STEP 6: destroy the SPE context
if (spe_context_destroy(spe_ctx)) {

perror("Failed spe_context_destroy"); exit(1);
}
return (0);

}

Example 4-4 Running a single SPE - SPU code

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

#include "common.h"

static parm_context ctx __attribute__ ((aligned (128)));

volatile char in_data[BUFF_SIZE] __attribute__ ((aligned(128)));
volatile char out_data[BUFF_SIZE] __attribute__ ((aligned(128)));

int main(int speid , uint64_t argp)
88 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
{

uint32_t tag_id;

//STEP 1: reserve tag IDs
if((tag_id=mfc_tag_reserve())==MFC_TAG_INVALID){ // allocate tag

printf("SPE: ERROR - can't reserve a tag ID\n"); return 1;
}

//STEP 2: get context information from system memory.
mfc_get((void*) &ctx, argp, sizeof(ctx), tag_id, 0, 0);
mfc_write_tag_mask(1<<tag_id);
mfc_read_tag_status_all();

//STEP 3: get input buffer, process it, and put results in output
// buffer

//STEP 4: release tag IDs
mfc_tag_release(tag_id); // release tag ID before exiting
return 0;

}

Producing a multi-threaded program using the SPEs
In order to get the best performance out of an application running on Cell BE, it is
usually recommended to use multiple SPEs concurrently. In this case, the
application must create at least as many threads as concurrent SPE contexts are
required. Each of these threads may run a single SPE context at a time. If N
concurrent SPE contexts are needed, it is common to have a main application
thread plus N threads dedicated to SPE context execution

This chapter describes how the user may run code on a multiple SPEs
concurrent using Linux’s threads. We use a specific scheme which is the most
common one for Cell BE programming, but depending on the specific application
the programmer may use any other scheme.

The code example in this chapter execute two SPE threads and covers the
following topics:

� Initiate SPEs control structures.

� Dynamically loading of SPE executable into several SPEs:

– Create SPE contexts.

– Open images of SPE programs and map them into main storage.

– Load SPEs objects into SPE context local store
 Chapter 4. Cell BE programming 89

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� Initiate Linux’s thread and run the SPE executable concurrently on those
threads. The PPU forward parameters the SPU programs.

Example 4-5 on page 90 show the PPU code, Example 4-6 on page 92 shows
the SPU code. The common header file is the same as in Chapter , “Running a
single SPE program” on page 85 and shown in Example 4-2 on page 86.

Please note that the libspe2.h header file should be included in order to run the
SPE programs, and also pthread.h should be included to use Linux’s threads.

Example 4-5 Running multiple SPEs concurrently - PPU code

// ppu_main.c file ==
#include <libspe2.h>
#include <cbe_mfc.h>
#include <pthread.h>

#include "common.h"

#define NUM_SPES 2

// input and output data buffers
volatile char in_data[BUFF_SIZE] __attribute__ ((aligned(128)));
volatile char out_data[BUFF_SIZE] __attribute__ ((aligned(128)));

// Data structures to work with the SPE
volatile parm_context ctx[NUM_SPES] __attribute__ ((aligned(16)));
spe_program_handle_t *program[BUFF_SIZE];

// data structure for running SPE thread ==============================
typedef struct spu_data {
 spe_context_ptr_t spe_ctx;
 pthread_t pthread;
 void *argp;
} spu_data_t;

spu_data_t data[NUM_SPES];

// create and run one SPE thread ======================================
void *spu_pthread(void *arg) {

Source code: The code of Example 4-5 and Example 4-6 is included in the
additional material that is provided with this book. See “Running multiple SPEs
concurrently” on page 613 for more information.
90 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
spu_data_t *datp = (spu_data_t *)arg;
uint32_t entry = SPE_DEFAULT_ENTRY;

if(spe_context_run(datp->spe_ctx,&entry,0,datp->argp,NULL,NULL)<0){
perror ("Failed running context"); exit (1);

}

pthread_exit(NULL);
}

// main ===
int main()
{

int num;

// names of the two SPU executable file names
char spe_names[2][20] = {"spu1/spu_main1","spu2/spu_main2"};

// STEP 1: initiate SPEs control structures
for(num=0; num<NUM_SPES; num++){

ctx[num].ea_in = (uint64_t)in_data + num*(BUFF_SIZE/NUM_SPES);
ctx[num].ea_out= (uint64_t)out_data + num*(BUFF_SIZE/NUM_SPES);
data[num].argp = &ctx;

}

// Loop on all SPEs and for each perform two steps:
// STEP 2: create SPE context
// STEP 3: open images of SPE programs into main storage
// ‘spe_names’ variable store the executable name
// STEP 4: Load SPEs objects into SPE context local store
for(num=0; num<NUM_SPES; num++){

if ((data[num].spe_ctx = spe_context_create (0, NULL)) == NULL) {
perror("Failed creating context"); exit(1);

}
if (!(program[num] = spe_image_open(&spe_names[num][0]))) {

perror("Fail opening image"); exit(1);
}
if (spe_program_load (data[num].spe_ctx, program[num])) {

perror("Failed loading program"); exit(1);
}

}

// STEP 5: create SPE pthreads
for(num=0; num<NUM_SPES; num++){
 Chapter 4. Cell BE programming 91

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
if(pthread_create(&data[num].pthread,NULL,&spu_pthread,
&data[num])){
perror("Failed creating thread"); exit(1);

}
}

// Loop on all SPEs and for each perform two steps:
// STEP 6: wait for all the SPE pthread to complete
// STEP 7: destroy the SPE contexts
for(num=0; num<NUM_SPES; num++){

if (pthread_join (data[num].pthread, NULL)) {
perror("Failed joining thread"); exit (1);

}

if (spe_context_destroy(data[num].spe_ctx)) {
perror("Failed spe_context_destroy"); exit(1);

}
}
printf(")PPE:) Complete running all super-fast SPEs\n");
return (0);

}

Example 4-6 Running multiple SPEs concurrently - SPU code version 1

// spu_main1.c file ==
#include <spu_intrinsics.h>
#include <spu_mfcio.h>
#include "common.h"

static parm_context ctx __attribute__ ((aligned (128)));

volatile char in_data[BUFF_SIZE] __attribute__ ((aligned(128)));
volatile char out_data[BUFF_SIZE] __attribute__ ((aligned(128)));

int main(int speid , uint64_t argp)
{

uint32_t tag_id;

if((tag_id=mfc_tag_reserve())==MFC_TAG_INVALID){ // allocate tag
printf("SPE: ERROR - can't reserve a tag ID\n"); return 1;

}

92 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// get context information from system memory.
mfc_get((void*) &ctx, argp, sizeof(ctx), tag_id, 0, 0);
mfc_write_tag_mask(1<<tag_id);
mfc_read_tag_status_all();

printf("<SPE: Harel Rauch joyfully sleeps on the coach\n");

// get input, process it using method A, and put results in output

mfc_tag_release(tag_id); // release tag ID before exiting
return 0;

}

Example 4-7 Running multiple SPEs concurrently - SPU code version 2

// spu_main2.c file ==

// same variables and include as Example 4-6 on page 92

int main(int speid , uint64_t argp)
{

// same prefix as Example 4-4 on page 88

printf("<SPE: Addie Dvir would like to fly here.\n");
// get input, process it using method A, and put results in output

mfc_tag_release(tag_id); // release tag ID before exiting
return 0;

}

4.1.3 Creating SPEs affinity using gang

The libspe library enables the programmer to create gang, which is group of SPE
contexts which should be executed together with certain properties. The
mechanism enables to create SPE to SPE affinity, which means allowing a
certain SPE context to be created and placed next to another previously created
SPE context (affinity is always is always specified for pairs).

The SPEs scheduler, which is responsible to map the SPE logical context to
physical SPE, honors this relationship by trying schedule the SPE contexts on
physically adjacent SPUs. It depends on the current status of the system if he will
be able to do so. If the PPE program tries to create such affinity when there are
 Chapter 4. Cell BE programming 93

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
no other code running on the SPEs (in this program or other program) there is no
reason the schedule will not succeed doing so.

Using the SPE to SPE affinity can create performance advantages in some
cases. The performance gain is based mainly on the following characteristics of
the Cell BE architecture and systems:

1. On a Cell BE based SMP system, such as a Bladecenter QS21,
communication between SPEs which are located on the same Cell BE are
more efficient than data transfer between SPEs that are located on different
Cell BE chips. This includes both data transfer (e.g. LS to LS) and other types
of communication (e.g. mailbox and signals).

2. Similarly to #1 above, but on the same chip, communication between SPEs
which are adjacent on the local EIB bus is more efficient then between SPEs
which are not adjacent.

Given those characteristics, in case massive SPE to SPE communication is use
it is recommended to physically locate specific SPEs next to each other.

Example 4-8 show a PPU code that creates such chain of SPEs. This example is
inspired by the SDK code example named dmabench that is located in
/opt/cell/sdk/src/benchmarks/dma directory.

Example 4-8 PPU code for creating SPE physical chain using affinity

// take include files, ‘spu_data_t’ structure and the ‘spu_pthread’
// function from Example 4-5 on page 90

spe_gang_context_ptr_t gang;
spe_context_ptr_t ctx[NUM_SPES];

int main()

Note: This example aims only to demonstrate how to create a chain of SPEs
which are physically located one next to the other. SPEs pipeline which is
based on this structure (e.g. each SPE execute DMA trasnfers from the local
store of the previous SPE on the chain) will NOT provide the optimal results
since only half of the EIB rings will be used (so half of the bandwidth is lost).
On the other hand, once the physical location of the SPEs is known (using the
affinity methods) the programer may use this information to locate the SPEs
elsewhere on the SPE pipeline.
The article “Cell Broadband Engine Architecture and its first implementation -
A performance view” provides information on the bandwidth that was
measured for some SPE-to-SPE DMA transfers, which may be useful when
deciding how to locate the SPEs related to each other on a given algorithm.
94 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
{
int i;

gang = NULL;

// create a gang
if ((gang = spe_gang_context_create(0))==NULL) {

perror("Failed spe_gang_context_create"); exit(1);
}

// create SPE contexts as part of the gang which preserve affinity
// between each SPE pair.
// SPEs’ affinity is based on a chain architecture such as SPE[i]
// and SPE[i+1] are physically adjacent.
for (i=0; i<NUM_SPES; i++) {

ctx[i]=spe_context_create_affinity(0,(i==0)?NULL:ctx[i-1],gang));

if(ctx[i]==NULL){
perror("Failed spe_context_create_affinity"); exit(1);

}

// ... Omitted section:
// creates SPE contexts, load the program to the local stores,
// run the SPE threads, and waits for SPE threads to complete.

// (the entire source code for this example is comes with the book’s
// additional material).

// See also section 4.1.2, “Task parallelism and managing SPE
threads”
}

4.2 Storage domains, channels and MMIO interfaces

This chapter describe the main storage domains of the Cell BE architecture. Cell
BE has a unique memory architecture and understanding the those domains is a
key issue in order to know how to program Cell BE application and how the data
may be partitioned and transferred in such application. The storage domain is
discussed in the first chapter - “Storage domains”.

MFC is a hardware component that implements most of the Cell BE’s
inter-processor communication mechanism including the most significant means
 Chapter 4. Cell BE programming 95

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
to initiate data transfer - DMA data transfers. While located in each of the SPEs,
the MFCs interfaces may be accessed by both program running on a SPU or a
program running on the PPU. The MFC is discussed in the next three chapters:

� “MFC channels and MMIO interfaces and queues” on page 98 discuss the
main features of the MFC and the two main interfaces is has with the
programs (channels interface and MMIO interface).

� “SPU programming methods to access MFC’s channel interface” discuss the
programming methods for accessing the MFC interfaces and initiate its
mechanisms from a SPU program.

� “PPU programming methods to access MFC’s MMIO interface” discuss the
programming methods for accessing the MFC interfaces and initiate its
mechanisms from a PPU program.

While this chapter discussed the MFC interfaces and programming methods to
program it, using the MFC mechanisms is described in other chapters:

� DMA data transfers and synchronization of data transfers is discussed in
Chapter 4.3, “Data transfer” on page 109

� Communication mechanism between the different processors (PPE, SPEs)
such as mailbox, signals and events, are discussed in Chapter 4.4,
“Inter-processor communication” on page 174

4.2.1 Storage domains

Cell BE architecture defines three types of storage domains are defined in the
Cell BE chip: one main-storage domain, eight SPE LS domains, and eight SPE
channel domains. Figure 4-1 illustrates the storage domains and interfaces in
Cell BE.
96 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Figure 4-1 Cell BE storage domains and interfaces

The main-storage domain, which is the entire effective-address space, can be
configured by the PPE operating system to be shared by all processors in the
system. On the other hand, the local-storage and channel problem-state
(user-state) domains are private to the SPE components. The main components
in each SPE are the SPU, the LS and the Memory Flow controller (MFC) which
handles the DMA data transfer.
 Chapter 4. Cell BE programming 97

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
An SPE program references its own LS using a Local Store Address (LSA). The
LS of each SPE is also assigned a Real Address (RA) range within the system's
memory map. This allows privileged software on the PPE to map LS areas into
the Effective Address (EA) space, where the PPE, other SPEs, and other devices
that generate EAs can access the LS like any regular component on the main
storage.

A code that runs on an SPU can only fetch instructions from its own LS, and
loads and stores can only access that LS.

Data transfers between the SPE's LS and main storage are primarily executed
using DMA transfers controlled by the MFC DMA controller for that SPE. Each
SPE's MFC serves as a data-transfer engine. DMA transfer requests contain
both an LSA and an EA. Thus, they can address both an SPE's LS and main
storage and thereby initiate DMA transfers between the domains. The MFC
accomplishes this by maintaining and processing an MFC command queue.

The fact that the local stores may be mapped to the main storage, allows SPEs to
use DMA operations to directly transfer data between their LS to another SPE’s
LS. This mode of data transfer is very efficient, because the DMA transfers go
directly from SPE to SPE on the high performance local bus without involving the
system memory.

4.2.2 MFC channels and MMIO interfaces and queues

Each MFC have two main interfaces though which MFC commands may be
initiated:

1. Channels interface - SPU can use this interface to interact with the associated
MFC by executing a series of writes or reads to the various channels which in
response enqueue MFC commands.
Since accessing the channel remains local within a certain SPE it have low
latency (for non blocking commands about 6 cycles if channel is not full) and
also doesn’t have any negative influence EIB bandwidth.

2. MMIO interface - PPE or other SPUs can use this interface to interact with
any MFC by accessing the MFC’s Command-Parameter Registers. Those
registers can be mapped to the system's real-address space so the PPE or
SPUs may access them by executing MMIO reads and writes to the
corresponding effective address.

Note: In this document we use the term main storage to describe any
component that have an effective address mapping on the main storage
domain.
98 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
For detailed description of the Channels and MMIO interfaces see SPE Channel
and Related MMIO Interface chapter in Cell Broadband Engine Programming
Handbook.

Accessing those two interfaces insert commands into one of the two MFC
independent command queues:

� Channels interface is associated with MFC SPU command queue

� MMIO interface is associated with MFC Proxy command queue.

Regarding the channels interface, each channel may be defined as either
blocking or non-blocking. When SPE reads or writes a non-blocking channel, the
operation executes without delay. However, when SPE software reads or writes a
blocking channel, the SPE might stall for an arbitrary length if the associated
channel count (which is its remaining capacity) is ‘0’. In this case, the SPE will
remain stalled until the channel count becomes ‘1’ or more.

The stalling mechanism reduces SPE software complexity and also allows an
SPE to minimize the power consumed by message based synchronization. To
avoid stalling on access to a blocking channel, SPE software can read the
channel count to determine the available channel capacity. In addition, many of
the channels have a corresponding and independent event that can be enabled
to cause an asynchronous interrupt.

Accessing the MMIO interface on the other hand is always non-blocking. If a PPE
(or other SPE) write a command while the queue is full then the last entry in the
queue is override with no indication to the software. Therefore, the PPE (or other
SPE) should first verify if there is available space in the queue by reading the
queue status register and only if it is not full - write a command to it. The
programer should be aware that waiting for available space by continuously
reading this register in a loop have negative affect on the performance of the
entire chip as it involve transactions on the local EIB bus.
Similarly, reading from a MMIO register when a queue is empty returns an invalid
data. Therefore, the PPE (or other SPE) should first read the corresponding
status register and only if there is a valid entry (queue is not empty) the MMIO
register itself should be read.

Table 4-1 summarizes the main attributes of MFC’s two main interfaces.
 Chapter 4. Cell BE programming 99

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Table 4-1 MFC interfaces

4.2.3 SPU programming methods to access MFC’s channel interface

Software running on a SPU may access the MFC facilities through the channel
interface. This chapter discuss the four main programing methods to access this
interface, as listed from the most abstract to the most low level one:

1. MFC functions

2. Composite intrinsics

3. Low level intrinsics

4. Assembly-language instructions

In this chapter we illustrate the differences between the four methods using
issuing of a DMA ‘get’ command which moves data from some component on
main storage to local storage. This is done only for demonstration and similar
implementation may be performed for using each of the other MFC facilities

Interface Queue Initiator Blocking Full Description

Channels MFC SPU
Command
Queue

Local
SPU

blocking
or non
blocking

wait till
queue
has
available
entry

For MFC
commands sent
from the SPU
through the channel
interface.

MMIO MFC
Proxy
Command
Queue

PPE or
other
SPEs

always
non
blocking

overwrite
last entry

For MFC
commands sent
from the PPE, other
SPUs, or other
devices
through the MMIO
registers.

Note: The simplest way programming point of view to access the DMA
mechanism is through the first option - the MFC functions. Therefore. most of
the examples in this document, besides the examples in this chapter, are
written using MFC functions. However, from performance point of view, using
the MFC functions will not always provide the best results, especially when
invoked from a PPE program.

Many code examples in the SDK package also uses this method. However,
the examples in the SDK documentation rely mostly on the next two methods -
composite intrinsics and low level intrinsics. Many such examples are
available in Cell Broadband Engine Programming Tutorial document.
100 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
(mailboxes, signals, events, etc.). In case the reader is not familiar with the MFC
DMA commands, it may first go over the chapter the discuss this issue, “Data
transfer” on page 109, before continuing with current chapter.

There are some parameters that are common to all DMA transfer commands.
Those parameters are described in Table 4-2:

Table 4-2 DMA transfer parameters

For all alternatives, we assume that the DMA transfer parameters, described in
Table 4-2, are defined previously to executing the DMA command.

The following sections describe the four major methods to access MFC facilities.

MFC functions
MFC functions are a set of convenience functions, each perform a single DMA
command (e.g. get, put, barrier). The functions are implemented either as
macros or as built-in functions within the compiler, causing the compiler to map
each of those functions to a certain composite intrinsic (similar to those
discussed in chapter “Composite intrinsics”) with the corresponding operands.

A list and a brief description of all the available MFC functions is in Table 4-3 on
page 112. For a more detailed description see Programming Support for MFC
Input and Output chapter in C/C++ Language Extensions for Cell BE Architecture
document.

To use those intrinsics the programmer must include spu_mfcio.h header file.

Name Type Description

lsa void* local-storage address

� ea
or
� eah
� eal

� uint64_t
or
� uint32_t
� uint32_t

� effective address in main storage a.
or
� effective addr. higher bits in main storageb.
� effective addr. lower bits in main storagemult_.

a. Used for MFC functions only.
b. Used for methods other than MFC functions.

size uint32_t DMA transfer size in bytes

tag uint32_t DMA group tag ID.

tid uint32_t Transfer class identifiera.

rid uint32_t Replacementa.
 Chapter 4. Cell BE programming 101

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 4-9 illustrates initiating of a single ‘get’ command using MFC functions.

Example 4-9 SPU MFC function ‘get’ example

#include “spu_mfcio.h“

mfc_get(lsa, ea, size, tag, tid, rid);

// Implemented as the following composite intrinsic:
// spu_mfcdma64(lsa, mfc_ea2h(ea), mfc_ea2l(ea), size, tag,
// ((tid<<24)|(rid<<16)|MFC_GET_CMD));

// wait until DMA transfer is complete (or do other things before that)

Composite intrinsics
The SDK3.0 defines a small number of composite intrinsics to handle DMA
commands. Each composite intrinsics handles one DMA commands and is
actually constructed from a series of low-level intrinsics (similar to those
discussed in chapter “Low level intrinsics”). These intrinsics are further described
in Composite Intrinsics chapter in C/C++ Language Extensions for Cell BE
Architecture document, and also in Cell Broadband Engine Architecture
document.

To use those intrinsics the programmer must include spu_intrinsics.h header
file.

In addition, the header file spu_mfcio.h includes some useful predefined values
of the DMA commands (e.g. MFC_GET_CMD in the example below). The
programmer may include this file and use those predefined values instead of
explicitly writing the corresponding value.

Example 4-10 illustrates the initiating of a single ‘get’ command using composite
intrinsics.

Example 4-10 SPU composite intrinsics ‘get’ example

#include <spu_intrinsics.h>
#include “spu_mfcio.h“

spu_mfcdma64(lsa, eah, eal, size, tag, MFC_GET_CMD);

// Implemented using the six low level intrinstics in Example 4-11

// MFC_GET_CMD is defined as 0x0040 in spu_mfcio.h
102 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Low level intrinsics
A series of few low level intrinsics (means generic or specific intrinsics) should be
executed in order to executed a single DMA transfer. Each intrinsics is mapped to
a single assembly instruction.
The relevant low level intrinsic are described in Channel Control Intrinsics
chapter in C/C++ Language Extensions for Cell BE Architecture document.

To use those intrinsics the programmer must include spu_intrinsics.h header
file.

Example 4-11 illustrates the initiating of a single ‘get’ command using low level
intrinsics.

Example 4-11 SPU low level intrinsics ‘get’ example

spu_writech(MFC_LSA, lsa);
spu_writech(MFC_EAH, eah);
spu_writech(MFC_EAL, eal);
spu_writech(MFC_Size, size);
spu_writech(MFC_TagID, tag);
spu_writech(MFC_CMD, 0x0040);

Assembly-language instructions
Assembly-language instructions are similar to low level intrinsics (intrinsics are a
series of ABI-compliant assembly language instructions executed for a single
DMA transfer). Each of the low level intrinsics represents one assembly
instruction). From practical point of view, the only case where we can
recommend using this method instead the low level intrinsics is when the
program is written in assembly.

Example 4-12 illustrates the initiating of a single ‘get’ command using
assembly-language instructions.

Example 4-12 SPU assembly-language instructions ‘get’ example

.text

.global dma_transfer
dma_transfer:

wrch$MFC_LSA, $3
wrch$MFC_EAH, $4
wrch $MFC_EAL, $5
wrch $MFC_Size, $6
wrch $MFC_TagID, $7
 Chapter 4. Cell BE programming 103

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
wrch $MFC_Cmd, $8
bi $0

4.2.4 PPU programming methods to access MFC’s MMIO interface

Software running on a PPU may access the MFC facilities through the MMIO
interface. There are two main methods to access this interface and this chapter
discuss those methods. The two main methods, listed from the most abstract to
the most low level one, are:

1. MFC functions

2. Direct problem state access (or Direct SPE access)

Unlike the SPU case when using the channel interface, in the PPU case it is not
always recommended to use the MFC functions. The list below summarizes the
main differences between the two methods and when is recommended to use
either of them:

1. MFC functions are simpler from programming point of view and therefore
using this method may reduce development time and make the code more
readable.

2. Direct problem state access enables the programmer more flexibility and
therefore when non standard mechanism should be implemented.

3. Direct problem state access have significant better performance in many
cases (e.g. writing the inbound mailbox). Two of the reasons for the reduce
performance for the MFC functions is the call overhead and also the mutex
locking associated with the library functions being thread safe.
It is therefore recommended in cases where the performance (e.g. latency) of
the PPE access to the MFC is important to use the direct SPE access.

Most of the examples in this document as well as many code examples in the
SDK package use the MFC functions method. However, the examples in the SDK
documentation relay mostly on the second method - direct SPE access. Many
such examples are available in Cell Broadband Engine Programming Tutorial.

In this chapter we are illustrating the differences between the two methods using
the DMA ‘get’ command to move data from some component on main storage to
local storage. This is done only for demonstration and similar implementation

Note: If the performance (e.g. latency) of the PPE access to the MFC is
important it is recommended to use the direct SPE access which may have
significant better performance over the MFC functions. For more consideration
on deciding the preferred method - see the three items above.
104 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
may be performed for using each of the other MFC facilities (mailboxes, signals,
events, etc.). We used the same parameters that are defined in Table 4-2 on
page 101, but additional parameter is added in the PPU case:

� spe_context_ptr_t spe_ctx : a pointer to the context of the relevant SPE.
This context is created when the SPE thread is created.

The following sections describe the two main methods for a PPE to access MFC
facilities.

MFC functions
MFC functions are a set of convenience functions. Each implements a single
DMA command (e.g. get, put, barrier). A list and brief description of all the
available functions is in Table 4-3 on page 112. For a more detailed description
see SPE MFC problem state facilities chapter in SPE Runtime Management
library document.

The implementation of the MFC functions for the PPE, unlike the SPE
implementation, usually involves accessing the operating system kernel which
add a non negligible number of cycles and increase the latency of hose
functions.

To use those intrinsics the programmer must include libspe2.h header file.

Example 4-13 illustrates the initiating of a single ‘get’ command using MFC
functions.

Example 4-13 PPU MFC functions ‘get’ example

#include “libspe2.h“

spe_mfcio_get (spe_ctx, lsa, ea, size, tag, tid, rid);

// wait till data was transfered to LS, or do other things...

Direct problem state access
The second option for PPE software to access the MFC facilities, is explicitly
interact with the relevant MMIO interface of the relevant SPE. In order to do so,
the software should perform the following steps:

1. Map corresponding the problem state area of the relevant SPE to the PPE
thread address space. The programmer can do so using spe_ps_area_get
function in the libspe library (include libspe2.h file to use this function).

2. Once the corresponding problem state area is mapped, the programer can
access it using one of the following methods:
 Chapter 4. Cell BE programming 105

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
– Use one of the inline functions for direct problem state access that are
defined in the cbe_mfc.h header file. This header file makes using direct
problem state as easy as using the libspe functions. For example, the
function _spe_sig_notify_1_read reads the SPU_Sig_Notify_1 register,
function _spe_out_mbox_read reads a value from the SPU_Out_Mbox
mailbox register, and _spe_mfc_dma function enqueues a DMA request.

– Use direct memory load or store instruction to access the relevant MMIO
registers. The easiest way to do so is using enum and structs that describe
the problem state areas and the offset of the MMIO registers. Thosestructs
and enum are defined in libspe2_types.h and cbea_map.h header files
(see Example 4-15 on page 107) but in order to use them the programer
should simply include only libspe2.h file.

Please notice that once the problem state area is mapped, directly accessing this
area by the application doesn’t involve the kernel and therefore has a smaller
latency then the corresponding MFC function.

Example 4-14 shows the PPU code for mapping SPE problem state to the thread
address space and initiating a single ‘get’ command using direct SPE access.

Example 4-14 PPU dIrect SPE access ‘get’ example

#include <libspe2.h>
#include <cbe_mfc.h>
#include <pthread.h>

spe_context_ptr_t spe_ctx;
uint32_t lsa, eah, eal, tag, size, ret, status;
volatile spe_mfc_command_area_t* mfc_cmd;
volatile char data[BUFF_SIZE] __attribute__ ((aligned (128)));

// create SPE context: must set SPE_MAP_PS flag to access problem state
spe_ctx = spe_context_create (SPE_MAP_PS, NULL);

Note: PPE programer must set the SPE_MAP_PS flag when creating the SPE
context (in spe_context_create function) of the SPE whose problem state
area the programmer later try to map (using spe_ps_area_get function). See
Example 4-14.

Source code: The code of Example 4-14 is included in the additional material
that is provided with this book. See “Simple PPU vector/SIMD code” on
page 612 for more information.
106 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// - open an SPE executable and map using ‘spe_image_open’ function
// - load SPU program into LS using ‘spe_program_load’ function
// - create SPE pthread using ‘pthread_create’ function

// map SPE problem state using spe_ps_area_get
if ((mfc_cmd = spe_ps_area_get(data.spe_ctx, SPE_MFC_COMMAND_AREA)) ==

NULL) {
perror ("Failed mapping MFC command area"); exit (1);

}

// lsa = LS space address that SPU code provide
// eal = ((uintptr_t)&data) & 0xffffffff;
// eah = ((uint64_t)(uintptr_t)&data)>>32;
// tag = number from 0 to 15 (as 16-31 are used by the kernel)
// size=

while((mfc_cmd->MFC_QStatus & 0x0000FFFF) == 0);

do{
mfc_cmd->MFC_LSA = lsa;
mfc_cmd->MFC_EAH = eah;
mfc_cmd->MFC_EAL = eal;
mfc_cmd->MFC_Size_Tag = (size<<16) | tag;
mfc_cmd->MFC_ClassID_CMD = MFC_PUT_CMD;

ret = mfc_cmd->MFC_CMDStatus;

} while(ret&0x3); //enqueuing until success

//following 2 lines are commented in order to be similar to
Example 4-13
//ret=spe_mfcio_tag_status_read(spe_ctx, 1<<tag, SPE_TAG_ALL, &status);
//if(ret !=0) printf("error in GET command");

The SDK3.0 header files libspe2_types.h and cbea_map.h contain several
enums and structs that define the problem state areas and registers which
makes the programming more convenient when accessing the MMIO interface
from the PPE. Example 4-15 shows those enum and structs

Example 4-15 Structs and Enums for defining problem state areas and registers

// From libspe2_types.h header file
// ===
 Chapter 4. Cell BE programming 107

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
enum ps_area { SPE_MSSYNC_AREA, SPE_MFC_COMMAND_AREA, SPE_CONTROL_AREA,
SPE_SIG_NOTIFY_1_AREA, SPE_SIG_NOTIFY_2_AREA };

// From cbea_map.h header file
// ===
SPE_MSSYNC_AREA: MFC multisource synchronization register area
typedef struct spe_mssync_area {

unsigned int MFC_MSSync;
} spe_mssync_area_t;

// SPE_MFC_COMMAND_AREA: MFC command parameter queue control area
typedef struct spe_mfc_command_area {

unsigned char reserved_0_3[4];
unsigned int MFC_LSA;
unsigned int MFC_EAH;
unsigned int MFC_EAL;
unsigned int MFC_Size_Tag;
union {

unsigned int MFC_ClassID_CMD;
unsigned int MFC_CMDStatus;

};
unsigned char reserved_18_103[236];
unsigned int MFC_QStatus;
unsigned char reserved_108_203[252];
unsigned int Prxy_QueryType;
unsigned char reserved_208_21B[20];
unsigned int Prxy_QueryMask;
unsigned char reserved_220_22B[12];
unsigned int Prxy_TagStatus;

} spe_mfc_command_area_t;

// SPE_CONTROL_AREA: SPU control area
typedef struct spe_spu_control_area {

unsigned char reserved_0_3[4];
unsigned int SPU_Out_Mbox;
unsigned char reserved_8_B[4];
unsigned int SPU_In_Mbox;
unsigned char reserved_10_13[4];
unsigned int SPU_Mbox_Stat;
unsigned char reserved_18_1B[4];
unsigned int SPU_RunCntl;
unsigned char reserved_20_23[4];
unsigned int SPU_Status;
unsigned char reserved_28_33[12];
unsigned int SPU_NPC;
108 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
} spe_spu_control_area_t;

// SPE_SIG_NOTIFY_1_AREA: signal notification area 1
typedef struct spe_sig_notify_1_area {

unsigned char reserved_0_B[12];
unsigned int SPU_Sig_Notify_1;

} spe_sig_notify_1_area_t;

// SPE_SIG_NOTIFY_2_AREA: signal notification area 2
typedef struct spe_sig_notify_2_area {

unsigned char reserved_0_B[12];
unsigned int SPU_Sig_Notify_2;

} spe_sig_notify_2_area_t;

4.3 Data transfer

The Cell BE has a radical organization of storage and asynchronous DMA
transfers between local store (LS) and main storage. While this architecture
enables high performance it requires the application programer to explicitly
handle the data trasnfers between LS and main memory or other local stores.
Programing efficient data transfers is a key issue not only for preventing errors
(e.g. synchronization errors which are hard to debug) but also for having the
optimized out of a program running on a Cell BE based system.

Programming the DMA data transfer can be done by either an SPU program
using the channel interface, or by the a PPU program using the MMIO interface.
Using those interfaces is discussed in Chapter 4.2, “Storage domains, channels
and MMIO interfaces” on page 95.

Regarding issue of DMA commands to the MFC command, the channel interface
has 16 entries in its corresponding MFC SPU command queue, which stands for
up to 16 DMA commands that may be handle simultaneously by the MFC. The
corresponding MMIO interface on the other hand has only 8 entries in its
corresponding MFC proxy command queue. For this reason as well as for other
reasons (smaller latency in issuing the DMA commands, less overhead on the
internal EIB bus, etc.) the programer should prefer issuing DMA commands from
the SPU program rather then from the PPU.

This section explains about DMA data transfer methods as well as other data
transfer methods (e.g. direct load and store) that may be used in order to transfer
data between a LS and main memory or between one LS to another LS.
 Chapter 4. Cell BE programming 109

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The part contains the following sections:

� 4.3.1, “DMA commands” on page 111 - the first chapter provides an overview
over the DMA commands that are supported by the MFC, whether the
commands are initiated by the SPE of the PPE.

The next three sections discuss how to initiate various data transfer using the
SDK3.0 core libraries:

� 4.3.2, “SPE initiated DMA transfer between LS and main storage” on
page 119 - discuss how a program running on a SPU may initiate DMA
commands between its LS and the main memory using the associated MFC.

� 4.3.3, “PPU initiated DMA transfer between LS and main storage” on
page 137 discuss how a program running on a PPU may initiate DMA
commands between the LS of some SPE and the main memory using the
MFC which is associated with this SPE.

� 4.3.4, “Direct problem state access and LS to LS transfer” on page 143
discuss two different issues. The first is how a LS of some SPE can be
accessed directly by the PPU or by an SPU program running on other SPE.

The next two sections discuss two alternatives (other the core libraries) that
comes with SDK3.0 and can be used for simpler intuiting of data transfer
between the LS and main storage:

� 4.3.5, “Facilitate random data access using SPU software cache” on
page 146 discuss how to use the SPU software managed cache and in which
cases it is recommended to use it.

� 4.3.6, “Automatic software caching on SPE” on page 155 discuss an
automated version of the SPU software cache which provides even simpler
programing method but with possibly reduced performance.

The next three sections describes several fundamental techniques for
programming performance efficient data transfers:

� 4.3.7, “Efficient data transfers by overlapping DMA and computation” on
page 157 discuss the double buffering and multibuffering techniques that
enable to overlap between DMA transfers and computation. Doing so very
often provides a significant performance improvement.

� 4.3.8, “Improving page hit ratio using huge pages” on page 163 discuss how
to configure huge pages in the system and when it may be useful.

� 4.3.9, “Improving memory access using NUMA” on page 168 discuss how to
use the NUMA features on a Cell BE bases system.

Another topic which is very relevant to the data transfer and in not covered in
those chapters is the ordering between different data turnovers and
110 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
synchronization techniques. This topic is discussed in Chapter 4.5, “Shared
storage synchronizing and data ordering” on page 213.

4.3.1 DMA commands

MFC supports a set of DMA commands which provide the main mechanism that
enables data transfer between the LS and main storage. It also supports a set of
synchronization commands which used to control the order in which storage
accesses are performed and maintaining synchronization with other processors
and devices in the system.

Each MFC has an associated Memory Management Unit (MMU) that holds and
processes address-translation and access-permission information supplied by
the PPE operating system. While this MMU is distinct from the one used by the
PPE, to process an effective address provided by a DMA command, the MMU
uses the same method as the PPE memory-management functions. Thus, DMA
transfers are coherent with respect to system storage. Attributes of system
storage are governed by the page and segment tables of the PowerPC
Architecture.

The following sections discuss several issues related to the supported DMA
commands.

DMA commands
MFC supports a set of DMA commands:

� DMA commands may initiate or monitor the status of data transfers.

� Each MFC can maintain and process up to 16 in-progress DMA command
requests and DMA transfers which are executed asynchronous to the code
execution.

� The MFC can also autonomously manage a sequence of DMA transfers in
response to a DMA-list command from its associated SPU. DMA lists are a
sequence of eight-byte list elements, stored in an SPE’s LS, each of which
describes a single DMA transfer.

� Each DMA command is tagged with a 5-bit Tag ID (which defines up to 32
IDs) and the software can use this identifier to check or wait on the completion
of all queued commands in one or more tag groups.

The supported and recommended values for the DMA parameters are describe
in “Supported and recommended values for DMA parameters” on page 115.

The supported and recommended parameters of a DMA list are described on
“Supported and recommended values for DMA-list parameters” on page 116
 Chapter 4. Cell BE programming 111

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
A summary of all the DMA commands which are supported by the MFC are
described in Table 4-3. For each command, we also mention the SPU and the
PPE MFC functions that implement it, it any (blank means that this command is
not supported by either the SPE or PPE). For detailed information on the MFC
commands, see DMA Transfers and Inter-processor Communication chapter on
Cell Broadband Engine Programming Handbook.

The SPU functions are defined in spu_mfcio.h header file and described in
C/C++ Language Extensions for Cell BE Architecture .

The PPE functions are defined in libspe2.h header file and described in SPE
Runtime Management library document.

SDK3.0 defines another set of PPE inline functions for handling the DMA data
transfer in cbe_mfc.h file which is preferred from performance point of view over
the libspe2.h functions. While the cbe_mfc.h functions are not well described in
the official SDK documents they are quite straight forward and easy to use. In
order to enqueue a DMA command the programmer may issue _spe_mfc_dma
function with ‘cmd’ parameter indicating the DMA command that should be
enqueued (e.g. set ‘cmd’ parameter to MFC_PUT_CMD for ‘put’ command, set it
to MFC_GETS_CMD for ‘gets’ command, etc.)

Table 4-3 DMA commands supported by the MFC

Command
Function

Description
SPU PPE

Put commands

put mfc_put spe_mfcio_put Moves data from LS to the effective address.

puts unsupported Nonea Moves data from LS to the effective address and starts
the SPU after the DMA operation completes.

putf mfc_putf spe_mfcio_putf Moves data from LS to the effective address with fence
(this command is locally ordered with respect to all
previously issued commands within the same tag
group and command queue).

putb mfc_putb spe_mfcio_putb Moves data from LS to the effective address with
barrier (this command and all subsequent commands
with the same tag ID as this command are locally
ordered with respect to all previously issued
commands within the same tag group and command
queue).
112 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
putfs unsupported Nonea Moves data from LS to the effective address with fence
(this command is locally ordered with respect to all
previously issued commands within the same tag
group and command queue) and starts the SPU after
the DMA operation completes.

putbs unsupported Nonea Moves data from LS to the effective address with
barrier (this command and all subsequent commands
with the same tag ID as this command are locally
ordered with respect to all previously issued
commands within the same tag group and command
queue) and starts the SPU after the DMA operation
completes.

putl mfc_putl unsupported Moves data from LS to the effective address using an
MFC list.

putlf mfc_putlf unsupported Moves data from LS to the effective address using an
MFC list with fence (this command is locally ordered
with respect to all previously issued commands within
the same tag group and command queue).

putlb mfc_putlb unsupported Moves data from LS to the effective address using an
MFC list with barrier (this command and all
subsequent commands with the same tag ID as this
command are locally ordered with respect to all
previously issued commands within the same tag
group and command queue).

get commands

get mfc_get spe_mfcio_get Moves data from the effective address to LS.

gets unsupported Nonea Moves data from the effective address to LS, and
starts the SPU after the DMA operation completes.

getf mfc_getf spe_mfcio_getf Moves data from the effective address to LS with fence
(this command is locally ordered with respect to all
previously issued commands within the same tag
group and command queue).

getb mfc_getb spe_mfcio_getb Moves data from the effective address to LS with
barrier (this command and all subsequent commands
with the same tag ID as this command are locally
ordered with respect to all previously issued
commands within the same tag group and command
queue).

Command
Function

Description
SPU PPE
 Chapter 4. Cell BE programming 113

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The suffixes in Table 4-4 are associated with the DMA commands, and extend or
refine the function of a command. For example, a ‘putb’ command moves data
from LS to the effective address similar to the ‘put’ command, but also adds a
barrier.

Table 4-4 MFC commands suffixes

getfs unsupported Nonea Moves data from the effective address to LS with fence
(this command is locally ordered with respect to all
previously issued commands within the same tag
group), and starts the SPU after the DMA operation
completes.

getbs unsupported Nonea Moves data from the effective address to LS with
barrier (this command and all subsequent commands
with the same tag ID as this command are locally
ordered with respect to all previously issued
commands within the same tag group and command
queue), and starts the SPU after the DMA operation
completes.

getl mfc_getl unsupported Moves data from the effective address to LS using an
MFC list.

getlf mfc_getlf unsupported Moves data from the effective address to LS using an
MFC list with fence (this command is locally ordered
with respect to all previously issued commands within
the same tag group and command queue).

getlb mfc_getb unsupported Moves data from the effective address to LS using an
MFC list with barrier (this command and all
subsequent commands with the same tag ID as this
command are locally ordered with respect to all
previously issued commands within the same tag
group and command queue).

a. While this command may be issued by the PPE there is no MFC function that supports it

Command
Function

Description
SPU PPE

Mnemonic
Possible Initiator

Description
SPU PPE

s Yes Start SPU. Starts the SPU running at
the address in the SPU Next Program
Counter Register (SPU_NPC) after the
MFC command completes.
114 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Supported and recommended values for DMA parameters
The following list summarizes the MFC’s supported or recommended values for
the parameters of the DMA commands:

� Direction: Data transfer may be in any of the two directions as referenced
from the perspective of an SPE:

– get commands: transfer data to a LA from the main storage.

– put commands: transfers data out of the LS to the main storage.

� Size: Transfer size should obey the following guidelines:

– Supported transfer sizes are 1, 2, 4, 8, or 16 bytes, and multiples of
16-bytes

– Maximum transfer size is 16 KB.

– Peak performance is achieved when transfer size is a multiple of 128
bytes.

� Alignment: Alignment of the LSA and the EA should obey the following
guidelines:

– Source and destination addresses must have the same 4 least significant
bits.

– For transfer sizes less than 16 bytes, address must be naturally aligned
(bits 28 through 31 must provide natural alignment based on the transfer
size).

f Yes Yes Tag-specific fence. Command is locally
ordered with respect to all previously
issued commands in the same tag group
and command queue.

b Yes Yes Tag-specific barrier. Command is
locally ordered with respect to all
previously issued and all subsequently
issued commands in the same tag group
and command queue.

l Yes List command. Command processes a
list of DMA list elements located in LS.
Up to 2048 elements in a list; each list
element specifies a transfer of up to 16
KB.

Mnemonic
Possible Initiator

Description
SPU PPE
 Chapter 4. Cell BE programming 115

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
– For transfer sizes of 16 bytes or greater, address must be aligned to at
least a 16-byte boundary (bits 28 through 31 must be ‘0’).

– Peak performance is achieved when both source and destination are
aligned on a 128-byte boundary (bits 25 through 31 cleared to ‘0’).

If a transaction have illegal size or the address is invalid (due to a segment fault,
a mapping fault, or other address violation) there will be no error during
compilation. Instead, during run time the corresponding DMA command queue
processing is suspended and an interrupt is raised to the PPE. The application
usually terminated in this case and a “Bus Error” message is printed.
The MFC checks the validity of the effective address during transfers. Partial
transfers can be performed before the MFC encounters an invalid address and
raises the interrupt to the PPE.

Supported and recommended values for DMA-list parameters
The following list summarizes the MFC’s supported or recommended values for
the parameters of the DMA-list commands:

� The parameters of each transfer (e.g. size, alignment) should be according to
the described in “Supported and recommended values for DMA parameters”
on page 115.

� All the data transfers that are issued in a single DMA-list command have the
same high 32 bits of a 64 bit effective address.

� All the data transfers that are issued in a single DMA-list command share the
same tag ID.

In addition, the supported and recommended parameters of the DMA list itself
are the following:

� Length: A DMA list command can specify up to 2048 DMA transfers, defining
up to 16 KB of memory in the LS to maintain the list itself. Since each such
transfer have up to 16 KB length, a DMA list command can transfer up to 32
MB, which is 128 times the size of the 256 KB LS.

� Continuity: DMA list can move data between a contiguous area in a LS and
possibly non-contagious area in the effective address space.

� Alignment: The local store address of the DMA list itself must be aligned on
an eight-byte boundary (bits 29 through 31 must be ‘0’).

Note: The header file spu_mfcio.h contains some useful definitions the
supported parameter of DMA command (e.g. MFC_MAX_DMA_SIZE)
116 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Synchronization and atomic commands
MFC also support a set of synchronization and atomic commands that can be
used to control the order in which DMA storage accesses are performed. Those
commands include four atomic commands, three send-signal commands and
three barrier commands. Synchronization may be performed for all the
transactions in a queue or only to a group of them as explained in Chapter ,
“DMA-command tag groups” on page 118

While this chapter provide a brief overview of those commands, a more detailed
description is in Chapter 4.5, “Shared storage synchronizing and data ordering”
on page 213.

The synchronization and atomic command supported by the MFC are described
in Table . For each command, we also mention the SPU and the PPE MFC
functions that implement it, it any (blank means that this command is not
supported by either the SPE or PPE). For detailed information on the MFC
commands, see DMA Transfers and Inter-processor Communication chapter on
Cell Broadband Engine Programming Handbook.

The SPU MFC functions are defined in spu_mfcio.h header file and are
described in C/C++ Language Extensions for Cell BE Architecture .

The PPE’s are defined in libspe2.h header file and are described in SPE Runtime
Management library.

Synchronization commands supported by the MFC

Note: The header file spu_mfcio.h contains some useful definitions the
supported parameter of DMA-list command (e.g. MFC_MAX_DMA_LIST_SIZE)

Command Possible Initiator Description

SPU PPE

Synchronization commands

barrier mfc_barrier unsupported Barrier type ordering. Ensures
ordering of all preceding DMA
commands with respect to all
commands following the barrier
command in the same command
queue. The barrier command has
no effect on the immediate DMA
commands: getllar, putllc, and
putlluc.
 Chapter 4. Cell BE programming 117

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
DMA-command tag groups
All DMA commands except the atomic ones can be tagged with a 5-bit Tag
Group ID. By assigning a DMA command or group of commands to different tag
groups, the status of the entire tag group can be determined within a single

mfceieio mfc_eieio _eieioa Controls the ordering of get
commands with respect to put
commands, and of get commands
with respect to get commands
accessing storage that is caching
inhibited and guarded. Also controls
the ordering of put commands with
respect to put commands accessing
storage that is memory coherence
required and not caching inhibited.

mfcsync mfc_sync __synca Controls the ordering of DMA put
and get operations within the
specified tag group with respect to
other processing units and
mechanisms in the system.

sndsig mfc_sndsig spe_signal_write Write SPU Signal Notification
Register in another device.

sndsigf mfc_sndsigf unsupported Write SPU Signal Notification
Register in another device, with
fence.

sndsigb mfc_sndsigb unsupported Write SPU Signal Notification
Register in another device, with
barrier.

Atomic commands

getllar mfc_getllar lwarx/ldarx a Get lock line and reserve.

putllc mfc_putllc stwcx/stdcxa Put lock line conditional.

putlluc mfc_putlluc unsupported Put lock line unconditional.

putqlluc mfc_putqlluc unsupported Put queued lock line unconditional.

a. No function call for implementing this command but instead implemented as
intrinsic that is defined in ppu_intrinsics.h file.

Command Possible Initiator Description

SPU PPE
118 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
command queue. Software can use this identifier to check or wait on the
completion of all queued commands in one or more tag groups.

Notice that tag groups can be formed separately within any of the two MFC
command queues. Thus, tags assigned to commands in the SPU command
queue are independent of the tags assigned to commands in the MFC’s proxy
command queue.

Tagging is useful when using barriers to control the ordering of MFC commands
within a single command queue. DMA commands within a tag group can be
synchronized with a fence or barrier option by appending an ‘f’ or ‘b’, respectively,
to the command mnemonic:

� Execution of a fenced command option is delayed until all previously issued
commands within the same tag group have been performed.

� Execution of a barrier command option and all subsequent commands is
delayed until all previously issued commands in the same tag group have
been performed.

4.3.2 SPE initiated DMA transfer between LS and main storage

Software running on a SPU initiate DMA data transfer by accessing the local
MFC facilities through the channel interface. In this chapter we describe how
such SPU code can initiate basic data transfers between main storage and LS.

We illustrate it though ‘get’ command which transfer data from main storage to
the LS, and ‘put’ command that transfer data in the opposite direction. We also
describe the ‘getl’ and ‘putl’ commands which transfer data using DMA list.

The MFC support additional data transfer commands which guarantees ordering
between data transfer (e.g. ‘putf’, ‘putlb’, ‘getlf’, ‘getb’). Those commands are
initiated in similar way to the basic ‘get’ and ‘put’ commands, but their behavior is
different.

For detailed information on the channel interface and information on the MFC
commands, see SPE Channel and Related MMIO Interface chapter and DMA
Transfers and Interprocessor Communication chapter respectively on Cell
Broadband Engine Programming Handbook document.

Tag manager
The tag manager facilitates the management of tag identifiers used for DMA
operations in an SPU application. It is implemented through a set of functions
that the programmer should use in order to reserve tag IDs before initializing
DMA transactions and release them when he/she is done.
 Chapter 4. Cell BE programming 119

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The functions are defined in spu_mfcio.h header file and are described in C/C++
Language Extensions for Cell BE Architecture document. The main functions
are:

� mfc_tag_reserve: reserve a single tag ID.

� mfc_tag_release: release a single tag ID.

Some tags may be pre-allocated and being used by the operating environment
(e.g software managed cache, PDT: Performance Analysis Tool). The
implementation of the tag manager therefore does not guarantee to make all 32
architected tag IDs available for user allocation. If the programmer uses some
fixed value of tag IDs instead of using the tag manager to do so, it can lead to
possible inefficiencies caused by waiting for DMA completions on tag groups
containing DMAs issued by other software components.

The usage of the tag manager is illustrated through Example 4-16 on page 122.

Basic DMA transfer between LS and main storage
This chapter describes how SPU software can transfer data between the LS and
main storage using basics DMA commands. That term ‘basic’ commands implies
to commands that should be explicitly issued for each DMA transaction
separately. Another alternative is using the DMA list commands which may
initialize a sequence of DMA transfers as explained in Chapter , “DMA list data
transfer” on page 124.

The next sections describe how to initialize basic ‘get’ and ‘put’ DMA commands.
We illustrate it through a code example which also includes the use of the tag
manager.

Initiate a DMA transfer
To initialize a DMA transfer the SPE programmer can call one of the
corresponding functions of spu_mfcio.h header file. Each of those functions
implements a single command, such as:

� mfc_get: implements ‘get’ command.

� mfc_put: implements ‘put’ command.

Note: When programming a SPU application that initiate DMAs, it is
necessary to use the tag manager’s functions in order to reserve a tag ID or a
set of IDs and not use some random or fixed values. It is recommended that
tag allocation services be used to ensure that the other SW component’s use
of tag ID's does not overlap with the application’s use of tags. However, it is
not required.
120 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
These functions are non-blocking in terms of issuing the DMA command - the
software will continue its execution after enqueueing the commands into the MFC
SPU command queue but will not block till the DMA commands are actually
issued on the EIB bus. However, these functions will block if the command queue
is full and will wait till there is available space in that queue. The full list of the
supported commands are shown in Table 4-3 on page 112.

The programmer should be aware of the fact that the implementation of those
functions actually involve a sequence of the following six channel writes:

1. Write LSA (local store address) parameter to MFC_LSA channel.

2. Write EAH (effective address higher bits) parameter to MFC_EAH channel.

3. Write EAL (effective address lower bits) parameter to MFC_EAL channel.

4. Write transfer size parameter to MFC_Size channel.

5. Write tag ID parameter to MFC_TagID channel.

6. Write class ID and command opcode to MFC_Cmd channel. The opcode
defines the transfer type (e.g. ‘get’, ‘put’).

Waiting for completion of a DMA transfer
After DMA command was initiated, the software may wait for a completion of the
DMA transaction. Programmer may do so by calling to one of the functions that
are implemented in spu_mfcio.h header file. The two main functions to do so are:

1. mfc_write_tag_mask: write the tag mask which determines to which tag IDs a
completion notification is needed (done using the two functions below).

2. mfc_read_tag_status_any: wait until any of the specified tagged DMA
commands is completed

3. mfc_read_tag_status_all: wait until all of the specified tagged DMA
commands are completed

The last two functions are blocking so it will cause the software to halt till all DMA
transfer related to the tag ID are complete. Full list of the supported commands
are in Table 4-3 on page 112.

The implementation of the first function generates the following channel
operations:

1. Set the bit that represents the tag ID by writing the corresponding value (all
bits are ‘0’ beside bit number tag ID) to the MFC_WrTagMask channel.

Note: The supported and recommnded value of the different DMA parameters
are described in “Supported and recommended values for DMA parameters”
on page 115.
 Chapter 4. Cell BE programming 121

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The implementation of the next two functions involve a sequence of the following
two channel operations:

1. Write MFC_TAG_UPDATE_ALL or MFC_TAG_UPDATE_ANY mask to
MFC_WrTagUpdate channel.

2. Read MFC_RdTagStat channel.

Basic DMA ‘get’ and ‘put’ transfers - code example
This chapter illustrate how SPU code can perform basic ‘get’ and ‘put’
commands and also illustrate some other relevant issues. The examples includes
in this chapter demonstrate the following techniques:

� SPU code uses the tag manager to reserve and release tag ID

� SPU code uses ‘get’ command to transfer data from main storage to LS.

� SPU code uses ‘put’ command to transfer data from LS to main storage.

� SPU code waiting for completion of the ‘get’ and ‘put’ commands.

� SPU macro for waiting to completion of DMA group related to input tag.

� PPU macro for rounding input value to the next higher multiple of either 16 or
128 (to fulfill MFC’s DMA requirements).

As mentioned in Chapter 4.2.3, “SPU programming methods to access MFC’s
channel interface” on page 100, we use the MFC functions method to access the
DMA mechanism. Each of such functions actually implements few of the steps
that were mentioned above causing the code to be simpler. From programmer
point of view it is important to be familiar with the number of commands that are
involve in order to understand the impact on its application execution.

Example 4-16 and Example 4-17 contains the corresponding SPU and PPU
code respectively.

Example 4-16 SPU initiated basic DMA between LS and main storage - SPU code

#include <spu_mfcio.h>

// Macro for waiting to completion of DMA group related to input tag:
// 1. Write tag mask
// 2. Read status which is blocked untill all tag’s DMA are completed
#define waitag(t) mfc_write_tag_mask(1<<t); mfc_read_tag_status_all();

Source code: The code of Example 4-16 and Example 4-17 is included in the
additional material that is provided with this book. See “SPU initiated basic
DMA between LS and main storage” on page 613 for more information.
122 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// Local store buffer: DMA address and size alignment:
// - MUST be 16B aligned otherwise a bus error is generated
// - may be 128B aligned to get better performance
// In this case we use 16B becuase we don’t care about performance
volatile char str[256] __attribute__ ((aligned(16)));

// argp - effective address pointer to the string in main storage
// envp - size of string in main memory in bytes
int main(uint64_t spuid , uint64_t argp, uint64_t envp){

uint32_t tag_id = mfc_tag_reserve();

// reserve a tag from the tag manager
if (tag_id==MFC_TAG_INVALID){

printf("SPE: ERROR can't allocate tag ID\n"); return -1;
}

// get data from main storage to local store
mfc_get((void *)(str), argp, (uint32_t)envp, tag_id, 0, 0);

// wait for ‘get’ command to complete. wait only on this tag_id.
waitag(tag_id);

printf("SPE: %s\n", str);
strcpy(str, "Am I there? No! I'm still here! I will go there

again....");

// put data to main storage from local store
mfc_put((void *)(str), argp, (uint32_t)envp, tag_id, 0, 0);

// wait for ‘get’ command to complete. wait only on this tag_id.
waitag(tag_id);

// release the tag from the tag manager
mfc_tag_release(tag_id);

return (0);
}

Example 4-17 SPU initiated basic DMA between LS and main storage - PPU code

#include <libspe2.h>

// macro for rounding input value to the next higher multiple of either
// 16 or 128 (to fulfill MFC’s DMA requirements)
#define spu_mfc_ceil128(value) ((value + 127) & ~127)
 Chapter 4. Cell BE programming 123

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
#define spu_mfc_ceil16(value) ((value + 15) & ~15)

volatile char str[256] __attribute__ ((aligned(16)));

int main(int argc, char *argv[])
{

void *spe_argp, *spe_envp;
spe_context_ptr_t spe_ctx;
spe_program_handle_t *program;
uint32_t entry = SPE_DEFAULT_ENTRY;

// Prepare SPE parameters
strcpy(str, "I am here but I want to go there!");
printf("PPE: %s\n", str);

spe_argp=(void*)str;
spe_envp=(void*)strlen(str);
spe_envp=(void*)spu_mfc_ceil16((uint32_t)spe_envp);//round up to 16B

// Initialize and run the SPE thread using the four functions:
// 1) spe_context_create 2) spe_image_open
// 3) spe_program_load 4) spe_context_run

// Wait for SPE thread to complete using spe_context_destroy
// function (blocked untill SPE thread was complete).

printf("PPE: %s\n", str); // is he already there?
return (0);

}

DMA list data transfer
A DMA list is a sequence of transfer elements (or list elements) that, together
with an initiating DMA-list command, specifies a sequence of DMA transfers
between a single continuous area of LS and possibly discontinuous areas in main
storage. DMA lists can therefore be used to implement scatter-gather functions
between main storage and the LS. All the data transfers that are issued in a
single DMA-list command share the same tag ID and are the same type of
commands (‘getl’, or ‘putl’, or other command). The DMA list is self is stored in
the LS of the same SPE.

The next three chapter describes the three steps that a programmer who wish to
initiate sequence of transfers using a DMA-list should typically performs:
124 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
1. “Creating a DMA list” on page 125 - create and initialize the DMA list in an
SPE’s LS. This step can be done by either the local SPE, the PPE or other
SPE.

2. “Initiating DMA list command” on page 126 - issue a DMA-list command such
as ‘getl’ or ‘putl’. Such DMA-list commands can only be issued by programs
running on the local SPE.

3. “Waiting for completion of data transfer” on page 126 - wait for completion of
the data transfers.

The last chapter, “DMA list transfer - code example” on page 127, provide a code
example which illustrate this sequence of steps.

Creating a DMA list
Each transfer element in the DMA list contains three parameters:

� notify: stall-and-notify flag that can be used to suspend list execution after
transferring a list element whose stall-and-notify bit is set.

� size: transfer size in bytes.

� eal: lower 32-bits of an effective address in main storage.

SPU software creates the list and stores it in the LS. The list basic element is a
mfc_list_element structure that describes a single data transfer. This structure,
that is defined in spu_mfcio.h header file as shown in Example 4-18:

Example 4-18 DMA list basic element - mfc_list_element struct

typedef struct mfc_list_element {
uint64_t notify : 1; // optional stall-and-notify flag
uint64_t reserved : 16; // the name speaks for itself
uint64_t size : 15; // transfer size in bytes
uint64_t eal : 32; // lower 32-bits of an EA in main storage

} mfc_list_element_t;

Transfer elements are processed sequentially in the order they are stored. If the
notify flag is set for a transfer element, the MFC will stop processing the DMA
list after performing the transfer for that element until the SPE program send

Note: The supported and recommended values of the DMA-list parameters
are described in “Supported and recommended values for DMA-list
parameters” on page 116.
 Chapter 4. Cell BE programming 125

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
acknowledge. This procedure is described in “Waiting for completion of data
transfer” on page 126.

Initiating DMA list command
After the list is stored in the LS, the execution of the list is initiated by a DMA-list
command, such as ‘getl’ or ‘putl’, from the SPE whose LS contains the list. To
initialize a DMA list transfer the SPE programmer can call one of the
corresponding functions of spu_mfcio.h header file. Each of those functions
implements a single DMA list command, such as:

� mfc_getl: implements ‘getl’ command.

� mfc_putl: implements ‘putl’ command.

These functions are non-blocking in terms of issuing the DMA command - the
software will continue its execution after enqueueing the commands into the MFC
SPU command queue but will not block till the DMA commands are actually
issued on the EIB bus. However, these functions will block if the command queue
is full and will wait untill there is available space in that queue. The full list of
supported commands are in Table 4-3 on page 112.

Initializing a DMA-list commands requires similar steps and parameters as when
initializing basic DMA command. Those steps are described in “Initiate a DMA
transfer” on page 120. However, a DMA-list command requires two different
types of parameters than those required by a single-transfer DMA command:

� EAL which is written to the MFC_EAL channel should be the starting local
store address (LSA) of the DMA list (rather then with the EAL which is
specified in each transfer element separately).

� Transfer size which is written to MFC_Size channel should be the size in
bytes of the DMA list itself (rather then the transfer size which is specified in
each transfer element separately). The list size is equal to the number of
transfer elements, multiplied by the size of mfc_list_element structure (8
bytes).

The starting LSA and the EA-high (EAH) are specified only once, in the DMA-list
command that initiates the transfers. The LSA is internally increment based on
the amount of data transferred by each transfer element. However, if the starting
LSA for each transfer element in a list does not begin on a 16-byte boundary,
then hardware automatically increments the LSA to the next 16-byte boundary.
The EAL for each transfer element is in the 4-GB area defined by EAH.

Waiting for completion of data transfer
There are two main mechanism that enables the software to verify the
completion of the DMA transfers.
126 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
The first mechanism is the same as basic (non-list) DMA commands using
MFC_WrTagMask and MFC_RdTagStat channels and can be used to notify the
software on the completion of the entire transfer in the DMA list. This procedure
is explained in “Waiting for completion of a DMA transfer” on page 121.

The second mechanism is using the stall-and-notify flag that enables the
software to be notified on the completion of subset of the transfers in the list by
the MFC. The MFC halt it transfer on this list (but not only the operations) till it is
acknowledged by the software. This mechanism may be useful if the software
needs to update the characteristics of a stalled subsequent trasnfers depends on
the data that was just transferred to the LS on the previous transfers. In any case
the number of elements in the queued DMA list cannot be changed.

To use this mechanism, the following steps are performed by the SPE software
and the local MFC:

1. Software enables DMA List Command Stall-And-Notify event.
This step is illustrated in notify_event_enable function of Example 4-20.

2. Software sets the notify bit in a certain element in the DMA list
(SW says: “let me know when you’re done...”)

3. Software issues a DMA-list command on this list
(SW says: “do it...”)

4. MFC stop processing the DMA list after performing the transfer for that
specific element which activates DMA List Command Stall-And-Notify event.
(MFC says: “I’ve completed working on this - its yours now...”)

5. Software handles the event, optionally modify subsequent transfer elements
before they are processed by the MFC and then acknowledge the MFC.
This step is illustrated in notify_event_handler function of Example 4-20.
(SW says: “Got it - I’m checking the incoming data. Go back to your next
task...”)

6. MFC continue processing the subsequent transfer elements in the list (until
maybe another element sets the notify bit).

DMA list transfer - code example
This section contains a code example on how SPU program may initiate DMA list
transfer. The example demonstrate the following techniques:

� SPU code creates a DMA list on the LS.

� SPU code activates stall-and-notify bit in some of the elements in the list.

� SPU code spe_mfcio.h definitions to check if DMA transfer attributes are
legal.

� SPU code issue ‘getl’ command to transfer data from main-storage to LS.
 Chapter 4. Cell BE programming 127

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� SPU code issue ‘putl’ command to transfer data from LS to main-storage.

� SPU code implements event handler to the stall-and-notify events.

� SPU code for dynamically updating DMA list according to the data that was
just transferred into the LS.

� PPU code mark the SPU code to stop transferring data after some data
elements using the stall-and-notify mechanism.

� PPU and SPU code for synchronizing the completion of SPE’s writing the
output data. Implemented using a notification flag in main-storage and barrier
between writing the data to memory and updating this notification flag.

Example 4-19 shows the shared header file, Example 4-20 shows the SPU code,
while Example 4-20 shows the corresponding PPU code.

Example 4-19 SPU initiated DMA list transfers between LS and main storage - shared
header file

// common.h file ===

// DMA list parameters
#define DMA_LIST_LEN 512
#define ELEM_PER_DMA 16 // Guarantee alignment to 128 B
#define NOTIFY_INCR 16

#define TOTA_NUM_ELEM ELEM_PER_DMA*DMA_LIST_LEN
#define BUFF_SIZE TOTA_NUM_ELEM+128

#define MAX_LIST_SIZE 2048 // 2K

// commands and status definitions
#define CMD_EMPTY 0
#define CMD_GO 1
#define CMD_STOP 2
#define CMD_DONE 3

#define STATUS_DONE 1234567
#define STATUS_NO_DONE ~(STATUS_DONE)

// data elements that SPE should work on
#define DATA_LEN 15

Source code: The code of Example 4-19 and Example 4-20 is included in the
additional material that is provided with this book. See “SPU initiated DMA list
transfers between LS and main storage” on page 613 for more information.
128 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
typedef struct {
char cmd;
char data[DATA_LEN];

} data_elem; // aligned to 16B

// the context that PPE forward to SPE
typedef struct{

uint64_t ea_in;
uint64_t ea_out;
uint32_t elem_per_dma;
uint32_t tot_num_elem;
uint64_t status;

} parm_context; // aligned to 16B

#define MIN(a,b) (((a)>(b)) ? (b) : (a))
#define MAX(a,b) (((a)>(b)) ? (a) : (b))

// dummy function for calculating the output from the input
inline char calc_out_d(char in_d){

return in_d-1;
}

Example 4-20 SPU initiated DMA list transfers between LS and main storage - SPU code

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

#include "common.h"

// Macro for waiting to completion of DMA group related to input tag
#define waitag(t) mfc_write_tag_mask(1<<t); mfc_read_tag_status_all();

static parm_context ctx __attribute__ ((aligned (128)));

// DMA data structures and and data buffer
volatile data_elem lsa_data[BUFF_SIZE] __attribute__ ((aligned (128)));
volatile mfc_list_element_t dma_list[MAX_LIST_SIZE] __attribute__
((aligned (128)));
volatile uint32_t status __attribute__ ((aligned(128)));

// global variables
 Chapter 4. Cell BE programming 129

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
int elem_per_dma, tot_num_elem, byte_per_dma, byte_tota, dma_list_len;
int event_num=1, continue_dma=1;
int notify_incr=NOTIFY_INCR;

// enables stall-and-notify event
//===
static inline void notify_event_enable()
{

uint32_t eve_mask;

eve_mask = spu_read_event_mask();
spu_write_event_mask(eve_mask | MFC_LIST_STALL_NOTIFY_EVENT);

}

// updates the remaining DMA list according to data that was already
// transferred to LS
//===
static inline void notify_event_update_list()
{

int i, j, start, end;

start = (event_num-1)*notify_incr*elem_per_dma;
end = event_num*notify_incr*elem_per_dma-1;

// loop on only data elements that were transffered since last event
for (i=start; i<=end; i++){

if (lsa_data[i].cmd == CMD_STOP){

// PPE wants us to stop DMAs - zero remaing DMAs
dma_list[event_num*notify_incr+1].size=0;
dma_list[dma_list_len-1].size=0;
for (j=event_num*notify_incr; j<dma_list_len; j++){

dma_list[j].size = 0;
dma_list[j].notify = 0;

}
continue_dma = 0;
break;

}
}

}

// handle stall-and-notify event include acknowledging the MFC
//===
static inline void notify_event_handler(uint32_t tag_id)
{

130 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
uint32_t eve_mask, tag_mask;

// blocking function to wait for even
eve_mask = spu_read_event_mask();

spu_write_event_mask(eve_mask | MFC_LIST_STALL_NOTIFY_EVENT);

// loop for checking that event is on the correct tag_id
do{

// loop for checking that stall-and-notify event occured
do{

eve_mask = spu_read_event_status();

}while (!(eve_mask&(uint32_t)MFC_LIST_STALL_NOTIFY_EVENT));

// disable event stall-and-notify event
eve_mask = spu_read_event_mask();
spu_write_event_mask(eve_mask & (~MFC_LIST_STALL_NOTIFY_EVENT));

// acknowledge stall-and-notify event
spu_write_event_ack(MFC_LIST_STALL_NOTIFY_EVENT);

// read the tag_id that caused the event. no infomation is
// provided on which DMA list command in the tag group has
// stalled or which element in the DMA list command has stalled
tag_mask = mfc_read_list_stall_status();

}while (!(tag_mask & (uint32_t)(1<<tag_id)));

// update DMA list according to data that was just transferred to LS
notify_event_update_list();

// acknowlege the MFC to continue
mfc_write_list_stall_ack(tag_id);

// re-enable the event
eve_mask = spu_read_event_mask();
spu_write_event_mask(eve_mask | MFC_LIST_STALL_NOTIFY_EVENT);

}

void exit_handler(uint32_t tag_id){

// update the status so PPE knows that all data is in place
status = STATUS_DONE;
 Chapter 4. Cell BE programming 131

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
//barrier to ensure data is written to memory before writing status
mfc_putb((void*)&status, ctx.status, sizeof(uint32_t), tag_id,0,0);
waitag(tag_id);

mfc_tag_release(tag_id); // release tag ID before exiting

printf("<SPE: done\n");
}

int main(int speid , uint64_t argp){
int i, j, num_notify_events;
uint32_t addr, tag_id;

// enable the stall-and-notify
//==
notify_event_enable();

// reserve DMA tag ID
//==
tag_id = mfc_tag_reserve();

if(tag_id==MFC_TAG_INVALID){
printf("SPE: ERROR - can't reserve a tag ID\n");
return 1;

}

// get context information from system memory.
//==
mfc_get((void*) &ctx, argp, sizeof(ctx), tag_id, 0, 0);
waitag(tag_id);

// initalize DMA tranfer attributes
//==
tot_num_elem = ctx.tot_num_elem;
elem_per_dma = ctx.elem_per_dma;
dma_list_len = MAX(1, tot_num_elem/elem_per_dma);
byte_tota = tot_num_elem*sizeof(data_elem);
byte_per_dma = elem_per_dma*sizeof(data_elem);

// initalize data buffer
//==
for (i=0; i<tot_num_elem; ++i){

lsa_data[i].cmd = CMD_EMPTY;
}

132 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// use spe_mfcio.h definitions to check DMA attributes’ legitimate
//==
if (byte_per_dma<MFC_MIN_DMA_SIZE || byte_per_dma>MFC_MAX_DMA_SIZE){

printf("SPE: ERROR - illegal DMA transfer's size\n");
exit_handler(tag_id); return 1;

}
if (dma_list_len<MFC_MIN_DMA_LIST_SIZE||

 dma_list_len>MFC_MAX_DMA_LIST_SIZE){
printf("SPE: ERROR - illegal DMA list size.\n");
exit_handler(tag_id); return 1;

}
if (dma_list_len>=MAX_LIST_SIZE){

printf("SPE: ERROR - DMA list size bigger then local list \n");
exit_handler(tag_id); return 1;

}

if(tot_num_elem>BUFF_SIZE){
printf("SPE: ERROR - dma length bigger then local buffer\n");
exit_handler(tag_id); return 1;

}

// create the DMA lists for the 'getl' comand
//==
addr = mfc_ea2l(ctx.ea_in);

for (i=0; i<dma_list_len; i++) {
dma_list[i].size = byte_per_dma;
dma_list[i].eal = addr;
dma_list[i].notify = 0;
addr += byte_per_dma;

}

// update stall-and-notify bit EVERY ‘notify_incr’ DMA elements
//==
num_notify_events=0;
for (i=notify_incr-1; i<(dma_list_len-1); i+=notify_incr) {

num_notify_events++;
dma_list[i].notify = 1;

}

// issue the DMA list 'getl' command
//==
mfc_getl((void*)lsa_data, ctx.ea_in, (void*)dma_list,

 sizeof(mfc_list_element_t)*dma_list_len,tag_id,0,0);
 Chapter 4. Cell BE programming 133

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
// handle stall-and-notify events
//==
for (event_num=1; event_num<=num_notify_events; event_num++) {

notify_event_handler(tag_id);

if(!continue_dma){ // stop dma since PPE mark us to do so
break;

}
}

// wait for completion of the 'getl' command
//==
waitag(tag_id);

// calculate the output data
//==
for (i=0; i<tot_num_elem; ++i){

lsa_data[i].cmd = CMD_DONE;
for (j=0; j<DATA_LEN; j++){

lsa_data[i].data[j] = calc_out_d(lsa_data[i].data[j]);
}

}

// + update the existing DMA lists for the 'putl' comand
// + update only the address since the length is the same
//==
addr = mfc_ea2l(ctx.ea_out);

for (i=0; i<dma_list_len; i++) {
dma_list[i].eal = addr;
dma_list[i].notify = 0;
addr += byte_per_dma;

}

// + no notification is needed for the 'putl' command

// issue the DMA list 'getl' command
//==
mfc_putl((void*)lsa_data,ctx.ea_out,(void*)dma_list,

 sizeof(mfc_list_element_t)*dma_list_len,tag_id,0,0);

// wait for completion of the 'putl' command
//==
waitag(tag_id);
134 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
exit_handler(tag_id);
return 0;

}

Example 4-21 SPU initiated DMA list transfers between LS and main storage - PPU code

#include <libspe2.h>
#include <cbe_mfc.h>

#include "common.h"

// data structures to work with the SPE
volatile parm_context ctx __attribute__ ((aligned(16)));
volatile data_elem in_data[TOTA_NUM_ELEM] __attribute__
((aligned(128)));
volatile data_elem out_data[TOTA_NUM_ELEM] __attribute__
((aligned(128)));
volatile uint32_t status __attribute__ ((aligned(128)));

// take ‘spu_data_t’ structure and ‘spu_pthread’ function from
// Example 4-5 on page 90

int main(int argc, char *argv[])
{

spe_program_handle_t *program;
int i, j, error=0;

printf(")PPE: Start main \n");
status = STATUS_NO_DONE;

// initiate input and output data
for (i=0; i<TOTA_NUM_ELEM; i++){

in_data[i].cmd = CMD_GO;
out_data[i].cmd = CMD_EMPTY;

for (j=0; j<DATA_LEN; j++){
in_data[i].data[j] = (char)j;
out_data[i].data[j] = 0;

}
}

// ==
 Chapter 4. Cell BE programming 135

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
// tell the SPE to stop in some random element (number 3) after 10
// stall-and-notify events.
// ==
in_data[3+10*ELEM_PER_DMA*NOTIFY_INCR].cmd = CMD_STOP;

// initiate SPE parameters
ctx.ea_in = (uint64_t)in_data;
ctx.ea_out = (uint64_t)out_data;
ctx.elem_per_dma = ELEM_PER_DMA;
ctx.tot_num_elem = TOTA_NUM_ELEM;
ctx.status = (uint64_t)&status;

data.argp = (void*)&ctx;

// ... Omitted section:
// creates SPE contexts, load the program to the local stores,
// run the SPE threads, and waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material).

// This subject of is also described in section 4.1.2, “Task
parallelism and managing SPE threads”

// wait for SPE data to be written into memory
while (status != STATUS_DONE);

for (i=0, error=0; i<TOTA_NUM_ELEM; i++){
if (out_data[i].cmd != CMD_DONE){

printf("ERROR: command is not done at index %d\n",i);
error=1;

}
for (j=0; j<DATA_LEN; j++){

if (calc_out_d(in_data[i].data[j]) != out_data[i].data[j]){
printf("ERROR: wrong output : entry %d char %d\n",i,j);}
error=1; break;

}
if (error) break;

}
if(error){ printf(")PPE: program was completed with error\n");
}else{ printf(")PPE: program was completed successfully\n");}

return (0);
}

136 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
4.3.3 PPU initiated DMA transfer between LS and main storage

Software running on a PPU initiate DMA data transfers between the main storage
and LS of some SPE by accessing the MFC facilities of this SPE through the
MMIO interface. In this chapter we describe how such PPU code can initiate
basic data transfers between main storage and LS of some SPE.

For detailed information on the MMIO (or Direct Problem State) interface and
information on the MFC commands, see SPE Channel and Related MMIO
Interface chapter and DMA Transfers and Interprocessor Communication chapter
respectively on Cell Broadband Engine Programming Handbook.

Another alternative for a PPU software to access the LS of some SPE is mapping
the LS to main storage and then use regular direct memory access. This issue is
discussed in chapter “Direct PPE access to LS of some SPE” on page 143.

Basic DMA transfer between LS and main storage
This chapter describes how PPU software can transfer data between the LS of
some SPE and main storage using basics DMA commands. That term ‘basic’
commands implies to commands that should be explicitly issued for each DMA
transaction separately, unlike DMA list commands.

We describe how the PPU may initialize those command and illustrate it using a
code example of ‘get’ and ‘put’ commands. The available DMA commands are
described in Chapter , “DMA commands” on page 111.

Please note that the naming of the commands is based on a SPE centric view,
for example, ‘put’ means a transfer from the SPE LS to an effective address.

Note: The tag ID used for the PPE initiated DMA transfer is not related to the
tag ID used by the software that runs on this SPE - each of them related to a
different queue of the MFC. There is currently no mechanism for allocating tag
IDs on the PPE side (like the SPE’s tag manager) so the programmer should
use some predefined tag ID. Since tag IDs 16 to 31 are reserved for the Linux
kernel, the user must use only tag IDs 0 to 15.
 Chapter 4. Cell BE programming 137

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Initiate a DMA transfer
To initialize a DMA transfer the PPE programmer can call one of the
corresponding functions of libspe2.h header file. Each of those functions
implements a single command, such as:

� spe_mfcio_get: implements ‘get’ command.

� spe_mfcio_put: implements ‘put’ command.

Those functions are nonblocking so the software will continue its execution after
issuing those commands. Full list of the supported commands are in Table 4-3 on
page 112.

Another alternative is using the inline function that is defined in cbe_mfc.h file
and support all the DMA commands:

� _spe_mfc_dma : Enqueues a DMA request using the values provided. The
function supports all types of DMA commands according to the value of ‘cmd’
input parameter (e.g. ‘cmd’ parameter set to MFC_PUT_CMD for ‘put’
command, set it to MFC_GETS_CMD for ‘gets’ command, etc.). This function
will block until the MFC queue has space available (in the cbe_mfc.h file) and
is preferred from a performance point of view over the libspe2.h functions.

The programmer should be aware of the fact that the implementation of those
functions actually involve a sequence of the following commands:

The programmer should be aware of the fact that the implementation of those
functions actually involve a sequence of the following commands:

1. Write LSA (local store address) parameter to MFC_LSA register.

Note: The programmer should try to avoid initiating DMA commands from the
PPE and prefer initiating them by the local SPE. First reason is that accessing
the MMIO by the PPE is executed on the interconnect bus which has larger
latency then the SPU accessing the local channel interface. (The latency is
high because the SPE problem state is mapped as guarded, cache inhibited
memory.) Second, by adding this traffic it reduces the available bandwidth for
other resources on the interconnect bus. Third, the PPE is expensive resource
anyway so it is better to have the SPEs to do more work instead.

Note: When issuing DMA commands from the PPE, using the cbe_mfc.h
functions are preferred from performance point of view over the libspe2.h
functions. While the cbe_mfc.h functions are not well described in the SDK
documentation they are quite straight forward and easy to use. In our
examples we used the libspe2.h functions.
138 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
2. Write EAH (effective address higher bits) and EAL (effective address lower
bits) parameters to MFC_EAH registers respectively.
Software can implement is by two 32-bit stores or one 64-bit store.

3. Write transfer size and tag ID parameters to MFC_Size and MFC_TagID
registers respectively.
Software can implement it by one 32-bit store (MFC_Size in upper 16 bits,
MFC_TagID in lower 16 bits) or along MFC_ClassID_CMD in one 64-bit store.

4. Write class ID and command opcode to MFC_ClassID_CMD register. The
opcode defines the transfer type (e.g. ‘get’, ‘put’).

5. Read the MFC_CMDStatus register using a single 32 bits store to determine
the success or failure of the attempt to enqueue a DMA command, as
indicated by the 2 least-significant bits of returned value:

• 0: The enqueue was successful.

• 1 – Sequence error occurred while enqueuing the DMA (e.g. interrupt
occurred, then another DMA was started within interrupt handler).
Software should restarted the DMA sequence by going to step 1.

• 2: The enqueue failed due to insufficient space in command queue.
Software could either wait for space to become available before
attempting the DMA transfer again, or can simply continue attempting
to enqueue the DMA until successful (go to step 1).

• 3: Indicates that both errors occurred.

Waiting for completion of a DMA transfer
After DMA command is initiated, the software may wait for a completion of the
DMA transaction. Programmer may do so by calling to one of the functions that
are defined in libspe2.h header. For example:

� spe_mfcio_tag_status_read: The function input parameters include a mask
which defines group ID (as explained below) and blocking behavior (continue
waiting until completion or quit after one read).

The programmer should be aware of the fact that the implementation of this
function include a sequence of the following commands:

1. Set the Prxy_QueryMask register to the groups of interest. Each tag ID is
represented by one bit (tag 31 is assigned the most-significant bit and tag 0 is
assigned the least-significant bit).

Note: The supported and recommnded value of the different DMA parameters
are described in “Supported and recommended values for DMA parameters”
on page 115.
 Chapter 4. Cell BE programming 139

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
2. Issue an eieio instruction before reading the Prxy_TagStatus register to
ensure the effects of all previous stores complete

3. Read the Prxy_TagStatus register.

4. If the value is nonzero, at least one of the tag groups of interest has
completed. If waiting for all the tag groups of interest to complete, XOR the
tag group status value with the tag group query mask. A result of ‘0’ indicates
that all groups of interest are complete.

5. Repeat steps 3 and 4 until the tag groups of interest are complete.

Another alternative is using the inline functions that is defined in cbe_mfc.h file:

� _spe_mfc_write_tag_mask : A nonblokcing function which writes the mask
value to the Prxy_QueryMask register.

� _spe_mfc_read_tag_status_immediate : A nonblokcing function which reads
the Prxy_TagStatus register and returns the value read. Beore calling this
function, the _spe_mfc_write_tag_mask function should be called to set the
tag mask.

There are various other methods to wait for the completion of the DMA transfer o
as described in chapter PPE-Initiated DMA Transfers in Cell Broadband Engine
Programming Handbook document. We chose to show the simplest one.

Basic DMA ‘get’ and ‘put’ transfers - code example
This section contains a code example on how PPU program may initiate basic
DMA transfers between the LS and main storage. This example demonstrate the
following techniques:

� PPU code maps the LS to share memory and retrieve pointer to its EA base.

� SPU code uses the mailbox to send PPU the offset to its data buffer in LS.

� PPU code initiates DMA ‘put’ command to transfer data from LS to main
storage (please notice that the direction of this commands may be confusing).

� PPU code wait for the completion of the ‘put’ command before using the data.

Example 4-22 shows the PPU code while Example 4-23 shows the
corresponding SPU code.

We use the MFC functions method to access the DMA mechanism from the PPU
side. Each of such functions actually implements few of the steps that were
mentioned above causing the code to be simpler. From programmer point of view
it is important to be familiar with the number of commands that are involve in
order to understand the impact on its application execution.
140 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Example 4-22 PPU initiated DMA transfers between LS and main storage - PPU code

#include <libspe2.h>
#include <cbe_mfc.h>

#define BUFF_SIZE 1024

spe_context_ptr_t spe_ctx;

uint32_t ls_offset; // offset from LS base of the data buffer in LS

// PPU’s data buffer
volatile char my_data[BUFF_SIZE] __attribute__ ((aligned(128)));

int main(int argc, char *argv[]){

int ret;
uint32_t tag, status;

// MUST use only tag 0-15 since 16-31 are used by kernel
tag = 7; // choose my lucky number

spe_ctx = spe_context_create (....); // create SPE context
spe_program_load (....); // load SPE program to memory
pthread_create (....); // create SPE pthread

// collect from the SPE the offset in LS of the data buffer. NOT the
// most efficient using mailbox- but sufficient for initialization
while(spe_out_mbox_read(data.spe_ctx, &ls_offset, 1)<=0);

//intiate DMA ‘put’ command to transfer data from LS to main storage
do{

ret=spe_mfcio_put(spe_ctx, ls_offset, (void*)my_data, BUFF_SIZE,
tag, 0,0);

}while(ret!=0);

// wait for completion of the put command
ret = spe_mfcio_tag_status_read(spe_ctx,0,SPE_TAG_ALL, &status);

if(ret!=0){

Source code: The code of Example 4-22 and Example 4-23 is included in the
additional material that is provided with this book. See “PPU initiated DMA
transfers between LS and main storage” on page 614 for more information.
 Chapter 4. Cell BE programming 141

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
perror ("Error status was returned");
// ‘status’ variable may provide more information
exit (1);

}

// MUST issue synchronization command before reading the ‘put’ data
__lwsync();

printf(“SPE says: %s\n”, my_data);

// continue saving the world or at least managing the 16 SPEs

return (0);

}

Example 4-23 PPU initiated DMA transfers between LS and main storage - SPU code

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

#define BUFF_SIZE 1024

// SPU’s data buffer
volatile char my_data[BUFF_SIZE] __attribute__ ((aligned(128)));

int main(int speid , uint64_t argp)
{

strcpy((char*)my_data, “Racheli Paz lives in La-Paz.\n”);

// send to PPE the offest the data buffer- stalls if mailbox is full
spu_write_out_mbox((uint32_t)my_data);

// continue helping PPU saving the world or at least do what he says

return 0;
}

DMA list data transfer
A DMA list is a sequence of transfer elements (or list elements) that, together
with an initiating DMA-list command, specifies a sequence of DMA transfers
142 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
between a single continuous area of LS and possibly discontinuous areas in
main storage.

The PPE software may participate in the initiating of such DMA-list command by
create and initialize the DMA list in an SPE’s LS. The way on which a PPU
software can access the LS is described in Chapter , “Direct PPE access to LS of
some SPE” on page 143. Once such list was created only a code running on this
SPU may proceed with the execution of the command itself. This entire process
is described in Chapter , “DMA list data transfer” on page 124.

4.3.4 Direct problem state access and LS to LS transfer

This chapter describes how applications can access directly an SPE’s LS. The
intention is for applications that do not run on this SPE but runs on either the PPE
or other SPEs.

PPE access to the LS is described in the first chapter “Direct PPE access to LS
of some SPE”. Programmer should try to avoid massive use of this technique
because of performance considerations.

Other SPEs accessing the LS is described on the next chapter - “SPU initiated
LS to LS DMA data transfer”. For memory bandwidth reasons it is highly
recommended to prefer this technique whenever it fit the application structure.

Direct PPE access to LS of some SPE
In this chapter we describe how the PPE can directly access the LS of some
SPE. The programmer should try to avoid frequent PPE direct access to the LS
and should try to use DMA transfer instead. However, it may be useful to use
direct PPE to LS access of occasionally with small amount of data in order to
control the program flow, for example to write a notification.

A code running on the PPU can access the LS by performing the following steps:

1. Map the LS to the main storage and provides an effective address pointer to
the LS base address. Function spe_ls_area_get of the libspe2.h header file
implements this step as described in SPE Runtime Management library
document. Note that this type of memory access is not cache coherent.

2. Optionally, get from the SPE the offset compare to the LS base of the data to
be read or written. May be implemented using the mailbox mechanism.

3. Access this region like any regular data access to main storage using direct
load and store instructions.
 Chapter 4. Cell BE programming 143

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 4-24 shows code that illustrates how a PPE may access the LS of an
SPE:

� The SPU program forwards the offset of the corresponding buffer in the LS to
the PPE using the mailbox mechanism.

� The PPE program maps the base address of the LS to the main storage using
libspe function

� The PPE program adds the buffer offset to the LS base address to retrieve the
buffer effective address.

� The PPE program uses the calculated buffer address to access the LS (and
copy some data to it).

Example 4-24 Direct PPE access to LS of some SPE

// Take ‘spu_data_t’ stucture and ‘spu_pthread’ function from
// Example 4-5 on page 90

#include <ppu_intrinsics.h>

uint64_t ea_ls_base; // effective address of LS base
uint32_t ls_offset; // offset (LS address) of SPE’s data buffer
uint64_t ea_ls_str; // effective address of SPE’s data buffer

#define BUFF_SIZE 256

int main(int argc, char *argv[])
{

uint32_t mbx;

// create SPE thread as shown in Example 4-3 on page 86

Note: The LS stores the SPU program’s instructions, program stack as well as
global data structure. The PPU code should therefore be cautious in
accessing the LS in order to prevent override those SPU program’s
components. The recommended way to do so is letting the SPU code manage
its LS space. Using any other communication technique, the SPU code can
send to the PPE the offset of the region in LS that the PPE may access.

Source code: The code of Example 4-24 is included in the additional material
that is provided with this book. See “Direct PPE access to LS of some SPE” on
page 614 for more information.
144 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// map SPE’s LS to main storage and retrieve its effective address
if((ea_ls_base = (uint64_t)(spe_ls_area_get(data.spe_ctx)))==NULL){

perror("Failed map LS to main storage"); exit(1);
}

// read from SPE the offset to the data buffer on the LS
while(spe_out_mbox_read(data.spe_ctx, &ls_offset, 1)<=0);

// calculate the effective address of the LS data buffer
ea_ls_str = ea_ls_base + ls_offset;

printf("ea_ls_base=0x%llx, ls_offset=0x%x\n",ea_ls_base, ls_offset);

// copy a data string to the LS
strcpy((char*)ea_ls_str, "Ofer Thaler is lemon’s lemons");

// make sure that writing the string to LS is complete before
// writing the mailbox notification
__lwsync();

// use mailbox to notify SPE that the data is ready
mbx = 1;
spe_in_mbox_write(data.spe_ctx, &mbx,1,1);

// wait SPE thread completion as shown in Example 4-3 on page 86

printf("PPE: Complete this educating (but useless) example\n");

return (0);
}

SPU initiated LS to LS DMA data transfer
This section contains a code example on how SPU program may access LS of
another SPE in the chip. The LS is mapped to an effective address in the main
storage which allows SPEs to use ordinary DMA operations to transfer data to
and from this LS.

It is highly recommended to prefer LS to LS data transfer whenever it fits the
application structure. This type of data transfer is very efficient because it goes
directly from SPE to SPE on the internal EIB bus without involving the main
memory interface. The internal bus have much higher bandwidth then the
memory interface (up to 10 times faster) and lower latency.
 Chapter 4. Cell BE programming 145

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The following steps may be taken to enable a group of SPEs to initiated DMA
transfer between each other local stores:

1. PPE maps the local stores to the main storage provides an effective address
pointer to the local stores base addresses.
Function spe_ls_area_get of libspe2.h header file implement this step as
described in SPE Runtime Management library document.

2. SPEs send to the PPE the offset compare to the LS base of the data to be
read or written.

3. PPE provides the SPEs the LS base addresses and the data offsets of other
SPEs. May be implemented using mailbox also.

4. SPEs access this region like regular DMA transfer between LS and effective
address on the main storage.

4.3.5 Facilitate random data access using SPU software cache

This chapter discuss the software cache1 library which is a part of the SDK
package and is based on the following principles:

� Provides a set of SPU functions calls to manage the data on the LS and to
transfer data between the LS and main storage.

� The library maintain a cache memory that is statically allocated on the LS.

� From the programer point of view accessing the data using the software
cache is similar to using ordinary load and store instructions, unlike the SPU’s
typical DMA interface for transferring data.

� For each data on the main storage that the program try to access, the cache
mechanism first check if it is already located in the cache (i.e. in LS). If it does,
the data is simply taken from there and by that saves the latency of bringing
the data from the main storage. Otherwise - the cache automatically and
transparent to the programer perform DMA transfer.

� the cache also provides asynchronous interface which, like double buffering,
enables the programmer to hide the memory access latency by overlapping
between data transfer and computation.

Source code: An code example that uses LS to LS data transfer to implement
a multistage pipeline programming mode is available as part the additional
material that is provided with this book. See “Multistage pipeline using LS to
LS DMA transfer” on page 614 for more information.

1 While in this chapter we call this library ‘software cache’, its full name is actually ‘SPU software
managed cache’. We use the shorted name for simplicity. The library specification is in Example
Library API Reference document.
146 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
The library has the following advantages over using standard SDK functions call
to activate the DMA transfer:

� Better performance in some applications2 can be achieved by taking
advantage of locality of reference and save redundant data transfers if the
corresponding data is already in LS.

� Use familiar load/store instructions with effective address which are easier to
program in most cases.

� Since the topology and behavior of the cache is configurable, can be easily
optimized to match data access patterns (unlike most hardware cache).

� Decreases the development time that is needed to port some application to
SPE.

However, since the software cache functions add some computation overhead
compare to ordinary DMA data transfers, in case the data access pattern is
sequential it is therefore preferred from performance point of view to use ordinary
DMA data transfer instead.

The chapter discuss the following issues:

� “Main features of the software cache” - summarizes the main features of the
software cache and how the programer may configure them.

� “Software cache operation modes” - discuss the two different modes that are
supported by the cache to perform either synchronous or asynchronous data
transfer.

� “Programing using software cache” - shows how to practically program using
the software cache include some code examples.

� “When and how to use the software cache” - provides some examples of
application where using the software cache is beneficial.

Main features of the software cache
Many features related to the software cache topology and behavior can be
configured by the programmer which creates an advantage to the software cache
over hardware cache in some cases. Configuring those features allows the

2 Chapter , “When and how to use the software cache” on page 153 provides some examples for
applications for which the software cache provides a good solution.

Note: The software cache activity is local to a single SPU, managing the data
access of such SPU program to the main storage and LS.
The software cache does not coordinate between data accesses of different
SPUs to main storage neither take care of coherency between them.
 Chapter 4. Cell BE programming 147

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
programer to iteratively adjust those cache attributes to what best suites the
specific application that currently runs in order to achieve optimal performance.

The main feature of the software cache are:

� Associativity: direct mapped, 2-way, or 4-way set associative.

� Access mode: read-only or read-write (the former has better performance).

� Cache line size3: 16 B to 4 KB (a power of two values)

� Number of lines: 1 to 4K lines (a power of two values)

� Data type: any valid data type (but all the cache has the same type).

In order to set those software cache attributes the programer should statically
add the corresponding definition to the program code. It means that the cache
attributes are taking into account during compilation of the SPE program (i.e. and
not on run time) when many of the cache structures and functions are
constructed.

In addition, the programer should assign a specific name to the software cache
which allows to define several separate caches in the same program. This may
be useful in case several different data structures are accessed by the program
and each structure has different attributes (e.g. some structures are read-only
and some are read-write, some are integers and some single precision)

By default, the software managed cache may use the entire range of the 32 tag
ID which are available for DMA transfers and doesn’t not take into account other
application uses of tag IDs. If a program also initiate DMA transfers (which
require separate tag IDs) the programmer should limit the number of tag ID used
by the software cache by explicitly configure range of tag IDs that the software
cache may use.

Software cache operation modes
The software cache support two different modes in which the programer may use
the cache once it was created. The two supported modes are ‘safe mode’ and
‘unsafe mode’ which are discussed in next two chapters.

Safe mode and synchronous interface
The safe interfaces provide the programmer with a set of functions to access
data simply by using the data’s effective address. The software cache library
performs the data transfer between LS and the main memory transparently to the
programer and manages the data that is already in LS.

3 Unless explicitly mentioned otherwise, we use the term ‘cache line’ for the entire chapter to define
the software cache line. While hardware cache line is fixed to 128 B, the software line can be
configured to any power of 2 value between 16B to 4 KB.
148 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
One of the advantage using this method is that the programmer doesn’t need to
worry the LS addresses and can simply use effective addressees like any other
PPE program. From programing point of view it is therefore very simple.

Data access function call using this mode are done synchronously and are
performed according to the following guidelines:

� If data is already in LS (in the cache) - a simple load from LS is performed.

� if data is not currently in LS - software cache function perform DMA between
LS and main storage and the program is blocked until the DMA is completed.

Such synchronous interface has the disadvantage of having a long latency when
the software cache needs to transfer data between LS and main storage.

Unsafe mode and asynchronous interface
The unsafe provides a more efficient means of accessing the LS compared to the
safe services. Software cache provides functions to map effective addresses to
LS addresses. The programer should later use those LS address to access the
data (unlike in safe mode where the effective addresses are used).

In this mode, like in safe mode, the software cache keeps tracking which data is
already in the LS and perform data transfer between LS and main storage only if
the data is not currently in LS.

One of the advantages when using this method, is that the programer may ask
the software cache to asynchronously prefetch the data by ‘touching’ it. The
programer can implement double buffering like data transfer, letting the software
cache start transferring the next data to be processed while the program can
continue performing computation on the current data.

The disadvantage of using this mode is that programming is slightly more
complex. The programmer should access the data using the LS address and use
software cache functions to lock the data in case the data is updated. For optimal
performance software cache functions for prefetching the data may be called.

Programing using software cache
This chapter demonstrate how the programmer can use the software cache in an
SPU program. The following programming techniques are shown in the next
sections:

� “Constructing a software cache” shows how to construct a software cache
and define its topology and behavior attributes.

� “Synchronous data access using safe mode” shows how to perform
synchronous data access using the library’s safe mode.
 Chapter 4. Cell BE programming 149

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� “Asynchronous data access using unsafe mode” shows how to perform
asynchronous data access using the library’s unsafe mode.

Constructing a software cache
In order to construct a software cache on a SPU program the programer should
define a couple of required attributes may define other optional attributes which
defines the cache topology and behavior. If the programer choose not to define
those attributes the library sets default values to those attributes. In either case it
is recommended to be familiar with all the attributes since their values may effect
the performance.

The next thing in the code following those definition must be the including of the
cache header file that is located at:
 /opt/cell/sdk/usr/spu/include/cache-api.h

Multiple caches may be defined in the same program by re-defining these
attributes and re-including the cache-api.h header file. The only restriction is that
the CACHE_NAME must be different for each cache.

Example 4-25 shows a code example of using the software cache. The example
shows how to:

� Construct a software cache named MY_CACHE and define both its mandatory
and optional attributes.

� Reserve tag ID to be used by the software cache.

Example 4-25 Constructing software cache

unsigned int tag_base; // should be defined before the cache

// Manadatory attributes
#define CACHE_NAME MY_CACHE // name of the cache
#define CACHED_TYPE int // type of basic element in cache

// Optional attributes
#define CACHE_TYPE CACHE_TYPE_RW // rw type of cache
#define CACHELINE_LOG2SIZE 7 // 2^7 = 128 bytes cache line
#define CACHE_LOG2NWAY 2 // 2^2 = 4-way cache
#define CACHE_LOG2NSETS 4 // 2^4 = 16 sets
#define CACHE_SET_TAGID(set) (tag_base + (set & 7)) // use 8 tag IDs

Source code: The code of examples that are presented in this section -
Example 4-25 through Example 4-27, is included in the additional material
that is provided with this book. See “SPU software managed cache” on
page 614 for more information.
150 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
#define CACHE_STATS//collect statistics
#include <cache-api.h>

int main(unsigned long long spu_id, unsigned long long parm)
{

// reserve 8 tags for the software cache
if((tag_base=mfc_multi_tag_reserve(8))==MFC_TAG_INVALID){

printf("ERROR: can't reserve a tags\n"); return 1;
}

// can use the cache here
...

Synchronous data access using safe mode
Once the caches was define, the programer can use its function calls to access
data. This chapter shows how to perform synchronous data access using the
safe mode.

Please notice that using this mode only the effective addresses are used to
access the main memory data and there is no need for the programmer to be
aware of the LS address to which the data was transferred (i.e. by the software
cache).

The code in Example 4-26 shows how to do the following:

� Use safe mode to perform synchronous data access.

� Flush the cache so the modified data will be written into main memory.

� Reads variables from main memory using their effective address, modify
them and write them back to memory using their effective address.

Example 4-26 Synchronous data access using safe mode

Take Example 4-25 code to construct the cache and initialize tag IDs

int a, b;
unsigned eaddr_a, eaddr_b;

// initialize effective addresses from PPU parameter
eaddr_a = parm;
eaddr_b = parm + sizeof(int);

// read a and b from effective address
a = cache_rd(MY_CACHE, eaddr_a);
 Chapter 4. Cell BE programming 151

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
b = cache_rd(MY_CACHE, eaddr_b);

// write values into cache (no write-through to main memory)
cache_wr(MY_CACHE, eaddr_b, a);
cache_wr(MY_CACHE, eaddr_a, b);

// at this point only the variables in LS are modified

// writes all modified (dirty) cache lines back to main memory
cache_flush(MY_CACHE);

...

Asynchronous data access using unsafe mode
This chapter shows how to perform asynchronous data access using the unsafe
mode.
In addition the chapter show how the programer can print cache statistics that
provide information about the cache activity. Those statistics may later be used to
tune the cache topology and behavior.

Please notice that using this mode the software cache maps the effective
address of the data in the main memory into local store. The programer should
later use the mapped local addresses to use the data.

The code in Example 4-27 shows how to do the following:

� Use unsafe mode to perform synchronous data access.

� Touch a variable so the cache will start asynchronous prefetching of this
variable from main memory to local store.

� Wait till the prefetched data is present in LS before modifying it.

� Flush the cache so the modified data will be written into main memory.

� Print software cache statistics.

Example 4-27 Asynchronous data access using unsafe mode

// Take the begining of the program from Example 4-26
...

int *a_ptr, *b_ptr;

// asynchronously touch data 'b' so cache will start to prefetch it
b_ptr = cache_touch(MY_CACHE, eaddr_b);
152 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// synchronously read data 'a' - blocked till data is present in LS
a_ptr = cache_rw(MY_CACHE, eaddr_a);

// MUST lock variables in LS since it will be modified.
// ensures that it will not cast out while the reference is held.
cache_lock(MY_CACHE,a_ptr);

// 'a' is locked in cache - can now safely be modified through ptr
*a_ptr = *a_ptr+10;

// blocking function that waits till 'b' is present in LS
cache_wait(MY_CACHE, b_ptr);

// need to lock 'b' since it will be updated
cache_lock(MY_CACHE,b_ptr);

// now 'b' is in cache - can now safely be modified through ptr
*b_ptr = *b_ptr+20;

// at this point only the variables in LS are modified

// writes all modified (dirty) cache lines back to main memory
cache_flush(MY_CACHE);

//print software cache statistics
cache_pr_stats(MY_CACHE);

mfc_multi_tag_release(tag_base, 8);
return (0);

}

When and how to use the software cache
In this chapter we discuss two main cases in which we recommend to use the
software cache. Each of the next four sections define one such case and also
discuss how it is recommended to use the software cache in this case (mainly
regarding which safe/unsafe mode should be selected).

Note: Using unsafe mode and performing asynchronous data access provide
better performance then using safe mode’s synchronous access. It depends
on the specific program if the performance improvement is indeed significant.
However, programing is slightly more complex using the unsafe mode.
 Chapter 4. Cell BE programming 153

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Case 1: First pass SPU implementation
This section refer to cases in which there is a need to develop a first pass
implementation of an application on the SPU in relatively short time. If the
programer use the software cache in safe mode the program is not significantly
different neither requires more programming compare to other single processor
program (e.g. program that runs on the PPE).

Case 2: Random data access with high cache hit rate
Some application has random or not predicted data access pattern which make it
hard to implement a simple and efficient double or multi buffering mechanism. In
this section we mainly refer to streaming applications which contain many
iterations, and in each iteration few blocks of data are read and are used as an
input for computing some output blocks. Examples for such applications include:

� The data blocks that are accessed by the program are scattered in memory4
and are relatively small.

� Indirect mechanism, in which the program should first read index vectors from
main storage and those vectors contains the location of the next blocks of
data that need t be processed.

� Only after computing the results of current iteration the program know which
blocks should be read next.

If those application also have high cache hit rate then the software cache can
provided better performance compare to other techniques. Such high rate may
be occur if blocks that are read in one iteration are likely to be used in the
sequential iterations. Or another similarly is if blocks that are read in some
iteration are close enough to the blocks of previous iteration (i.e. in the same
software cache line).

A high cache hit rate ensures that in most cases when a structure is accessed by
the program, the corresponding data is already in the LS so the software cache
will be smart enough to take the data form the LS instead of transferring it again
from main memory.

If the hit rate is significantly high, performing synchronous data access using safe
mode will provide good performance since waiting for data transfer completion
will not occur too often. However, in most case the programer may try to use
asynchronous data access of unsafe mode and measure whether performance
improvement is indeed achieved.

4 The intention is not that the data itself is necessarily scattered in memory, but each iteration of the
algorithm uses several different blocks which aren’t continuos in memory (scattered).
154 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
4.3.6 Automatic software caching on SPE

A simple way for an SPE to reference data on the main storage can be achieved
through an extension to the C language syntax which enables to share data in
this way between an SPE and the PPE or between SPEs. This extension makes
it easier to pass pointers so that the programer can use the PPE to perform
certain functions on behalf of the SPE. Similarly this mechanism can be used to
share data between all SPEs through variables in PPE address space.

This mechanism is based on the software cache safe mode mechanism that was
discussed in Chapter 4.3.5, “Facilitate random data access using SPU software
cache” on page 146 but provides a more user friendly interface to activate it.

In order to use this mechanism the programer should use the __ea address
space identifier when declaring a variable to indicate to the SPU compiler that a
memory reference is in the remote (or effective) address space, rather than in
local store. The compiler automatically generates code to DMA these data
objects into local store and caches references to these data objects.

This identifier can be used as an extra type qualifier like const or volatile in
type and variable declarations. The programer can qualify variable declarations
in this way, but not variable definitions.

Accessing an __ea variable from an SPU program creates a copy of this value in
the local storage of the SPU. Subsequent modifications to the value in main
storage are not automatically reflected in the copy of the value in local store. It is
the programer’s responsibility to ensure data coherence for __ea variables that
are accessed by both SPE and PPE programs.

The following are examples on how to use this variable:

// Variable declared on the PPU side.
extern __ea int ppe_variable;

// Can also be used in typedefs.
typedef __ea int ppe_int;

// SPU pointer variable point to memory in main storage address space
__ea int *ppe_pointer;

The SPU program should initiate this pointer to a valid effective address:

// Init the SPU pointer according to ‘ea_val’ which is a valid effective
// address that PPU forward to the SPU (e.g. using mailbox)
ppe_pointer = ea_val;
 Chapter 4. Cell BE programming 155

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
After the pointer was initiated, it can be used as an any SPU pointer while the
software cache will map it into DMA memory access, for example:

for (i = 0; i < size; i++) {
*ppe_pointer++ = i; // memory accesses use software cache

}

Another case if pointers in the SPE’s LS space that can be cast to pointers in the
main storage address space. Doing this transforms an LS address into an
equivalent address in the main storage (as the LS is mapped also to the main
storage domain). The following is an example.

int x;
__ea int *ppe_pointer_to_x = &x;

The pointer variable ppe_pointer_to_x can be passed to the PPE process by of
a mailbox and used by PPE code to access the variable x in the LS. The
programer should be aware or the ordering issues in case both the PPE access
this variable (from the main storage) and SPE access it (from the LS domain).
Similarly this pointer can be used to transfer data between on LS to another by
the SPEs.

GCC for the SPU provides the following command line options to control the
runtime behavior of programs that use the __ea extension. Many of these options
specify parameters for the software-managed cache. In combination, these
options cause GCC to link the program to a single software-managed cache
library that satisfies those options. Table 4-5 describes these options:

Table 4-5 GCC options for supporting main storage access from the SPE

Option Description

-mea32 Generate code to access variables in 32-bit PPU objects. The
compiler defines a preprocessor macro __EA32__ to allow
applications to detect the use of this option. This is the
default.

-mea64 Generate code to access variables in 64-bit PPU objects. The
compiler defines a preprocessor macro __EA64__ to allow
applications to detect the use of this option.

-mcache-size=X Specify an X KB cache size (X=8, 16, 32, 64 or 128)

-matomic-updates Use DMA atomic updates when flushing a cache line back to
PPU memory. This is the default.

-mno-atomic-updates This negates the -matomic-updates option.
156 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
A complete example using __ea qualifiers to implement a quick sort algorithm on
the SPU accessing PPE memory can be found in the SDK’s
/opt/cell/sdk/src/examples/ppe_address_space directory.

4.3.7 Efficient data transfers by overlapping DMA and computation

One of the unique features of the Cell BE architecture is the DMA engines in
each of the SPEs which enables asynchronous data transfer. In this chapter we
discuss fundamental techniques to achieve overlapping between data transfers
and computation using the DMA engines. This is an important topic as it enables
to dramatically increase the performance of many applications.

Motivation
Consider a simple SPU program that repeating the following steps:

1. DMA incoming data from main storage to LS buffer B.

2. Wait for the transfer to complete.

3. Compute on data in buffer B.

This sequence is not efficient because it waste a lot of time waiting for the
completion of the DMA transfer and has no overlap between data transfer and
computation. The time graph for such scenario is illustrate in Figure 4-2:

Figure 4-2 Serial computation and data transfer

Double buffering
We can significantly speed up the process described above by allocating two
buffers, B0 and B1, and overlapping computation on one buffer with data transfer
in the other. This technique is called double buffering whose flow diagram
scheme is shown in Figure 4-3:
 Chapter 4. Cell BE programming 157

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 4-3 Double buffering scheme

Double buffering is a private class of multibuffering, which extends this idea
using multiple buffers in a circular queue instead of only the two buffers of double
buffering. While In most cases using the two buffers in the double buffering case
are enough to guarantee overlapping between computation and data transfer.

However, in case the software still need to wait for completion of the data
transfer, the programmer may consider extending the number of buffers and
move to multibuffering scheme. Obviously this requires more memory on the LS
which may be a problem in some cases. The multibuffering technique is
described in “Multibuffering” on page 163.

Below is an example code for double buffering mechanism. Example 4-28 is the
header file which is common to the SPE and PPE side, Example 4-29 is the SPU
code that contains the double buffering mechanism, and Example 4-30 is the
corresponding PPU code.

The code also demonstrate the use of barrier on the SPE side to ensure that all
the output data that SPE updates in memory is written into memory before PPE
tries to read it.

Example 4-28 Double buffering code - common header file

// common.h file ---

#define ELEM_PER_BLOCK 1024 // # of elements to process by the SPE
#define NUM_OF_ELEM 2048*ELEM_PER_BLOCK // total # of elements

Source code: The code of Example 4-28 through Example 4-30, is included
in the additional material that is provided with this book. See “Double
buffering” on page 615 for more information.
158 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
#define STATUS_DONE 1234567
#define STATUS_NO_DONE ~(STATUS_DONE)

typedef struct {
uint32_t *in_data;
uint32_t *out_data;
uint32_t *status;
int size;

} parm_context;

Example 4-29 Double buffering mechanism - SPU code

#include <spu_intrinsics.h>
#include <spu_mfcio.h>
#include "common.h"

// Macro for waiting to completion of DMA group related to input tag
#define waitag(t) mfc_write_tag_mask(1<<t); mfc_read_tag_status_all();

// Local store structures and buffers.
volatile parm_context ctx __attribute__ ((aligned(16)));;
volatile uint32_t ls_in_data[2][ELEM_PER_BLOCK] __attribute__
((aligned(128)));
volatile uint32_t ls_out_data[2][ELEM_PER_BLOCK] __attribute__
((aligned(128)));
volatile uint32_t status __attribute__ ((aligned(128)));

uint32_t tag_id[2];

int main(unsigned long long spu_id, unsigned long long argv)
{

int buf, nxt_buf, cnt, nxt_cnt, left, i;
volatile uint32_t *in_data, *nxt_in_data, *out_data, *nxt_out_data;

tag_id[0] = mfc_tag_reserve();
tag_id[1] = mfc_tag_reserve();

// Fetch the parameter context, waiting for it to complete.
mfc_get((void*)(&ctx), (uint32_t)argv, sizeof(parm_context),

tag_id[0], 0, 0);
waitag(tag_id[0]);

// Init parameters
in_data = ctx.in_data;
 Chapter 4. Cell BE programming 159

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
out_data = ctx.out_data;
left = ctx.size;
cnt = (left<ELEM_PER_BLOCK) ? left : ELEM_PER_BLOCK;

// Prefetch first buffer of input data.
buf = 0;
mfc_getb((void *)(ls_in_data), (uint32_t)(in_data),

 cnt*sizeof(uint32_t), tag_id[0], 0, 0);

while (cnt < left) {
left -= SPU_Mbox_Statnt;

nxt_in_data = in_data + cnt;
nxt_out_data = out_data + cnt;
nxt_cnt = (left<ELEM_PER_BLOCK) ? left : ELEM_PER_BLOCK;

// Prefetch next buffer so it is available for next iteration.
// IMPORTANT: Put barrier so that we don't GET data before
// the previous iteration's data is PUT.
nxt_buf = buf^1;

mfc_getb((void*)(&ls_in_data[nxt_buf][0]),
(uint32_t)(nxt_in_data) , nxt_cnt*sizeof(uint32_t),
tag_id[nxt_buf], 0, 0);

// Wait for previously prefetched buffer
waitag(tag_id[buf]);

for (i=0; i<ELEM_PER_BLOCK; i++){
ls_out_data[buf][i] = ~(ls_in_data[buf][i]);

}

// Put the output buffer back into main storage
mfc_put((void*)(&ls_out_data[buf][0]), (uint32_t)(out_data),

cnt*sizeof(uint32_t),tag_id[buf],0,0);

// Advance parameters for next iteration
in_data = nxt_in_data;
out_data = nxt_out_data;

buf = nxt_buf;
cnt = nxt_cnt;

 }

 // Wait for previously prefetched buffer
160 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
 waitag(tag_id[buf]);

 // process_buffer
 for (i=0; i<ELEM_PER_BLOCK; i++){

ls_out_data[buf][i] = ~(ls_in_data[buf][i]);
 }
 // Put the output buffer back into main storage
 // Barrier to ensure all data is written to memory before status
mfc_putb((void*)(&ls_out_data[buf][0]), (uint32_t)(out_data),

cnt*sizeof(uint32_t), tag_id[buf],0,0);

// Wait for DMAs to complete
 waitag(tag_id[buf]);

 // Update status in memory so PPE knows that all data is in place
 status = STATUS_DONE;

 mfc_put((void*)&status, (uint32_t)(ctx.status), sizeof(uint32_t),
 tag_id[buf],0,0);
 waitag(tag_id[buf]);

 mfc_tag_release(tag_id[0]);
 mfc_tag_release(tag_id[1]);

return (0);

}

Example 4-30 Double buffering mechanism - PPU code

#include <libspe2.h>
#include <cbe_mfc.h>
#include <pthread.h>

#include "common.h"

volatile parm_context ctx __attribute__ ((aligned(16)));
volatile uint32_t in_data[NUM_OF_ELEM] __attribute__ ((aligned(128)));
volatile uint32_t out_data[NUM_OF_ELEM] __attribute__ ((aligned(128)));

volatile uint32_t status __attribute__ ((aligned(128)));

// Take ‘spu_data_t’ stucture and ‘spu_pthread’ function from
// Example 4-5 on page 90
 Chapter 4. Cell BE programming 161

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
int main(int argc, char *argv[])
{

spe_program_handle_t *program;
int i, error;

status = STATUS_NO_DONE;

// Init input buffer and zero output buffer
for (i=0; i<NUM_OF_ELEM; i++){

in_data[i] = i;
out_data[i] = 0;

}

ctx.in_data = in_data;
ctx.out_data = out_data;
ctx.size = NUM_OF_ELEM;
ctx.status = &status;

data.argp = &ctx;

// ... Omitted section:
// creates SPE contexts, load the program to the local stores,
// run the SPE threads, and waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material).

// This subject of is also described in 4.1.2, “Task parallelism and
managing SPE threads”

// Wait for SPE data to be written into memory
while (status != STATUS_DONE);

for (i=0, error=0; i<NUM_OF_ELEM; i++){
if (in_data[i] != (~out_data[i])){

printf("ERROR: wrong output at index %d\n", i);
error=1; break;

}
}
if(error){ printf(")PPE: program was completed with error\n");
}else{ printf(")PPE: program was completed successfully\n"); }

return 0;
}

162 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Multibuffering
Data buffering can be extended to use more than two buffers if there is no
complete overlapping between computation and data transfer, causing the
software to significantly wait to the completion of the DMA transfers. Extending
the number of buffer will obviously extend the amount of memory needed to store
those buffer, so the programmer should guarantees that there is enough space is
available in the LS for doing so.

Building on similar concepts to double buffering, the multibuffering uses multiple
buffers in a circular queue. Example 4-31 show a pseudo code of a multibuffering
scheme:

Example 4-31 Multibuffering buffering scheme

1. Allocate multiple LS buffers, B0..Bn.
2. Initiate transfers for buffers B0..Bn. For each buffer Bi, apply tag

group identifier i to transfers involving that buffer.
3. Beginning with B0 and moving through each of the buffers in round

robin fashion:
- Set tag group mask to include only tag i, and request conditional

tag status update.
- Compute on Bi.
- Initiate the next transfer on Bi.

This algorithm waits for and processes each Bi in round-robin order, regardless
of when the transfers complete with respect to one another. In this regard, the
algorithm uses a strongly ordered transfer model. Strongly ordered transfers are
useful when the data must be processed in a known order as happens in many
streaming model applications.

4.3.8 Improving page hit ratio using huge pages

In this chapter we discuss how the programer may use huge pages in order to
enhance the data access and performance of a given application. The chapter
contain the commands required for configuring huge pages on a system and also
short code example on how using the huge pages within a program.

Another code example which also shows how to use huge pages with NUMA API
is presented in Example 4-34 on page 170.
 Chapter 4. Cell BE programming 163

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The huge page support on the SDK aim to address the issue of reducing the
latency of address translation mechanism on the SPEs. This mechanism is
implemented using 256 entry translation lookaside buffers (TLBs) which reside
on the on the SPEs and store the information regarding address translation. The
operating system on the PPE is responsible to manage those buffers.

The following process runs whenever the SPE try to access some data on the
main storage:

1. SPU code initiate MFC DMA command for accessing data on main storage
and provide the effective address of the data in main storage.

2. SPE SMM5 checks if the effective address falls within one of the TLB entries:

– If exists (page hit): use this entry to translate to real address and exit the
translation process.

– If not (page miss): continue to step 3.

3. SPU halts program execution and generates an external interrupt to the PPE.

4. Operating systems on the PPE allocate the page and writes the require
information into the TLB of this particular SPE using memory access to the
problem state of this SPE.

5. PPE signal the SPE that translation is complete.

6. MFC starts transferring the data and SPU code continue running.

This mechanism causes the SPU program to halt until the translation process is
complete which may take significant amount of time. This may be not efficient in
case the process repeats itself many times during the program execution.

However, the process is taken place only for the first time a page is accessed,
unless and the translation information in the TLB is replaced by information of
other pages which are later accessed.

Hence, using very large pages may significantly improve the performance in
cases where the application operates on large data sets. In those cases, using
very large pages can significantly reduce the number of time this process occurs
(only once for each page).

The SDK supports the huge TLB file system, which allows the programmer to
reserve 16 MB huge pages of pinned, contiguous memory. For example, if 50
pages are configured, it provides 600 MB of pinned contiguous memory. In the
worst case where each SPE accesses the entire memory range, a TLB miss will
occur only once for each of the 50 pages since the TLB will have enough room to
store all those pages. For comparison, the size of ordinary pages on the
operating system that runs on Cell BE is either 4 KB or 64 KB.

5 SMM (synergistic memory management) unit is responsible for address translation in the SPE.
164 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Few issues related to the huge pages mechanism:

� Configuring the huge pages is not related to a specific program but to the
operating system.

� Any program that runs on the system may use the huge pages by explicitly
mapping data buffers on the corresponding huge files.

� The area that is used by the huge pages is pinned in the system memory, so
it equivalently reduces the amount of system memory bytes available for other
purposes (i.e. any memory allocation that doesn’t explicitly use huge pages).

In order to configure huge pages, a ‘root’ user needs to execute a set of
commands. Those commands may be executed at any time and create memory
mapped files at /huge/ path that will store the huge pages content.

The first part of Example 4-32 shows the commands required to set 20 huge
pages which provided 320 MB of memory. The last four commands in this part
(groupadd, usermod, chgrp, chmod commands) provide permission to the user the
huge pages files. Without those executing those commands, only the root user
will later be able to access those files and use the huge pages.
The second part of this example demonstrates how to verify if the huge pages
were successfully allocated.

However, in many cases the programmer may have difficulties configuring
adequate huge pages usually because the memory is fragmented. Rebooting the
system is required in those cases.

The alternative and recommended way is to add the first part of the command
sequence shown Example 4-32 to the startup initialization script, such as
/etc/rc.d/rc.sysinit, so that the huge TLB file system is configured during the
system boot.

Some programmer may use huge pages while also using NUMA (Non-Uniform
Memory Architecture) to restrict memory allocation to a specific node (as
described in 4.3.9, “Improving memory access using NUMA” on page 168). The
number of available huge pages for the specific node in this case is half of what is
reported in /proc/meminfo. This is because on Cell based blade systems the
huge pages are equally distributed across both memory nodes.

Note: It is recommended to use huge pages in cases where the application
uses large data sets. This can significantly improve the performance in many
cases and usually it requires only minor changes in the software.
The number of pages that the programmer should allocated depends on the
specific application and that way data is partitioned on this application.
 Chapter 4. Cell BE programming 165

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 4-32 Configuring huge pages

> Part 1: Configuring huge pages:

mkdir -p /huge
echo 20 > /proc/sys/vm/nr_hugepages
mount -t hugetlbfs nodev /huge
groupadd hugetlb
usermod -a -G hugetlb <user>
chgrp -R hugetlb /huge
chmod -R g+w /huge

> Part 2: Verify that huge pages are successfully configured:

cat /proc/meminfo

The following output should be printed:
MemTotal: 1010168 kB
MemFree: 155276 kB
. . .
HugePages_Total: 20
HugePages_Free: 20
Hugepagesize: 16384 kB

Once the huge pages are configured, any application may allocate data on the
corresponding memory mapped file. This can be done by explicitly invoking
mmap of a /huge file of the specified size.

Example 4-33 shows a code example which opens a huge page file using the
open function and allocates 32 MB of private huge paged memory using mmap
function (32 MB indicated by the 0x2000000 parameter of mmap function).

Source code: The code of Example 4-33 is included in the additional material
that is provided with this book. See “Huge pages” on page 615 for more
information.

Note: The mmap function succeeds even if there are insufficient huge pages to
satisfy the request. On first access to a page that can not be backed by huge
TLB file system, the application process is terminated and the message
“killed” is emitted. The programmer must therefore ensure that the number of
huge pages requested does not exceed the number available.
166 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Another useful standard Linux library that handles the access to huge pages
from the program code is libhugetlbfs6. This library provides an API for
dynamically managing the huge pages in a way which is very similar to working
with ordinary pages.

Example 4-33 PPU code for using huge pages

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{

void *ptr;
int fmem;
char *mem_file = "/huge/myfile.bin";

// open a huge pages file
if ((fmem = open(mem_file, O_CREAT|O_RDWR, 0755))==-1){

perror("ERROR: Can't open huge pages file"); exit(1);
}
remove(mem_file);

// map 32MB (0x2000000) huge pages file to main sotrage
// get pointer to effective address
ptr = mmap(0, 0x2000000, PROT_READ|PROT_WRITE, MAP_PRIVATE,fmem,0);
if(ptr==NULL){

perror("ERROR: Can't map huge pages"); exit(1);
}

printf("Map huge pages to 0x%llx\n",(unsigned long long int)ptr);

// now we can use ‘ptr’ effective addr. pointer to store our data
// for example forward to the SPEs to use it

return (0);
}

6 See http://sourceforge.net/projects/libhugetlbfs
 Chapter 4. Cell BE programming 167

http://sourceforge.net/projects/libhugetlbfs

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
4.3.9 Improving memory access using NUMA

The first two cell based blade system, the BladeCenter QS20 and BladeCenter
QS21 are both Non-Uniform Memory Architecture (NUMA) systems, which
consist of two Cell BE processors, each with its own system memory. The two
processors are interconnected through a FlexIO interface using the fully coherent
BIF protocol.

Since coherent access is guaranteed, from software point of view a program that
runs on either of the two processors can coherently access either of the two
attached memories. The programer may therefore can choose to ignore the
NUMA architecture having the data stored in two different memories and
program as if the program runs on an SMP system. However, in many cases
doing so will results in performance which are far from optimal.

The bandwidth between processor elements or processor elements and memory
is greater if accesses are local and do not have to communicate across the
FlexIO. In addition, the access latency is slightly higher on node 1 (Cell BE 1) as
compared to node 0 (Cell BE 0) regardless of whether they are local or non-local.

To maximize the performance of a single application, the programmer can
specify CPU and memory binding to either reduce FlexIO traffic or exploit the
aggregated bandwidth of the memory available on both nodes.

Linux provide NUMA API7 to address this issue and to enable allocating memory
on specific node. For doing so, the programmer may use the NUMA API in the
following way:

� Use NUMA API to allocate memory on the same processor on the current
thread runs.

� Use NUMA API to guarantee that this thread keep running on a specific
processor (node affinity).

The following chapters discuss the two separate interfaces that Linux provides to
control and monitor the NUMA policy and also some program consideration
regarding NUMA:

Note: Applications that are memory bandwidth-limited should consider
allocating memory on both nodes and exploit the aggregated memory
bandwidth. The optimal case is in which the data and tasks execution can be
perfectly divided between nodes (processor on node 0 primarily access
memory on this node, and the same for node 1)

7 A NUMA API for LINUX, Technical Linux Whitepaper
168 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� Chapter , “NUMA program level API (libnuma library)” on page 169 discuss
the ‘libnuma’ shared library which provides an application level API.

� Chapter , “NUMA command utility (numactl)” on page 173 discuss the
‘numactl’ command utility.

� Chapter , “NUMA policy considerations” on page 173 present the main
consideration the programer should take when deciding if and how to use
NUMA.

Once NUMA was configured and the application completed its execution, the
programer can use NUMA’s numastat command to retrieve some statistics
regarding the status of NUMA allocation and data access on each of the nodes.
This information can be used to estimate the effectiveness of the current NUMA
configuration.

NUMA program level API (libnuma library)
Linux provides s shared library name ‘libnuma’ that implements set of API for
controlling and tracing the NUMA policy. The library functional calls can be called
from any application level program which allow programing flexibility and also
have the advantage of creating self contained program that manage the NUMA
policy unique to them.

In order to use the NUMA API the programer should do the following:

� Include the numa.h header file in the source code.

� Add the -lnuma flag to the compilation command in order to link the library to
the application.

Additional information is available in the man pages of this library that can be
retrieved using the man numa command.

A suggested method for using NUMA is described through Example 4-34 which
shows a corresponding PPU code. The example is inspired by the SDK’s matrix
multiply demo which is in /opt/cell/sdk/src//demos/matrix_mul directory.

Please note that NUMA terminology uses the term ‘node’ that in the example
below refer to as one Cell BE processor (having two of those on a Cell BE blade).

The main principles behind the NUMA example that we present are:

1. Use NUMA API to allocate two memory continuos memory regions - one on
each of the nodes’ memories.

2. The allocation is done using huge pages to minimize SPE’s page miss. Notice
that the huge pages are equally distributed across both memory nodes on a
Cell BE based blade systems. Huge pages are further discussed in
Chapter 4.3.8, “Improving page hit ratio using huge pages” on page 163
 Chapter 4. Cell BE programming 169

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
3. Duplicate the input data structures (matrix and vector in this case) by initiating
two different copies - one on each of the regions that were allocated in step 1.

4. Use NUMA to split the SPE threads so each half of the threads is initiate and
runs on a separate node.

5. The threads that runs on node number 0 are assigned to work on the memory
region that was allocated on this node, and node 1’s threads are assigned to
work on node 1’s memory region.

In this example there was a need to duplicate the input data since the entire input
matrix is needed for any of the threads. While this is not the optimal solution. in
many other applications there is no need to do so and the input data can simply
be divided between the two nodes (e.g. when adding two matrixes one half of
those matrixes can be located on one node’s memory and second half on the
other node’s memory).

Two more comments regarding combining NUMA API with other SDK’s functions:

� SDK’s spe_cpu_info_get function can be use to retrieve the number of
physical Cell BE processors and in specific number of physical SPEs that are
currently available. Using this function is demonstrated in Example 4-34.

� SDK’s SPEs affinity mechanism may be used in conjunction with NUMA API
in order to add affinity between SPEs to the SPEs to near memory binding
that is provided by NUMA. The SPE affinity relevant mainly when there is
significant SPE to SPE communication and is discussed in Chapter 4.1.3,
“Creating SPEs affinity using gang” on page 93.

Example 4-34 Code example for using NUMA

#include <numa.h>

char *mem_file = "/huge/matrix_mul.bin";
char *mem_addr0=NULL, *mem_addr1=NULL;

#define MAX_SPUS16
#define HUGE_PAGE_SIZE(size_t)(16*1024*1024)

// main===
int main(int argc, char *argv[])
{

int i, nodes, phys_spus, spus;
unsigned int offset0, offset1;
nodemask_t mask0, mask1;

// calculate the number of SPU for the program
170 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
spus = <number of required SPUs>;

phys_spus = spe_cpu_info_get(SPE_COUNT_PHYSICAL_SPES, -1);

if (spus > phys_spus) spus = phys_spus;

// check NUMA availability and intiate NUMA data structures
if (numa_available() >= 0) {

nodes = numa_max_node() + 1;

if (nodes > 1){
// Set NUMA masks; mask0 for node # 0, mask1 for node # 1
nodemask_zero(&mask0);
nodemask_set(&mask0, 0);
nodemask_zero(&mask1);
nodemask_set(&mask1, 1);

}else{
printf("WARNING: Can't use NUMA - insufficient # of nodes\n");

}
}else{

printf("WARNING: Can't use NUMA - numa is not available.\n");
}

// calculate offset on the huge pages for input buffers
offset0 = <offset for node 0's buffer>
offset1 = <offset for node 1's buffer>

// allocate inout buffers - mem_addr0 on node 0, mem_addr1 on node 1
mem_addr0 = allocate_buffer(offset0, &mask0);
mem_addr1 = allocate_buffer(offset1, &mask1);

// Initialize the data in mem_addr0 and mem_addr1

// Create each of the SPU threads
for (i=0; i<spus; i++){

if (i < spus/2) {
// lower half of the SPE threads uses input buffer of ndoe 0
threads[i].input_buffer = mem_addr0;

// binds the current thread and its children to node 0
// they will only run on the CPUs of node 0 and only be able
// to allocate memory from this node
numa_bind(&mask0);
 Chapter 4. Cell BE programming 171

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
}else{
// similarly - second half use buffer of node 1
threads[i].input_buffer = mem_addr1;
numa_bind(&mask1);

}

// create SPE thread - will be binded to run only on
// NUMA's specified node
spe_context_create(...);
spe_program_load(...);
pthread_create(...);

}

for (i=0; i<spus; i++) {
pthread_join(...); spe_context_destroy(...);

}
}

// alocate_buffer===
// allocate a cacheline aligned memory buffer from huge pages or the
char * allocate_buffer(size_t size, nodemask_t *mask)
{

char *addr;
int fmem = -1;
size_t huge_size;

// sets memory allocation mask. The thread will only allocate memory
// from the nodes set in 'mask'.
if (mask) {

numa_set_membind(mask);
}

// map huge pages to memory
if ((fmem=open (mem_file, O_CREAT|O_RDWR, 0755))==-1) {

printf("WARNING: unable to open file (errno=%d).\n", errno);
exit(1);

}
remove(mem_file);
huge_size = (size + HUGE_PAGE_SIZE-1) & ~(HUGE_PAGE_SIZE-1);

addr=(char*)mmap(0, huge_size, PROT_READ|PROT_WRITE,
MAP_PRIVATE,fmem,0);

if (addr==MAP_FAILED) {
printf("ERROR: unable to mmap file (errno=%d).\n", errno);
172 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
close (fmem); exit(1);
}

// Perform a memset to ensure the memory binding.
if (mask) {

(void*)memset(addr, 0, size);
}
return addr;

}

NUMA command utility (numactl)
Linux provide a command utility names ’numactl’ that enable control and trace on
the NUMA policy. The programer may combine the ‘numctl’ commands in a script
that execute the appropriate those commands and later runs the application.

For example, the following command invokes a program that allocates all CPUs
on node 0 with a preferred memory allocation on node 0:

numactl --cpunodebind=0 --preferred=0 ./matrix_mul

A shorter version command that perform the same action is:

numactl -c 0 -m 0 ./matrix_mul

To read the man pages of this command run the man numactl command.

One of the advantages of using this method is that there is no need to recompile
the program to run with different setting of NUMA configuration. On the other
hand, using the command utility enables less flexibility to the programer compare
to calling the API of ‘libnuma’ library from the program itself.

Controlling NUMA policy using the command utility is usually sufficient in cases
where all SPU threads can run on a single Cell BE processor. If more then one
processor is needed (usually because more then 8 threads are needed) and the
application required dynamic allocation of data, it is usually hard to use only the
command utility. Using ‘libnuma’ library API from the program itself is more
appropriate and allow greater flexibility in this case.

NUMA policy considerations
Choosing an optimal NUMA policy depends upon the application’s data access
patterns and communication methods. We suggest the following guidelines when
the programmer need to decide if using NUMA commands or API is needed and
which NUMA policy should be implemented:
 Chapter 4. Cell BE programming 173

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� Applications that are memory bandwidth-limited should consider allocating
memory on both nodes and exploit the aggregated memory bandwidth. If
possible, partition application data such that CPUs on node 0 primarily
access memory on node 0 only. Likewise, CPUs on node 1 primarily access
memory on node 1 only.

� The programmer should choose a NUMA policy compatible with typical
system usage patterns. For example, if the multiple applications are expected
to run simultaneously, the programmer should not bind all CPUs to a single
node forcing an overcommit scenario that leaves one of the nodes idle. In this
case, it is recommended not to constrain the Linux scheduler with any specific
bindings.

� If the access patterns are not predictable and SPE are allocated on both
nodes, then using a interleaved memory policy will improve overall memory
throughput.

� In Cell BE system node 0 usually have better memory access performance so
it should be preferred over node 1 if possible.

� The programmer should consider the operating system services when
choosing the NUMA policy. For example, if the application incorporates
extensive GbE networking communications, the TCP stack will consume
some PPU resources on node 0 for eth0. In this case. In those specific cases,
it may be advisable to bind the application to node 1.

� The programmer should avoid over committing CPU resources. Context
switching of SPE threads is not instantaneous and the scheduler quanta for
SPE’s threads is relatively large. Scheduling overhead is minimized when
avoiding over-committing resources.

4.4 Inter-processor communication

The Cell BE contains several mechanisms that enable communication between
the PPE and SPEs and between the SPEs to themselves. These mechanisms
are mainly implemented by the MFCs (one instance of MFC exists in every of the
eight SPEs). The code that runs on an SPU may interact with the MFC of the
associated SPE using the channels interface while PPU code or code that runs
on the other SPUs may interact with this MFC using the MMIO interface.

The following chapters discuss four of the primary communication mechanisms
between the PPE and SPEs are:

� 4.4.1, “Mailboxes” on page 176 discuss the mailbox mechanism which allows
to send 32-bits messages to and from the SPE. Should be used mainly to
control communication between an SPE and the PPE or between SPEs to
themselves. other devices. Mailboxes hold
174 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� 4.4.2, “Signal notification” on page 187 discuss the signal notifications
(signaling) mechanism which allows to send 32-bits messages to an SPE.
Used for control communication from the PPE or other SPEs to another SPE.
Can be configured for one-sender-to-one-receiver signalling or
many-senders-to-one-receiver signalling.

� 4.4.3, “SPE events” on page 199 discuss how event may be used to create
asynchronous communication between the processors.

� 4.4.4, “Using atomic unit and the atomic cache” on page 206 discuss how to
implement a fast shared data structure for inter-processor communication
using the Atomic Unit and the Atomic Cache hardware mechanism.

The MFC interfaces and the different programing methods in which a programs
may interact with the MFC are described in Chapter 4.2, “Storage domains,
channels and MMIO interfaces” on page 95. In our chapter we use only the MFC
functions method in order interact with the MFC.

Another mechanism that can be used to apply inter-processor communication is
DMA data transfers. For example, and SPE may compute an output data and use
DMA to transfer this data to the main memory. Later the SPE can notify the PPE
that the data is ready using additional DMA to a notification variable in the
memory which the PPE polls. The available data transfer mechanisms and how
the programmer may initiate them are described in Chapter 4.3, “Data transfer”
on page 109.

Both mailboxes and signals are mechanism that may be use for program control
and sending short messages between the different processors. While those
mechanisms have a lot in common, there are some differences between the two
mechanisms. As general, mailbox implements a queue for sending separate
32-bits messages, while signaling is more similar to interrupts which are may be
accumulated when being written and are reset when being read. Table 4-6
compares between the two mechanisms.

Table 4-6 Comparison between mailboxes and signals

Attribute Mailboxes Signals

Direction One inbound, two outbound Two inbound (toward the SPE).

Interrupts One mailbox can interrupt PPE.
Two mailbox-available event
interrupts.

Two signal-notification event
interrupts.

Message
accumulation

No Yes, using logical OR mode
(many-to-one). Other alternative
is overwrite mode (one-to-one),
 Chapter 4. Cell BE programming 175

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
4.4.1 Mailboxes

This chapter discuss the mailbox mechanism which is an easy to use mechanism
that enables to send 32-bits messages between the different processors on the
chip (PPE and SPEs).

The following chapters discuss the following topics:

� “Mailbox overview” on page 176 provides an overview on this mechanism and
its hardware implementation.

� “Programing interface for accessing mailboxes” on page 179 describes the
main software interfaces for a SPU or PPU program to use the mailbox
mechanism.

� “Blocking versus non-blocking access to the mailboxes” on page 180
discusses how the programer may implement either blocking or nonblocking
access to the mailbox on either a SPU or PPU program.

� “Practical scenarios and code examples for using mailboxes” on page 181
provides some practical scenarios and techniques for using the mailboxes
and also emphasize some code examples.

Please notice that monitoring the mailbox status may be done asynchronously
using events that are generated whenever a new mailbox was written or read by
external source (e.g. PPE or other SPE). While this chapter do not discuss the
mailbox events, Chapter 4.4.3, “SPE events” on page 199 discuss the events
mechanism in general.

Mailbox overview
Mailboxes is an easy to use mechanism that enables the software to exchange
32-bit messages between the local SPU and the PPE or local SPU and other

Unique SPU
commands

No; programs use channel reads
and writes.

Yes, ‘sndsig’, ‘sndsigf’, and
‘sndsigb’ enables and SPU to
send signals to another SPE.

Destructive
read

Reading a mailbox consumes an
entry.

Reading a channel resets all 32
bits to ‘0’.

Channel
count

Indicates number of available
entries.

Indicates waiting signal.

Number Three mailboxes: 4-deep
incoming, 1-deep outgoing,
1-deep outgoing with interrupt.

Two signal registers.

Attribute Mailboxes Signals
176 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
SPEs8. The term local SPU stands for the SPU of the same SPE where the
mailbox is located. The mailboxes are access from the local SPU using the
channel interface and from the PPE or other SPEs using the MMIO interface.

Mailbox mechanism is similar in some sense to the signaling mechanism.
Table 4-6 on page 175 displays a comparison between the two mechanism.

The MFC of each SPE contains three mailboxes divided into two categories:

1. Outbound mailboxes: Two mailboxes that are used to send messages from
the local SPE to the PPE or other SPEs:

a. SPU Write Outbound mailbox (SPU_WrOutMbox)

b. SPU Write Outbound Interrupt mailbox (SPU_WrOutIntrMbox)

2. Inbound mailbox: One mailbox that is used to send messages to the local
SPE from the PPE or other SPEs:

c. SPU Read Inbound mailbox (SPU_RdInMbox)

The main attributes of those mailboxes and the differences between outbound
mailboxes and inbound mailbox are summarized in Table 4-7. This table also
describes the differences between accessing the mailboxes from the SPU
programs and accessing them from the PPU other SPEs programs.

8 Mailboxes can also be used as a communications mechanism between SPEs. This is accomplished
by an SPE DMAing data into the other SPE’s mailbox using the effective addressed problem state
mapping.

Note: Local SPU access to the mailbox are internal to that SPE and have very
small latency (<=6 cycles for non blocking access). On the other hand, PPE or
other SPEs access to the mailbox are done through the local memory EIB
bus. The result is larger latency and also overloading the bus bandwidth
(especially when polling to wait for mailbox to become available).
 Chapter 4. Cell BE programming 177

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Table 4-7 Attributes of inbound and outbound mailboxes

Attribute Inbound mailboxes Outbound mailboxes

Direction Messages from the PPE or
another SPEs to the local SPE.

Messages from the local SPE to
the PPE or another SPEs.

Read/Write � Local SPE reads.
� PPEb writes.

� Local SPE write.
� PPEb reads.

mailboxes 1 2

entries 4 1

Countera

a. This per-mailbox counter may be read by local SPU program using a separate
channel or by the PPU or other SPUs program using separate MMIO register.

Counts number of valid entries:
� Decremented when SPU

program reads from mailbox.
� Incremented when PPU

programb writes to mailbox.

Counts number of empty entries:
� Decremented when SPU

program writes to mailbox .
� Incremented when PPU

programb reads from
mailbox.

Buffer A first-in-first-out (FIFO) queue -
SPU program reads the oldest
data first.

A first-in-first-out (FIFO) queue -
SPU program reads the oldest
data first.

Overrun PPU programb writing new data
when buffer is full overrun the
last entry in this fifo.

SPU program writing new data
when buffer is full blocks till there
is available space in the buffer
(e.g PPEb reads from the
mailbox).

Blocking � SPU program blocks when
trying to read an empty
buffer and will continues only
when there is a valid entry
(e.g PPEb write to the
mailbox).

� PPU programb never block.
Writing to mailbox when full
overide the last entry and
the PPU immediately
continues.

b. Or other SPE that access the mailbox of the local SPE.

� SPU program blocks when
trying to write to the buffer
when it is full and will
continues only when there is
an empty entry (e.g PPEb
reads from the mailbox).

� PPU programb never block.
Reading from mailbox when
it is empty returns a in-valid
data and the PPU program
immediately continues.
178 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Programing interface for accessing mailboxes
The simplest way to access the mailboxes is through the MFC functions that are
part of SDK package library.

� Local SPU program can access the mailboxes using spu_*_mbox functions in
spu_mfcio.h header file.

� PPU program can access the mailboxes using spe_*_mbox* functions in
libspe2.h header file.

� Other SPUs program may access the mailboxes using DMA functions of
spu_mfcio.h header file which enables to read or write the mailboxes that are
may be mapped to main storage as part of the problem state of local SPU.

The spu_mfcio.h functions are described in SPU Mailboxes chapter in C/C++
Language Extensions for Cell BE Architecture document. The libspe2.h
functions are described in SPE mailbox functions chapter in SPE Runtime
Management library document.

Table 4-7 summarizes the simple functions in those files for accessing the
mailboxes from a local SPU program or from a PPU program.

In addition to the value of the mailboxes messages, the counter that is mentioned
in Table 4-7 can also be read by software using the SPU’s *_stat_* functions of
PPU’s *_status functions.

Table 4-8 MFC functions for accessing the mailboxes

Name SPU code functions
(channel interface)

B
lo

ck
in

g PPU code functions
(MMIO interface)

B
lo

ck
in

g

SPU write
outbound
mailbox

spu_write_out_mbox Yes spe_out_mbox_read No

spu_stat_out_mbox No spe_out_mbox_status No

SPU write
outbound
int. mailbox

spu_write_out_intr_mbox Yes spe_out_intr_mbox_read User
a

a. A user parameter to this function chooses whether the function is blocking or not
blocking.

spu_stat_out_intr_mbox No spe_out_intr_mbox_status No

SPU read
inbound
mailbox

spu_read_in_mbox Yes spe_in_mbox_write User

spu_stat_in_mbox No spe_in_mbox_status No
 Chapter 4. Cell BE programming 179

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
In order to access a mailbox of the local SPU from other SPU several steps
should be taken:

1. PPU code map the SPU’s controls area to main storage using libspe2.h file’s
spe_ps_area_get function with SPE_CONTROL_AREA flag set.

2. PPE forward the SPU’s control area base address to another SPU.

3. The other SPU uses ordinary DMA transfers to access the mailbox. Effective
address should be control area base plus offset to specific mailbox register.

Blocking versus non-blocking access to the mailboxes
Using the SDK library functions for accessing the mailboxes (which are
described in chapter “Programing interface for accessing mailboxes”) enables the
programmer to implement either blocking or non blocking mechanisms.

As for the SPU, the instructions to access the mailbox are blocking by nature and
are stalled when the mailbox is non available (empty for read or full for write). The
SDK simply implement those instructions.

For the PPU, the instructions to access the mailbox are nonblocking by nature.
SDK functions provides software abstraction of blocking behavior functions for
some of the mailboxes (which is implemented by polling the mailbox counter till
there is available entries).

In case the programer wants to explicitly read the mailbox status (the counter that
is mentioned in Table 4-7) is can be done by calling *_stat_* functions for SPU
program and *_status functions for PPU program.

Different programming approaches for performing either blocking or nonblocking
access to the mailbox on a PPU or SPU program are summarized on Table 4-9:

Note: Nonblocking approach are slightly more complicated to program but
enables the program to perform other tasks in case the fifo is empty instead
being stalled waiting for a valid entry.
180 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Table 4-9 Blocking versus nonblocking access to mailboxes - programming approaches

Practical scenarios and code examples for using mailboxes
When using the mailbox it is important to be aware of the following attributes of
the mailboxe’s access:

� Local SPU access is internal to that SPE and has very small latency (<=6
cycles for non blocking access).

� Local SPU access to not available mailbox (empty for read or full for write) is
blocking. To avoid blocking, the program may first read the counter as
explained below.

� PPE or other SPEs access is done through the local memory EIB bus, so they
have larger latency and also overload the bus bandwidth (especially when
polling the mailbox counter waiting for mailbox to become available).

Proc. Mailbox Blocking Nonblocking

SPU In Simply read the mailbox using
spu_read_in_mbox function.

Before reading the mailbox poll
the counter using
spu_stat_in_mbox function till
fifo is not empty.

Out Simply write to mailbox using
spu_write_out_mbox function.

Before writing to mailbox poll the
counter using
spu_stat_out_mbox function
function till fifo is not full.

OutIntr Write to mailbox using
spu_write_out_intr_mbox
function.

Before writing to mailbox poll the
counter using
spu_stat_out_intr_mbox
function function till fifo is not
full.

PPU In Call spe_in_mbox_write and
set ‘behavior’ parameter to
blocking.

Call spe_in_mbox_write and set
‘behavior’ parameter to
nonblocking.

Out Not implemented.a

a. Programmer should check the function return value to see that the data that was
read it valid.

Call spe_out_mbox_read
function.

OutIntr Call spe_out_intr_mbox_read
and set ‘behavior’ parameter
to blocking.

Call spe_out_intr_mbox_read
and set ‘behavior’ parameter to
nonblocking.
 Chapter 4. Cell BE programming 181

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� PPU or local SPU access to the mailboxes may be either blocking or
nonblocking using SDK library functions, as discussed in Chapter , “Blocking
versus non-blocking access to the mailboxes” on page 180.

The following sections describe different scenarios for using the mailbox
mechanism and provide a mailbox code example.

Using mailbox to notify PPE on data transfer completion
Mailbox may be useful when a SPE need to notify the PPE about completion of
transferring data that was previously computed by the SPE to the main memory.

Such mechanism may be implemented using the following steps:

1. SPU code places computational results in main storage via DMA

2. SPU code waits for the DMA transfer to complete.

3. SPU code writes to an outbound mailbox to notify the PPE that its
computation is complete. This ensures only that the SPE’s LS buffers are
available for reuse but does not guarantee that data has been coherently
written to main storage.

4. PPU code reads the SPE’s outbound mailbox and is notified that computation
is complete.

5. PPU code issue an ‘lwsync’ instruction to be sure that results are coherently
written to memory.

6. PPU code reads the results from memory.

Please notice that in order to implement step 4 the PPU may need to poll the
mailbox status to see if there is a valid data in this mailbox. Doing so is not very
efficient since it cause overhead on the bus bandwidth which may effect other
data transfer on this bus such as SPEs reading from main memory.

Using mailbox to exchange parameters between PPE and SPE
Mailbox may be used for any short-data transfer purpose, such as sending of
storage effective addresses from PPE to SPE.

Comment: Alternatively, an SPU can notify the PPU that it has completed
computation by using a fenced DMA to write notification to some address in
the main storage. The PPU may poll this area on the memory which may be
local to the PPE in case the data is in the L2 cache so it minimizes the
overhead on the EIB bus and memory subsystem. Example 4-19 on page 128
and the following Example 4-20 and Example 4-21 provide code for such
mechanism.
182 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Because the operating system runs on the PPE, only the PPE is originally aware
of the effective addresses of different variables in the program. For example
when the PPE dynamically allocate data buffers or when it maps the SPE’s local
stores or problem state to an effective address on the main storage. The inbound
mailboxes may be use to transfer those addresses to the SPE. Example 4-35 on
page 183 and the following Example 4-36 provides code for such mechanism.

Similarly, any type of function or command parameters may be forwarded from
the PPE to the SPE using this mechanism.

On the other direction, an SPE may use the outbound mailbox to notify the PPE
about a local store offset of some buffer which is located on the local store and
may be later accessed by either the PPE or another SPE. Chapter “Code
example for using mailboxes” provides code example for such mechanism.

Code example for using mailboxes
The code example below covers the following techniques:

� Example 4-35 show the PPU code which access SPEs’ mailboxes using
either non blocking methods for (most of the methods described in the list
above are illustrated) and blocking methods.
This example also shows how to map the control area of the SPEs to the
main storage to enable SPEs to access each other’s mailbox.

� Example 4-36 show the SPU code which access the local mailboxes using
either non blocking methods for (most of the methods described in the list
above are illustrated) and blocking methods. The code also send mailbox to
another SPE’s mailbox.

� The functions who implement the writing to a mailbox of another SPE using
DMA transactions is in Example 4-39 on page 195. The code also contains
functions for reading the status of other SPE’s mailbox

Example 4-35 PPU code for accessing SPEs’ mailboxes

// add the ordinary SDK and C libraries header files...
// take ‘spu_data_t’ structure and ‘spu_pthread’ function from
// Example 4-5 on page 90

extern spe_program_handle_t spu;
volatile parm_context ctx[2] __attribute__ ((aligned(16)));
volatile spe_spu_control_area_t* mfc_ctl[2];

Source code: The code of Example 4-35, Example 4-36 and Example 4-39 is
included in the additional material that is provided with this book. See “Simple
mailbox” on page 615 for more information.
 Chapter 4. Cell BE programming 183

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
// main===
int main()
{

int num, ack;
uint64_t ea;
char str[2][8] = {"0 is up","1 is down"};

for(num=0; num<2; num++){
// SPE_MAP_PS flag should be set when creating SPE context
data[num].spe_ctx = spe_context_create(SPE_MAP_PS,NULL);

}

// ... Omitted section:
// load the program to the local stores, and run the SPE threads.

// (the entire source code for this example is part of the book’s
// additional material)

// This is also described in 4.1.2, “Task parallelism and managing
SPE threads”

// STEP 0: map SPEs’ MFC problem state to main storage (get EA)
for(num=0; num<2; num++){

if ((mfc_ctl[num] = (spe_spu_control_area_t*)spe_ps_area_get(
data[num].spe_ctx, SPE_CONTROL_AREA))==NULL){

perror ("Failed mapping MFC control area");exit (1);
}

}
// STEP 1: send each SPE its number using BLOCKING mailbox write
for(num=0; num<2; num++){

// write 1 entry to in_mailbox
// we don't know if we have availalbe space so use blocking
spe_in_mbox_write(data[num].spe_ctx,(uint32_t*)&num,1,

SPE_MBOX_ALL_BLOCKING);
}

// STEP 2: send each SPE the EA of other SPE's MFC area and a string
// Use NON-BLOCKING mailbox write after first verifying
// availability of space.
for(num=0; num<2; num++){

ea = (uint64_t)mfc_ctl[(num==0)?1:0];
184 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// loop till we have 4 entries available
while(spe_in_mbox_status(data[num].spe_ctx)<4){

// PPE can do other things meanwhile before check status again
}

//write 4 entries to in_mbx- we just checked having 4 entries
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&ea,2,

SPE_MBOX_ANY_NONBLOCKING);
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&str[num],2,

SPE_MBOX_ANY_NONBLOCKING);
}

// STEP 3: read acknowledge from SPEs using NON-BLOCKING maibox read
for(num=0; num<2; num++){

while(!spe_out_mbox_status(data[num].spe_ctx)){
// simulate the first second after the universe was created or
// do other computations before check status again

};
spe_out_mbox_read(data[num].spe_ctx, (uint32_t*)&ack, 1);

}

// ... Omitted section:
// waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material)

return (0);
}

Example 4-36 SPU code for accessing local mailboxes and other SPE’s mailbox

// add the ordinary SDK and C libraries header files...
#include "spu_mfcio_ext.h" // the file described in Example 4-39

uint32_t my_num;

// Macro for waiting to completion of DMA group related to input tag:
#define waitag(t) mfc_write_tag_mask(1<<t); mfc_read_tag_status_all();

int main()
{

uint32_t data[2],ret, mbx, ea_mfc_h, ea_mfc_l, tag_id;
uint64_t ea_mfc;
 Chapter 4. Cell BE programming 185

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
if ((tag_id= mfc_tag_reserve())==MFC_TAG_INVALID){
printf("SPE: ERROR can't allocate tag ID\n"); return -1;

}

// STEP 1: read from PPE my number using BLOCKING mailbox read
while(spu_stat_in_mbox()<=0);
my_num = spu_read_in_mbox();

// STEP 2: receive from PPE the EA of other SPE's MFC and string
// use BLOCKING mailbox, but to avoid bloking we first read
// status to check that we have 4 valid entries
while(spu_stat_in_mbox()<4){

// SPE can do other things meanwhile before check status again
}

ea_mfc_h = spu_read_in_mbox(); // read EA lower bits
ea_mfc_l = spu_read_in_mbox(); // read EA higher bits

data[0] = spu_read_in_mbox(); // read 4 bytes of string
data[1] = spu_read_in_mbox(); // read 4 more bytes of string

ea_mfc = mfc_hl2ea(ea_mfc_h, ea_mfc_l);

// STEP 3: send my ID as acknowledge to PPE using BLOCKING mbx write
spu_write_out_mbox(my_num+1313000); //add dummy constant to pad MSb

// STEP 4: write message to other SPE's mailbox using BLOCKING write
mbx = my_num + 1212000; //add dummy constant to pad MSb

ret = write_in_mbox(mbx, ea_mfc, tag_id);
if (ret!=1){ printf("SPE: fail sending to other SPE\n");return -1;}

// STEP 5: read mailbox written by other SPE
data[0] = spu_read_in_mbox();

return 0;
}

186 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
4.4.2 Signal notification

This chapter discuss the signal notification mechanism which is an easy to use
mechanism that enables a PPU program or SPU program to signal a program
running on another SPU.

The following chapters discuss the following topics:

� “Signal notification overview” on page 187 provides an overview on this
mechanism and its hardware implementation.

� “Programing interface for accessing signaling” on page 189 describes the
main software interfaces for a SPU or PPU program to use the signal
notification mechanism.

� “Practical scenarios and code examples for using signaling” on page 189
provide some practical scenarios and techniques for using the signal
notification and also emphasize some code examples.

This chapter also contains printing macros for tracing inter-processors
communication, such as sending mailboxes and signaling between PPE and
SPE and SPE and SPE. Those macro can be useful when tracing a flow of a
given parallel program.

Please notice that monitoring the signals status may be done asynchronously
using events that are generated whenever a new signal is set by external source
(e.g. PPE or other SPE). While this chapter do not discuss the signal events,
Chapter 4.4.3, “SPE events” on page 199 discuss the events mechanism in
general.

Signal notification overview
Signal notification is an easy to use mechanism that enables a PPU program to
signal an SPE using 32-bit registers. It also enables a SPU program so signal a
program running on another SPU using the other SPU’s signal mechanism. The
term local SPU is used in this chapter to define the SPU of the same SPE where
the signal register is located.

Each SPE contain two identical signal notification registers named Signal
Notification 1 (SPU_RdSigNotify1) and Signal Notification 2 (SPU_RdSigNotify2).

Unlike the mailboxes. the signal notification has only one direction and enables to
send information toward the SPU that resides in the same SPE as the signal
registers (and not vice versus). Programs may access the signals using the
following interfaces:

� Local SPU program reads the signal notification using the channel interface.

� PPU program signals a SPE by writing to it the MMIO interface.
 Chapter 4. Cell BE programming 187

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� SPU program signals another SPE using special signaling commands
(‘sndsig’, ‘sndsigf’, and ‘sndsigb’). Those commands are actually
implemented using DMA ‘put’ commands and optionally contain ordering
information (‘f’ and ‘b’ suffix in the commands above indicate ‘fence’ and
‘barrier’ respectively).

When the local SPU program reads a signal notification, the value of the signals
register is reset to ‘0’. Reading the signal’s MMIO (or problem state) register by
the PPU or other SPUs does not reset their value.

Regarding writing of PPU or other SPUs to the signals registers, there are two
different modes that can be configured:

� OR mode (many-to-one): MFC accumulates several write to the
signal-notification register by combining all the values written to this register
using a logical OR operation. The register is reset when the SPU reads it.

� Overwrite mode (one-to-one): writing a value to a signal-notification register
overwrites the value in this register. This mode is actually very similar to using
inbound mailbox and have similar performance.

Configuring signaling mode can be done by the PPU when it creates the
coresponding SPE context.

Similar to the mailboxes, the signal notification register maintain a counter, which
had different behavior in the signaling case:

� The counter indicates only if there are pending signals (at least one bit set)
and not how many writes to the this register have taken place.

� Reading a value of ‘1’ indicates that there is at least one event pending and
value of ‘0’ indicates that no signals are pending.

� May be read by program running on either the local SPU, PPU or other SPUs.

Regarding the blocking behavior, the accessing the signal notification has the
following characters:

� PPU code writing to the signal register is nonblocking. It may override its
previous value or not depends on the configured mode (OR or overwrite
mode as explained above).

� SPU code writing to signal register of another SPU behaves similar to DMA
‘put’ command and blocks only if the MFC fifo is full.

Note: OR mode allows the signal producers to send their signals at any time
and independently of other signal producers (no synchronization is needed).
When SPU program reads the signal notification register, it becomes aware of
all the signals that have been sent since the most recent read of the register.
188 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� Local SPU reading the signal register is blocking when no events are pending.
Reading is completed immediately in case there is at least one pending event.

The similarities and differences between the signal notification and mailbox
mechanism are summarized in Table 4-6 on page 175.

Programing interface for accessing signaling
The simplest way to access the signal notification mechanism is through the
MFC functions that are part of SDK package library.

� Local SPU program can read the local SPE’s signals using spu_read_signal*
and spu_stat_signal* functions in spu_mfcio.h header file for reading the
signals register and the status (counter) respectively.

� Other SPUs’ program can signal other SPU using the functions mfc_sndsig*
(* is ‘b’, ‘f’ or blank) in spu_mfcio.h header file, which enables to signal the
other SPU by doing write operation on its memory mapped problem state.

� PPU program can access the signals using two main functions in libspe2.h
header file. The function spe_signal_write to send a signal to an SPU and
optionally setting SPE_CFG_SIGNOTIFY1_OR flag when creating the SPE
context (spe_context_create function) to enable OR mode.

The spu_mfcio.h functions are described in SPU Signal Notification chapter in
C/C++ Language Extensions for Cell BE Architecture document. The libspe2.h
functions are described in SPE SPU signal notification functions chapter in SPE
Runtime Management library document.

In order to signal local SPU from other SPU several steps should be taken:

1. PPU code map the SPU’s signaling area to main storage using libspe2.h
file’s spe_ps_area_get function with SPE_SIG_NOTIFY_x_AREA flag set.

2. PPE forward the SPU’s signaling area base address to another SPU.

3. Other SPU uses spu_mfcio.h file’s mfc_sndsig function to access the signals.
Effective address should be signaling area base plus offset to specific signal
register.

The programer may take either blocking or nonblocking approach when reading
the signals from the local SPU. The programming methods to do so are similar to
those discuss for the mailboxes in chapter Chapter , “Blocking versus
non-blocking access to the mailboxes” on page 180. However, setting signals
from the PPU program or other SPUs is always nonblocking.

Practical scenarios and code examples for using signaling
Similar to the mailboxes mechanism, local SPU access to the signals notification
is internal to that SPE and have very small latency (<=6 cycles for non blocking
 Chapter 4. Cell BE programming 189

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
access), and PPE or other SPEs MMIO access to the mailbox are done through
the local memory EIB bus which has larger latency. However, since it is not
common (and usually not useful) to poll the signal notification from the MMIO
side, overloading the bus bandwidth is usually not a significant issue.

Regarding blocking behavior, local SPU reading the signals register when no bits
are set is blocking. To avoid blocking, the program may first read the counter as
explained below. PPE or other SPEs signaling some SPU is always non-blocking.

When using the OR mode the PPE or other SPEs usually don’t need to poll the
signals counter since events are accumulated. Otherwise (overwrite mode) the
signals have similar behavior to inbound mailboxes.

The following two chapters describes two different scenarios for using the signals
notification mechanism. Next, the third chapter provide a signals code example.

Since in overwrite mode the signals behave similar to mailboxes, the scenarios
for using this mode are similar to the described in Chapter , “Practical scenarios
and code examples for using mailboxes” on page 181.

Using signal value as processor ID
This chapter describe one useful scenario for using OR mode. This mode can be
useful when one processor needs to asynchronously send some notification (i.e.
about reaching a certain step in the program) to a SPE and uses the signal value
to identify which processor has sent the signal. In this scenario it is assumed that
a SPE may receive notification from different sources.

Following are suggested steps to implement such mechanism:

� Each processor (PPE, SPE) is assigned with one bit in the signaling register.

� A processor that wants to signal some SPE, sends write to the SPE’s signal
register with the processor’s corresponding is set to 1 and other bits are 0.

� A SPE that reads its signal register check which bits are set. For each bit that
is set, the SPE knows that the corresponding processor has send a signal to
this SPE.

� The SPE that received the signal may then get more information from the
sending processor, for example by reading its mailbox or memory.

Using signal value as event ID
This chapter describe one useful scenario for using OR mode. This mode can be
useful when a single source processor, usually the PPE, needs to
asynchronously send notification about some event (i.e. about the need to
execute some command) to a SPE (or few SPEs). In this scenario there are
several different events in the program and the signal value is used to identify
which event has occurred at this time.
190 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Following are suggested steps to implement such mechanism:

� Each event in the program is assigned with one bit in the signaling register.

� A PPE that wants to signal some SPE about some event write to the SPE’s
signal register with the event’s corresponding bit set to 1 and other bits are 0.

� A SPE that reads its signal register check which bits are set. For each bit that
is set, the SPE knows that the corresponding event occurred and handles it.

Code example for using signals notification
The code example below shows covers the following techniques:

� Example 4-37 show the PPU code which signals a SPE. Since the SPE is
configured to OR mode we use non blocking access.
This example also shows how to map the signaling area of the SPEs to the
main storage to enable SPEs to signal each other.

� Example 4-38 show the SPU code which reads the local signals using either
non blocking methods and blocking methods. The SPUs signals each other in
a loop till they receive asynchronous signal from the PPU to stop.

� Example 4-39 show a SPU code that contains functions who implement both
signaling another SPE. The code also contains functions for writing the other
SPE’s mailbox and reading the mailbox status using DMA transactions.

� Example 4-40 show PPU and SPU printing macros for tracing
inter-processors communication, such as sending mailboxes and signaling
between PPE and SPE and SPE and SPE.

Example 4-37 PPU code for signaling the SPEs

// add the ordinary SDK and C libraries header files...
#include <cbea_map.h>
#include <com_print.h> // the code from Example 4-40

extern spe_program_handle_t spu;

// EA pointer to SPE's singnal1 and singnal2 MMIO registers
volatile spe_sig_notify_1_area_t *ea_sig1[2];
volatile spe_sig_notify_2_area_t *ea_sig2[2];

// main===
int main()

Source code: The code of Example 4-37 through Example 4-40 is included in
the additional material that is provided with this book. See “Simple signals” on
page 616 for more information.
 Chapter 4. Cell BE programming 191

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
{
int num, ret[2],mbx[2];
uint32_t sig=0x80000000; // bit 31 indicates signal from PPE
uint64_t ea;

for(num=0; num<2; num++){
// SPE_MAP_PS flag should be set when creating SPE context
data[num].spe_ctx = spe_context_create(SPE_MAP_PS,NULL);

}

// ... Omitted section:
// load the program to the local stores. and run the SPE threads

// (the entire source code for this example is part of the book’s
// additional material).

// This subject of is also described in TBD_REF: Chapter 4.1.2 Task
parallelism and managing SPE threads

// STEP 0: map SPE's signals area to main storage (get EA)
for(num=0; num<2; num++){

if ((ea_sig1[num] = (spe_sig_notify_1_area_t*)spe_ps_area_get(
data[num].spe_ctx, SPE_SIG_NOTIFY_1_AREA))==NULL){

perror("Failed mapping Signal1 area");exit (1);
}
if ((ea_sig2[num] = (spe_sig_notify_2_area_t*)spe_ps_area_get(

data[num].spe_ctx, SPE_SIG_NOTIFY_2_AREA))==NULL){
perror("Failed mapping Signal2 area");exit (1);

}
}

// STEP 1: send each SPE the EA of the other SPE's signals area
// first time writing to SPE so we know mailbox has 4 entries empty
for(num=0; num<2; num++){

spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&num,1,
SPE_MBOX_ANY_NONBLOCKING);

ea = (uint64_t)ea_sig1[(num==0)?1:0];
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&ea,2,

SPE_MBOX_ANY_NONBLOCKING);

// wait we have 2 entries free and then send the last 2 entries
while(spe_in_mbox_status(data[num].spe_ctx)<2);

ea = (uint64_t)ea_sig2[(num==0)?1:0];
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&ea,2,
192 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
 SPE_MBOX_ANY_NONBLOCKING);
}

// STEP 2: wait for SPEs to start signaling loop
for(num=0; num<2; num++){

while(!spe_out_mbox_status(data[num].spe_ctx));
spe_out_mbox_read(data[num].spe_ctx, (uint32_t*)&mbx[num], 1);
prn_p_mbx_s2m(4,1,sig);

};

// STEP 3: wait for while - let SPEs signal one to another
for(num=0; num<20000000; num++){

mbx[0] = mbx[0] *2;
}

// STEP 4: send the SPEs a signal to stop
prn_p_sig_m2s(4,0,sig);
prn_p_sig_m2s(4,1,sig);
ret[0]= spe_signal_write(data[0].spe_ctx, SPE_SIG_NOTIFY_REG_1,sig);
ret[1]= spe_signal_write(data[1].spe_ctx, SPE_SIG_NOTIFY_REG_2,sig);

if (ret[0]==-1 || ret[1]==-1){
perror ("Failed writing signal to SPEs"); exit (1);

}

// STEP 5: wait till SPEs tell me that they're done
for(num=0; num<2; num++){

while(!spe_out_mbox_status(data[num].spe_ctx));
spe_out_mbox_read(data[num].spe_ctx, (uint32_t*)&mbx[num], 1);
prn_p_mbx_s2m(5,num,mbx[num]);

};

// STEP 6: tell SPEs that they can omplete execution
for(num=0; num<2; num++){

mbx[num] = ~mbx[num];
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&mbx[num],2,

 SPE_MBOX_ANY_NONBLOCKING);
prn_p_mbx_m2s(6,num,mbx[num]);

}

// ... Omitted section:
// waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material).
 Chapter 4. Cell BE programming 193

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
return (0);
}

Example 4-38 SPU code for reading local signals and signaling other SPE

// add the ordinary SDK and C libraries header files...
#include "spu_mfcio_ext.h" // the code from Example 4-39
#include <com_print.h> // the code from Example 4-40

#define NUM_ITER 1000

uint32_t num;

// Macro for waiting to completion of DMA group related to input tag:
// 1. Write tag mask. 2. Read status untill all tag’s DMA are completed
#define waitag(t) mfc_write_tag_mask(1<<t); mfc_read_tag_status_all();

int main()
{

uint32_t in_sig,out_sig,mbx,idx,i,ea_h,ea_l,tag_id;
uint64_t ea_sig[2];

if ((tag_id= mfc_tag_reserve())==MFC_TAG_INVALID){
printf("SPE: ERROR can't allocate tag ID\n"); return -1;

}

// STEP 1: read from PPE my number using BLOCKING mailbox read
num = spu_read_in_mbox();
idx = (num==0)?1:0;
out_sig = (1<<num);

// STEP 2: receive from PPE EA of other SPE's signal area and string
while(spu_stat_in_mbox()<4); //wait till we have 4 entries
for (i=0;i<2;i++){

ea_h = spu_read_in_mbox(); // read EA lower bits
ea_l = spu_read_in_mbox(); // read EA higher bits
ea_sig[i] = mfc_hl2ea(ea_h, ea_l);

}

// STEP 3: Tell the PPE that we are going to start loopoing
mbx = 0x44332211; prn_s_mbx_m2p(3,num,mbx);
spu_write_out_mbox(mbx);
194 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// STEP 4: Start looping- signal other SPE and read my signal
if (num==0){

write_signal2(out_sig, ea_sig[idx], tag_id);
while(1){

in_sig = spu_read_signal1();

if (in_sig&0x80000000){ break; } // PPE signals us to stop

if (in_sig&0x00000002){ // receive signal from other SPE
prn_s_sig_m2s(4,num,out_sig);
write_signal2(out_sig, ea_sig[idx], tag_id);

}else{
printf("}}SPE%d<<NA: <%08x>\n",num,in_sig); return -1;

}
}

}else{ //num==1
while(1){

in_sig = spu_read_signal2();
if (in_sig&0x80000000){ break; } // PPE signals us to stop

if (in_sig&0x00000001){ // receive signal from other SPE
prn_s_sig_m2s(4,num,out_sig);
write_signal1(out_sig, ea_sig[idx], tag_id);

}else{
printf("}}SPE%d<<NA: <%08x>\n",num,in_sig); return -1;

}
}

}
prn_s_sig_p2m(4,num,in_sig);

// STEP 5: tell tell the PPE that we're done
mbx = 0x11223344*(num+1); prn_s_mbx_m2p(5,num,mbx);
spu_write_out_mbox(mbx);

// STEP 6: block mailbox from PPE- to not finish before other SPE
mbx = spu_read_in_mbox(); prn_s_mbx_p2m(5,num,mbx);

mfc_tag_release(tag_id);
return 0;

}

Example 4-39 SPU code for accessing other SPE’s mailbox and signals

spu_mfcio_ext.h ==
 Chapter 4. Cell BE programming 195

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
#include <spu_intrinsics.h>
#include <spu_mfcio.h>

static uint32_t msg[4]__attribute__ ((aligned (16)));

// mailbox status register definitions
#define SPU_IN_MBOX_OFFSET 0x0C // offset from control area base
#define SPU_IN_MBOX_OFFSET_SLOT 0x3 // 16B alignment= (OFFSET&0xF)>>2

// mailbox status register definitions
#define SPU_MBOX_STAT_OFFSET 0x14 // offset from control area base
#define SPU_MBOX_STAT_OFFSET_SLOT 0x1 // 16B alignment= (OFFSET&0xF)>>2

// signal notify 1 and 2 registers definitions
#define SPU_SIG_NOTIFY_OFFSET 0x0C // offset from signal areas base
#define SPU_SIG_NOTIFY_OFFSET_SLOT 0x3 // 16B alignment (OFFSET&0xF)>>2

// returns the value of mailbox status register of remote SPE
inline int status_mbox(uint64_t ea_mfc, uint32_t tag_id)
{

uint32_t status[4], idx;
uint64_t ea_stat_mbox = ea_mfc + SPU_MBOX_STAT_OFFSET;

idx = SPU_MBOX_STAT_OFFSET_SLOT;

mfc_get((void *)&status[idx], ea_stat_mbox, sizeof(uint32_t),
tag_id, 0, 0);

mfc_write_tag_mask(1<<tag_id);
mfc_read_tag_status_any();

return status[idx];
}

// returns the status (counter) of inbound_mailbox of remote SPE
inline int status_in_mbox(uint64_t ea_mfc, uint32_t tag_id)
{

int status = status_mbox(ea_mfc, tag_id);
status = (status&0x0000ff00)>>8;
return status;

}

// returns the status (counter) of outbound_mailbox of remote SPE
inline int status_out_mbox(uint64_t ea_mfc, uint32_t tag_id)
196 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
{
int status = status_mbox(ea_mfc, tag_id);
status = (status&0x000000ff);
return status;

}

//returns status (counter) of inbound_interrupt_mailbox of remote SPE
inline int status_outintr_mbox(uint64_t ea_mfc, uint32_t tag_id)
{

int status = status_mbox(ea_mfc, tag_id);
status = (status&0xffff0000)>>16;
return status;

}

// writing to a remote SPE’s inbound mailbox
inline int write_in_mbox(uint32_t data, uint64_t ea_mfc,

uint32_t tag_id)
{

int status;
uint64_t ea_in_mbox = ea_mfc + SPU_IN_MBOX_OFFSET;
uint32_t mbx[4], idx;

while((status= status_in_mbox(ea_mfc, tag_id))<1);

idx = SPU_IN_MBOX_OFFSET_SLOT;
mbx[idx] = data;

mfc_put((void *)&mbx[idx], ea_in_mbox,sizeof(uint32_t),tag_id, 0,0);
mfc_write_tag_mask(1<<tag_id);
mfc_read_tag_status_any();

return 1; // number of mailbox being written
}

// signal a remote SPE’s signal1 register
inline int write_signal1(uint32_t data, uint64_t ea_sig1,

uint32_t tag_id)
{

uint64_t ea_sig1_notify = ea_sig1 + SPU_SIG_NOTIFY_OFFSET;
uint32_t idx;

idx = SPU_SIG_NOTIFY_OFFSET_SLOT;
msg[idx] = data;

mfc_sndsig(&msg[idx], ea_sig1_notify, tag_id, 0,0);
 Chapter 4. Cell BE programming 197

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
mfc_write_tag_mask(1<<tag_id);
mfc_read_tag_status_any();

return 1; // number of mailbox being written
}

// signal a remote SPE’s signal1 register
inline int write_signal2(uint32_t data, uint64_t ea_sig2, uint32_t
tag_id)
{

uint64_t ea_sig2_notify = ea_sig2 + SPU_SIG_NOTIFY_OFFSET;
uint32_t idx;

idx = SPU_SIG_NOTIFY_OFFSET_SLOT;
msg[idx] = data;

mfc_sndsig(&msg[idx], ea_sig2_notify, tag_id, 0,0);
mfc_write_tag_mask(1<<tag_id);
mfc_read_tag_status_any();

return 1; // number of mailbox being written
}

Example 4-40 PPU and SPU macros for tracing inter-processor communication

com_print.h ==
// add the ordinary SDK and C libraries header files...

// Printing macros for tracing PPE-SPE and SPE-SPE communication
// Syntax: prn_X_Y_Z2W:
// X: ‘p’ when printing from the PPE, ‘s’ printing from SPE
// Y: ‘mbx’ for mailbox, ‘sig’ for signaling
// Z: ‘m’ source is me, ‘s’ source SPE, ‘p’ source PPE
// W: ‘m’ destination is me, ‘s’ destination SPE, ‘p’ destination PPE
// Paremeters (i,s,m) stands for:
// i: some user-defined index for example step # in program execution
// s: For PPE - # of SPE with-which we communicate,
// For SPE - # of local SPE
// m: message value (mailbox 32b value, signal value)

#define prn_p_mbx_m2s(i,s,m) printf("%d)PPE>>SPE%02u: <%08x>\n",i,s,m);
#define prn_p_mbx_s2m(i,s,m) printf("%d)PPE<<SPE%02u: <%08x>\n",i,s,m);
#define prn_p_sig_m2s(i,s,m) printf("%d)PPE->SPE%02u: <%08x>\n",i,s,m);
#define prn_p_sig_s2m(i,s,m) printf("%d)PPE<-SPE%02u: <%08x>\n",i,s,m);
198 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
#define prn_s_mbx_m2p(i,s,m) printf("%d{SPE%02u>>PPE: <%08x>\n",i,s,m);
#define prn_s_mbx_p2m(i,s,m) printf("%d{SPE%02u<<PPE: <%08x>\n",i,s,m);
#define prn_s_mbx_m2s(i,s,m) printf("%d{SPE%02u<-SPE: <%08x>\n",i,s,m);
#define prn_s_mbx_s2m(i,s,m) printf("%d{SPE%02u->SPE: <%08x>\n",i,s,m);
#define prn_s_sig_m2p(i,s,m) printf("%d{SPE%02u->PPE: <%08x>\n",i,s,m);
#define prn_s_sig_p2m(i,s,m) printf("%d{SPE%02u<-PPE: <%08x>\n",i,s,m);
#define prn_s_sig_m2s(i,s,m) printf("%d{SPE%02u->SPE: <%08x>\n",i,s,m);
#define prn_s_sig_s2m(i,s,m) printf("%d{SPE%02u<-SPE: <%08x>\n",i,s,m);

4.4.3 SPE events

This chapter discuss the SPE events mechanism that enables a code that runs
on the SPU to trace events which are external to the program execution. SDK
package provide software interface that also enables a PPE program to trace
events that occurred on the SPEs.

The following chapters discuss the following topics:

� “SPE events overview” on page 199 provides an overview on this mechanism
and its hardware implementation.

� “Programing interface for accessing events” on page 201 describes the main
software interfaces for a SPU or PPU program to use the SPE events
mechanism.

� “Practical scenarios and code example for using events” on page 202
provides some practical scenarios and techniques for using the mailboxes
and also emphasize some code examples.

SPE events overview
Events is an SPE mechanism that enables a code that runs on the SPU to trace
events which are external to the program execution. Those event can be set
either internally by the hardware of this specific SPE or due to external events
such as sending mailbox messages of signal notification by the PPE or the
SPEs.

In addition, the SDK package provides software interface that enables a PPE
program to trace events that occurred on the SPEs, and create event handler to
service those events. Please notice that only a subset of four events are
supported by this mechanism. This mechanism is discussed in Chapter ,
“Programing interface for accessing events” on page 201.

The main events that may be monitored falls into the following categories:
 Chapter 4. Cell BE programming 199

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� MFC DMA: Events related to MFC’s DMA commands. In specific, a code
example for handling ‘MFC direct memory access (DMA) list command
stall-and-notify’ is shown in Example 4-20 on page 129.

� Mailbox or signals: External write or read to mailbox or signal notification
registers.

� Synchronization events: Events related to multi source synchronization or lock
line reservation (atomic) operation.

� Decrementer: events that are set whenever the decrementer’s elapsed time
has expired.

The events are generated asynchronous to the program execution but software
may choose to monitor and correspond to those events either synchronous or
asynchronous:

� synchronous monitoring: program explicitly check the events status in one of
the following ways:

– nonblocking: poll for pending events by testing the events counts in a loop.

– blocking: read the event status which stalls when no events are pending.

� asynchronously monitoring: implement an event interrupt handler.

� intermediate approach: sprinkle ‘bisled’ instructions, either manually or
automatically using code-generation tools, throughout application code so
that they are executed frequently enough to approximate asynchronous event
detection.

There are four different 32 bits channels that enables an SPU software to
manage the events mechanism. The channels have identical bit definition while
each event is represented by a single bit. The typical steps that a SPE software
should take in order to deals with SPE events are:

1. Initialize event handling by write to ‘SPU Write Event Mask’ channel and set
the bits that correspond to the events that the program wish to monitor.

2. Monitor that some events are pending using either synchronous,
asynchronous or intermediate approach as described above.

3. Recognize which events are pending by reading from the ‘SPU Read Event
Status’ channel and see which bits were set.

4. Clear events by writing a value to ‘SPU Write Event Acknowledge’ and set the
bit correspond to the pending events in the written value.

5. Service the events by executing application-specific code for handle the
specific events that are pending.

Similarly to the mailbox or signal notification mechanism, each of those registers
maintains a counter that may be read by the SPU software. The only counter that
200 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
is usually relevant to the software is the one related to ‘SPU Read Status’
channel which may be read by the software to know how many events are
pending. Reading the counter returns ‘0’ if no enabled events are pending, and it
returns ‘1’ if enabled events have been raised since the last read of the status.

A summery of the four available channels is in Table 4-10:

Table 4-10 SPE event channels

Programing interface for accessing events
The simplest way to access the events is through the MFC functions that are part
of SDK package library:

� The SPU programer can manages events with the following functions in
spu_mfcio.h header file:

– Enable events using spu_read_event_mask and spu_write_event_mask
functions which access ‘Event Mask’ channel

– Monitor events using spu_read_event_status and spu_stat_event_status
functions which reads the value and counter of ‘Event Status’ channel.

– Acknowledge events using spu_write_event_ack function which write into
‘Event Acknowledgment’ channel.

– Retrieve which event are pending using MFC_*_EVENT defines (e.g.
MFC_SIGNAL_NOTIFY_1_EVENT and MFC_OUT_MBOX_AVAILABLE_EVENT)

� PPU program can trace the events that are set on the SPE and implemented
an event handler using several functions in libspe library (SPE Runtime
Management, defined in libspe2.h header file):

Name RW Description

SPU Write Event
Mask
(SPU_WrEventMask)

W To enable only the events that are relevant to its operation,
SPU program can initializes a mask value with event bits
set to ‘1’ only for the relevant events

SPU Read Event
Status
(SPU_RdEventStat)

R Reading this channel reports events that are both pending
at the time of the channel read and are enabled (the
corresponding bit is set in ‘SPU Write Event Mask’).

SPU Write Event
Acknowledgment
(SPU_WrEventAck)

W Before SPE program services the events reported in ‘SPU
Read Event Status’, it should write a value to the ‘SPU
Write Event Acknowledge’ to acknowledge (clear) the
events that will be processed. Each bit in the written value
acknowledge the corresponding event.

SPU Read Event
Mask
(SPU_RdEventMask)

R Enables the software to read the value that was recently
written to ‘SPU Write Event Mask’.
 Chapter 4. Cell BE programming 201

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
– spe_event_handler_* functions to create, register, unregister and destroy
the event handler.

– spe_event_wait function to synchronously wait for events. This is a
semi-blocking function - it is stalled till the input timeout parameter expired.

– Use other functions to service the detected event. Depends on the events
the appropriate function should be used (e.g. functions for reading the
mailbox when mailbox related event occurred).

The spu_mfcio.h functions are described in SPU Event chapter in C/C++
Language Extensions for Cell BE Architecture document. The libspe2.h
functions are described in SPE event handling chapter in SPE Runtime
Management library document.

The programer may take either blocking or nonblocking approach when reading
events from the local SPU. The programming methods to do so are similar to
those discussed for the mailboxes in chapter Chapter , “Blocking versus
non-blocking access to the mailboxes” on page 180. However, reading events
form the PPE side is a semi-blocking function which is stalled till the input timeout
parameter expired.

There is not specific mechanism to allow on SPE to trace the events of another,
but it may be possible to implement such mechanism in software. However, we
don’t see such mechanism as practical in most cases.

Practical scenarios and code example for using events
Similar to the mailboxes mechanism, local SPU access to the event channels is
internal to the SPE and has very small latency (<=6 cycles for non blocking
access). PPE or other SPE access to the event registers has higher latency.

Regarding blocking behavior, local SPU reading the events register when no bits
are set is blocking. To avoid blocking, the program may first read the counter as
explained below.

Based on the event that is monitored, the events may be used for the following
scenarios:

� DMA list dynamic updates: Monitor stall-notify-event to update the DMA list
according to the data that was transferred to local store from the main
storage. A code example for such scenario is in Example 4-20 on page 129.

� Profiling or watchdog of SPU program: Use the decrementer to periodically
profile the program or implement a watchdog about the program execution.

Another example scenario for using the SPE events is in Example 4-41 on
page 204, which provide a code example for implementing an event handler on
the PPU.
202 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
SPU as computation server
SPE event may be used to implements mechanism in which the SPU act as a
computation server who execute commands that are generated and forward to it
by the PPU code.

One option to implement it as asynchronous computation server. SPU program
implements asynchronous events handler mechanism for handling incoming
mailboxes from the PPE:

1. SPU code asynchronously wait for inbound mailbox event.

2. PPU code forward to the SPU which commands should be executed (and
maybe some other information) by writing commands to the inbound mailbox.

3. SPU code monitor the pending mailbox event and understand which
command should be executed.

4. Additional information may be forward from the PPU to the SPU using more
mailboxes messages or DMA transfer.

5. SPU process the command.

The SPU side for such mechanism can be implemented as an interrupt (events)
handler as described in Developing a Basic Interrupt Handler chapter in Cell
Broadband Engine Programming Handbook document.

Another option is to implement synchronous computation server on the SPU side
and implement the event handler on the PPU side:

� SPU code synchronously poll and execute the command that are defined in
its inbound mailbox.

� PPU code implement event handler for the SPU events. Whenever PPU
monitors that SPU has read the mailbox it write the next command to the SPU
mailbox.

“PPU code example for implementing SPE events handler” suggest how to
implement such event handler on the PPU.

The second synchronous computation server may have advantages when
compared to the asynchronous version since it allows overlapping between
different commands as PPU can write to SPU the next command in the same
time SPU is working on the current command.

Please notice that there is a large latency between he generation of the SPE
event till the execution of corresponding PPU event handler (which involves
running some kernel functions). For the reason, only if the delay between one
command to another is large, then using the second synchronous computation
server make since and provides good performance results.
 Chapter 4. Cell BE programming 203

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
PPU code example for implementing SPE events handler
This chapter demonstrates how a PPU code may implement handler for SPE
events. The code contains a simplified version of the PPU program for
implementing the synchronous computation server that is described in Chapter ,
“SPU as computation server” on page 203.

Please notice that there is a large latency between he generation of the SPE
event till the execution of corresponding PPU event handler (roughly 100K
cycles) since it involves running some kernel functions.

Example 4-41 contains the corresponding PPU code that creates and registers
an event handler for monitoring whenever the inbound mailbox is not full
anymore. Any time the mailbox is not full, which indicates that the SPU has read
a command from it, the PPU puts new commands in this mailbox.

Please notice that the example aims only to demonstrate how to implement PPE
handler for SPE events and uses the event of SPE read from inbound mailbox
only as an example. While supporting only this type of event may not always be
practical, it can be easily extended to support few different types of other events.
For example, it can support also event indicating that an SPE has stopped
execution, PPE-initiated DMA operations have completed, or SPE has written to
the outbound mailbox. a callback to the PPE-side of the SPE thread (stop and
signal mechanism) as described in PPE-assisted library facilities chapter in SPE
Runtime Management library document.

The SPU code is not shown, but at generally it should include a simple loop that
reads coming message from the mailbox and process them.

Example 4-41 Event handler on the PPU

// include files....
#include <com_print.h> // the code from Example 4-40

#define NUM_EVENTS 1
#define NUM_MBX 30

// take ‘spu_data_t’ structure and ‘spu_pthread’ function from
// Example 4-5 on page 90

int main()
{

Source code: The code of Example 4-41 is included in the additional material
that is provided with this book. See “PPE event handler” on page 616 for more
information.
204 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
int i, ret, num_events, cnt;
spe_event_handler_ptr_t event_hand;
spe_event_unit_t event_uni, pend_events[NUM_EVENTS];
uint32_t mbx=1;

data.argp = NULL;

// SPE_EVENTS_ENABLE flag should be set when creating SPE thread
// to enable events tracing
if ((data.spe_ctx = spe_context_create(SPE_EVENTS_ENABLE,NULL))

 ==NULL){
perror("Failed creating context"); exit(1);

}

// create and register handle event handler
event_hand = spe_event_handler_create();
event_uni.events = SPE_EVENT_IN_MBOX;
event_uni.spe = data.spe_ctx;
ret = spe_event_handler_register(event_hand, &event_uni);

// more types of events may be registered here

// load the program to the local stores, and run the SPE threads.
if (!(program = spe_image_open("spu/spu"))) {

perror("Fail opening image"); exit(1);
}

if (spe_program_load (data.spe_ctx, program)) {
perror("Failed loading program"); exit(1);

}

if (pthread_create (&data.pthread, NULL, &spu_pthread, &data)) {
perror("Failed creating thread"); exit(1);

}

// write 4 first messages to make the mailbox queue full
for (mbx=1; mbx<5; mbx++){

prn_p_mbx_m2s(mbx,0,mbx);
spe_in_mbox_write(data.spe_ctx, &mbx,1,SPE_MBOX_ANY_BLOCKING);

 }

// loop on all pending events
for (; mbx<NUM_MBX;) {

// wait for events to be set
num_events =spe_event_wait(event_hand,pend_events,NUM_EVENTS,-1);
 Chapter 4. Cell BE programming 205

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
// few events were set - handle them
for (i = 0; i < num_events; i++) {

if (pend_events[i].events & SPE_EVENT_IN_MBOX){

// SPE read from mailbox- write to mailbox till it is full
for (cnt=spe_in_mbox_status(pend_events[i].spe);cnt>0;

cnt--){
mbx++;
prn_p_mbx_m2s(mbx,0,mbx);
ret = spe_in_mbox_write(pend_events[i].spe, &mbx,1,

SPE_MBOX_ANY_BLOCKING);
}

}

//if we register more types of events- we can handle them here
}

}

// wait for all the SPE pthread to complete
if (pthread_join (data.pthread, NULL)) {

perror("Failed joining thread"); exit (1);
}

spe_event_handler_destroy(event_hand); //destroy event handle

// destroy the SPE contexts
if (spe_context_destroy(data.spe_ctx)) {

perror("Failed spe_context_destroy"); exit(1);
}

return (0);
}

4.4.4 Using atomic unit and the atomic cache

This chapter discuss how to implement a fast shared data structure for
inter-processor communication using the Atomic Unit and the Atomic Cache
hardware mechanism.

The following chapters discuss the following topics:
206 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� “Atomic unit and the atomic cache overview” on page 207 provides an
overview on this mechanism.

� “Programing interface for accessing atomic unit and cache” on page 207
describes the main software interfaces for a SPU or PPU program to use the
atomic unit and cache mechanism.

� “Code example for using atomic unit and cache” on page 209 provides a code
example for using the atomic unit and cache.

Atomic unit and the atomic cache overview
All the atomic operations supported by the SPE are implemented by a specific
Atomic Unit inside each MFC, which contains a dedicated local cache for cache
line reservations. This cache is called the Atomic Cache.

The Atomic Cache has a total capacity of six 128-byte cache lines, of which four
are dedicated to atomic operations.

When all the SPEs and the PPE perform atomic operations on a cache line with
identical Effective Address, and therefore a reservation for that cache line is
present in at least one of the MFC units, the cache snooping and update
processes are performed by transferring that cache line contents to the
requesting SPE or PPE over the Element Interconnect Bus, without requiring a
read/write to main system memory.

This constitutes effectively a hardware support for very efficient atomic
operations on shared data structures consisting of up to 512 bytes divided in four
128-bytes blocks mapped on a 128-bytes aligned data structure in the SPEs'
Local Store, which can be effectively used as a fast broadcast inter-processor
communication system.

The approach to exploiting this facility is to extend the principles behind the
handling of a mutex lock or an atomic addition, ensuring that the operations
involved affect always the same four cache lines.

Programing interface for accessing atomic unit and cache
Two programing methods are available to exploit this functionality:

1. The simplest method involves using two procedures on both SPU and PPU:
atomic_read and atomic_set. These procedures provide access to individual
shared 32 bits variables, which can be atomically set to specific values, or
atomically modified by simple arithmetic operations using atomic_add,
atomic_inc, and atomic_dec.
Those atomic procedures are part of ‘sync’ library that is delivered with
SDK3.0 and is implemented using more basic reservation related
 Chapter 4. Cell BE programming 207

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
instructions. This library is further dicussed in Chapter 4.5.3, “Using sync
library facilities” on page 234.

2. The more powerful method is to allow multiple simultaneous atomic updates
to a shared structure, also using more complex update logic. The size of the
shared variable can be up to the four lines of 128 bytes atomic cache
(aasuming no other mechanism uses this cache).
In order to use this facility the same sequence of operations required to
handle a shared lock is performed using atomic instructions as described
below.

The sequence of operations to be performed in the SPU program in order to set a
lock on a shared variable is:

1. Perform the reservation for the cache line designated to contain the part of
the shared data structure to be updated using mfc_getllar. This operation
triggers the data transfer from the Atomic Unit containing the most recent
reservation or from the PPU cache to the requesting SPE's Atomic Unit over
the Element Interconnect Bus.

2. The data structure mapped in the SPU Local Store now contains the most
up-to-date values, thus the code can copy the values to a temporary buffer
and update the structure with modified values according with the program
logic.

3. Attempt the conditional update for the updated cache line using mfc_putllc,
and if unsuccessful repeat the process from step 1.

4. Upon successful update of the cache line the program can continue having
both the previous structure values contained in the temporary buffer, and the
modified values in the Local Store mapped structure.

The sequence of operations to be performed in the PPU program in order to set a
lock on a shared variable is:

1. Perform the reservation for the cache line designated to contain the part of
the shared data structure to be updated using __lwarx or __ldarx. This
operation triggers the data transfer from the Atomic Unit containing the most
recent reservation to the PPU cache over the Element Interconnect Bus.

2. The data structure contained at the specified Effective Address, which resides
in the PPU cache, now contains the most up-to-date values, thus the code
can copy the values to a temporary buffer and update the structure with
modified values according with the program logic.

3. Attempt the conditional update for the updated cache line using __stwcx or
__stdcx, and if unsuccessful repeat the process from step 1.
208 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
4. Upon successful update of the cache line the program can continue having
both the previous structure values contained in the temporary buffer, and the
modified values in the structure at the specified Effective Address.

A fundamental difference between the PPE and SPE behavior in managing
atomic operations is worth noting: while both use the cache line size (128 bytes)
as the reservation granularity, the PPU instructions operate on a maximum of 4
bytes (__lwarx and __stwcx) or 8 bytes (__ldarx and __stdcx) at once, whereas
the SPE atomic functions update the entire cache line contents.

More details on how to use the atomic instructions on the SPE (mfc_getllar and
mfc_putllc) and on the PPE (__lwarx, __ldarx, __stwcx, and __stdcx) is in
Chapter 4.5.2, “Atomic synchronization” on page 229.

Provided the Atomic Cache in one of the MFC units or the PPE cache always
holds the desired cache lines before another SPE or the PPE requests a
reservation on those lines, the data refresh relies entirely on the internal data
bus, which offers a very high performance.

Because the libsync synchronization primitives also use the cache line
reservation facility in the SPE's MFC, special care must be used to avoid conflicts
that may occur when simultaneously exploiting manual usage of the Atomic Unit
and other atomic operations provided by libsync.

Code example for using atomic unit and cache
This chapter provides a code example which demonstrates how to use the
atomic unit and atomic cache to communicate between the SPEs. The code
example shows how to use the atomic instructions on the SPEs (mfc_getllar
and mfc_putllc) to synchronize the access some shred structure.

Example 4-42 shows a PPU code which intiates the shared structure, runs the
SPE threads and when the threads complete it reads the shared variable. No
atomic access ot this structure is done by the PPE.

Example 4-43 show the SPU code which make use of the atomic instructions to
synchronize the access to the shared variables between the SPEs.

Example 4-42 PPU code for using atomic unit and cache

// add the ordinary SDK and C libraries header files...
// take ‘spu_data_t’ structure and ‘spu_pthread’ function from
// Example 4-5 on page 90

#define SPU_NUM 8
 Chapter 4. Cell BE programming 209

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
spu_data_t data[SPU_NUM];

typedef struct {
int processingStep; // contains the overall workload processing step
int exitSignal; // variable to signal end of processing step
uint64_t accumulatedTime[8]; // contains workload dynamic execution

// statistics (max. 8 SPE)
int accumulatedSteps[8];
char _dummyAlignment[24]; // dummy variables to set the structure

// size equal to cache line (128 bytes)
} SharedData_s;

// Main memory version of the shared structure
// size of this structure is a single cache line
static volatile SharedData_s SharedData __attribute__ ((aligned(128)));

int main(int argc, char *argv[])
{

int i;
spe_program_handle_t *program;

// Initialize the shared data structure
SharedData.exitSignal = 0;
SharedData.processingStep = 0;

for(i = 0 ; i < SPU_NUM ; ++i) {
SharedData.accumulatedTime[i] = 0;
SharedData.accumulatedSteps[i] = 0;
data[i].argp = (void*)&SharedData;
data[i].spu_id = (void*)i;

}

// ... Omitted section:
// creates SPE contexts, load the program to the local stores,
// run the SPE threads, and waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material).

// This subject of is also described in TBD_REF: Chapter 4.1.2 Task
parallelism and managing SPE threads

// Output the statistics
for(i = 0; i < SPU_NUM ; ++i) {
210 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
printf("SPE %d - Avg. processing time (decrementer steps):
%lld\n", i, SharedData.accumulatedTime[i] /
SharedData.accumulatedSteps[i]);

}

return (0);
}

Example 4-43 SPU code for using atomic unit and cache

// add the ordinary SDK and C libraries header files...

Same ‘SharedData_s’ structure definition as in Example 4-42

// local version of the shared structure
// size of this structure is a single cache line
static volatile SharedData_s SharedData __attribute__ ((aligned(128)));

// effective address of the shared sturture
uint64_t SharedData_ea;

// argp - effective address pointer to shared structure in main memory
// envp - spu id of the spu
int main(uint64_t spuid , uint64_t argp, uint64_t envp)
{

unsigned int status, t_start, t_spu;
int exitFlag = 0, spuNum = envp, i;
SharedData_ea = argp;

// Initialize random number generator for fake workload example
srand(spu_read_decrementer());

do{
exitFlag = 0;

// Start performace profile information collection
spu_write_decrementer(0x7fffffff);
t_start = spu_read_decrementer();

// Data processing here
// ...
// Fake example workload:
 Chapter 4. Cell BE programming 211

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
// 1) The first random number < 100 ends first step of the
// process
// 2) The first number < 10 ends the second step of the process
// Different SPEs process a different amount of data to generate
// different execution time statistics.
// The processingStep variable is shared, so all the SPEs will
// process the same step until one encounters the desired result
// Multiple SPEs can reach the desired result, but the first one
// to reach it will trigger the advancement of processing step

switch(SharedData.processingStep){
case 0:

for(i = 0 ; i < (spuNum * 10) + 10 ; ++i){
if(rand() <= 100){ //found the first result

exitFlag = 1;
break;

}
}
break;

case 1:
for(i = 0 ; i < (spuNum * 10) + 10 ; ++i){

if(rand() <= 10){ // found the second result
exitFlag = 1;
break;

}
}

break;
}
// End performance profile information collection
t_spu = t_start - spu_read_decrementer();

// ...
// Because we have statistics on all the SPEs average workload
// time we can have some inter-SPE dynamic load balancing,
// especially for workloads that operate in pipelined fashion
// using multiple SPEs

do{
// get and lock the cache line of the shared structure
mfc_getllar((void*)&SharedData, SharedData_ea, 0, 0);
(void)mfc_read_atomic_status();

// Update shared structure
SharedData.accumulatedTime[spuNum] += (uint64_t) t_spu;
212 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
SharedData.accumulatedSteps[spuNum]++;

if(exitFlag){
SharedData.processingStep++;
if(SharedData.processingStep > 1)

SharedData.exitSignal = 1;
}

mfc_putllc((void*)&SharedData, SharedData_ea, 0, 0);
status = mfc_read_atomic_status() & MFC_PUTLLC_STATUS;

}while (status);

}while (SharedData.exitSignal == 0);

return 0;
}

4.5 Shared storage synchronizing and data ordering

While the Cell BE processor executes instructions in program order, it loads and
stores data using a “weakly” consistent storage model. This storage model
allows storage accesses to be reordered dynamically, which provides an
opportunity for improved overall performance and reduced effect of memory
latency on instruction throughput.

This model puts a lot of responsibility on the programmer which needs to
explicitly order accesses to storage using special synchronization instruction,
whenever it is needed that stores occur in the program order. Lack of doing so
correctly may result in difficult to debug real time bugs. Program may run
correctly on one system and fail on another, or run correctly on one execution
and fail on another on the same system.

On the other hand, over usage of those synchronization instruction may
significantly reduce the performance as they mostly take a lot of time to
complete.

In this chapter we discuss the Cell BE storage model as well as software utilities
to control the data transfer ordering. From the reasons mentioned above it is
important to understand this topic in order to get efficient and correct results.
Further reading on this topic is on Shared-Storage Synchronization chapter in
Cell Broadband Engine Programming Handbook document.
 Chapter 4. Cell BE programming 213

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The following chapters discuss the following issues:

� “Shared Storage model” on page 216 discuss the Cell BE shared storage
model and how the different components on the system may force ordering
between their data transfers using special ordering instructions. The chapter
contains three different sections:

– “PPE ordering instructions” discuss how a code that runs the PPU may
order the PPE data transfers on the main storage with respects to all other
elements in the system (e.g. other SPEs).

– “SPU ordering instructions” discuss how the code that runs the SPU to
order SPU data access to the LS with respects to all other elements that
may access it, such as the MFC and other elements in the system that
access the LS through the MFC (e.g. PPE, other SPEs). Also synchronize
the access to the MFC channels.

– “MFC ordering mechanisms” discuss the MFC ordering mechanism Those
instructions are similar to PPU ordering instructions but from the SPU side
as they enables the SPU code to order SPE data transfers on the main
storage (done by the MFC) with respects to all other elements in the
system (e.g. PPE and other SPEs).

� “Atomic synchronization” on page 229 discuss instructions that enables the
different components on the Cell BE chip to synchronization atomic access to
some shared data structures.

� “Using sync library facilities” on page 234 describe the sync library which
provide more high level synchronization functions (based on the instructions
mentioned above). The supported C functions closely match those found in
current traditional operating systems such as mutex, atomic increment and
decrements of variables and conditional variables.

� “Practical examples using ordering and synchronization mechanisms” on
page 235 describe some specific useful real-life scenarios for using the
ordering and synchronization instructions that are discussed in previous
chapters.

Table 4-11 on page 215 summarizes the effects of the different ordering and
synchronization instructions, that are discussed on all other chapters, on three
storage domains - main storage, local store and channels interface.
It shows effects of instructions issued by different components - the PPU code,
the SPU code, and the MFC. Regarding the MFC, the intention here is for data
transfers are executed by the MFC following commands that were issued toward
the MFC by either the SPU code (using the channel interface) or PPU code
(using MMIO interface).
214 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Table 4-11 Effects of Synchronization on Address and Communication Domains1

Issuer Instruction,
Command,

or
Facility

Main-Storage Domain LS Domain2 Channel
Domain3

Accesses by PPE Accesses
by All
Other

Processor
Elements

and
Devices

Accesses
by

Issuing
SPU

Accesses
by

Issuing
SPU’s
MFC

Accesses
by All
Other

Processo
r

Elements
and

Devices

Accesses
by

Issuing
SPU

Issuing
Thread

Both
Threads

PPU sync4 all accesses Unreliable. Use MFC
Multisource
Synchronization
Facility5

lwsync6 accesses to
memory-coherence-
required locations

eieio accesses
to
caching-i
nhibited
and
guarded
locations

accesses
to
caching-in
hibited
and
guarded
locations

Unreliable. Use MFC
Multisource
Synchronization
Facility5

isync instruction fetches

SPU sync all accesses all
accesses

dsync load and
store
accesses

all accesses

syncc all accesses

1. Gray shading in a table cell means that the instruction, command, or facility has no effect on
the referenced domain.

2. The LS of the issuing SPE.
3. The channels of the issuing SPE.
4. This is the PowerPC sync instruction with L = ‘0’.
5. These accesses can exist only if the LS is mapped by the PPE operating system to the

main-storage space. This can only be done if the LS is assigned caching-inhibited and guarded
attributes.

6. This is the PowerPC sync instruction with L = ‘1’.
 Chapter 4. Cell BE programming 215

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
4.5.1 Shared Storage model

Unlike the in-order execution of instructions in Cell BE, the processor loads and
stores data using a weakly consistent storage model. This means that the order
in which any following three are executed might be different from each other:

MFC mfcsync all
accesses

Unreliable. Use MFC
Multisource
Synchronization
Facility5mfceieio accesses

to
caching-in
hibited
and
guarded
locations

barrier all
accesses

<f>, all
accesses
for the tag
group

MFC
Multisource
Synchronizati
on Facility

all
accesses

all accesses

Table 4-11 Effects of Synchronization on Address and Communication Domains1

Issuer Instruction,
Command,

or
Facility

Main-Storage Domain LS Domain2 Channel
Domain3

Accesses by PPE Accesses
by All
Other

Processor
Elements

and
Devices

Accesses
by

Issuing
SPU

Accesses
by

Issuing
SPU’s
MFC

Accesses
by All
Other

Processo
r

Elements
and

Devices

Accesses
by

Issuing
SPU

Issuing
Thread

Both
Threads

1. Gray shading in a table cell means that the instruction, command, or facility has no effect on
the referenced domain.

2. The LS of the issuing SPE.
3. The channels of the issuing SPE.
4. This is the PowerPC sync instruction with L = ‘0’.
5. These accesses can exist only if the LS is mapped by the PPE operating system to the

main-storage space. This can only be done if the LS is assigned caching-inhibited and guarded
attributes.

6. This is the PowerPC sync instruction with L = ‘1’.
216 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� Order of any processor element (PPE or SPE) perform storage accesses.

� Order in which those accesses are performed with respect to another
processor element.

� Order in which those accesses are performed in main storage.

In order to ensure that accesses to shared storage are performed in program
order, software must place memory-barrier instructions between storage
accesses.

The term storage access means an access to main storage caused by a load, a
store, a direct memory access (DMA) read, or a DMA write. There are two orders
to consider:

� Order of instructions execution. Cell BE is in-order machine, which means
that from the programmer viewpoint it appears that the instructions are
executed in the order specified by the program.

� Order shared-storage accesses. The order in which shared-storage accesses
are performed might be different from both program order and the order in
which the instructions that caused the accesses are executed.

PPE ordering instructions
PPU ordering instructions enable the code that runs the PPU to order the PPE
data transfers on the main storage with respects to all other elements in the
system (e.g. other SPEs). Ordering of storage accesses and instruction
execution may be explicitly controlled by the PPE program using barrier
instructions. These instructions can be used between storage-access
instructions to define a memory barrier that divides the instructions into those
that precede the barrier instruction and those that follow it.

PPE supported barrier instructions are defined as intrinsics in ppu_intrinsics.h
header file so the programmer can easily use them in any C code application.
There are two types of such instruction - storage barriers and instruction barriers
as described in Table 4-12.

Table 4-12 PPE barrier intrinsics

Intrinsic Description Usage

Storage Barriers
 Chapter 4. Cell BE programming 217

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Table 4-13 summarizes the use of the storage barrier instructions for two
common types of main-storage memory:

__sync() Known as the heavyweight sync, ensures
that all instructions preceding the sync
appear to have completed before the sync
instruction completes, and that no
subsequent instructions are initiated until
after the sync instruction completes. This
does not mean that the previous storage
accesses have completed before the
‘sync’ instruction completes.

To ensure that the results
of all stores into a data
structure, caused by store
instructions executed in a
critical section of a
program, are seen by other
processor elements before
the data structure is seen
as unlocked.

__lwsync() Also known as light weight sync, creates
the same barrier as the sync instruction for
storage accesses that is memory
coherence.
Therefore, unlike ‘sync’ instruction, it
orders only PPE’s main-storage accesses
and has no effect on the main-storage
accesses of other processor elements.

When ordering is required
only for coherent memory,
because it executes faster
than ‘sync’.

__eieio() Enforce in-order execution of I/O means
that all main-storage accesses caused by
instructions proceeding the ‘eieio’ have
completed, with respect to main storage,
before any main-storage accesses caused
by instructions following the ‘eieio’. The
eieio instruction does not order accesses
with differing storage attributes. For
example, if an eieio is placed between a
caching-enabled store and a
caching-inhibited

Managing shared data
structures, accessing
memory-mapped I/O
(such as SPEs MMIO
interface), and preventing
load or store combining.

Instruction Barrier

__isync() ensures that all PPE instructions
proceeding the isync are completed
before isync is completed. causes issue
stall and blocks all other instructions from
both PPE threads until the isync
instruction completes.

In conjunction with
self-modifying PPU code,
executed after an
instruction is modified and
before it is executed. Also
may be used during
context switching when the
MMU translation rules are
being changed.

Intrinsic Description Usage
218 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� System memory: The coherence main memory of the system. The XDR main
memory falls into this category and so are the local stores when they are
accessed from the EIB bus (by the PPE or SPEs other then theirs).

� Device memory: Memory that is caching-inhibited and guarded. In Cell a BE
system it is typical of memory-mapped I/O devices such as the DDR that is
attached to the south bridge. Mapping of SPEs’ LS to main storage is
caching-inhibited but not guarded.

In these tables, “yes” (and “no”) mean that the instruction performs (or does not
perform) a barrier function on the related storage sequence, “rec” (stands for
“recommended”) means that the instruction is the preferred one, “not rec” means
that the instruction will work but is not the preferred one, and “not req” (stands for
“not required”) and “no effect” mean the instruction has no effect.

Table 4-13 Storage-barrier ordering of accesses to system memory and device memory

SPU ordering instructions
SPU ordering instructions enable the code that runs the SPU to order SPU data
access to the LS with respects to all other elements that may access it, such as
the MFC and other elements in the system that access the LS through the MFC
(e.g. PPE, other SPEs). They also synchronize the access to the MFC channels.
An LS can experience asynchronous interaction from the following streams that
access it:

� Instruction fetches by the local SPU

� Data loads and stores by the local SPU

� DMA transfers by the local MFC or another SPE’s MFC

� Loads and stores in the main-storage space by other processor elements.

With regard to an SPU, the Cell BE’s in-order execution model guarantees only
that SPU instructions that access that SPU’s LS appear to be performed in

Storage-Access
Instruction
Sequence

System memory Device memory

sync lwsync eieio sync lwsync eieio

load-barrier-load yes rec no affect yes no affect yes

load-barrier-store yes rec no affect yes no affect yes

store-barrier-load yes no no affect yes no affect yes

store-barrier-store yes rec not rec not req a

a. Two stores to caching-inhibited storage are performed in the order specified by
the program, regardless if they are separated by a barrier instruction or not

no affect not reqa
 Chapter 4. Cell BE programming 219

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
program order with respect to that SPU but not necessarily with respect to
external accesses to that LS or with respect to the SPU’s instruction fetch.

Hence, from architecture point of view, in case an SPE write some data to the LS
and immediately later generate MFC ‘put’ command that read this data (and
transfer it to the main storage), then without synchronization instructions it is not
guaranteed that the MFC will read the latest data (since it is not guaranteed that
MFC reading the data is perform after the SPU writing the data). However, from
practical point of view there is no need to add the synchronization command to
guarantee this ordering since executing the six commands for issuing the DMA
always takes more then executing the former write to the LS.

From the programmer point of view, it means that in the absence of external LS
writes, an SPU load from an address in its LS returns the data written by that
SPU’s most-recent store to that address. However, this statement is not
necessarily true for an instruction fetch from that address which may not
guaranteed to return that recent data. The following statement regarding
instruction fetch effect only cases in of self-modifying code.

Please notice that in case the LS and MFC resources of some SPE (which are
mapped to the system-storage address space) are accessed by software running
on the PPE or other SPEs, it is not guaranteed that two accesses that are made
to two different are ordered, unless some synchronization command (e.g. ‘eieio’
or ‘sync’ are explicitly executed by the PPE or other SPEs, as explained in “PPE
ordering instructions” on page 217.

In the descriptions bellow, we use the terms “SPU load” and “SPU store” to
described accesses by the same SPU that executes the synchronization
instruction.

Several practical example for using the SPU ordering instructions are discussed
in Synchronization and Ordering chapter of Synergistic Processor Unit
Instruction Set Architecture Version 1.2 document. In specific sub-chapter
External Local Storage Access which demonstrates how those instructions may
be used when processor which is external to the SPE (e.g. PPE) access the LS
for example in order to write some data to this LS and later notify the code that
runs on the associated SPU that the writing the data is completed by writing to
another address in this same LS.

The SPU instruction set provides three synchronization instructions. The easiest
way to use those instructions is through intrinsics and in order to do so the
programmer should include the spu_internals.h header file. A brief description
of these intrinsics and their main usage is summarized in Table 4-14.
220 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Table 4-14 SPU ordering instructions

The instructions have both coherency and instruction-serializing effects which
are summarized Table 4-15.

Table 4-15 Effects of the SPU ordering instructions

Intrinsic Description Usage

spu_sync ‘sync’ (synchronize) instruction
causes the SPU to waits until all
pending instructions of loads and
stores to LS and channel
accesses have been completed
before fetching the next
instruction.

This instruction is most often used in
conjunction with self-modifying SPU code.
It must be used before attempting to
execute new code that either arrives
through DMA transfers or is written with
store instructions.

spu_dsync ‘dsync’ (synchronize data)
instruction ensures that data has
been stored in the LS before the
data becomes visible to the local
MFC or other external devices.

Architecturally, Cell BE DMA transfers may
interfere with store instructions and the
store buffer, so ‘dsync’ meant to ensure that
all DMA store buffers are flushed to the LS
(i.e., all previous stores to LS will be seen by
subsequent LS accesses.
However, current Cell implementation does
not require ‘dsync’ instruction for doing so
as it handle it by HW.

spu_sync_c ‘syncc’ (synchronize channel)
ensures channel synchronization
followed by the same
synchronization provided by the
‘sync’ instruction.

To ensure that the effects on SPU state
caused by prior write to some nonblocking
channel are propagated and influence the
execution of the following instructions.

Intrinsic Ensures these coherency
effects

Forces this instruction serialization
effects

spu_dsync 1. Subsequent external read
access data written by
prior SPU stores.

2. Subsequent SPU loads
access data written by
external writes.

� Forces SPU load and SPU store access
of LS due to instructions before the
’dsync’ to be completed before
completion of ’dsync’.

� Forces read channel operations due to
instructions before the ’dsync’ to be
completed before completion of the
’dsync’.

� Forces SPU load and SPU store access
of LS due to instructions after the ’dsync’
to occur after completion of the ’dsync’.

� Forces read-channel and write-channel
operations due to instructions after the
’dsync’ to occur after completion of the
’dsync’.
 Chapter 4. Cell BE programming 221

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Table 4-16 shows which SPU synchronization instructions are required between
LS writes and LS reads to ensure that reads access data written by prior writes
as it highlights the differences between different initiators:

Table 4-16 Synchronization instructions for accesses to an LS

MFC ordering mechanisms
SPU may use the MFC channel interface to issue commands to the associated
MFC. The PPU or other SPUs outside this SPE may similarly use the MFC’s
MMIO interface in order to send commands to a particular MFC. For each of
those interfaces independently, the MFC accepts only queueable commands
which are entered into one of the MFC SPU command queue (one queue for the
channels interfaces and another for the MMIO). The MFC then processes these
commands, possibly out of order to improve efficiency.

However, MFC supports ordering mechanism that may be activated through
each of those two main interfaces:

spu_sync � Effects 1 and 2 of
spu_dsync

3. Subsequent instruction
fetches access data
written by prior SPU
stores and external writes.

� All access of LS and channels due to
instructions before the ’sync’ to be
completed before completion of ’sync’.

� All access of LS and channels due to
instructions after the ’sync’ to occur after
completion of the ’sync’.

spu_sync_c � Effects 1 and 2 of
spu_dsync

� Effects 3 of spu_sync
4. Subsequent instruction

processing is influenced
by all internal execution
states modified by
previous write instructions
to some channel.

� All access of LS and channels due to
instructions before the ‘syncc’ to be
completed before completion of ‘syncc’.

� All access of LS and channels due to
instructions after the ‘syncc’ to occur
after completion of the ‘syncc’.

Writer
Reader

SPU instruction fetch SPU load External reada

SPU Store ‘sync’ nothing required ‘dsync’

External Writea

a. By any DMA transfer (from the local MFC or a non-local MFC), the PPE, or other
device—other than the SPU that executes the synchronization instruction

‘sync’ ‘dsync’ NA

Intrinsic Ensures these coherency
effects

Forces this instruction serialization
effects
222 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� Channel interface: allows an SPU code to control the order in which the MFC
execute the commands that have been previously issued by this SPU using
the channel interface.

� MMIO interface: similarly but independently, PPU or other SPUs may use the
MMIO interface to control the order in which MFC issue command that have
been previously queued on its MMIO interface.

It is important to mention that the effect of those commands, regardless if they
are issued through either of the two interfaces, actually controls the order of the
MFC data transfers on the main storage with respects to all other elements in the
system (e.g. PPE and other SPEs).

There are two types of ordering commands:

� Fence or barrier command options: tag specific mechanism that is activated
by appending a ‘fence’, or ‘barrier’ options to either data transfer or signaling
commands.

� Barrier commands: a separate barrier command can be issued to order the
command against all preceding and all succeeding commands in the queue,
regardless of tag group.

The following section describes more about those two types of commands.

Fence or barrier command options
The fence or barrier command options ensure local ordering of storage accesses
made through the MFC with respect to other devices in the system. The ‘local’
ordering ensures ordering of the MFC commands with respect to that particular
MFC tag group (commands that have similar tag ID) and command queue (i.e.
MFC proxy command queue and MFC SPU command queue). Both ordinary
DMA and list DMA commands are supported and well as signalling commands.

Programmers can enforce ordering among DMA commands in a tag group with a
fence or barrier option by appending an ‘f’ for ‘fence’, or a ‘b’, for ‘barrier’, to the
signaling commands (e.g. ‘sndsig’) or data transfer commands (e.g. ‘getb’ and
‘putf’). The simplest way to do so is using the supported MFC functions:

� SPU code may use the functions call defined by spu_mfcio.h header file. For
example use mfc_getf and mfc_putb functions to issue ‘fenced get’ command
and ‘barrier put’ command respectively.

� PPU code may use the functions call defined by libspe2.h header file. For
example use spe_mfcio_getf and spe_mfcio_putb functions to issue ‘fenced
get’ command and ‘barrier put’ command respectively.

Table 4-17 lists the supported tag-specific ordering commands:
 Chapter 4. Cell BE programming 223

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Table 4-17 MFC tag-specific ordering commands

The ‘fence’ and ‘barrier’ option has different effects:

� Fenced command is not executed until all previously issued commands within
the same tag group have been performed; commands issued after the fenced
command might be executed before the fenced command.

� Barrier command and all the commands issued after the barrier command
are not executed until all previously issued commands in the same tag group
have been performed.

Once those data transfers were issues, the storage system may complete
requests in an order different then the order in which they are issued, depending
on the storage attributes. However, in specific it is guaranteed that accesses to
the main memory (which has caching-inhibited storage) and other SPE’s LS and
problem state are completed in the same order in which they are issued.

The different effects of the ‘fenced’ and ‘barrier’ command are illustrated in
Figure 4-4. The row of white boxes represents command-execution slots, in
real-time, in which the DMA commands (red and green boxes) might execute.
Each DMA command is assumed to transfer the same amount of data, thus, all
boxes are the same size. The arrows show how the DMA hardware, using
out-of-order execution, might execute the DMA commands over time.

Option Commands

barrier getb, getbs, getlb, putb, putbs, putrb, putlb, putrlb, sndsigb

fence getf, getfs, getlf, putf, putfs, putrf, putlf, putrlf, sndsigf
224 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Figure 4-4 Barrier and fence effect

Those commands are very useful and efficient in synchronizing SPU code data
access to the shared storage with access of other elements in the system. One
of the common use of those command is in double buffering mechanism, as
explained in Chapter , “Double buffering” on page 157 and illustrated through the
code of Example 4-29 on page 159. For more scenarios examples see
Chapter 4.5.4, “Practical examples using ordering and synchronization
mechanisms” on page 235.

Barrier commands
The barrier commands order storage accesses made through the MFC with
respect to all other MFCs, processor elements, and other devices in the system.
While the CBEA specifies those commands as having tag-specific effects
(controls only the order in which transfers related to one tag-ID group are
executed compare to each other), the current Cell BE implementation have no
tag-specific effects.

Those commands may activated only by the SPU that is associated with the MFC
using the channel interface. There is no support from the MMIO interface.
However, the PPU may achieve similar effects by using the not-MFC-specific
ordering instructions that described in Chapter , “PPE ordering instructions” on
page 217.
 Chapter 4. Cell BE programming 225

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The easiest way to use those instructions from the SPU side is through intrinsics.
In order to do so the programmer should include the spu_mfcio.h header file. A
brief description of these intrinsics and their main usage is summarized in
Table 4-18.

Table 4-18 MFC ordering commands

MFC multisource synchronization facility
The Cell BE processor contains multiple address and communication domains -
the main-storage domain, eight local LS-address domains, and eight local
channel domains. MFC multisource synchronization facility ensure cumulative
ordering of storage accesses performed by multiple sources (e.g PPE and SPEs)
across all those address domains, unlike the PPE ‘sync’ instruction and other

Intrinsic Description Usage

mfc_sync ‘mfcsync’ command is similar to PPE ‘sync’
instruction and controls the order in which MFC
commands are executed with respect to
storage accesses by all other elements and in
the system.

Designed to be used
inter-processor/device
synchronization. Since it
creates a large load on the
memory system, should be
used only between
commands involving storage
with different storage
attributes - otherwise other
synchronization commands
should be preferred.

mfc_eieio ‘mfceieio’ command controls the order in which
DMA commands are executed with respect to
storage accesses by all other system elements,
only when the storage being accessed has the
attributes of caching-inhibited and guarded
(typical for I/O devices). The command is
similar to PPE ‘eieio’ instruction - for more
details regarding the effects on accessing
different types of memories - seeTable 4-13 on
page 219.

Managing shared data
structures, performing
memory-mapped I/O, and
preventing load and store
combining in main storage.
The ‘fence’ and ‘barrier’
options of other commands
are preferred from
performance point of view so
should be use in case they
are sufficient.

mfc_barrier ‘barrier’ command orders all subsequent MFC
commands with respect to all MFC commands
preceding the barrier command in the DMA
command queue, independent of tag groups.
The barrier command will not complete until all
preceding commands in the queue have
completed. After the command completes,
subsequent commands in the queue may be
started.

Managing data structures
which are located in main
storage and are shared by
other elements in the system.
226 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
similar instructions which provides such cumulative ordering only with respect to
the main-storage domain.

The MFC multisource synchronization facility addresses this cumulative-ordering
need by providing two independent multisource synchronization-request
methods:

� MMIO interface - allows the PPE or other processor elements or devices to
control synchronization from the main-storage domain.

� Channel interface - allows an SPE to control synchronization from its
LS-address and channel domain.

Each of these two synchronization-request methods ensures that all write
transfers to the associated MFC are sent and received by the MFC before the
MFC synchronization-request is completed. This facility does not ensure that
read data is visible at the destination when the associated MFC is the source.

The two methods operate independently so synchronization request through the
MMIO register has no effect on synchronization requests through the channel,
and vice versa.

MMIO interface of MFC multisource synchronization facility
MFC multisource synchronization facility may be accessed from the main storage
domain by the PPE or other processor elements or devices using the MMIO
MFC_MSSync (MFC multisource synchronization) register. A programmer can
access this facility through two functions that are defined in libspe2.h header file
and are further described in SPE Runtime Management library document.

Example 4-44 illustrates how the PPU programmer may achieve cumulative
ordering using the two corresponding libspe2.h functions:

Example 4-44 MMIO interface of MFC multisource synchronization facility

#include “libspe2.h”

// Do dome MFC DMA operation between memory and LS of some SPE
// PPE/other-SPEs use our MFC to transfer data between memory and LS

int status;

spe_context_ptr_t spe_ctx;

// init one or more SPE threads (also init ‘spe_ctx’ variable)

// Send a request to the MFC of some SPE to start tracking outstanding
// transfers which are sent to this MFC by either te associated SPU or
 Chapter 4. Cell BE programming 227

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
// PPE or other-SPEs.

status = spe_mssync_start();

if (status==-1){
// do whatever need to do on ERROR but do not continue to next step

}

// Check if all the transfers that are being tracked are completed.
// Repeat this step till the function returns 0 indicating the
// completions of those transfers

while(1){
status = spe_mssync_status(spe_ctx); // nonblocking function

if (status==0){
break; // synchronization was completed

}else{
if (status==-1){

// do whatever need to do on ERROR
break; //unless we already exit program because of the error

}
}

};

Channel interface of MFC multisource synchronization facility
MFC multisource synchronization facility may be accessed by the local SPU
code form the LS domain using the MFC_WrMSSyncReq (MFC write
multisource synchronization request) channel. A programmer can access this
facility through two functions that are defined in spu_mfcio.h header file and are
further described in C/C++ Language Extensions for Cell BE Architecture
document. Example 4-45 illustrates how the SPU programmer may achieve
cumulative ordering using the two corresponding spu_mfcio.h functions:

Example 4-45 Channel interface of MFC multisource synchronization facility

#include “spu_mfcio.h”

uint32_t status;

// Do dome MFC DMA operation between memory and LS
// PPE/other-SPEs use our MFC to transfer data between memory and LS
228 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// Send a request to the associated MFC to start tracking outstanding
// transfers which are sent to this MFC by either this SPU or PPE or
// other-SPEs

mfc_write_multi_src_sync_request();

// Check if all the transfers that are being tracked are completed.
// Repeat this step till the function returns 1 indicating the
// completions of those transfers

do{
status = mfc_stat_multi_src_sync_request(); // nonblocking function

} while(!staus);

Other alternative is using asynchronous event that may be generated by the MFC
to indicate the completion of the requested data transfer. Chapter MFC
Multisource Synchronization Facility in the Cell Broadband Engine Programming
Handbook describes more about this alternative and other issues related to MFC
multisource synchronization facility.

4.5.2 Atomic synchronization

This section the atomic operations that are supported by Cell BE. Those
operation are implemented on both the SPE and the PPE and enables the
programmer to create synchronization primitives such as semaphores and mutex
locks in order to synchronize storage access or other functions. Those feature
should be use with special care in order to avoid livelocks and deadlocks.

The atomic operation that are implemented in Cell BE are not blocking so this
enables the programmer to implement algorithms that are lock-free and wait-free.

Atomic operations are described in details in PPE Atomic Synchronization
chapter in Cell Broadband Engine Programming Handbook document. the
chapter also contains some usage examples and how those atomic operations
may be used to implement synchronization primitives such as mutex, atomic
addition (part of semaphore implementation), and condition variables. We
recommend to the advanced programmer to read this chapter in order to further
understand this mechanism.
 Chapter 4. Cell BE programming 229

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Atomic synchronization instructions
The atomic mechanism enables to set a lock (called ‘reservation’) on some
aligned unit of real storage (called a ‘reservation granule’) containing the address
that we wish to lock. The Cell BE reservation granule is 128 bytes, corresponding
to the size of a PPE cache line, means the programmer may set a lock on block
of 128 bytes which is also aligned to 128 bytes address.

The atomic synchronization mechanism include the following instructions:

� Load-and-reserve instructions: load the addressed value from memory and
then set a reservation on the reservation granule that containing the address.

� Store-conditional instructions: verify that the reservation is still set on the
granule and only if it is set the store operation is carried out. Other wise
(reservation does not exist) the instruction completes without altering storage.
The hardware set indication bit in CRT register to enables the programmer to
determine if the store was successful.

The reservation is cleared by setting another reservation or by executing a
conditional store to any address. Another processor element may also clear the
reservation by accessing the same reservation granule.

A pair of load-and-reserve and store-conditional instructions permits atomic
update of variable in main storage which enables the programmer to implement
various synchronization primitives such as semaphore, mutex lock, test-and-set,
fetch-and-increment, and any atomic update of a single aligned word or
doubleword in memory. Example 4-46 Illustrate how this mechanism may be
used to implement a semaphore:

Example 4-46 implementing semaphore using load-and-reserve and store-conditional

1. read a semaphore using load-and-reserve.

2. compute a result based on the value of the semaphore.

3. use store-conditional to write the new value back into the semaphore
location only if that location has not been modified (i.e. by other
processor) since it was read in step 1.

4. determine if the store was successful;

– if successful: the sequence of instructions from steps 1 to step 3
appears to have been executed atomically.

– otherwise: other processor accessed the semaphore so the software
may repeat this process (back to step 1).
230 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
These instructions also control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory
operations are seen by other processor elements or memory access
mechanisms.

PPE and SPE atomic implementation
The atomic synchronization is implemented on both the PPE and the SPE:

� PPE side: atomic synchronization is implemented through a set of assembly
instructions. A set of specific intrinsics to make those PPU instructions easily
accessible from the C programming language as each of these intrinsics has
a one-to-one assembly language mapping. Programer should include
ppu_intrinsics.h header file to use them.

� SPE side: atomic synchronization is implemented on the SPE with a set of
MFC synchronization commands which are accessible through a set of
functions provided by spu_mfcio.h file.

Table 4-19 summarized both the PPE and SPE atomic instructions. For each
PPE instruction attached an SPE’s MFC commands that implement similar
mechanism. Please notice that for all the PPE instructions, reservation (lock) is
set for the entire cache line in which this word resides.

Table 4-19 Atomic primitives of PPE and SPE

PPE Description SPE (MFC) Description

Load and reserve instructions

__ldarx Load a doubleword
(cache line) and set
reservation.

mfc_getllar Transfer cache line from LS to
main storage and created a
reservation (lock). Not tagged and
is executed immediately (not
queued behind other DMA
commands.

__lwarx Load a word and set
reservationa.

- -

Store conditional instructions

__stdcx Store a doubleword
(cache line) only if
reservation (lock)
exists.

mfc_putllc Transfer cache line from LS to
main storage only if reservation
(lock) exists.

__stwcx Store a word only if
reservation existsa.

- -
 Chapter 4. Cell BE programming 231

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
There are two pairs of atomic instructions that are implemented on both the PPE
and the SPE. The first pair is __ldarx/_lwarx and mfc_getllar and the second
pair is __stdcx/_stwcx and mfc_putllc for PPE and SPE respectively. This
functions provide atomic read-modify-write operations that may be used to derive
other synchronization primitives between a program that runs on the PPU and a
program code that runs on the SPU (or SPUs).

PPU code and SPU code examples of implementing a mutex-lock mechanism
using those two pairs of atomic instructions is shown Example 4-47 and
Example 4-48 for PPE and SPE respectively.

Chapter 4.5.3, “Using sync library facilities” on page 234 illustrates how sync
library implement many of the standard synchronization mechanisms, such as
mutex and semaphore, using the atomic instructions. Example 4-47 is actually
based on a ‘sync’ library code from mutex_lock.h header file.

Chapter PPE Atomic Synchronization in Cell Broadband Engine Programming
Handbook document provides more code examples on how synchronization
mechanisms may be implemented on both a PPE program and SPE program.
using those instructions in order to achieve synchronization between the two
programs. Example 4-48 is based on one of those examples.

Example 4-47 PPE implementation of mutex_lock function in sync library

#include “ppu_intrinsics.h”

// assumes 64 bit compelation of the code

- - mfc_putlluc Put lock-line unconditional
(regardless if reservation exists.
Executed immediately.

- - mfc_putqlluc Put lock-line unconditional
(regardless if reservation exixts.is
placed into the MFC command
queue, along with other MFC
commands.

a. Reservation (lock) is set for the entire cache line in which this word resides.

Note: Programmer should consider using the various synchronization
mechanisms that are implemented in sync library instead of explicitly using the
atomic instructions that are described in this chapter. For more information
see Chapter 4.5.3, “Using sync library facilities” on page 234.

PPE Description SPE (MFC) Description
232 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
void mutex_lock(uint64_t mutex_ptr) {

uint32_t done = 0;

do{
if (__lwarx((void*)mutex_ptr) == 0)

done = __stwcx((void*)mutex_ptr, (uint32_t)1);

}while (done == 0); // retry if the reservation was lost

__isync(); // synchronize with other data transfers
}

Example 4-48 SPE implementation of mutex lock

#include <spe_mfcio.h>
#include <spu_intrinsics.h>

void mutex_lock(uint64_t mutex_ptr) {
uint32_t offset, status, mask;

volatile char buf[256], *buf_ptr;
volatile int *lock_ptr;

// determine the offset to the mutex word within its cache line.
// align the effective address to a cache line boundary.
uint32_t offset = mfc_ea2h(mutex_ptr) & 0x7F;
uint32_t mutex_lo = mfc_ea2h(mutex_ptr) & ~0x7F;
mutex_ptr = mfc_hl2ea(mfc_ea2h(mutex_ptr), mutex_lo);

// cache line align the local stack buffer.
buf_ptr = (char*)(((uint32_t)(buf) + 127) & ~127);
lock_ptr = (volatile int*)(buf_ptr + offset);

// setup for use possible use of lock line reservation lost events.
// detect and discard phantom events.
mask = spu_read_event_mask();
spu_write_event_mask(0);

if (spu_stat_event_status()) {
spu_write_event_ack(spu_read_event_status());

}
spu_write_event_mask(MFC_LLR_LOST_EVENT);
 Chapter 4. Cell BE programming 233

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
do{ //get-and-reservation the cache line containing mutex lock word.

mfc_getllar(buf_ptr, mutex_ptr, 128, tag_id,0,0);
mfc_read_atomic_status();

if (*lock_ptr) {
// The mutex is currently locked. Wait for the lock line
// reservation lost event before checking again.
spu_write_event_ack(spu_read_event_status());

status = MFC_PUTLLC_STATUS;
} else {

// The mutex is not currently locked. Attempt to lock.
*lock_ptr = 1;

// put-conditionally, the cache line containing the lock word.
mfc_putllc(buf_ptr, mutex_ptr, 128, tag_id,0,0);
status = mfc_read_atomic_status() & MFC_PUTLLC_STATUS;

}
} while (status); // retry if the reservation was lost.

spu_write_event_mask(mask); // restore the event mask
}

4.5.3 Using sync library facilities

The ‘sync’ library provides several simple general purpose synchronization
constructs. The supported C functions closely match those found in current
traditional operating systems.

Most of the functions of this library are supported by both the PPE and the SPE,
but small portion of them are supported only by the SPE. The functions are all
based upon the Cell BE load-and-reserve and store-conditional functionality that
is described in Chapter 4.5.2, “Atomic synchronization” on page 229.

In order to use the facilities of the ‘sync’ library, the programmer should refer to
the following files:

� libsync.h: the header file that should be included as it contains most of the
definitions.

� libsync.a: the library that contains the implementation and should be linked
to the program.
234 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� function specific header files: each function is defined by a separate header
file so the programmer may include this header file instead of the libsync.h
file. For example the programmer may include mutex_init.h header file when
‘mutex_lock’ operation is needed. In this case an underline should be added
when calling the function (e.g. _mutex_lock function when including
mutex_init.h file instead of mutex_lock when including libsync.h.

The ‘sync’ library provides five sub-classes of synchronization primitives:

1. atomic operations: atomically adds or subtract a value from some 32 bits
integer variable.

2. mutexes: routines that operate on mutex (mutual exclusion) objects and are
used to ensure exclusivity. Enables the programer to atomically ‘lock’ the
mutex before accessing some shared structure and ‘unlock’ it when done.

3. condition variables: routines that operate on condition variables and have two
main operations. When a thread calls the ‘wait’ operation on some condition it
is suspended and waits on that condition variable signal until another thread
signals (or broadcasts) the condition variable using the ‘signal’ operation.

4. completion variables: enables one thread to notify other threads that are
waiting on the completion variable that the completion is true.

5. reader/writer locks: routines that enables a thread to lock some 32 bits word
variable in memory using two types of locks. A ‘read lock’ is a non-exclusive
mutex which allow multiply simultaneous readers. A ‘writer lock’ is a exclusive
mutex which allows a single writer.

4.5.4 Practical examples using ordering and synchronization
mechanisms

This section includes some practical examples showing how the storage-ordering
and synchronization facilities of the Cell BE processor can be used. Most of
those exampled are mainly based on chapter Shared-Storage Ordering in Cell
Broadband Engine Programming Handbook document.

SPE writing notifications to PPE using fenced-option
The most common use of the fenced DMA is when writing back notifications.
Example 4-49 illustrated such scenario:

Note: Using the function specific header files is preferred from performance
point of view since those function are defined as inline, unlike the definition of
the corresponding function in libsync.h file. However, similar effect may be
achieved by setting the appropriate compilation flags.
 Chapter 4. Cell BE programming 235

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 4-49 Writing notification using fenced-option

SPU program:
1. Compute some data.
2. Issue several DMA ‘put’ commands to writes the computed data back to

main storage.
3. Use fenced ‘putf’ command to write a notification that the data is

available. This notification might be to any type memory (main
memory, I/O memory, a signal-notification or MMIO register, or
another SPE’s mailbox).

4. If the program to reuse the LS buffers it waits for the completion
of all the the commands issued in previous steps.

PPU program:
1. Wait for notification (poll the notification flag).
2. Operate on the computed SPE data (it is guaranteed that that the

updated data is available in memory since SPE used fence between
writing the computed data and the notification).

To ensure ordering of the DMA writing of the data (step 2) and of the notification
(step 3) the notification may be sent using a fenced DMA command. This
guarantee that the notification is not sent until all previous DMA commands of the
group are issued.

In this example, the writing of both the data and that notification should have the
same tag ID in order to guarantee that the fence will work.

Ordering reads followed by writes using barrier-option
A barrier option might be useful when a buffer read takes multiple commands
and must be performed before writing the buffer, which also takes multiple
commands. Example 4-50 illustrated such scenario:

Example 4-50 Ordering reads follows by writes using barrier-option

1. Issue several ‘get’ commands to read data into the LS.
2. Issue a single barrier ‘putb’ command to write data to main

storage from LS. The barrier guarantee that the ‘putb’ command and
the subsequent ‘put’ commands issued in step 3 will occur only after
the `get` commands of step 1 are complete.

3. Issue a more ordinary (without barrier) ‘put’ command to write
data to main storage.

4. Waits for the completion of all the the command issued in
previous steps.
236 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Using the barrier-form for the first command to write the buffer (step 2) allows the
commands used to put the buffer (step 2 to 3) to be queued without waiting for
the completion of the ‘get’ commands (step 1). The programmer may take
advantage of this mechanism to overlap those data transfers (read and write)
with computation allowing the hardware to manage the ordering.

This scenario may occur on either the SPU or PPU who uses the MFC to initiate
data transfers.

The ‘get’ and ‘put’ commands should have the same tag ID in order to guarantee
that the barrier option (i.e. that comes with the ‘get’ and ‘put’ commands) will
ensure writing the buffer just after data is read. If the ‘get’ and ‘put’ commands
are issued using multiple tag IDs, then a MFC `barrier` command can be inserted
between the ‘get’ and ‘put’ command instead of using a ‘put’ with barrier option
for the first ‘put’ command.

If multiple commands are used to read and write the buffer, using the barrier
option allows the read commands to be performed in any order and the write
commands to be performed in any order, which provides better performance but
forces all reads to finish before the writes start.

Double buffering using barrier-option
Barrier commands are also useful when performing double-buffered DMA
transfers in which the data buffers used for the input data are the same as the
output data buffers. Example 4-51 illustrated such scenario:

Example 4-51 Ordering SPU reads follows by writes using barrier-option

int i;
i = 0;
‘get’ buffer 0
while (more buffers) {

‘getb’ buffer i^1 //‘mfc_getb’ function (with barrier)
wait for buffer i //‘mfc_write_tag_mask’ & ‘mfc_read_tag_status_all’
compute buffer i
‘put’ buffer i //‘mfc_put’ function
i = i^1;

}
wait buffer i //‘mfc_write_tag_mask’ & ‘mfc_read_tag_status_all’
compute buffer i
‘put’ buffer i //‘mfc_put’ function
 Chapter 4. Cell BE programming 237

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
In the ‘put’ command at the end of each loop iteration data is written from the
same local buffer to which data is later read in the beginning of next iteration’s
‘get’ command. It is critical there for to barrier the ‘get’ command to ensure that
the writes complete before the reads are started preventing the wrong data to be
written.

The code of SPU program which implements such double buffering mechanism
is shown in Example 4-29 on page 159.

PPE-to-SPE communications using storage barrier instruction
For some applications the PPE is used as an application controller which
manages and distributes work to the SPEs. Example 4-51 show a typical
scenario for such applications and how a ‘sync’ storage barrier instruction may
be used in this case to guarantee the correct ordering:

Example 4-52 Ordering SPU reads follows by writes using barrier-option

1. PPE write main storage with the data to be processed
2. PPE issue ‘sync’ storage barrier instruction.
3. PPE notifies the SPE by writing to either the inbound mailbox or one

of the SPE’s signal-notification registers.
4. SPE read the notification and understands that data is ready.
5. SPE read the data and process it.

To make this feasible, it is important that the data storage performed in step 1 be
visible to the SPE before receiving the work-request notification (steps 3 and 4).
To ensure guaranteed ordering, a ‘sync’ storage barrier instruction must be
issued by the PPE between the final data store in memory and the PPE write to
the SPE mailbox or signal-notification register. This barrier instruction appears as
step 2 in the example.

SPEs updating shared structures using atomic operation
In some case several SPEs may maintain a shared structure, for example when
using the following programing model:

� A list of work elements in the memory defines the work that needs to be done.
Each of the element defines one task out of the overall work that may be
executed in parallel to the others.

� A shared structure contains the pointer to the next work element and
potentially other shared information.

� An SPE that available to execute the next work element atomically reads the
shared structure to evaluate the pointer to the next work element and update
238 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
it to point to the next element. Then he can get the relevant information and
process it.

Atomic operations are useful in such cases when several SPE need to atomically
read and update the value of the shared structure. Potentially, the PPE may also
update this shared structure using atomic instructions on the PPU program.

Example 4-53 illustrated such scenario and how the SPEs can manage the work
and access to the shared structure using the atomic operations:

Example 4-53 SPEs updating shared using atomic operation

// local version of the shared structure
// size of this structure is a single cache line
static volatile vector shared_var ls_var __attribute__ ((aligned
(128)));

// effective address of the shared sturture
uint64_t ea_var;

int main(unsigned long long spu_id, unsigned long long argv){

unsigned int status;

ea_var = get from PPE pointer to shared structure’s effective addr.

while (1){

do {
// get and lock the cache line of the shared sahred structure
mfc_getllar((void*)&ls_var, ea_var, 0, 0);
(void)mfc_read_atomic_status();

if (valus in ‘ls_var’ indicate that the work was complete){

(comment: ‘ls_var’ may contain total # of work tasks and #
 of complete task - SPE can compare those values)

break;
}

// else - we have a new work to do

ls_var = progress the var to point to the next work to be done
 Chapter 4. Cell BE programming 239

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
mfc_putllc((void*)&ls_var, ea_var, 0, 0);

status = mfc_read_atomic_status() & MFC_PUTLLC_STATUS;

 } while (status); // loop till the atomic operation succeeds

//get data of current work, process it, and put results in memory
}

}

4.6 SPU programming

The eight SPEs are optimized for compute-intensive applications in which a
program’s data and instruction needs can be anticipated and transferred into the
local store (LS) by DMA while the SPE computes using previously transferred
data and instructions. However, the SPEs are not optimized for running programs
that have significant branching, such as an operating system.

The following chapters are included in this section:

1. “Architecture overview and its impact on programming” on page 241 provide
an overview on the main SPE architecture features and how they affect the
SPU programing.

2. “SPU instruction set and C/C++ language extensions (intrinsics)” on
page 244 provides an overview of the SPU instruction set and the SPU
intrinsics which are simpler high level programing interface to access the SPE
hardware mechanisms and assembly instructions.

3. “Compiler directives” on page 251 describes the compiler directive that are
most likely to be use when writing an SPU program.

4. “SIMD programming” on page 253 discuss how the programer can explicitly
exploit the SIMD instructions to the SPU.

5. “Auto-SIMDizing by compiler” on page 264 describe how the programer can
use compilers to automatically convert a scalar code into a SIMD code.

6. “Using scalars and converting between different vector types” on page 271
described how to work with different vector data types and how to convert
between vectors and scalars and vice versus.
240 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
7. “Code transfer using SPU code overlay” on page 276 describe how the
programer can use the SDK3.0 SPU code overlay to face situations in which
the code is too big to fit into the local store.

8. “Eliminating and predicting branches” on page 277 describes how write an
efficient code when branches are required.

This chapter cover mainly issues related to writing a program that runs efficiently
on the SPU while fetching instructions form the attached LS. However, in most
cases an SPU program should also interact with the associated MFC to transfer
data between the main storage and communicate with other processors on the
Cell BE chip. It is therefore very important to understand those issues, which are
covered in other chapters of the book:

� Chapter 4.3, “Data transfer” on page 109 discuss how SPU can transfer data
between the LS and main storage.

� Chapter 4.4, “Inter-processor communication” on page 174 discuss how SPU
communicate with other processors on the chip (PPE and SPEs).

� Chapter 4.5, “Shared storage synchronizing and data ordering” on page 213
discuss how the data transfer of the SPU and other processors are ordered
and who the SPU can synchronize with other processors.

4.6.1 Architecture overview and its impact on programming

This chapter describes the main features of SPE architectures with emphasis on
the impact that those features have on the programming of SPU applications.

The chapter is divided into sections such as that each section discuss specific
component of the SPU architecture. Inside each section, we provide a list of the

Memory and data access
This chapter summarizes the main features related to memory and data access.

Local store (LS)
� From programing point of view this is the storage domain that the program

directly refer to when doing load and store instruction or use pointers.

� Its size is 256KB. This size is relatively compact so usually the programer
should explicitly transfer data between main memory and the LS.

� Holds both the instructions, stack, and data (global and local variables).

� Accessed directly by load and store instructions which are deterministic, have
no address translation and have low latency.
 Chapter 4. Cell BE programming 241

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� 16 byte per cycle load and store bandwidth and quadword aligned only. When
the programer store data that is smaller then that (e.g. scalar) the program will
actually perform 16 byte read, shuffle to set alignment, modify the data and 16
byte store. Obviously this is not very efficient.

Main storage and DMA
� Accessing the main storage is done by the programmer explicitly issuing DMA

transfer between the LS and main storage.

� The effective address of the main storage data should be supplied by the
program runs on the PPE.

� DMA transfer are done asynchronously with program execution allowing the
programer to overlap between data transfer and computation.

� 16 bytes of data are transfered per cycle.

Register file
� Large register file of 128 entries of 128-bits each.

� Unified register file such as all types (floating point, integers, vectors, pointers,
etc.) are stored in the same registers.

� The large and unified file allows for instruction-latency hiding using deep
pipeline without speculation.

� Big-endian data ordering (lowest-address byte and lowest-numbered bit are
the most-significant byte and bit, respectively).

LS arbitration
Arbitration to the LS is done according the following priorities (high first):

1. MMIO, DMA, and DMA list transfer element fetch.

2. ECC scrub.

3. SPU load/store; hint instruction prefetch.

4. Inline instruction prefetch.

Instruction set and instruction execution
This chapter summarizes the SPE instruction set, the way in which instructions
are executed (pipeline and dual issue).

Instructions set:
� Supports the single-instruction, multiple-data (SIMD) instruction architecture

that works on 128b vectors.

� Scalar instructions are also supported.
242 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� The programer should try to use SIMD instruction as much as possible as the
have significantly preferred performance. Can be done by using functions that
are defined by SDK’s language extensions for C/C++, or using
auto-vectorization feature of the compiler.

Floating-point operations:
� Single-precision instructions are performed in 4-way SIMD fashion and are

fully pipelined. Since those instructions have good performance it is
recommended for the programer to try to use them if the application allows to.

� Double-precision instructions are performed in 4-way SIMD fashion, are only
partially pipelined, and will stall dual issue of other instructions. The
performance of these instructions makes Cell BE less attractive for
applications that have massive use of double-precision instructions.

� Data format follows the IEEE Standard 754 definition, but the single precision
results are not fully compliant with this standard (different overflow and
underflow behavior, support only for truncation rounding mode, different
denormal results).
The programer should be aware that in come cases the computation results
will not be identical to IEEE Standard 754

Branches:
� No branch prediction cache, branches assume to be not taken so in case a

branch s taken there a stall that have negative effect on the performance.

� Special branch hint commands can be used in the code to direct the hardware
that a coming branch will be taken and by that avoid the stall.

� There are no hint intrinsics. Instead programmers can improve branch
prediction by either utilizing the __builtin_expect compiler directive or utilize
feedback directed optimization supported by the IBM xl compilers or
FDPRPro.

Pipeline and dual issue:
� Has two pipelines, named even (pipeline 0) and odd (pipeline 1). Whether an

instruction goes to the even or odd pipeline depends on its instruction type.

� Issue and complete up to two instructions per cycle, one in each pipeline.

� Dual-issue occurs when a fetch group has two issueable instructions with no
dependencies in which the first instruction can be executed on the even
pipeline and the second instruction can be executed on the odd pipeline.

� Advances programers can write low level code that fully utilize the two
pipelines by separating between instructions that goes to the same pipeline
(i.e. put instruction that goes to the other pipeline between them) or
separating between instructions that have data dependencies.
 Chapter 4. Cell BE programming 243

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� However, in many cases the programer may relies on the compiler or other
performance tools (e.g. FDPRPro) to utilize the two pipelines. However, it is
recommended to analyze the results either statically (e.g. using SPU static
timing tool or Code Analyzer tool) or using profiling (e.g. load FDPRPro
profiming data into Code Analyzer tool).

Features which are not supported by the SPU
The SPU doesn't support many of the features provided in most general purpose
processors:

� No direct (SPU-program addressable) access to main storage. The SPU
accesses main storage only by using the MFC’s DMA transfers.

� No direct access to system control, such as page-table entries. PPE
privileged software provides the SPU with the address-translation information
that its MFC needs.

� With respect to accesses by its SPU, the LS is unprotected and un-translated
storage.

4.6.2 SPU instruction set and C/C++ language extensions (intrinsics)

The SPU Instruction Set Architecture (ISA) is fully documented in Synergistic
Processor Unit Instruction Set Architecture document. SPU ISA operates
primarily on SIMD vector operands, both fixed-point and floating-point, with
support for some scalar operands.

Another recommended source of information is SPU Instruction Set and
Intrinsics chapter in Cell Broadband Engine Programming Handbook document
which its appendix provides a table of all the supported instructions as well as
their latency.

SDK provided rich set of language extensions for C/C++ which define SIMD data
types and intrinsics that map to one or more assembly-language instructions into
C language functions. This gives the programmer very convenient and productive
control over code performance without the need for assembly-language
programming.

From the programer point of view it is generally highly recommended:

� Use SIMD operations where ever possible as they provide the maximum
performance which can be up to 4 times (for single precision float or 32b
integers) or 16 times (for 8 bit chars) faster then scalar processor.
This important topic is further discussed at Chapter 4.6.4, “SIMD
programming” on page 253.
244 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� Can use any scalar operations on the C/C++ code and the compiler will take
care of mapping them to one or more SIMD operations (e.g.
read-modify-write) if the appropriate scalar assembly instruction does not
exist. The programer should try to minimize those operations (e.g. to use
them only for control) since their performance is not as good as the SIMD
ones or in some cases not as good as executing similar commands on
ordinary scalar machine.

SPU Instruction Set Architecture (ISA)
The SPU Instruction Set Architecture (ISA) operates primarily on SIMD 128 bits
vector operands, both fixed-point and floating-point. the architecture have
support for some scalar operands.

There are 204 instructions in the ISA and they are grouped into several classes
according to their functionality. Most of the instructions are mapped into either
generic intrinsics or specific intrinsics that may be called as C functions from the
program.Full description of the instructions set is in the Synergistic Processor
Unit Instruction Set Architecture document.

ISA provides a reach set of SIMD operations that can be performed on 128 bits
vectors of several fixed point or floating point elements. Instructions are also
available to access any of the MFC channels in order to initiate DMA transfers or
communicate with other processors.

The following chapters provide additional information on some of the main types
of instructions.

Memory access SIMD operations
Load and store instructions are performed on the LS memory and uses 32 bits
LS address. The instruction operates on 16 bytes elements which are quadword
aligned. The SPU can perform a one such instruction in every cycle and their
latency is about 6 cycles.

Channels access
A set of instructions are provided in order to access the MFC channels. Those
instructions can be used to initiate DMA data transfer, communicate with other
processors, access the SPE decrementer and more. The SPU interface with the
MFC channel is further described in the prefix of Chapter 4.6, “SPU
programming” on page 240

SIMD operations
ISA SIMD instructions provides a reach set of operations (logical, arithmetical,
casting, load and store, etc.) that can be performed on 128 bits vectors of either
fixed point or floating point values. The vectors can contain various sizes of
 Chapter 4. Cell BE programming 245

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
variables - 8, 16, 32 or 64 bits. The performance of the program can be
significantly effected by the way the SIMD instructions are used. For example,
using SIMD instructions on 32 bits variables (single precision floating point or 32
bits integer) can speed up the program by at least four times compare to
equivalent scalar program since in every cycle the instruction works on four
different elements in parallel (since there are four 32 bits variables for one 128
vector).

Figure 4-5 shows one example of such SPU add SIMD instruction of four 32 bits
elements vector. This instruction simultaneously adds four pairs of floating-point
vector elements, stored in registers VA and VB, and produces four floating-point
results, written to register VC.

Figure 4-5 SIMD add instruction

Scalar related instructions
ISA also provides instructions to access scalars. A set of store assist instructions
is available in order to help store bytes, halfwords, words, and doublewords in the
128-bit vector registers. Similarly, instructions are provided in order to extract
such scalar from the vector registers. Rotate instructions are also available and
can be used to move data into the appropriate locations in the vector.

Those instructions may be used by the programer whenever there is a need to
operate on specific element from a given vector (e.g. summarize the elements of
one vector).

In addition, those instructions are often used by the compiler. Whenever the high
level C/C++ function operated on scalars, the compiler translate it into a set of 16
bytes read, modify, and 16 bytes write operations. In this process, the compiler
use the store assist and extract instruction to access the appropriate scalar
element.
246 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
ISA provides some instructions that use or produce scalar operands or
addresses. In this case, the values are set into in the preferred slot in the 128-bit
vector registers as illustrated in Figure 4-6. The compiler may use the scalar
store assist and extract instructions when a non aligned scalar are used in order
to shift it into the preferred slot.

In order to eliminate the need for such shift operations, the programer may
explicitly define the alignment of frequently used scalar variables so they will be
located in the preferred slot. The compiler optimization and after link optimization
tools that comes with the SDK (e.g. FDPRPro) will also try to help in this process
by statically align scalar variables into the preferred slot.

Figure 4-6 Scalar Overlay on SIMD in SPE

SIMD “cross-element” shuffle instructions.
ISA provides a set of shuffle instructions for reorganizing data in given vector
which are very useful in SIMD programming. In one instruction the programmer
can reorder all the vector elements into an output vector. Other less efficient
alternative to do so to perform a series of several scalar based instructions for
extracting the scalar from a vector, and store in the appropriate location in a
vector.

Figure 4-7 shows an example instruction. Bytes are selected from vectors VA
and VB based on byte entries in control vector VC. Control vector entries are
indices of bytes in the 32-byte concatenation of VA and VB. While the shuffle
operation is purely byte oriented it can also be applied to more than byte vectors
(e.g. vectors of floating points or 32 bits integers).
 Chapter 4. Cell BE programming 247

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 4-7 Shuffle/Permute example: shufb VT,VA,VB,VC instruction

SPU C/C++ language extensions (intrinsics)
A large set of SPU C/C++ language extensions (intrinsics) make the underlying
SPU Instruction Set Architecture and hardware features conveniently available to
C programmers

� Intrinsics are essentially in-line assembly-language instructions in the form of
C-language function calls.

� Intrinsics can be used in place of assembly-language code when writing in the
C or C++ languages.

� A single intrinsics map one or more assembly-language instructions.

� Intrinsics provide the programmer with explicit control of the SPE SIMD
instructions without directly managing registers.

� Intrinsics provide the programmer access to all MFC channels as well as
other system registers (e.g. decrementer, SPU state save/restore register).

Full description of those extensions is in C/C++ Language Extensions for Cell BE
Architecture V2.4 document.

The SDK compiler supports these intrinsics will emit efficient code for the SPE
architecture, similar to using the original assembly instructions. The techniques
used by compilers to generate efficient code include register coloring, instruction
scheduling (dual-issue optimization), loop unrolling and auto vectorization,
up-stream placement of branch hints and more.

Note: The SPU intrinsics are defined in spu_intrinsics.h system header file
which should be included in case the programer wish to use them.
The directory in which this file is located varies depends on which compiler is
used: /usr/lib/gcc/spu/4.1.1/include/ when using GCC

/opt/ibmcmp/xlc/cbe/9.0/include/ when using XLC
248 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
For example, an SPU compiler provides the intrinsic t=spu_add(a,b) as a
substitute for the assembly-language instruction fa rt,ra,rb. The compiler will
generate a floating-point add instruction fa rt, ra, rb for the SPU intrinsic
t=spu_add(a,b), assuming t , a , and b are vector float variables.

The PPU and the SPU instruction sets have similar, but distinct, SIMD intrinsics.
It is important to understand the mapping between the PPU and SPU SIMD
intrinsics when developing applications on the PPE that will eventually be ported
to the SPEs. Chapter 4.1.1, “PPE architecture and PPU programming” on
page 79 discuss this issue.

Intrinsics data types
Many of the intrinsics can accept parameters from different types but the intrinsic
name remain the same. For example, spu_add function can add two signed int
vectors into one output signed int vector, or add two float vectors (single
precision) into one output float vector, and few other types of vectors.

The translation from function to instruction dependent on datatype of arguments.
For example, spu_add(a,b) can translate to a floating add or a signed int add
depends on the input parameters.

Some operations cannot be performed on all data types, for example multiply
using spu_mul can be performed only on floating point data types. A detailed
information about all the intrinsics include the data type that is supported but
each of them, is in C/C++ Language Extensions for Cell BE Architecture .

Intrinsics classes
SPU intrinsics are grouped into the three classes:

� Specific Intrinsics: intrinsics that have a one-to-one mapping with a single
assembly-language instruction and are provided for all instructions except
some branch and interrupt related ones. All specific intrinsics are named
using the SPU assembly instruction prefixed by the string, si_ (e.g. the
specific intrinsic that implements the ‘stop’ assembly instruction is si_stop).
Programmers rarely need these intrinsics since all of them are mapped into
generic (see next bullet) which are more convenient.

� Generic and Builtin intrinsics: intrinsics that map to one or more
assembly-language instructions as a function of the type of input parameters
and are often implemented as compiler built-ins. Intrinsics of this group are

Note: It is recommended for the programer to be familiar with this issue early
in the development stage while defining the program’s data types in order to
prevent unpleasant surprises during the later development of the algorithm, in
case some crucial operation is not supported on the chosen data types.
 Chapter 4. Cell BE programming 249

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
very useful and covers almost all the assembly-language instructions
including the SIMD ones. Instructions who are not covered are naturally
accessible through the C/C++ language semantics.
All of the generic intrinsics are prefixed by the string spu_. For example, the
intrinsic that implements the ‘stop’ assembly instruction is named spu_stop.

� Composite and MFC related intrinsics — Convenience intrinsics constructed
from a sequence of specific or generic intrinsics. Those intrinsics are further
discussed in other chapters in the document that discuss DMA data transfer
and inter-processor communication using the MFC.

Intrinsics: functional types
SPU generic intrinsics, which construct the main class of intrinsics, are grouped
into the several types according to their functionality:

� Constant formation (example: spu_splats): replicate a single scalar value
across all elements of a vector of the same type.

� Conversion (example: spu_convtf, spu_convts): convert from one type of
vector to another. Using those intrinsics is the correct approach to do cast
between two vectors of different types.

� Scalar (example: spu_insert, spu_extract, spu_promote): allow
programmers to efficiently coerce scalars to vectors, or vectors to scalars
which enables to easily perform operations between vectors and scalars.

� Shift and rotate (example: spu_rlqwbyte, spu_rlqw): shift and rotate the
elements within a single vector.

� Arithmetic (example: spu_add, spu_madd, spu_nmadd) : perform arithmetic
operation on all the elements of the given vectors.

� Logical (example: spu_and, spu_or) : logical operation on the entire vectors.

� Byte operations (example: spu_absd, spu_avg): operations between bytes of
the same vector.

� Compare, branch and halt (example: spu_cmpeq, spu_cmpgt): different
operations to control the flow of the program.

� Bits and masks (example: spu_shuffle, spu_sel): bitwise operation like
counting the number of bits equal ‘1’ or the number of leading zeros.

� Control (example: spu_stop, spu_ienable, spu_idisable) - several control
operation such as stop and signal the PPE and controlling the interrupts.

� Channel Control (example: spu_readch, spu_writech) - read from and write
to MFC’s channels.

� Synchronization and Ordering (example: spu_dsync) - synchronize and order
data transfer as related to external components.
250 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
In addition, the composite intrinsics contain intrinsics (spu_mfcdma32,
spu_mfcdma64, spu_mfcstat) that enable to issue DMA commands to the MFC
and check their status.

In the next chapter we discuss some of the more useful intrinsics.

A list that summarizes all the SPU intrinsics is presented in table 18 in the Cell
Broadband Engine Programming Tutorial document.

4.6.3 Compiler directives

Like compiler intrinsics, compiler directives are crucial programming elements. In
this chapter we summarize some of the more important ones for SPU
programming.

aligned attribute
The aligned attribute is very important in Cell BE programming and is used to
ensure proper alignment of variables in the program.

There are two main cases where this attributes may be used:

� To ensure proper alignment of the DMA source or destination buffer. A 16
bytes alignment is mandatory for data transfer of more then 16 bytes while
128 bytes alignment is optional but provides better performance.

� To ensure proper alignment of the scalar. Whenever a scalar is often used it is
recommended to align it with the preferred slot in order to save shuffle
operations while it is read or modified.

The syntax of this attribute for the SDK gcc and xlc implementations to align a
variable into quadword (16 bytes) is:

float factor __attribute__((aligned (16)));

Please note that the compilers currently do not support alignment of automatic
(stack) variables to an alignment that is stricter then the alignment of the stack
itself (16 bytes).

volatile keyword
The volatile keyword can be set when some variable is defined. It instructs the
compiler that this variable may be changed for some reason that is not related to
the program execution itself (i.e. program instructions). This prevent the compiler
from doing optimizations that assumes that the memory does not change unless
a store instruction wrote new data to it.
 Chapter 4. Cell BE programming 251

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Such scenario happens when some hardware component besides the processor
itself may modify this variable.

For a Cell BE program (either SPU or PPE) it is recommended to define buffers
that are written by the DMA as volatile, for example a buffer on the LS to which a
‘get’ command write data. Doing so ensures that buffers are not accessed by
SPU load or store instructions until after DMA transfers have completed.

The syntax of this keyword for the SDK is shown as follows:

volatile float factor;

builtin_expect directive
Since branch mispredicts are relatively expensive, __builtin_expect provides a
way for the programmer to direct branch prediction. This example:

int __builtin_expect(int exp, int value)

returns the result of evaluating exp , and means that the programmer expects exp
to equal value. The value can be a constant for compile-time prediction, or a
variable used for run-time prediction.

Using this directive is further discussed, including some useful code examples in
Chapter , “Branch hint” on page 281.

align_hint directive
The _align_hint directive helps compilers “auto-vectorize”. Although it looks like
an intrinsic, it is more properly described as a compiler directive, since no code is
generated as a result of using the directive. The example:

_align_hint(ptr, base, offset)

informs the compiler that the pointer ptr points to data with a base alignment of
base, with a byte offset from the base alignment of offset. The base alignment
must be a power of two. Giving 0 as the base alignment implies that the pointer
has no known alignment. The offset must be less than the base, or, zero. The
_align_hint directive should not be used with pointers that are not naturally
aligned.

restrict qualifier
The restrict qualifier is well-known in many C/C++ implementations, and it is
part of the SPU language extension. When the restrict keyword is used to
qualify a pointer, it specifies that all accesses to the object pointed to are done
through the pointer. For example:

void *memcpy(void * restrict s1, void * restrict s2, size_t n);
252 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
By specifying s1 and s2 as pointers that are restricted, the programmer is
specifying that the source and destination objects (for the memory copy) do not
overlap.

4.6.4 SIMD programming

This chapter discuss how to write SIMD operation based programs to be run on
the SPU and in specific how the programer can convert code that is based on
scalar data types and operations to a code that is based on vector data types and
SIMD operations.

algorithm vectorized by the programmer

� “Vector data types” discuss the vector data types that are supported for SIMD
operation.

� “SIMD operations” discuss which SIMD operation are supported in the
different libraries and how to use them

� “Loop unrolling for converting scalar data to SIMD data” discuss the main
technique for converting a scalar code to a SIMD one by unrolling long loops.

� “Data organization - AOS versus SOA” discuss the two main data
organization methods for SIMD programming and also how a scalar code may
be converted to SIMD using the more common data organization method
among the two (SOA).

Another alternative to covert scalar code into SIMD code is to let the compiler
perform automatically conversion of the code. This approach is called
auto-SIMDizing and is further discussed in Chapter 4.6.5, “Auto-SIMDizing by
compiler” on page 264.

Vector data types
SPU SIMD programming operates on vectors data types. Following are few of the
main attributes of those data types:

� 128 bits (16B) long.

� Aligned on quadword (16B) boundaries.

� Different data type are supported: fixed point (e.g. char, short, int, signed or
unsigned) and floating point (e.g. float and double).

� Contain from 1 to 16 elements per vector depends on the corresponding type.

� Stored in memory similar to array of the corresponding data types (e.g. vector
of integer is like array of four 32b integers).
 Chapter 4. Cell BE programming 253

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
In order to use the data types the programer should include spu_intrinsics.h
header file.

As general, the vector data types shared a lot in common with ordinary C
language scalar data types:

� Pointers to vector types can be defined and so are operations on those
pointers. For example, in case the pointer vector float *p is defined then
p+1 points to the next vector (16B) after that pointed to by p.

� Arrays of vectors can be define and so as operations on those arrays. For
example, in case the array vector float p[10] is defined then p[3] is the
third variable in this array.

The vector data types can be used in two different formats:

� Full names which are combination of the data type of the elements that this
vector consist of, together with vector prefix (e.g. vector signed int).

� Single token typedefs (e.g. vec_int4) which are more recommended since
they are shorter and are also compatible with using the same code for PPE
SIMD programming.

Table 4-20 summarizes the different data types that are supported by the SPU
including both the full and the corresponding single token typedefs.

Table 4-20 Vector data types

Vector data type Single-Token
Typedef

Content

vector unsigned char vec_uchar16 Sixteen 8-bit unsigned chars

vector signed char vec_char16 Sixteen 8-bit signed chars

vector unsigned short vec_ushort8 Eight 16-bit unsigned halfwords

vector signed short vec_short8 Eight 16-bit signed halfwords

vector unsigned int vec_uint4 Four 32-bit unsigned words

vector signed int vec_int4 Four 32-bit signed words

vector unsigned long long vec_ullong2 Two 64-bit unsigned doublewords

vector signed long long vec_llong2 Two 64-bit signed doublewords

vector float vec_float4 Four 32-bit single-precision floats

vector double vec_double2 Two 64-bit double precision floats

qword - quadword (16-byte)
254 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
SIMD operations
This chapter discuss how the programer may perform SIMD operations on an
SPU program vectors. There are four main options to perform SIMD operations
as discuss in the following four chapters:

1. “SIMD arithmetic and logical operators” - SDK3.0 compilers support a vector
version of some of the common arithmetic and logical operators. Those
operator work on each element of the vector.

2. “SIMD low level intrinsics” - high level C functions which support almost all the
SPU’s SIMD assembler instructions. Those intrinsics contains basic logical
and arithmetic operations between 128 bits vectors from different types, and
also some operations between elements of a single vector.

3. “SIMDmath library” - extend the low level intrinsic and provides functions that
implement more complex mathematical operations (e.g. root square and
trigonometric operations) on 128 bit vectors.

4. “MASS and MASSV libraries”- MASS library provided similar functions as
SIMDmath library but optimized to have better performance in the price of
having redundant accuracy. MASSV perform similar operations on longer
vectors who has any multiple of 4 length.

SIMD arithmetic and logical operators
SDK compilers support a vector version of some of the common arithmetic and
logical operators. This is the easiest way to program SIMD operations as the
syntax is identical to programing with scalar variables. When those operators are
applied on vector variables, the compiler translate it to operators that work
separately on each element of the vectors.

While the compilers support some basic arithmetic, logical and rational
operators, not all the existing operators are currently supported. In case the
required operator is not supported, the programer should use the other
alternatives that are described in the following chapters.

The operator that are supported are:

� Vector subscripting: []

� Unary operators: ++, --, +, -, ~

� Binary operators: +, -, *, /, unary minus, %, &, |, ^, <<, >>

� Relational Operators: ==, !=, <, >, <=, >=

More details about this subject are in the Operator Overloading for Vector Data
Types chapter in C/C++ Language Extensions for Cell BE Architecture
document.
 Chapter 4. Cell BE programming 255

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 4-54 shows a simple code that uses some SIMD operators.

Example 4-54 Simple SIMD operator code

#include <spu_intrinsics.h>

vector float vec1={8.0,8.0,8.0,8.0}, vec2={2.0,4.0,8.0,16.0};

vec1 = vec1 + vec2;
vec1 = -vec1;

SIMD low level intrinsics
SDK 3.0 provides a reach set of low-level specific and generic intrinsics which
support the SIMD instructions that are supported by the SPU assembler
instruction set (e.g. c=spu_add(a,b) intrinsic stands for add vc,va,vb instruction).
Those are C level functions that are implemented either internally within the
compiler or as macros.

The intrinsics are grouped into several types according to their functionality, as
described in Chapter , “Intrinsics: functional types” on page 250. The three
groups which contains the most significant SIMD operations are:

� Arithmetic intrinsics which perform arithmetic operation on all the elements of
the given vectors (e.g. spu_add, spu_madd, spu_nmadd, ...)

� Logical intrinsics which perform logical operation on all the elements of the
given vectors (spu_and, spu_or, ...).

� Byte operations which perform operations between bytes of the same vector
(e.g. spu_absd, spu_avg,...).

The intrinsics support different data types and it is up to the compiler to translate
the intrinsics to the correct assembly instruction depends on the type of the
intrinsic operands.

In order to use those the SIMD intrinsics the programer should include the
spu_intrinsics.h header file.

Example 4-55 shows a simple code that uses low level SIMD intrinsics.

Example 4-55 Simple SIMD intrinsics code

#include <spu_intrinsics.h>

vector float vec1={8.0,8.0,8.0,8.0}, vec2={2.0,4.0,8.0,16.0};
256 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
vec1 = spu_sub((vector float)spu_splats((float)3.5), vec1);
vec1 = spu_mul(vec1, vec2);

SIMDmath library
While SIMD intrinsics contains various basic mathematical functions that are
implemented by corresponding SIMD assembly instructions, more complex
mathematical functions are not supported by those intrinsics. The SIMDmath
library is provided with SDK3.0 and address this issue by providing a set of
functions that extend the SIMD intrinsics and support additional common
mathematical functions. The library, like the SIMD intrinsics, operates on short
128 bits vectors from different types (e.g. single precision float, 32 bit integer) are
supported. It depends on the specific function which vector types are supported.

The SIMDmath library provide functions for the following categories:

1. Absolute value and sign functions: remove or extract the signs from values.

2. Classification and comparison functions: return boolean values from
comparison or classification of elements.

3. Divide, multiply, modulus, remainder and reciprocal functions: standard
arithmetic operations.

4. Exponentiation, root, and logarithmic functions: functions related to
exponentiation or the inverse.

5. Gamma and error functions: probability functions.

6. Minimum and maximum functions: return the larger, smaller or absolute
difference between elements.

7. Rounding and next functions: convert floating point values to integers.

8. Trigonometric functions: sin, cos, tan and their inverses.

9. Hyperbolic functions: sinh, cosh, tanh and their inverses.

The SIMDmath library is an implementation of most of the C99 math library (-lm)
that operates on short SIMD vectors. The library functions conform as closely as
possible to the specifications set out by the scalar standards. However,
fundamental differences between scalar architectures and the Cell BE
architecture require some deviations, including the handling of rounding, error
conditions, floating-point exceptions and special operands such as NaN and
infinities.

The SIMDmath library can be used in two different versions:

� linkable library archive - a static library that contains all the library functions.
Using this version is more convenient to code since it only requires the
 Chapter 4. Cell BE programming 257

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
inclusion of a single header file, but it produces slower, and potentially larger
binaries (depends on the frequency of invocation) due to the branching
instructions necessary for function calls. The function calls also reduces the
number of instructions available for scheduling and leveraging the large SPE
register file.

� set of inline function headers - a set of standalone inline functions. This
version require extra header files to be included for each math function used,
but produce faster and smaller (unless inlined multiple times) binaries,
because the compiler is able to reduce branching and often achieves better
dual-issue rates and optimization.
The functions names are prefixed with an underscore character ’_’ compare
to the linkable library format (e.g. inline version of fabsf4 is _fabsf4).

To use the SIMDmath library the programer should do the following:

� For the linkable library archive version, include the primary header file
/usr/spu/include/simdmath.h

� For the linkable library archive version, link the SPU application with the
/usr/spu/lib/libsimdmath.a library.

� For the inline functions version include a distinct header file for each function
used. Those header files are in /usr/spu/include/simdmath directory. For
example, add #include <simdmath/fabsf4.h> to use _fabsf4 inline function.

� In addition, some classification functions require inclusion of math.h file.

Additional information about this library exist in the following:

� Code example and additional usage instruction is in Chapter 8, “Case study:
Monte Carlo Simulation” on page 493.

� Function calls format is in SIMDmath Library API Reference document.

� Function specification is in SIMD Math Library Specification.

MASS and MASSV libraries
This chapter discuss two libraries that are part of SDK3.0 and implement various
SIMD functions:

� MASS (mathematical acceleration subsystem) library: functions which
operates on short 128 bits vectors. The interface of those functions is similar
to SIMDmath library that is described in Chapter , “SIMDmath library” on
page 257.

� MASSV (MASS vector) library: functions which can operate on longer vectors.
Vector length can be any number which is multiple of 4.

Similar to the SIMDmath library, the MASS libraries can be used in two different
versions - linkable library archive version, and inline functions version.
258 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
However, the implementation of the MASS and MASSV libraries are different
from SIMDmath library on the following aspects:

� SIMDmath is focused on accuracy while MASS and MASSV are focused on
having better performance. For a performance comparison between the two
see “Performance Information for the MASS Libraries for CBE SPU”
document.

� SIMDmath has support across the entire input domain while MASS and
MASSV may restrict the input domain.

� MASS and MASSV library support a subset of the SIMDmath library functions

� MASSV library can work on long vectors whose length is any number which is
multiple of 4.

� The functions of MASSV library have similar names as SIMDmath and MASS
functions but with “vs” prefix.

In order to use those the MASS library the programer should do the following:

� For both versions above, include the mass_simd.h and simdmath.h header
files in /usr/spu/include/ directory in order to use the MASS functions, and
include massv.h header files for MASSV functions.

� For both versions above, link the SPU application with the libmass_simd.a
header file for MASS functions and with libmassv.a file for MASSV functions.
Both files are in /usr/spu/lib/ directory.

� In addition, for the inline functions version include a distinct header file for
each function used. Those header files are in /usr/spu/include/mass
directory. For example, include acosf4.h header file to use acosf4 inline
function.

Additional information about this library exist in the following:

� Function call format and brief description is in “MASS C/C++ function
prototypes for CBE SPU” document.

� Usage instructions is in “Using the MASS libraries on CBE SPU” document.

Loop unrolling for converting scalar data to SIMD data
This chapter discuss the loop unrolling programming technique which is one of
the most common methods for practicing SIMD programming.

The process of loop unrolling related to SIMD programming involves:

� The programer expand a loop such as each new iteration contains several of
what used to be an old iteration (before the unrolling).
 Chapter 4. Cell BE programming 259

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� Few operations on scalar variables on the old iteration are joined to a single
SIMD operation on a vector variable in the new iteration. The vector variable
contains several of the original scalar variables.

The loop unrolling can provide significant performance improvement when
applied on relatively long loops in an SPU program. The improvement is
approximately in the factor which is equal to the number of elements in a unrolled
vector (e.g. unrolling a loop that operated on single precision float provide four
time speedup since four such 32b float exists in the 128b vector).

Example 4-56 shows a code that practice the loop unrolling technique. The code
contains two version of multiply between two inout array of float. The first version
is an ordinary scalar version (mult_ function) and the second is loop-unrolled
SIMD version (vmult_ function).

Please notice that in this example we requires that the arrays are quadword
aligned and the array length is divisible by 4 (stands for 4 float elements in a
vector of floats).

Two general comments regarding the alignment and length of the vectors:

� We insure that the quadword alignment using the aligned attribute which is
recommended in most cases. If this is not the case a scalar prefix may be
added to the unrolled loop to handle the first not aligned elements.

� It is recommended to try to work with arrays whose length are divisible by 4. If
this is not the case, a suffix may be added to the unrolled loop to handle the
last elements.

Example 4-56 SIMD loop unrolling

#include <spu_intrinsics.h>

#define NN 100

// multiply - scalar version
void mult_(float *in1, float *in2, float *out, int N){

int i;
for (i=0; i<N; i++){

out[i] = in1[i] * in2[i];
}

}

Source code: The code of Example 4-56 is included in the additional material
that is provided with this book. See “SPE loop unrolling” on page 616 for more
information.
260 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// multiply - SIMD loop-unrolled version
// assume the arrays are quadword aligned and N is divisible by 4
void vmult_(float *in1, float *in2, float *out, int N){

int i, Nv;
Nv = N>>2; //divide by 4;

vec_float4 *vin1 = (vec_float4*)in1, *vin2 = (vec_float4*)in2;
vec_float4 *vout = (vec_float4*)out;

for (i=0; i<Nv; i++){
vout[i] = spu_mul(vin1[i], vin2[i]);

}
}

int main()
{

float in1[NN] __attribute__((aligned (16)));
float in2[NN] __attribute__((aligned (16)));
float out[NN];
float vout[NN] __attribute__((aligned (16)));

// init in1 and in2 vectors

// scalar multiply ‘in1’ and ‘in2’ into ‘out’ array
mult_(in1, in2, out, (int)NN);

// SIMD multiply ‘in1’ and ‘in2’ into ‘vout’ array
vmult_(in1, in2, vout, (int)NN);

return 0;
}

Data organization - AOS versus SOA
This section discusses the two main data organization methods for SIMD
programming and also how a scalar code may be converted to SIMD using the
more common data organization method among the two (SOA).

Depending on the programmer’s performance requirements and code size
restraints, advantages can be gained by properly grouping data in an SIMD
vector. There are two main methods to organize the data as presented below.
 Chapter 4. Cell BE programming 261

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The first method organizing data in SIMD vectors is called an array of structures
(AOS) as demonstrated in Figure 4-8. This figure shows a natural way of using
SIMD vectors to store the homogenous data values (x, y, z, w) for the three
vertices (a, b, c) of a triangle in a 3D-graphics application. This organization has
the name array of structures because the data values for each vertex are
organized in a single structure, and the set of all such structures (vertices) is an
array.

Figure 4-8 AOS (array of structures) organization

The second method is a structure of arrays (SOA) as demonstrated in Figure 4-9
which shows such SOA organization to represent the x, y, z vertices for four
triangles. Not only are the data types the same across the vector, but now their
data interpretation is the same. Each corresponding data value for each vertex is
stored in a corresponding location in a set of vectors. This is different from the
AOS case, where the four values of each vertex are stored in one vector.

Figure 4-9 SOA (structure of arrays) organization

The AOS data-packing approach often produces small code sizes, but it typically
executes poorly and generally requires significant loop-unrolling to improve its
efficiency. If the vertices contain fewer components than the SIMD vector can
hold (for example, three components instead of four), SIMD efficiencies are
compromised.

On the other hand, when using SOA it is usually very easy to perform loop
unrolling or other SIMD programing on. The programer can think of the data as if
262 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
it were scalar, and the vectors are populated with independent data across the
vector. The structure of a unrolled loop iteration should be similar to the scalar
case but with one main difference of simply replacing the scalar operations with
identical vectors operation the work simultaneously on few elements which are
gathered in one element.

Example 4-57 illustrate a process of taking a scalar loop in which the elements
are stored in AOS organization and the equivalent unrolled SOA based loop
which has 4 times less iterations. Please notice that the scalar and the unrolled
SOA loop are very similar and uses the same ‘+‘ operators. The only difference is
how the indexing to the data structure is performed.

Example 4-57 SOA loop unrolling

#define NN 20

typedef struct{ // AOS data structure - stores one element
float x;
float y;
float z;
float w;

} vertices;

typedef struct{ // SOA structure - stores entire array
vec_float4 x[NN];
vec_float4 y[NN];
vec_float4 z[NN];
vec_float4 w[NN];

} vvertices;

int main()
{

int i, Nv=NN>>2;

vertices vers[NN*4];
vvertices vvers __attribute__((aligned (16)));

// init x, y, and z elements

// original scalar loop - work on AOS which is difficult to SIMDized

Source code: The code of Example 4-57 is included in the additional material
that is provided with this book. See “SPE SOA loop unrolling” on page 616 for
more information.
 Chapter 4. Cell BE programming 263

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
for (i=0; i<NN; i++){
vers[i].w = vers[i].x + vers[i].y;
vers[i].w = vers[i].w + vers[i].z;

}

// SOA unrolled SIMDized loop
for (i=0; i<Nv; i++){

vvers.w[i] = vvers.x[i] + vvers.y[i];
vvers.w[i] = vvers.w[i] + vvers.z[i];

}
return 0;

}

The subject of different SIMD data organization is further discussed in
Converting Scalar Data to SIMD Data chapter in Cell Broadband Engine
Programming Handbook document.

4.6.5 Auto-SIMDizing by compiler

This chapter discuss the auto-SIMDizing support by Cell Be’s GCC and XLC
compilers. auto-SIMDizing is the process in which a compiler automatically
merges scalar data into a parallel-packed SIMD data structure. The compiler
perform this process by first identifies parallel operations in the scalar code, such
as loops. The compiler then generates SIMD versions of them, for example by
automatically performing loop unrolling. During this process, the compiler
performs all analysis and transformations necessary to fulfill alignment
constraint.

From the programer point of view, it means that in some cases there is not need
to perform explicit translation of scalar code into a SIMD one as described in
chapter “SIMD programming”. Instead, the programer may write ordinary scalar
code and instruct the compiler to perform auto-SIMDizing and translated the high
level scalar code into SIMD data structures and SIMD assembly instructions.

However, at this point, there are limitations on the compilers’ capabilities in
translating a certain scalar code to a SIMD one and not any scalar code that
theoretically can be translated into a SIMD will eventually be translated by the
compilers.

Hence, a programmer knowledge of the compiler limitations is required, and
which will enable the programer to choose in one of the two options:

� Write a code in a way that is supported by the compilers for auto-SIMDizing.
264 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� Recognize the places in the code where auto-SIMDizing is not realistic and
perform explicit SIMD programming in those places.

In addition, the programer should monitor the compiler auto-SIMDizing results in
order to verify in which places the auto-SIMDizing was successful and in which
cases it failed.
The programer may perform an iterative process of compiling with
auto-SIMDizing option enabled, debugging the places where auto-SIMDizing
failed, re-write the code in those cases, and then re-compile.

In order to activate the compilers auto-SIMDization, the programer should do the
following:

� When using XLC: use optimization level -O3 -qhot or higher.

� When using GCC: use optimization level –O2 –ftree-vectorize or higher.

The next chapters discuss the following issues:

� “Coding for effective auto-SIMDization”- discuss how to wrote code which
enables the compiler to perform effective auto-SIMDization, and what are the
limitation of the compilers in auto-SIMDizing other types of code.

� “Debugging the compiler’s auto-SIMDization results” - discuss how the
program may debug the compilers’ auto-SIMDization results in order to know
wether is was successful or not. If it was not successful the compiler provide
information of the potential problems which enables the programer to re-write
the code.

Coding for effective auto-SIMDization
This chapter describes how to wrote code which enables the compiler to perform
effective auto-SIMDization. The chapter also discuss the limitations of the
compilers in auto-SIMDization of a scalar code. Knowing those limitation enables
the programer to identify the places where auto-SIMDization is not possible. In
those places the programer should then explicitly translate into a SIMD code.

Organize algorithms and loops
The programer should organize loops so that they can be auto-SIMDized and
also structure algorithms to reduce dependencies:

� The inner-most loops are the ones that may be SIMDized.

� The programer should not manually unroll the loops.

� The programer should use ‘for’ loop construct since they are the only ones
that can be auto-SIMDized. The ‘while’ construct on the other hand can not
be auto-SIMDized.

� The number of iterations should be:
 Chapter 4. Cell BE programming 265

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
– a constant (preferred using #define directive) and not a variable.

– more than three times the number of elements per vector. Shorter loops
might also be SIMDizable but it depends on their alignment and the
number of statements in the loop.

� Using ‘break’ or ’continue’ statement inside a loop should be avoided.

� The programer should avoid function calls within loops since they are not
SIMDizable. Instead, either inline functions or macros may be used, or
instead enable inlining by the compiler and possibly add an inlining directive
to make sure that it happens. Another alternative is distributing the function
calls into a separate loop.

� The programer should try to avoid operations that do not easily mapped onto
vector operations. In general, all operations except branch, hint-for-branch,
and load are capable of being mapped.

� The programer should use the select operation for conditional branches within
the loop. Since loops that contain if-then-else statements might not always be
SIMDizable, the programer should prefer using the C language :? (colon
question-mark) operator which will cause the compiler to SIMDize this section
using the select bits instruction.

� The programer should avoid aliasing problems, for example by using the
restrict qualified pointers (illustrated in Example 4-60 on page 270). This
qualifier when applied to a data pointer indicates that all access to this data
are performed through this pointer an not through other pointer.

� Loops with inherent dependences are not SIMDizable, as illustrated in
Example 4-58 on page 268.

� The programmer should keep the memory access-pattern simple:

– Not using array of structures
For example: for (i=0; i<N; i++) a[i].s = x;

– Should use constant increment.
For example, do not use: for (i=0; i<N; i+=incr) a[i] = x;

Organize data in memory
the programer should lay out data in memory so that operations on it can be
easily SIMDize:

� The programer should use stride-one accesses (memory access patterns in
which each element in a list is accessed sequentially). Non-stride-one
accesses are less efficiently SIMDized, if at all. Random or indirect accesses
are not SIMDizable.

� The programer should use arrays and not pointer arithmetic in the application
to access large data structures.
266 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� The programer should use global arrays that are statically declared.

� The programer should use global arrays that are aligned to 16B boundaries,
for example using aligned attribute. As general, the programer should lay out
the data to maximize 16B aligned accesses.

� If have more than a single misaligned store – the programer should distribute
into a separate loop (currently the vectorizer peels the loop to align a
misaligned store).

� If it is not possible to use aligned data, the programer should use the alignx
directive to indicate to the compiler what the alignment is.
For example: #pragma alignx(16, p[i+n+1]);

� If it is known that arrays are disjoint, the programer should use the disjoint
directive to indicate to the compiler that the arrays specified by the pragma
are not overlapping:
For example: #pragma disjoint(*ptr_a, b)

#pragma disjoint(*ptr_b, a)

Mix of data types
The mix of data types within code sections that may be potentially be SIMDized
(i.e. loops with many iterations) may present problems. While the compiler may
succeed in SIMDizing those sections, the programmer should try to avoid such
mix of data types and try to keep a single data type within those section.

Scatter-gather
Scatter-gather refers to a technique for operating on sparse data, using an index
vector. A gather operation takes an index vector and loads the data that resides
at a base address added to the offsets in the index vector. A scatter operation
stores data back to memory, using the same index vector.

The Cell BE processor’s SIMD architecture does not directly support
scatter-gather in hardware. therefore, the best way to extract SIMD parallelism is
to combine operations on data in adjacent memory addresses into vector
operations. This means that the programer may use scatter-gather to bring the
data into a continuos area in the local store and then sequentially loop on the
elements of this area variable. doing so may enable the compiler to SIMDize this
loop.

Debugging the compiler’s auto-SIMDization results
The XLC enables the programer to debug the compiler’s auto-SIMDization
results using the -qreport option. Doing so will produce a list of high level
transformation performed by the compiler which includes everything from
unrolling, loop interchange, and SIMD transformations. A transformed “pseudo
source” will also be presented.
 Chapter 4. Cell BE programming 267

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
All loops considered for SIMDization are reported

� Successful candidates are reported

� If SIMDization was not possible, the reasons that prevented it are also
provided

This feature is useful since it enables the programer to quickly identify
opportunities for speedup. It provides feedback to the user explaining why loops
are not vectorized. While those messages are not always trivial to understand,
they may allow the programer to rewrites the relevant sections to allow SIMD
vectorization.

Similarly, the GCC can also provide debug information about the auto-SIMDizing
process using the following options:

� -ftree-vectorizer-verbose=[X] - Dumps information on which loops got
vectorized, and which didn’t and why (X=1 least information, X=6 all
information). the information is dumped to stderr unless following flag is used:

� -fdump-tree-vect - Dumps information into <C file name>.c.t##.vect

� -fdump-tree-vect-details - Equivalent to setting the combination of the two
flags: -fdump-tree-vect -ftree-vectorizer-verbose=6

The rest of the chapter illustrate how to debug a code which may not be
SIMDized as well as another code which can be successfully SIMDized. We
illustrate it using the XLC debug features (-qreport option enabled).

Example 4-58 shows a SPU code of a program named t.c which is hard to be
SIMDized because of dependencies between sequential iterations:

Example 4-58 A non SIMDized loop

extern int *b, *c;

int main(){
 for (int i=0; i<1024; ++i)
 b[i+1] = b[i+2] - c[i-1];
}

The code is then compiled with -qreport option enabled using the command:

spuxlc -c -qhot -qreport t.c”, in t.lst
268 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Example 4-59 shows the t.lst file that is generated by the XLC compiler and
contains the problems in SIMDizing the loop and also the transformed “pseudo
source”:

Example 4-59 Reporting of SIMDization problems

1586-535 (I) Loop (loop index 1) at t.c <line 5> was not SIMD
vectorized because the aliasing-induced dependence prevents SIMD
vectorization.
1586-536 (I) Loop (loop index 1) at t.c <line 5> was not SIMD
vectorized because it contains memory references with non-vectorizable
alignment.
1586-536 (I) Loop (loop index 1) at t.c <line 6> was not SIMD
vectorized because it contains memory references ((char *)b +
(4)*(($.CIV0 + 1))) with non-vectorizable alignment.
1586-543 (I) <SIMD info> Total number of the innermost loops considered
<"1">. Total number of the innermost loops SIMD vectorized <"0">.

 3 | long main()
 {
 5 | if (!1) goto lab_5;
 $.CIV0 = 0;
 6 | $.ICM.b0 = b;
 $.ICM.c1 = c;
 5 | do { /* id=1 guarded */ /* ~4 */
 /* region = 8 */
 /* bump-normalized */
 6 | $.ICM.b0[$.CIV0 + 1] = $.ICM.b0[$.CIV0 + 2] -
$.ICM.c1[$.CIV0 - 1];
 5 | $.CIV0 = $.CIV0 + 1;
 } while ((unsigned) $.CIV0 < 1024u); /* ~4 */
 lab_5:
 rstr = 0;

Other examples of messages that report problems with performing
auto-SIMDization:

� Loop was not SIMD vectorized because it contains operation which is
not suitable for SIMD vectorization.

� Loop was not SIMD vectorized because it contains function calls.

� Loop was not SIMD vectorized because it is not profitable to
vectorize.

� Loop was not SIMD vectorized because it contains control flow.
 Chapter 4. Cell BE programming 269

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� Loop was not SIMD vectorized because it contains unsupported vector
data types

� Loop was not SIMD vectorized because the floating point operation is
not vectorizable under -qstrict.

� Loop was not SIMD vectorized because it contains volatile reference

Example 4-60 shows a SPU code of which is similar to the previous example but
with correcting SIMD Inhibitors:

Example 4-60 A SIMDized loop

extern int * restrict b, * restrict c;

int main()
{
 // __alignx(16, c); Not strictly required since compiler
 // __alignx(16, b); inserts runtime alignment check

 for (int i=0; i<1024; ++i)
 b[i] = b[i] - c[i];
}

Example 4-61 shows the output t.lst file after compiling with -qreport option
enabled. The example report a successful auto-SIMDizing and also the
transformed “pseudo source”:

Example 4-61 Reporting of SIMDization problems

1586-542 (I) Loop (loop index 1 with nest-level 0 and iteration count
1024) at t.c <line 9> was SIMD vectorized.
1586-542 (I) Loop (loop index 2 with nest-level 0 and iteration count
1024) at t.c <line 9> was SIMD vectorized.
1586-543 (I) <SIMD info> Total number of the innermost loops considered
<"2">. Total number of the innermost loops SIMD vectorized <"2">.
 4 | long main()
 {
 $.ICM.b0 = b;
 $.ICM.c1 = c;
 $.CSE2 = $.ICM.c1 - $.ICM.b0;
 $.CSE4 = $.CSE2 & 15;
 if (!(! $.CSE4)) goto lab_6;
...
270 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
4.6.6 Using scalars and converting between different vector types

This chapter discuss how to convert between different types of vectors and how
to work with scalars in the SIMD environment of the SPE. The three sections in
this chapter covers the following issues:

� “Converting between different vector types” - describes how to perform
correct and efficient conversion between vectors of different types.

� “Scalar overlay on SIMD instructions” - describes how to use scalars in SIMD
instructions, include how to format them into vector data type and how to
extract the results scalar from the vectors.

� “Casting between vectors and scalar” - describes how to cast vectors into
equivalent array of scalars and vice versus.

Converting between different vector types
Casts from one vector type to another vector type has to be explicit and can be
done using normal C-language casts. However, none of these casts performs
any data conversion and the bit pattern of the result is the same as the bit pattern
of the argument that is cast.

Example 4-62 shows an example of how we do not recommended casting
between vectors. This is because the method shown usually does not provide the
result expected by the programer since the integer variable i_vector will be
assigned with a single precision float f_vector variable which has different
format (i.e. the casting will not convert the bit pattern of the float to integer
format).

Example 4-62 Not recommended casting between vectors

// BAD programming example
vector float f_vector;
vector int i_vector;

i_vector = (vector int)f_vector;

Instead, the recommended way to perform casting between vectors is using
special intrinsics that convert between different data types of vectors including
modify the bit pattern to the required type. The conversion intrinsics are:
 Chapter 4. Cell BE programming 271

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� spu_convtf: convert signed or unsigned integer vector to float vector.

� spu_convts: convert float vector to signed integer vector.

� spu_convtu: convert float vector to unsigned integer vector.

� spu_extend: extend input vector to output vector whose elements have two
times larger elements the input vector’s (e.g short vector is extended to int
vector, float vector is extended to double, etc.).

Scalar overlay on SIMD instructions
The SPU loads and stores one quadword at-a-time. When instructions use or
produce scalar (sub quadword) l operands (including addresses), the value is
kept in the preferred scalar slot of a SIMD register. The fact that the scalar should
be located in the specific preferred slots requires extra instructions whenever a
scalar is used as part of a SIMD instruction:

� When a scalar is loaded in order to be a parameter of some SIMD instruction
it should be rotated to the preferred slot before being executed.

� When a scalar should be modified by some SIMD instruction it should be
loaded, rotated to the preferred slot, modified by the SIMD instruction, rotated
back to its original alignment and stored in to memory.

Obviously these extra rotating instructions reduce performance making vector
operations on scalar data are not efficient.

The first technique in order to make such scalar operations more efficient is a
static one:

� Use the aligned attribute and extra padding if needed in order to statically
align the scalar to the preferred slot. Using this attribute is described in
“aligned attribute” on page 251.

� Change the scalars to quadword vectors. This will eliminate the three extra
instructions associated with loading and storing scalars which will reduce the
code size and execution time.

In addition, the programer may use one of the SPU intrinsics to efficiently
promote scalars to vectors, or vectors to scalars:

� spu_insert: Insert a scalar into a specified vector element.

� spu_promote: Promote a scalar to a vector containing the scalar in the
element that is specified by the input parameter. Other elements of the vector
are undefined.

� spu_extract: Extract a vector element from its vector and return the element
as scalar.
272 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� spu_splats: Replicate a single scalar value across all elements of a vector of
the same type.

Since those instructions are very efficient, the programer can use them to
eliminate redundant loads and stores. One example for using those instructions
is to cluster several scalars into vectors, load multiple scalars at one instruction
using a quadword memory, and perform SIMD operation that will operate on all
the scalars at once.

There are two possible implementation for such mechanism:

1. Use extract or insert intrinsics: Cluster several scalars into vector using
spu_insert intrinsics, perform some SIMD operations on them and extract
them back to their scalar shape using spu_extract intrinsic.
Example 4-63 show an SPU program that implements this mechanism. Even
this simple case is more efficient then multiply the scalar vectors one by one
using ordinary scalar operations. Obviously, if more SIMD operations are
performed on the constructed vector, the performance overhead of creating
the vector and extracting the scalars becomes negligible.

2. Another possible implementation is using the unions that perform casting
between vectors and scalars arrays and are described in Example 4-64 on
page 275 and the following Example 4-65.

Example 4-63 Cluster scalars into vectors

#include <spu_intrinsics.h>
int main()
{

float a=10,b=20,c=30,d=40;
vector float abcd;
vector float efgh = {7.0,7.0,7.0,7.0};

// initiate ‘abcd’ vector with the values of the scalars
abcd = spu_insert(a, abcd, 0);
abcd = spu_insert(b, abcd, 1);
abcd = spu_insert(c, abcd, 2);
abcd = spu_insert(d, abcd, 3);

// SIMD multiply the vectors
abcd = spu_mul(abcd, efgh);

Source code: The code of Example 4-63 is included in the additional material
that is provided with this book. See “SPE scalar to vector conversion using
insert and extract intrinsics” on page 617 for more information.
 Chapter 4. Cell BE programming 273

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
// do many other SIMD operations on ‘abcd’ and ‘efgh’ vectors

// extract back the ‘multiplied’ scalar from the computed vector
a = spu_extract(abcd, 0);
b = spu_extract(abcd, 1);
c = spu_extract(abcd, 2);
d = spu_extract(abcd, 3);

printf("a=%f, b=%f, c=%f, d=%f\n",a,b,c,d);
return 0;

}

Casting between vectors and scalar
The SPU vector data types are kept in the memory in continuos 16 bytes area
whose address is also 16 bytes aligned. Pointers to vector types and non-vector
types may therefore be cast back and forth to each other. For the purpose of
aliasing, a vector type is treated as an array of its corresponding element type.
For example, a vector float can be cast to float* and vice versus.

If a pointer is cast to the address of a vector type, it is the programmer’s
responsibility to ensure that the address is 16-byte aligned.

Casts between vector types and scalar types are illegal. On the SPU, the
spu_extract, spu_insert, and spu_promote generic intrinsics or the specific
casting intrinsics may be used to efficiently achieve the same results.

In some cases it is essential to perform SIMD computation on some vectors but
also perform some computations between different elements of the same vector.
From convenient programming approach for that is define casting unions of either
vectors or array of scalars as explained in Example 4-64.

A SPU program that may uses those casting union is shown in the code of
Example 4-65. The program uses those unions to perform a combination of
SIMD operations on the entire vector and scalar operations between the vector
elements.

It is important to know that while the scalar operation are easy to program that
way they are not very efficient form performance point of view so the programer

Source code: The code of Example 4-64 and Example 4-65 is included in the
additional material that is provided with this book. See “SPE scalar to vector
conversion using unions” on page 617 for more information.
274 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
should try to minimize the frequency in which they happen and use them only if
there is not simple SIMD solution.

Example 4-64 Header file for casting between scalars and vectors

// vec_u.h file ===

#include <spu_intrinsics.h>

typedef union {
vector signed char c_v;
signed char c_s[16];

vector unsigned char uc_v;
unsigned char uc_s[16];

vector signed short s_v;
signed short s_s[8];

vector unsigned short us_v;
unsigned short us_s[8];

vector signed int i_v;
signed int i_s[4];

vector unsigned int ui_v;
unsigned int ui_s[4];

vector signed long long l_v;
signed long long l_s[2];

vector unsigned long long ul_v;
unsigned long long ul_s[2];

vector float f_v;
float f_s[4];

vector double d_v;
double d_s[2];

}vec128;
 Chapter 4. Cell BE programming 275

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 4-65 Cluster scalars into vectors using casting union

#include <spu_intrinsics.h>

#include "vec_u.h" // code from Example 4-64 show

int main()
{

vec_float a __attribute__((aligned (16)));
vec_float b __attribute__((aligned (16)));

// do some SIMD operations on ‘a’ and ‘b’ vectors

// perform some operations between scalar of specific vector
a.s[0] = 10;
a.s[1] = a.s[0] + 10;
a.s[2] = a.s[1] + 10;
a.s[3] = a.s[2] + 10;

// initiate all ‘b’ elements to be 7
b.v = spu_splats((float)7.0);

// SIMD multiply the two vectors
a.v = spu_mul(a.v, b.v);

// do many other different SIMD operations on ‘a’ and ‘b’ vectors

// extract back the scalar from the computed vector

printf("a0=%f, a1=%f, a2=%f, a3=%f\n",a.s[0],a.s[1],a.s[2],a.s[3]);

return 0;
}

4.6.7 Code transfer using SPU code overlay

This section provides a very brief overview on the SPU overlay facility which
handles cases in which the entire SPU code is too big to fit the LS (taking into
account that the 256 KB of LS should also store the data, stack and heap).
Overlays may be used in other circumstances; for example performance might be
276 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
improved if the size of data areas can be increased by moving rarely used
functions to overlays.

An overlay is a program segment which is not loaded into LS before the main
program begins to execute, but is instead left in main storage until it is required.
When the SPU program calls code in an overlay segment, this segment is
transferred to local storage where it can be executed. This transfer will usually
overwrite another overlay segment which is not immediately required by the
program.

The overlay feature is supported on SDK3.0 for SPU programming but not for
PPU programming.

Here are the main principles on which the overlay is base on:

� The linker generate the overlays as two or more code segments can be
mapped to the same physical address in local storage.

� The linker also generates call stubs and associated tables for overlay
management. Instructions to call functions in overlay segments are replaced
by branches to these call stubs.

� At execution time when a call is made from an executing segment to another
segment the system determines from the overlay tables whether the
requested segment is already in LS. If not this segment is loaded dynamically
using a DMA command, and may overlay another segment which had been
loaded previously.

� XL compilers can assist in the construction of the overlays based upon the
call graph of the application.

A detailed description of this facility including instructions how to use it and usage
example is in SPU code overlays chapter in Programmer's Guide document.

4.6.8 Eliminating and predicting branches

The SPU hardware assumes sequential instruction flow means that unless
explicitly defined otherwise assumes that all branches are not taken. Correctly
predicted branches execute in one cycle, but a mispredicted branch (conditional
or unconditional) incurs a penalty of 18 to 19 cycles, depending on the address of
the branch target. Considering the typical SPU instruction latency of 2 to 7
cycles, mispredicted branches can seriously degrade program performance. The
branch instructions also restrict a compiler’s ability to optimally schedule
instructions by creating a barrier on instruction reordering.

The most effective method of reducing the impact of branches is to eliminate
them using three primary methods that are discuss in the next three chapters:
 Chapter 4. Cell BE programming 277

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� “Function-inlining”: define functions as inline and avoid the branch when a
function is called and another branch when it is returned.

� “Loop-unrolling”: remove loops or reduce the number of iterations in loop in
order to reduce the number of branches (that appears in the end of the loop).

� “Branchless control flow statement”: use spu_sel intrinsics to replace simple
control statement.

The second-most effective method of reducing the impact of branches is discuss
on the last chapter:

� “Branch hint”: discuss the hint-for branch instructions. If software speculates
that the instruction branches to a target path, a branch hint is provided. If a
hint is not provided, software speculates that the branch is not taken (that is,
instruction execution continues sequentially).

Function-inlining
Function-inlining technique can be used to increase the size of basic blocks
(sequences of consecutive instructions without branches). This techniques
eliminates the two branches associated with function-call linkage - the branch for
function-call entry and the branch indirect for function-call return.

In order to use function inlining the programer can choose from one of the
following techniques:

� Explicitly add the inline attribute to the declaration of any function that the
programer would like to inline. One case when it is recommended to do so is
for functions that are very short. Another case is for functions that have small
number of instances in the code but are often executed in run time (for
example when they appear inside a loop).

� Use the compiler options for automatic inlining the appropriate functions.
Table 4-21 describes some of those options of the GCC compiler.

Over-aggressive use of inlining can result in larger code which reduces the LS
space available for data storage or, in the extreme case, is too large to fit in the
LS.

Table 4-21 GCC options for functions inlining

Option Description

-finline-small-functions Integrate functions into their callers when their body is
smaller than expected function call code (so overall
size of program gets smaller). The compiler
heuristically decides which functions are simple
enough to be worth integrating in this way.
278 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Loop-unrolling
Loop-unrolling is another techniques that can be used to increase the size of
basic blocks (sequences of consecutive instructions without branches), which
increases scheduling opportunities. It eliminates branches by decreasing the
number of loop iterations.

If the number of loop iterations is a small constant then it is usually
recommended to remove the loop in order to eliminate brances in the code.
Example 4-66 provide a similar code example.

Example 4-66 Remove short loop for eliminating branches

// original loop
for (i=0;i<3;i++) x[i]=y[i];

// can be removed and replces by
x[0]=y[0];
x[1]=y[1];
x[2]=y[2];

If the number of loops is bigger but the loop iteration are independent of each
other the programer can reduce the number of loops and work on several items
in each iterations as illustrate in Example 4-67 provide a similar code example.
Another advantage of this technique is that it is usually improve the dual issue
utilization. The loop unrolling techniques is often used when move from scalar to
vector instructions.

-finline-functions Integrate all simple functions into their callers. The
compiler heuristically decides which functions are
simple enough to be worth integrating in this way. If all
calls to a given function are integrated, and the
function is declared static, then the function is
normally not output as assembler code in its own right.

-finline-functions-called-once Consider all static functions called once for inlining into
their caller even if they are not marked inline. If a call
to a given function is integrated, then the function is
not output as assembler code in its own right.

-finline-limit=n By default, GCC limits the size of functions that can be
inlined. This flag allows the control of this limit for
functions that are explicitly marked as inline.

Option Description
 Chapter 4. Cell BE programming 279

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 4-67 Long loop unrolling for eliminating branches

// original loop
for (i=0;i<300;i++) x[i]=y[i];

// can be unrolled to
for (i=0;i<300;i+=3){

x[i] =y[i];
x[i+1]=y[i+1];
x[i+2]=y[i+2];

}

An automatic loop unrolling can be performed by the compiler in case the
optimization level is high enough or one of the appropriate options are set (e.g.
-funroll-loops, -funroll-all-loops).

Typically, branches associated with loop with relatively large number of iteration
are inexpensive because they are highly predictable. In this case non-predicted
branch usually occur only in the first and last iterations.

Similar to function inlining, over-aggressive use of loop unrolling can result in
code that reduces the LS space available for data storage or, in the extreme
case, is too large to fit in the LS.

Branchless control flow statement
The select-bits (selb) instruction is the key to eliminating branches for simple
control-flow statements such as if and if-then-else constructs. An if-then-else
statement can be made branchless by computing the results of both the then and
else clauses and using select bits intrinsics (spu_sel) to choose the result as a
function of the conditional.

If computing both results costs less than a mispredicted branch, then a
performance improvement is expected.

Example 4-66 demonstrate the use of spu_sel intrinsics to eliminate branches in
simple if-then-else control block.

Example 4-68 Branchless if-then-else control block

// a,b,c,d are vectors

// original if-else control block
if (a>b) c +=1;
else d = a+b;
280 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// optimized spu_sel based code that eliminates branches but provides
// similar functionality.
select = spu_cmpgt(a,b);
c_plus_1 = spu_add(c,1);
a_plus_b = spu_add(a,b);

c = spu_sel(c, c_plus_1, select);
d = spu_sel(a_plus_b, d, select);

Branch hint
The SPU supports branch prediction through a set of hint-for branch (HBR)
instructions (hbr, hbra, and hbrr) and a branch-target buffer (BTB). These
instructions support efficient branch processing by allowing programs to avoid
the penalty of taken branches.

The hint-for branch instructions provide advance knowledge about future
branches such as address of the branch target, address of the actual branch
instruction, and prefetch schedule (when to initiate prefetching instructions at the
branch target).

Hint-for branch instructions have no program-visible effects. They provide a hint
to the SPU about a future branch instruction, with the intention that the
information be used to improve performance by prefetching the branch target.

If software provides a branch hint, software is speculating that the instruction
branches to the branch target. If a hint is not provided, software speculates that
the branch is not taken. If speculation is incorrect, the speculated branch is
flushed and prefetched. It is possible to sequence multiple hints in advance of
multiple branches.

As with all programmer-provided hints, care must be exercised when using
branch hints because, if the information provided is incorrect, performance might
degrade. There are immediate and indirect forms for this instruction class. The
location of the branch is always specified by an immediate operand in the
instruction.

A common use to branch hint is in the end-of-loop branches when it is expected
to be correct. Such hint will be correct for all loop iterations besides the last one.

A branching hint should be present soon enough in the code. A hint that precede
the branch by at least eleven cycles plus four instruction pairs is minimal. Hints
that are too close to the branch do not affect the speculation after the branch.
 Chapter 4. Cell BE programming 281

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
A common approach to generating static branch prediction is to use expert
knowledge that is obtained either by feedback-directed optimization techniques
or using linguistic hints supplied by the programmer.

There are many arguments against profiling large bodies of code, but most SPU
code is not like that. SPU code tends to be well-understood loops. Thus,
obtaining realistic profile data should not be time-consuming. Compilers should
be able to use this information to arrange code so as to increase the number of
fall-through branches (that is, conditional branches not taken). The information
can also be used to select candidates for loop unrolling and other optimizations
that tend to unduly consume LS space.

Programmer-directed hints can also be used effectively to encourage compilers
to insert optimally predicted branches. Even though there is some anecdotal
evidence that programmers do not use them very often, and when they do use
them, the result is wrong, this is likely not the case for SPU programmers. SPU
programmers generally know a great deal about performance and will be highly
motivated to generate optimal code.

The SPU C/C++ Language Extension specification defines a compiler directive
mechanism for branch prediction. The __builtin_expect directive allows
programmers to predicate conditional program statements. Example 4-69
demonstrates how a programmer can predict that a conditional statement is false
(a is not larger than b).

Example 4-69 Predict false conditional statement

if(__builtin_expect((a>b),0))
c += a;

else
d += 1;

Not only can the __builtin_expect directive be used for static branch prediction,
it can also be used for dynamic branch prediction. The return value of
__builtin_expect is the value of the exp argument, which must be an integral
expression. For dynamic prediction, the value argument can be either a
compile-time constant or a variable. The __builtin_expect function assumes
that exp equals value. Example 4-70 show a code for a static-prediction.

Example 4-70 Static branch prediction

if (__builtin_expect(x, 0)) {
foo(); /* programmer doesn’t expect foo to be called */

}

282 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
A dynamic-prediction example might look like Example 4-71:

Example 4-71 Dynamic branch prediction

cond2 = .../* predict a value for cond1 */
...
cond1 = ...
if (__builtin_expect(cond1, cond2)) {

foo();
}
cond2 = cond1;/* predict that next branch is the same as the previous*/

Compilers may require limiting the complexity of the expression argument
because multiple branches can be generated. When this situation occurs, the
compiler will issue a warning if the program’s branch expectations are ignored.

4.7 Frameworks and domain-specific libraries

This chapter discuss some high level frameworks for development and execution
of parallel applications on Cell BE and also some domain-specific libraries that
are provided by SDK3.0.

The high level frameworks provides an alternative to using the lower level
libraries. The lower level libraries enables the programer full control over the
hardware mechanisms (e.g. DMA, mailbox, SPE thread) and are discussed in
other chapters of “Cell BE programming” section.
The two main purposes of the high level frameworks are reducing the
development time of programing an Cell BE application and creating an abstract
layer which hides from the programer Cell BE’s architecture specific features. In
some cases, the performance of the application using those frameworks is
similar to programing using the lower level libraries. Given the fact that
development time is shorted and the code is more architecture independent
using the framework in those case is preferred. However, as general using the
low lever libraries can provide better performance since the programer can tune
the program to the application specific requirements.

The first two chapters discuss the main frameworks that are provided with
SDK3.0:

1. “DaCS - Data Communication and Synchronization” on page 284 discuss
DaCS which is an API and a library of C callable functions that provides
 Chapter 4. Cell BE programming 283

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
communication and synchronization services amongst tasks of a parallel
application running either on a Cell BE system. Another version of DaCS
provides similar functionality for a hybrid system and is discussed in 7.1.1,
“Hybrid DaCS” on page 443.

2. “ALF - Accelerated Library Framework” on page 291 ALF offers a framework
for implementing the function off-load model on a Cell BE system using the
PPE as the program control and SPEs as functions off-load accelerators. As
in the DaCS case, hybrid version is also available and is discussed in 7.1.2,
“Hybrid ALF” on page 456.

In addition to those SDK3.0 frameworks, a growing number of high level
frameworks for Cell BE programming are being developed by companies other
then IBM or by universities. Discussing those frameworks is out of the scope of
this book. A brief description of some of those frameworks is in 3.1.4, “The Cell
BE programming frameworks” on page 39.

The domain-specific libraries aim to assist Cell BE programmers by providing
reusable functions that implement a set of common a algorithms and
mathematical operators (e.g. FFT, monte carlo, BLAS, matrix and vector
operators). Those libraries are discussed in the third chapter:

3. “Domain-specific libraries” on page 309 provide a brief description of the
some of the main libraries which are provided by SDk3.0.

The functions that these libraries implement are optimized specifically to Cell BE
and can reduce development time in cases where the developed application
uses similar functions. In those cases the programer may use the corresponding
library to implement those functions or use to as a reference and customized it to
the specific requirement of the developed application (the libraries are open
source).

4.7.1 DaCS - Data Communication and Synchronization

DaCS is an API and a library of C callable functions that provides communication
and synchronization services amongst tasks of a parallel application running
either on a Cell BE system or a hybrid system. Hybrid specific issues are
discussed in 7.1.1, “Hybrid DaCS” on page 443. In the rest of this discussion, the
actual implementation, Cell BE or hybrid, is of no importance as we only describe
the concepts and the API calls.

DaCS can be used to implement various types of dialogs between parallel tasks
using common parallel programming mechanisms like message passing,
mailboxes, mutex and remote memory accesses to name a few. The only
assumption is that there is a master task and slave tasks, a host element (HE)
and accelerator elements (AE) in DaCS terminology. This is to be contrasted with
284 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
MPI which treats all tasks as equal. The aim of DaCS is to provide services for
applications using the host/accelerator model, where one task subcontracts
lower level tasks to perform a given piece of work. One model might be an
application written using MPI communication at the global level with each MPI
task connected to accelerators that communicate with DaCS. This is pictured
below.

Figure 4-10 Possible arrangement for a MPI - DaCS application

Here, 5 MPI tasks will exchange MPI messages and use DaCS communication
with their accelerators. No direct communication occurs between accelerators
that report to a different MPI task.
 Chapter 4. Cell BE programming 285

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
DaCS also supports a hierarchy of accelerators. A task can be a an accelerator
for a task higher up in the hierarchy and be a host element for lower level
accelerators as shown below.

Figure 4-11 A two level hierarchy with DaCS

The host element H0 is accelerated by 2 accelerators (A/H0, A/H1), in turn
accelerated by 4 and 3 accelerators.

A DaCS program need not be an MPI program nor use a complex multi-level
hierarchy. DaCS can be used for an application that consists in a single host
process and its set of accelerators.
286 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
DaCS main benefit is to offer abstractions (message passing, mutex, remote
memory access) that are more common for application programmers than the
DMA model that is probably better known by system programmers. It also hides
the fact that the host element and its accelerators may not be running on the
same system.

DaCS concepts
DaCS elements (HE/AE)
A task in a DaCS program is identified by a couple <DaCS Element, Process
ID>. The DaCS Element (DE) identifies the accelerator or host element. This
could be a PPE, a SPE or another system in a hybrid configuration. In general, a
given DaCS Element could have multiple processes running, so we need a
Process ID to uniquely identify a participating DaCS task.

A DE can be either a Host Element (HE) or an Accelerator Element (AE) or both
in the case of a multi-level hierarchy. A HE will reserve a AE for its exclusive use
and create and terminate processes to run on it.

DaCS groups
In DaCS, the groups are created by a HE and AE can only join a group previously
created by their HE. The groups are used to enable synchronization (barrier)
between tasks.

DaCS remote memory regions
A HE can create an area of memory that is to be shared by its AE. A region can
be shared in read-only or read-write mode and once the different parties are set
up to share a remote memory segment, the data is accessed by each DE using a
put or get primitive to move data back and forth between its local memory and
the shared region. The data movement primitives also support DMA lists to
enable gather/scatter operations.

DaCS mutex
A HE can create a mutex that AE will agree to share. Once the sharing has been
explicitly set up, the AE will be able to use lock-unlock primitives to serialize
accesses to shared resources.

DaCS communication
Apart from the put/get primitives in remote memory regions, DaCS offers two
other mechanisms for data transfer: mailboxes and message passing using basic
send/recv functions. They are also asymmetric as the data in mailboxes and
send/recv functions between HE and AE only.
 Chapter 4. Cell BE programming 287

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
DaCS wait identifiers
The data movement functions in DaCS: put/get and send/recv are asynchronous
and return immediately. DaCS provides functions to wait for the completion of a
previously issued data transfer request. These functions use a wait identifier that
need to be explicitly reserved before being used. They should also be released
when no longer in use.

DaCS services
The functions in the API are organized in groups. They are described below.

Resource and process management
A HE will use functions in this group to query the status and number of available
AE and to reserve them for its future use. Once a AE has been reserved, it can
be assigned some work with the dacs_de_start() function. In a Cell BE
environment, the work given to an AE will be an embedded SPE program
whereas in a hybrid environment, it will be a Linux binary.

Group management
Groups are required to operate synchronizations between tasks. Currently, only
barriers are implemented.

Message passing
Two primitives are provided for sending and receiving data using a message
passing model. The operations are non-blocking and the calling task must wait
later for completion. The exchanges are point to point only and one of the
end-point needs to be a HE.

Mailboxes
An efficient message notification mechanism for small 32-bit data between two
separate processes. In the case of the Cell BE processor, these are implemented
in the hardware using an interrupt mechanism for communication between the
SPE and the PPE or other devices.

Remote memory operations
This is a mechanism for writing/reading directly from/to memory in remote
processes address space. In MPI, this type of data movement is called one-sided
communication.

Synchronization
Mutexes may be required to protect the remote memory operations and serialize
accesses to shared resources.
288 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Common patterns
The group, remote memory and synchronization services are implemented with a
consistent set of create, share/accept, use and release/destroy primitives. In all
three cases, the HE is the initiator and the AE are invited to share what the HE
has prepared for them. This is shown below.

Table 4-22 Pattern for sharing resources in DaCS

For the remote memory regions, the table is as follows.

Table 4-23 Remote memory sharing primitives

As for the groups, we get:

Table 4-24 Group management primitives

HE side AE side

Create the resource

Invite each AE to share the resource and
wait for confirmation from each AE, one by
one

Accept the invitation to share the resource

Use the resource, the HA can take part to
the sharing but it’s not mandatory

Use the resource

Destroy the shared resource: wait for each
AE to notify us that it does not use the
resource anymore

Release: signal the HE that we do not use
the resource anymore

HE side AE side

dacs_remote_mem_create()

dacs_remote_mem_share() dacs_remote_mem_accept()

dacs_put(), dacs_get()

dacs_remote_mem_destroy() dacs_remote_mem_release()

HE side AE side

dacs_group_init()

dacs_group_add_member() dacs_group_accept()

dacs_group_close(), this marks the end of
the group creation
 Chapter 4. Cell BE programming 289

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
And for mutexes:

Table 4-25 Mutexes primitives

An annotated DaCS example
We provide an example program that illustrates the use of most of the API
functions. The program source code is very well documented such that reading
through will give a very clear understanding of the DaCS API functions and how
they need to be paired between the HE and the AE.

The DaCS libraries are fully supported by the debugging and tracing
infrastructure provided by the IBM SDK for Multicore Acceleration. The sample
code above can be built with the “debug” and “trace” flavors of the DaCS library.

Usage notes and current limitations
DaCS provides services for data communication and synchronization between a
HE and its AE. It does not tie the application to a certain type of parallelism and
any parallel programming structure can be implemented.

In the current release, no message passing between AE is allowed and complex
exchanges will either require more HE intervention or will need to be
implemented using the shared memory mechanisms (remote memory and
mutexes). A useful extension could be to allow AE to AE messages. Some data
movement patterns (pipeline, ring of tasks) would be easier to implement in

dacs_barrier_wait()

dacs_group_destroy() dacs_groupe_leave()

HE side AE side

dacs_mutex_init()

dacs_mutex_share() dacs_mutex_accept()

dacs_mutex_lock(),
dacs_mutex_unlock(),
dacs_mutex_trylock()

dacs_mutex_destroy() dacs_mutex_release()

Source code: The DaCS code example that is mentioned above is part of the
additional material that comes with the book. See “DaCS programming
example” on page 611 for more details.

HE side AE side
290 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
DaCS. Of course, we can always call directly libspe2 functions from within a
DaCS task to implement custom task synchronizations and data communications
but this technique is not a supported by the SDK.

4.7.2 ALF - Accelerated Library Framework

ALF offers a framework for implementing the function offload model. The
functions that were previously running on the host are now being offloaded and
accelerated by one or more accelerators. In ALF, the host and accelerator node
types can be specified by the API and are general enough to allow various
implementations. In the current implementations, the accelerator functions
always run on the SPE of a Cell BE and the host applications run either on the
PPE of a Cell BE on the offically supported Cell of ALF version or on an x86_64
node in the alpha version of the hybrid model.

ALF overview
With ALF, the application developer is required to divide the application in two
parts : the control part and the computational kernels. The control part runs on
the host and it sub-contracts accelerators to run the computational kernels.
These kernels will take their input data from the host memory and will write back
the output data to the host memory. ALF is an extension of the subroutine
concept, with the difference that input arguments and output data have to move
back and forth between the host memory and the accelerator memory, akin to the
RPC (Remote Procedure Call) model. The input and output data may have to be
further divided into blocks to be made small enough to fit the limited size of the
accelerator’s memory. The individual blocks are organized in a queue and are
meant to be independent of each other. The ALF runtime manages the queue
and balancing the work betweeen the accelerators. The application programmer
only has to put the individual pieces of work in the queue.

Let us suppose we have an MPI application which we wish to accelerate by
off-loading the computational routines onto a multitude of Cell BE SPEs. Once
accelerated using ALF, each MPI task will still enjoy its life as a MPI task: working
in sync with the other MPI tasks and performing the necessary message
passing. But now, instead of running the computational parts between MPI calls,
it will only orchestrate the work of the accelerator tasks that it will allocate for its
own use. Each MPI task needs to know about the other MPI tasks for
synchronization and message passing but an accelerator task does not need to
know anything about its host task nor about its siblings and even less about the
accelerators running on behalf of foreign MPI tasks. An accelerator task has no
visibility to the outside world. It only answers to requests: it is fed with input data,
does some processing and the output data it produces is sent backsends back
back.
 Chapter 4. Cell BE programming 291

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
There is no need for an accelerator program to know about its host program as
the ALF runtime takes care of all the data movement between the accelerator
memory and the host memory on behalf of the accelerator task. The ALF runtime
does the data transfer using all sorts of clever tricks, exploiting DMA, double or
triple buffering and pipelining techniques that the programmer does not need to
learn about. All the programmer has to do is to describe, generally at the host
level, the layout of the input and output data in host memory that the accelerator
task will work with.

ALF gives a lot of flexibility to manage accelerator tasks. It supports the MPMD
(Multiple Program Multiple Data) model in two ways:

� a subset of accelerator nodes can run taskA providing the computational
kernel ckA while another subset will run taskB providing the kernel ckB,

� while a single accelerator task can only perform a single kernel at an one
time, there are ways the accelerator can load a different kernel after execution
starts.

ALF can also express dependencies between tasks allowing for complex
ordering of tasks when synchronization is required.

The ALF runtime and programmer’s tasks
The ALF runtime provides the following services from the application
programmer’s perspective:

� at the host level:

– work blocks queue management,

– load balancing between accelerators,

– dependencies between tasks,

� at the accelerator level:

– optimized data transfers between the accelerator memory and the host
memory, exploiting the data transfer list used to describe the input and
output data.

On the host side, the application programmer will have to make calls to ALF API
to:

� create the tasks

� split the work in work blocks, that is describing the input and output data for
each block

� express the dependencies between tasks if needed

� put the work blocks in the queue
292 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
On the accelerator side, he will only have to write the computational kernels. As
we will see later, this is slightly over-simplified as the separation of duties
between the host programs and the accelerator program may become a bit
blurred in the interest of performance.

ALF architecture
The picture below (from the ALF programming guide) summarizes how ALF
works.

Figure 4-12 The ALF architecture

Near the top is the host view with presumably large memory areas figuring the
input and output data for the function that is to be accelerated. In the middle, lies
the data partitioning where the input and output are split into smaller chunks,
small enough to fit in the accelerator memory, the so-called work blocks. At the
bottom, the accelerator tasks are pictured, processing one work block at a time.
The data transfer part between the host and accelerator memory is taken care of
by the ALF runtime.

The picture below shows the split between the host task and the accelerator
tasks. On the host side, we create the acelerator tasks, create the work blocks,
 Chapter 4. Cell BE programming 293

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
enqueue the blocks and wait for the tasks to collectively empty the work block
queue. On the accelerator task, for each work block, the ALF runtime will fetch
the data from the host memory, call the user provided computational kernel and
send back to the host memory the output data.

Figure 4-13 The host and accelerator sides

A simplified view of an accelerator task workflow
To illustrate how the ALF runtime works on the accelerator side, we present a
simplified pseudo code of the accelerator task. This program is similar to what
ALF provides. An application programmer only needs to register the routines that
get called by the call_user_routine. This is obviously not the real ALF source
code but this shows in a very simplistic way what it does.

Example 4-72 A pseudo code for the accelerator workflow

// This SPE program is started by the alf_task_create() call on the
// host program.
int main()
{

// If the user provided a context setup routine, call it now
call_user_routine(task_context_setup);

// Enter the main loop, we wait for new work blocks
294 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
while (more_work_blocks()) {
while(multi_use_count) { // more on this later

get_user_data(work_block_parm);

// If the user wants to have the data partitioning on
// the accelerator, call the routine he gave us to do so.
if(accelerator_data_partitioning) {

call_user_routine(input_prepare);
}

// The input data list is ready. Fetch the items from the
// host into the task input buffer.
get_input_data();

// We have the input data. Let’s call the user function.
call_user_routine(compute_kernel);

// If the output data partitioning is to be run on the
// accelerator, call the user provided routine.
if(accelerator_data_partitioning) {

call_user_routine(output_prepare);
}

// The output data list is ready, scatteer the data back to
// the host memory.
put_output_data();

}
}

// We are about to leave. If we were asked to merge the context,
// do it now with the user provided routine.
call_user_routine(task_context_merge);

}

Description of the ALF concepts
The entities that ALF manipulates are listed below:

� computational kernels,

� tasks,

� work blocks,
 Chapter 4. Cell BE programming 295

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� data partitioning,

� datasets,.

Let’s describe each topic with more details.

Computational kernel
This is the why we use ALF in the first place: we off-load the computation kernels
of the application from the host task to accelrator tasks running on accelerator
nodes, SPEs in our case. A computational kernel is a function that takes some
input, does some processing and produces output data. Within ALF, a
computational kernel function has a given prototype that application
programmers have to conform to. In the simplest case, an application
programmer needs to implement a single routine: the one that does thee
computation. In the most general case, up to 5 functions may need to be written:

� the compute kernel,

� the input data transfer list prepare function,

� the output data transfer list prepare function,

� the task context setup function,

� the task context merge function.

The full prototypes are given below, taken from the alf_accel.h file which an
accelerator program must include. The ALF runtime will fill in the buffers (input,
output, context) before calling the user provided function. From an application
programmer’s perspective, our function gets called after the runtime has filled all
the necessary data, transferring the data from the host memory to the
accelerator memory, that is the local store. We do not have to care for that. We
are just given pointers to where the data has been made available for us. This is
similar to what the shell does for us when the main() function of a Linux program
is called: the runtime system (the exec() system call that set us to run in this
case) has filled for us the char *argv[] array for us to use.

Example 4-73 The accelerator functions prototypes

// This is the compute kernel. It is called for every work block.
// Some arguments may be NULL. For example, the inout buffer may
// not be used.

// The task context data pointed to by p_task_context is filled
// at task startup only, not for every work block, but we want to
// be able to use this state data from inside the compute kernel
// every time we get called.

// The current_count and total_count are 0 and 1 and can be ignored
296 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
// for single-use work blocks. See later for multi-use work blocks.

// The data pointed to by p_parm_context is filled every time we
// process a work block. I nthe case of a multi-use work block,
// it can be used to store data that is common to multi-use blocks
// invocations.
int (*compute_kernel) (

void *p_task_context,
void *p_parm_context,
void *p_input_buffer,
void *p_output_buffer,
void *p_inout_buffer,
int current_count,
int total_count);

// The two routines below are used when we do the data
// partitioning on the accelerator side, possibly because
// this requires too much work for the PPE to keep up with
// the SPEs. If we stick to host data partitionning, we do
// not define these routines.

// The area pointed to by p_dtl is given to us by the ALF runtime.
// We will use this pointer as a handle and pass it as an argument to
// the functions we will call to add entries to the list of items
// that need to be brought in (resp. out) before (resp. after) the
// compute kernel is called. The parm_context data may contain
// information required to compute the data transfer lists.
int (*input_list_prepare or output_list_prepare) (

void *p_task_context,
void *p_parm_context,
void *p_dtl,
int current_count,
int total_count);

// The task_context_setup function is called at task startup time.
// This function can be used to prepare the necessary environment
// to be ready when the work blocks will be sent to us.
int (*task_context_setup) (

void *p_task_context);

// The task_context_merge function is called at task exit time. It can
// be used for reduction operations. We update our task context data
// (p_task_context) by applying a reduction operation between this
// data and the incoming context data that is filled for us by
// the runtime.
 Chapter 4. Cell BE programming 297

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
int (*task_context_merge) (
void *p_context_to_merge,
void *p_task_context);

The computational kernel functions need to be registered to the ALF runtime in
order for them to be called when a work block is received. This is accomplished
using export statements which usually come at the end of the accelerator source
code. The listing below presents a typical layout for an accelerator task.

Example 4-74 Export statements for accelerator functions

...
#include <alf_accel.h>
....
int foo_comp_kernel(..)
{
// statements here...
}
int foo_input_prepare(...)
{
// statements here
}
int foo_output_prepare(...)
{
// statements here
}
int foo_context_setup(...)
{
// statements here
}
int foo_context_merge(...)
{
// statements here
}
ALF_ACCEL_API_LIST_BEGIN

ALF_ACCEL_EXPORT_API(“foo_compute”,foo_comp_kernel);
ALF_ACCEL_EXPORT_API(“foo_input_prepare”,foo_input_prepare);
ALF_ACCEL_EXPORT_API(“foo_output_prepare”,foo_output_prepare);
ALF_ACCEL_EXPORT_API(“foo_context_setup”,foo_context_setup);
ALF_ACCEL_EXPORT_API(“foo_context_merge”,foo_context_merge);

ALF_ACCEL_API_LIST_END
298 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
It is important to understand that we do not write a main() program for the
accelerator task. It’s the ALF runtime that runs the main() function and which
calls our functions upon receiving a work block.

Tasks and task descriptors
A task is a ready-to-be-scheduled instantiation of an accelerator program : an
SPE here. The tasks are created and finalized on the host program. A task is
created by the alf_task_create() call. Before calling the task creation routine,
we need to describe it and this is done by setting the attributes of a task
descriptor. We present the task descriptor Figure 4-75 below using a sample of
pseudo C code.

Example 4-75 What is a task descriptor?

//

struct task_descriptor {

// The task context buffer holds status data for the task.
// It is loaded at task started time and can be copied back
// at task unloading time. It’s meant to hold data that is
// kept across multiple invocations of the computational kernel
// with different work blocks
struct task_context {

task_context_buffer [SIZE];
task_context_entries [NUMBER];

};

// These are the names of the functions that this accelerator task
// implements. Only the kernel function is mandatory. The context
// setup and merge, if specified, get called upon loading and
// unloading of the task. The input and output data transfer list
// routines are called when the accelerator does the data
// partitioning itself.
struct accelerator_image {

char *compute_kernel_function;
char *input_dtl_prepare_function;
char *output_dtl_prepare_function;
char *task_context_setup_function;
char *task_context_merge_function;

};

// Where is the data partitioning actually run ?
enum data_partition

{HOST_DATA_PARTITION,ACCEL_DATA_PARTITION};
 Chapter 4. Cell BE programming 299

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
// Work blocks. A work block has an input and output buffer.
// These can overlap if needed. A block can also have parameters
// and a context when the block is a multi-use block
struct work_blocks {

parameter_and_context_size;
input_buffer_size
output_buffer_size;
overlapped_buffer_size;
number_of_dtl_entries;

};

// This is required so that the ALF runtime can work out
// the amount of free memory space and therefore how much
// multi-buffering can be done.
accelerator_stack_size;

};

The task context is a memory buffer that is used for two purposes:

� store persistent data across work blocks. For example, we would load some
state data that is to be read every time we process a work block. It contains
work block “invariants”,

� store data that can be reduced between multiple tasks. The task context can
be used to implement all-reduce (associative) operations like min, max or a
global sum.

Work blocks
A work block is a single invocation of a task with a given set of input, output and
parameter data. There are single-use work blocks, which are processed only
once and multi-use work blocks which are processed up to total_count times.

The single-use work blocks input and output data description can be performed
either at the host level or the accelerator level. For multi-use work blocks, the
data partitioning is always performed at the accelerator level. The current count
of the multi-use work block and the total count are passed as arguments every
time we call the input list preparation routine, the compute kernel and the output
data preparation routine.

With the multi-use blocks, the work block creation loop that was running on the
host task is now performed jointly by all the accelerator tasks that this host has
allocated. The only information that a given task is given to create, on the fly, the
proper input and output data transfer lists is the work block context buffer, the
current and total counts. The previous host loop is now parallelized across the
300 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
accelerator tasks which balance the work automatically between themselves.
The purpose of the multi-use work blocks is to make sure that the PPE, which
runs the host tasks, does not become a bottleneck, too busy creating work blocks
for the SPEs.

The work blocks queue is managed by the ALF runtime which balances the work
across the accelerators. There are API calls to influence the way the ALF work
blocks are allocated if the default mechanism is not satisfactory.

Data partitioning
The purpose of data partitioning is to make sure each work block gets the right
data to work with. The partitioning can be performed at the host level or at the
accelerator level. We use a data transfer list, consisting of multiple entries of type
<start address, type, count> that describe where from, in host memory, we need
to gather data to be sent to the accelerators. The API calls differ whether you use
the host or accelerator data partitioning.

Datasets
At the host level, we can create datasets which assign attributes to the data
buffers that are to be used by the accelerator tasks. A memory region can be
described as read-only, read-write or write-only. This information gives hints to
the ALF runtime to help improve the data movement performance and
scheduling.

The memory layout of an accelerator task
Memory on the accelerator is a limited resource. It is important to understand
how the various data buffers are organized to be able to tune their definitions and
usage. Also, the ALF runtime will have more opportunities to use clever
multi-buffering techniques if it has more room left after the user data has been
loaded into the accelerator memory. The picture below shows the memory map
of an ALF program. The user code contains the computational kernels and
optionally the input/output data transfer list functions and context setup/merge
functions.
 Chapter 4. Cell BE programming 301

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 4-14 ALF accelerator memory map

As seen from the programmer’s five pointers to data buffers are passed to the
computational kernels (see Example 4-73 on page 296). Various combinations
are possible, depending on the use of overlapped buffers for input and output. In
the simplest case, no overlap exists between the input and output buffers.
302 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Figure 4-15 Memory map without overlapped input/output buffer

The input and output data buffers can overlap entirely.
 Chapter 4. Cell BE programming 303

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 4-16 Memory map with a single input/output overlapped buffer

In the most general case three data buffer pointers can be defined.
304 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Figure 4-17 Memory map with all five data pointers defined

API description
The API has two components: the host API and the accelerator. A host program
must include the alf.h file and an accelerator program must include the
alf_accel.h file.

The main host API functions are listed in the table below.
 Chapter 4. Cell BE programming 305

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Table 4-26 The host side of the ALF API

The accelerator API is much leaner as it only includes a few functions to perform
the data partitioning.

Table 4-27 The accelerator side of the ALF API

Groups Functions Description

Framework alf_init
alf_query_system_info
alf_num_instances_set
alf_exit

initialize ALF
query various system infos
set the max number of accelerators
exit ALF

Tasks alf_task_desc_create
alf_task_desc_set_int32
alf_task_desc_set_int64
alf_task_desc_ctx_entry_add
alf_task_desc_destroy
alf_task_create
alf_task_finalize
alf_task_destroy
alf_task_wait
alf_taskdepends_on

create a task descriptor
set a task descriptor parameter
set a task descriptor parameter 64 bit
add an entry in the task context
destroy the context
create a task
make the task runnable
terminate a task
wait for a task terination
express a task dependency

Work blocks alf_wb_create
alf_wb_parm_add
alf_wb_dtl_begin
alf_wb_dtl_entry_add
alf_wb_dtl_end
alf_wb_enqueue

create a work block
add a work block parameter
start a data transfer list
add an entry to the list
close the data transfer list
queue the work block for execution

Datasets al_dataset_create
alf_dataset_buffer_add
alf_task_dataset_associate
alf_dataset_destroy

create a dataset structure
add a buffer and type to the dataset
associate the dataset with a task
destroy the dataset structure

Groups Functions Description

Framework alf_accel_num_instances
alf_accel_instance_id

number of accelerators
my rank

Data partitioning ALF_ACCEL_DTL_BEGIN
ALF_ACCEL_DTL_ENTRY_ADD
ALF_ACCEL_DTL_ENDt

start a data transfer list
add to the list
close the list
306 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
ALF optimization tips
Apart from tuning the computational kernel itself and making sure we maximize
the amount of work per data communication, it can be beneficial to tune the data
movement part. To do so, the following techniques should be explored:

� data partitioning on the accelerator side,

� multi-use work blocks.

These techniques will lower the workload on the host task which may otherwise
not be able to keep up with the speed of the accelerators, thus becoming a
bottleneck for the whole application. Also, using datasets on the host side and
using overlapped input and output buffers whenever possible will give more
flexibility to the ALF runtime to optimize the data transfers.

ALF application development notes
When designing an ALF strategy for an application, a trade-off will be necessary
to decide on the granularity of the computational kernels. The forces are:

� the ability to extract independent pieces of work,

� the computation to communication ratio,

� the memory constraints imposed by the SPE

From an application development perspective, the host-accelerator model allows
two different types of programmers to work on the same project. Developer Sam
can concentrate on the high level view, implementing the application algorithm,
managing MPI tasks, making sure they synchronize and communicate when
needed. Developer Sam is also responsible for writing the “contract” between the
task and the accelerator tasks, describing the input and output data as well as
the required operation. Here comes developer Gordon who will focus on
implementing the computational kernels according to the specs and tune these
kernels to the metal.

The examples described below show the type of work that is involved when
accelerating applications with ALF. Of particular interest in this respect are the
matrix_add and matrix_transpose examples.

A guided tour of the ALF examples provided in the SDK
Before embarking on the acceleration of an application using ALF, it is highly
advisable to take a look at the examples provided by the IBM SDK for Multicore
Acceleration. The examples come with two rpms:

� alf-examples-source,

� alf-hybrid-examples-source
 Chapter 4. Cell BE programming 307

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The hybrid version includes the non-hybrid ones too. The examples are
described in the table below following a reading suggested order.

Table 4-28 ALF examples in the IBM SDK for Multicore Acceleration

Example Description

hello_world very simple, minimal ALF program

matrix_add This example gives the steps that were taken to enable
and tune this application with ALF. The successive
versions are:
� scalar : the reference version
� host_partition : first ALF version, data partitioning on

the host,
� host_partition_simd : the compute kernel is tuned

using SIMD,
� accel_partition : data partitioning performed by the

accelerators,
� dataset : use of the dataset feature,
� overlapped_io : use of overlapped input and output

buffers

PI shows the use of task context buffers for global
parameters and reduction operations

pipe_line shows the implementation of a pipeline using task
dependencies and task context merge operations

FFT16M shows multi-use work blocks and task dependencies

BlackScholes pricing model: shows how to use multi-use work blocks

matrix_transpose like matrix_add, shows the steps going from a scaler
version to a tuned ALF version. The successive versions
are:
� scalar : the reference version
� STEP1a : using ALF and host data partitioning
� STEP1b : using accelerator data partitioning
� STEP2 : using a tuned SIMD computational kernel

inout_buffer shows the use of input/output overlapped buffers

task_context shows the use of the task context buffer for associative
reduction operations (min, max), a global sum and as a
storage for a table lookup.

inverse_matrix_ovl shows the use of function overlay, datasets
308 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
4.7.3 Domain-specific libraries

This chapter discuss few of the main domain specific libraries which are part of
SDK 3.0. These libraries aim to assist Cell BE programmers by providing
reusable functions that implement a set of common a algorithms and
mathematical operators. The functions are optimized specifically to Cell BE by
exploiting the unique architecture of this processor (e.g. run parallel on several
SPEs, use SIMD instructions).

A software developer who start developing an application for Cell BE (or port an
existing application) may first check whether some parts of its application are
already implemented in one of the SDK’s domain specific libraries. If yes, using
the corresponding library can provide an easy solution for and save development
efforts.

Most of those libraries are open source, so even if the exact functionality required
by the developed application is not implemented, the programer can use those
functions as a reference and be customized and tailored for developing the
application specific functions.

The next four chapters provide a brief descriptions of the following libraries:

� “Fast Fourier Transform (FFT) library”

� “Monte Carlo libraries”

� “Basic linear algebra subprograms (BLAS) library”

� “Matrix, large matrix and vector libraries”

While those are the libraries that we found as the most useful, SDK3.0 provides
also several other libraries. The document “Example Library API Reference”
discuss the additional libraries and also a provide detailed description of some of
the libraries which are discussed in this chapter (and are described only briefly).

Fast Fourier Transform (FFT) library
This prototype library handles a wide range of FFTs, and consists of the
following:

1. API for the following routines used in single precision:

– 1D of 2D FFT

– FFT Real -> Complex 1D

– FFT Complex-Complex 1D

– FFT Complex -> Real 1D

– FFT Complex-Complex 2D for frequencies (from 1000x1000 to
2500x2500)
 Chapter 4. Cell BE programming 309

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The implementation manages sizes up to 10000 and handles multiples of 2, 3,
and 5 as well as powers of those factors, plus one arbitrary factor as well. User
code running on the PPU makes use of the Cell BE FFT library by calling one of
the streaming functions. An SPU version is also available.

2. Power-of-two-only 1D FFT code for complex-to-complex single and double
precision processing. Supported on the SPU only.

Both parts of the library run using a common interface that contains an
initialization and termination step, and an execution step which can process
“one-at-a-time” requests (streaming) or entire arrays of requests (batch). The
latter batch mode is more efficient in applications in which several distinct FFT
operation may be executed one after the other since the initialization step and the
termination step are done only once for all the FFT execution (initialization -
before the first execution, termination - after the last execution).

Both FFT transform and inverse FFT transform are supported by this library.

In order to retrieve more information about this library the programer may:

� Enter the command man /opt/cell/sdk/prototype/usr/include/libfft.3
on a system where the SDK is installed.

� Read Fast Fourier Transform (FFT) library chapter in “Example Library API
Reference” document.

Another alternative library that implements FFT for Cell BE is the FFTW library.
the Cell BE implementation of this library is currently available only as an alpha
preview release.
More information can be find in this link: http://www.fftw.org/cell/

Monte Carlo libraries
The Monte Carlo libraries are a Cell BE implementation of Random Number
Generator (RNG) algorithms and transforms. The objective of this library is to
provide functions needed to perform Monte Carlo simulations.

The library contains 4 random number generation (RNG) algorithms
(hardware-generated, Kirkpatrick-Stoll, Mersenne Twister, and Sobol), 3
distribution transformations (Box-Muller, Moro’s Inversion, and Polar Method),
and two Monte Carlo simulation samples (calculations of pi and the volume of an
n-dimensional sphere).

A detailed description of this library and how to use it is in “Monte Carlo Library
API Reference Manual” document.
310 Programming the Cell Broadband Engine: Examples and Best Practices

http://www.fftw.org/cell/
http://www.fftw.org/cell/
http://www.fftw.org/cell/
http://www.fftw.org/cell/

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
Basic linear algebra subprograms (BLAS) library
The BLAS (Basic Linear Algebra Subprograms) library is based upon a published
standard interface (See the “BLAS Technical Forum Standard” document) for
commonly used linear algebra operations in high-performance computing (HPC)
and other scientific domains. It is widely used as the basis for other high quality
linear algebra software: for example LAPACK and ScaLAPACK. The Linpack
(HPL) benchmark largely depends on a single BLAS routine (DGEMM) for good
performance.

The BLAS API is available as standard ANSI C and standard FORTRAN 77/90
interfaces. BLAS implementations are also available in open-source (netlib.org).
Based on its functionality, BLAS is divided into three levels:

� Level 1 routines are for scalar and vector operations.

� Level 2 routines are for matrix-vector operations

� Level 3 routines are for matrix-matrix operations.

Each routine has four versions – real single precision, real double precision,
complex single precision and complex double precision. The BLAS library in
SDK3.0 supports only real single precision and real double precision versions.

All SP and DP routines in the three levels of standard BLAS are supported on the
Power Processing Element (PPE). These are available as PPE APIs and
conform to the standard BLAS interface.

Some of theses routines have been optimized using the Synergistic Processing
Elements (SPEs) and these show a marked increase in performance in
comparison to the corresponding versions implemented solely on the PPE.

These optimized routines have an SPE interface in addition to the PPE interface;
however, the SPE interface does not conform to the standard BLAS interface and
provides a restricted version of the standard BLAS interface. The single precision
versions of these routines have been further optimized for maximum
performance using various features of the SPE (e.g. SIMD, Dual Issue, etc.):

Level 1:

� SSCAL, DSCAL

� SCOPY, DCOPY

� ISAMAX, IDAMAX

� SAXPY, DAXPY

� SDOT, DDOT

Level 2:
 Chapter 4. Cell BE programming 311

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� SGEMV, DGEMV (TRANS=’No Transpose’ and INCY=1)

Level 3:

� SGEMM, DGEMM

� SSYRK, DSYRK (Only for UPLO=’Lower’ and TRANS=’No transpose’)

� STRSM, DTRSM (Only for SIDE=’Right’, UPLO=’Lower’, TRANS=’Transpose’
and DIAG=’Non-Unit’)

A detailed description of this library and how to use it is in “Basic Linear Algebra
Subprograms Programmer's Guide and API Reference” document.

Matrix, large matrix and vector libraries
SDk3.0 provides three libraries that implement various linear operation on
matrixes and vectors.

The first is matrix library which consists of various utility libraries that operate on
4x4 matrices as well as quaternions. The library is supported on both the PPE
and SPE. In most cases, all 4x4 matrices are maintained as an array of 4 128-bit
SIMD vectors, while both single precision and double precision operands are
supported.

The second is large matrix The large matrix library which consists of various
utility functions that operate on large vectors as well as large matrices of single
precision floating-point numbers. The size of input vectors and matrices are
limited by SPE local storage size. This library is currently only supported on the
SPE.

The two libraries support different matrix operations such as multiplying, adding,
transpose and inverse.

Similar to SIMDmath and MASS libraries the libraries can be used either as
linkable library archive or as set of inline function headers. for more details see e
Chapter , “SIMDmath library” on page 257 and Chapter , “MASS and MASSV
libraries” on page 258.

The third is vector library which consists of a set of general purpose routines that
operate on vectors. This library is supported on both the PPE and SPE.

A detailed description of those libraries and how to use them is in “Example
Library API Reference” document, under Matrix library chapter, Large matrix
library chapter, and Vector library chapter.
312 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
4.8 Programming guidelines

This chapter provide a general collection of programming guidelines and tips that
covers different aspects of Cell BE programming.

This chapter is heavily rely on information from the following resources:

1. “Maximizing the power of the Cell Broadband Engine processor: 25 tips to
optimal application performance”, Daniel A. Brokenshire, IBM Austin

2. “Cell BE Programming Gotchas! or “Common Rookie Mistakes”, Michael
Perrone, IBM TJ Watson Research Center

3. Cell Broadband Engine Programming Tutorial, chapter General SPE
programming tips.

4. Cell Broadband Engine Programming Handbook, chapter SPE Programming
Tips.

Two other good sources of information for high performance programming in Cell
BE are:

� Cell Be forum at developerworks:
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=739

� Cell Performance web site:
http://www.cellperformance.com

4.8.1 General guidelines

� Off-load as much work onto the SPEs as possible. Use the PPE as the control
processor and SPE to perform all the heavy computational lifting.

� Exploit Cell BE parallelism:

– Use multithreading so as parallel task run on separate SPE threads.

– Try to avoid using more threads then physical SPEs because context
switching consumes a fair amount of time.

– Do not spawn SPE threads for each scalar code hot spot since thread
creation overhead reduces performance.

� Choose a partitioning and work allocation strategy that minimizes atomic
operations and synchronization events.

� Use the appropriate programming model to your application. See for more in
Chapter 3.3, “Which parallel programming model ?” on page 51.

� Choose the fixed point data types carefully.
 Chapter 4. Cell BE programming 313

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
– Floating point: As most processors the SPE has better performance when
performing SIMD operations on single precision floating point variables
compare to double precision ones. On the other hand double precision
operations are more accurate. It is therefore recommnded to use double
precision types only in cases the accuracy of single precision is not
sufficient.

– Fixed point: Similarly to floating point, 32 bit integers have better
performance then 64 bit ones. In addition, specifically for multiply 16 bit
fixed point integers have better performance then 32 bit ones.

� Use the volatile keyword for the declaration of DMA buffers in order to
instruct the compiler not to reorder software memory access to those buffers
and DMA requests and waiting for completion. Please notice that using the
volatile keyword can significantly impact the compilers ability to order buffer
accesses and coalesce multiply loads.

4.8.2 SPE programming guidelines

This section contains a short summary of programming guidelines for optimizing
the performance of SPE programs. The intention here for programing issues
related only to programing the SPU itself an without interacting with external
components (e.g. PPE, other SPEs, main storage).

Since almost any SPE program does need to interact with external component, it
is recommended to be familiar with the programming guidelines in the other
chapters in “Programming guidelines” section.

General
� Try to avoid over usage of 128 bytes alignment. Consider on which cases

such alignment is indeed essential (e.g. for data transfer that are performed
often) and use redundant alignment (e.g. 16 bytes) for other cases. There two
main reasons why 128 alignment can reduce the performance:

– 128 bytes alignment requires the definition of the variables as global which
cause the program to use more registers and reducing the number of free
registers which will also reduce the performance (e.g. increased
loads/stores, increases stack size, reduced loop unrolling). therfore, if only
a redundant alignment is required (e.g. 16 bytes alignment), you can use
the variables as local which may significantly increase the performance.

– 128 bytes alignment increase the code size because of the padding that is
added by the compiler to make the data aligned.

� Try to avoid writing recursive SPE code that uses lots of stack variables which
may cause stack overflow errors. The compilers provides support for runtime
314 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
stack overflow checking that can be enabled during application debug such
errors.

Intrinsics
� Use intrinsics to achieve machine-level control without the need to write

assembly language code.

� Understand how the intrinsics map to assembly instructions and what the
assembly instructions do.

Local Store
� Design for the LS size. The LS holds up to 256 KB for the program, stack,

local data structures, heap, and DMA buffers. One can do a lot with 256 KB,
but be aware of this size.

� In case the code is too big too fit into the LS (taking into account that data
should also reside in LS) use the overlays mechanism (see Chapter 4.6.7,
“Code transfer using SPU code overlay” on page 276).

� Use code optimization carefully since they may increased the code size (e.g.
function inline, loop unrolling).

Loops
� If the number of loop iterations is a small constant, then consider removing

the loop altogether.

� If the number of loop iterations is variable, consider unrolling the loop as long
as the loop is relatively independent (that is, an iteration of the loop is not
dependent upon the previous iteration).
Unrolling the loops reduce dependencies and increase dual-issue rates, and
by that will let the compiler optimization to exploits the large SPU register file.

SIMD programming
� Exploit SIMD programing as much as possible. Doing so may increase the

performance of your application in several factors, especially in computation
bounded programs.

� Consider using the compiler auto-SIMDizing feature which can convert
ordinary scalar code into a SIMD one. Be aware of the compiler limitations
and on the code structures that are supported for auto-SIMDizing and try to
code according to those limitations and structures. See more in
“Auto-SIMDizing by compiler” on page 264.

� Another alternative is to explicitly doing SIMD programming. In order to do so
you can use intrinsics, SIMD libraries, and supported data type. See more in
“SIMD programming” on page 253.
 Chapter 4. Cell BE programming 315

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
� Not all the SIMD operations are supported by all data types. Review the
operation which are critical to your application and verify in which data types
they are supported.

� Choose an SIMD strategy appropriate for the application under development.
The two common ones:

– Array-of-structure (AOS) organization. From programming point of view
can have more-efficient code size and simpler DMA needs, but SIMDize is
more difficult. From computation point of view it may be less efficient, but it
depends on the specific application.

– Structure-of-arrays (SOA) organization. From programming point of view
this organization is usually easier to SIMDize, but the data must be
maintained in separate arrays or the SPU must shuffle AOS data into an
SOA form.

– If the data is in AOS, consider runtime converting the AOS data to SOA,
performing the calculations, and converting the results back

– For more details, see “Data organization - AOS versus SOA” on page 261.

� As general:

– Using the auto-SIMDizing requires less development time but in most
cases the performance are inferior compare to explicit SIMD programming
(unless the program can perfectly fit into the code structures that are
supported by the compiler for auto-SIMDizing).

– On the contrary, correct SIMD programming will provide the best
performance but requires not negligible development effort.

Scalars
� Because SPUs only support quadword loads and stores, scalar loads and

stores (less then quadword) are slow, with long latency.

� Aligning the scalar that are often used to quadword address to improve the
performance of operations that are done on those scalars.

� Cluster scalars into groups and load multiple scalars at a time using a
quadword memory access. Later use extract or insert intrinsics to explicitly
move between scalars and vector data types. This will eliminate redundant
loads and stores.

� For more details, see “Using scalars and converting between different vector
types” on page 271

Branches
� Eliminate nonpredicted branches using select bits intrinsics (spu_sel).
316 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
� For branches who are highly predicted, use the __builtin_expect directive to
explicitly direct branch prediction. Compiler optimization may add the
corresponding branch hint in this case.

� Inline functions that are often called by explicitly define them as inline in the
program, or use compiler optimization.

� Use feedback-directed optimization, for example using FDPRPro tool.

� For more details, see “Eliminating and predicting branches” on page 277

Multiplies
� Try to avoid integer multiplies on operands greater than 16 bits in size. The

SPU supports only a “16-bit x16-bit multiply”. A “32-bit multiply” requires five
instructions (three 16-bit multiplies and two adds).

� Keep array elements sized to a power-of-2 to avoid multiplies when indexing

� When multiply or dividing by a factor which is power-of-2, instead of using the
ordinary operators use the shift operation (corresponding intrinsics for vectors
and ‘<<’ and ‘>>’ operator for scalars).

� Cast operands to unsigned short prior to multiplying. Constants are of type int
and also require casting. Use a macro to explicitly perform 16-bit multiplies.
This can avoid inadvertent introduction of signed extends and masks due to
casting.

Dual-Issue
� Choose intrinsics carefully to maximize dual-issue rates or reduce latencies.

� Dual issue will occur if a pipe-0 instruction is even-addressed, a pipe-1
instruction is odd-addressed, and there are no dependencies (operands are
available).

� Manually insert nops to align instructions for dual-issue in case writing
non-optimizing assembly programs. In other cases the compilers
automatically insert nops when needed.

� Use software pipeline loops to improve dual-issue rates (described in Loop
Unrolling and Pipelining chapter in Cell Broadband Engine Programming
Handbook).

� Understand the fetch and issue rules to maximize dual-issue rate. Those
rules are described in chapter SPU Pipelines and Dual-Issue Rules in Cell
Broadband Engine Programming Handbook).

� Avoid over usage of the odd pipeline for load instructions which may cause
instruction starvation. This can happen for example for large matrix transpose
on SPE when there are lots of loads on odd pipeline and minimal usage of
even pipeline for computation. Similar case can happen for dot product of
 Chapter 4. Cell BE programming 317

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
large vectors.In order to solve it the programer may add more computation on
each data being loaded.

4.8.3 Data transfers and synchronization guidelines

This section contains a short summary of programming guidelines for performing
efficient data transfer and synchronization on Cell BE program.

� Choose the transfer mechanism that fits your application data access pattern:

– If pattern is predictable (e.g. sequentially access array or matrix) use
explicit DMA requests to transfer data (may be implemented with SDK
core libraries functions).

– If pattern is random or unpredictable (e.g. sparse matrix operation)
consider using the software manages cache, especially if the is high ratio
of data re-use (e.g. the same data or cache line is used in different
iterations of the algorithm).

� When the core libraries for explicitly intuiting DMA transfer:

– Follow the supported and recommended value for DMA parameters (see
“Supported and recommended values for DMA parameters” on page 115
and “Supported and recommended values for DMA-list parameters” on
page 116)

– DMA throughput is maximized if transfers are at least 128 bytes, and
transfers greater than or equal to 128 bytes should be cache-line aligned
(aligned to 128 bytes). This stands for the data transfer size, as well as to
the source and destination addresses.

– Overlap DMA data transfer with computation using double buffering or
multibuffering mechanism (see “Efficient data transfers by overlapping
DMA and computation” on page 157).

– Minimize small transfers. Transfers of less than one cache line consume
bus bandwidth equivalent to a full cache-line transfer.

� When explicitly using software managed cache try to exploit it unsafe
asynchronous mode as it can provide significant better results then the
unsafe synchronous mode. A double mechanism may also implemented
using this safe mode.

� Uniformly distribute memory bank accesses. The Cell BE memory subsystem
has 16 banks, interleaved on cache line boundaries. Addresses 2KB apart
access the same bank. System memory throughput is maximized if all
memory banks are uniformly accessed

� Use SPE-initiated DMA transfers rather than PPE-initiated DMA transfers.
There are more SPEs than the one PPE, and the PPE can enqueue only
318 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
eight DMA requests whereas each SPE can enqueue 16. In addition, the SPE
is also much more efficient at enqueuing DMA requests.

� Use of a kernel with large 64KB base pages to reduce page table and TLB
thrashing. If significantly large data set are accessed, consider using huge
pages instead (see “Improving page hit ratio using huge pages” on page 163).

� For applications that are memory bandwidth-limited consider using NUMA
(see “Improving memory access using NUMA” on page 168). Following are
two common cases when using NUMA is recommended in a system of more
then one Cell BE node (such as QS20 and QS21):

– Only one Cell BE node is used. Since the access latency is slightly lower
on node 0 (Cell BE 0) as compared to node 1 (Cell BE 1) it is advised to
use NUMA to allocate memory and processor on this node.

– More then one Cell BE node is used (e.g. use the two nodes of QS21) and
the data and tasks execution can be perfectly divided between nodes. In
that case NUMA can be used to allocate memory on both nodes and
exploit the aggregated memory bandwidth (processor on node 0 primarily
access memory on this node, and the same for node 1).

� DMA transfers from main storage have high bandwidth with moderate latency,
whereas transfers from the L2 have moderate bandwidth with low latency. For
that reason, considerate the effect of whether the updated data is stored in
the L2 versus on the main memory:

– When SPEs access large data set make sure that it is not on the L2. This
can be done for example by making sure the PPE does not access the
data set before the SPEs do so.

– When the SPEs and PPE need to share short messages (e.g. notification
or status) it is recommended to do so on the L2. Doing so can be done for
example by the PPE accessing the data before the SPEs which will ensure
that the system will create a copy of this data on the L2.

– You can also have control over the L2 behavior using the __dcbf function
to flush a data cache block and __dcbst function to store data cache block
in cache.

– However, most applications are better off not trying to over manage the
PPE cache hierarchy.

� Exploit the on-chip data transfer and communication mechanism by using LS
to LS DMA transfers when sharing data between SPEs and utilizing
mailboxes, signal notification registers for small data communications and
synchronization. The reason for that is that the EIB provides significantly
more bandwidth than system memory (in the order of 10 or more).

� Be aware the when the SPEs receive a DMA ‘put’ data transfer completion it
only means that the local MFC completed the transaction from its side but not
 Chapter 4. Cell BE programming 319

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
unnecessarily that the data is already stored in memory. So it may not be
accessible yet for other processors.

� Use explicit command to force data ordering when sharing data between
SPEs and PPE and between SPEs to themselves because Cell BE
architecture does not guarantees such ordering between the different storage
domain (while coherency is guaranteed on each of the memory domain
separately):

– Be aware that the DMA can be re-ordered compare to the order in which
the SPE program initiate the corresponding DMA commands. Explicit
DMA ordering command must be issued to force ordering.

– Use fenced or barriered DMA command to order DMA transfers within a
tag group.

– Use barrier command to order DMA transfers within the queue.

– Minimize the use of such ordering command as they have negative effect
on the performance.

– See more at “Shared storage synchronizing and data ordering” on
page 213 with some practical scenarios at “Practical examples using
ordering and synchronization mechanisms” on page 235

� Use affinity to improve the communication between SPEs (e.g. LS to LS DMA
data transfer, mailbox, signals). See “Creating SPEs affinity using gang” on
page 93 for more.

� Minimize the use of atomic, synchronizing, and data-ordering commands as
they may add significant overhead.

� Atomic operations operate on reservation blocks corresponding to 128-byte
cache lines. As a result, synchronization variables should be placed in their
own cache line so that other non-atomic loads and stores do not cause
inadvertent lost reservations.

4.8.4 Inter-processor communication

� Some recommended methods for inter-processor communication:

– PPE-to-SPE:

• PPE writes to SPE inbound mailbox

• SPE perform blocking read of its inbound mailbox

– SPE-to-PPE

• SPE writes to system memory (which will also invalid the
corresponding cache line in L2).

• PPE polls L2
320 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
– SPE-to-SPE

• SPE writes to a remote SPE’s inbound mailbox or signal notification
registers or LS.

• SPE polls it inbound mailbox or signal notification registers or LS.

� Avoid PPE waiting for SPEs to complete by polling the SPE outbox mailbox.
 Chapter 4. Cell BE programming 321

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
322 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Chapter 5. Programming Tools and
Debugging Techniques

In this chapter we introduce and explore the plethora of available development
tools for the Cell/B.E.™ architecture, with special attention to the potential tool
management issues that an heterogeneous architecture may arise.

For the exact same reasons, we dedicate a great portion of this chapter to the
debugger and available debugging techniques and/or aids, with focus on both
error detection and performance analysis.

The following topics are discussed:

� “Tools Taxonomy and basic Time line approach.” on page 324

� “Compiling and Building” on page 326

� “Debugger” on page 338

� “Simulator” on page 347

� “IBM Multi core Acceleration Integrated Development Environment” on
page 354

� “Performance Tools” on page 369

5

© Copyright IBM Corp. 2007. All rights reserved. 323

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
5.1 Tools Taxonomy and basic Time line approach.

The design of the Cell Broadband Engine (CBE) presents many challenges to
software development. With nine cores, multiple ISA's and non-coherent
memory, the CBE imposes challenges to compiling, debugging and performance
tuning.

For those reasons, understanding a few basic concepts on how tools interlock
with the Operating System, can become key to succeed.

5.1.1 Dual Toolchain

The Cell Broadband Engine (CBE) processor is a heterogeneous multiprocessor
not only because the SPEs and the PPE have different architectures but also
because they have disjoint address spaces and different models of memory and
resource protection. The PPE can run a virtual-memory operating system, so it
can manage and access all system resources and capabilities. In contrast, the
synergistic processor units (SPUs) are not intended to run an operating system,
and SPE programs can access the main-storage address space, called the
effective address (EA) space, only indirectly through the DMA controller in their
memory flow controller (MFC). The two processor architectures are different
enough to require two distinct tool chains for software development.

ABI
Application Binary Interface establishes the set of rules and conventions to
ensure portability of code and compatibility between code generators, linker and
runtime libraries. Typically, the ABI states about data types, register usage,
calling conventions and object formats.

The tool chains for both the PPE and SPE processor elements produce object
files in the ELF format. ELF is a flexible, portable container for re-locatable,
executable, and shared object (dynamically linkable) output files of assemblers
and linkers. The terms PPE-ELF and SPE-ELF are used to differentiate between
ELF for the two architectures. CESOF is an application of PPE-ELF that allows
PPE executable objects to contain SPE executables.
324 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-1 CESOF layout

To ease the development of combined PPE-SPE multiprocessor programs, the
CBE operating- system model uses CESOF and provides SPE
process-management primitives. Though programmers often keep in mind a
heterogeneous model of the CBE processor when dividing an application
program into concurrent threads, the CESOF format and, for example, the Linux
operating-system thread application programming interfaces (APIs) allow
programmers to focus on application algorithms instead of managing basic tasks
such as SPE process creation and global variable sharing between SPE and
PPE threads. It’s important to observe that, from an application developer’s point
of view, such mechanism also enables the access of PPE variables from SPE
code.

5.1.2 Typical Tools Flow

The typical tools usage pattern should be similar to the following:
 Chapter 5. Programming Tools and Debugging Techniques 325

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-2 Typical development cycle

Throughout the remainder of this chapter, besides exploring each tools’ relevant
characteristics, you will be presented with similar flows as above, relating the
development cycle and where each tool fits on it. The intent is to guide you where
and when to use each tool.

5.2 Compiling and Building

On the next few sections we explore the Cell BE SDK 3.0 capabilities in
compiling and optimizing executables and managing the build process.

Figure 5-3 Compile
326 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
5.2.1 Compilers: gcc

The GNU tool chain contains the GCC C-language compiler (GCC compiler) for
the PPU and the SPU. For the PPU it is a replacement for the native GCC
compiler on PowerPC (PPC) platforms and it is a cross-compiler on X86.

This release of the GNU tool chain includes a GCC compiler and utilities that
optimize code for the Cell BE processor. These are:

� The spu-gcc compiler for creating an SPU binary

� The ppu-embedspu (and ppu32-embedspu) tool which enables an SPU
binary to be linked with a PPU binary into a single executable program

� The ppu-gcc (and ppu32-gcc) compiler

Basics
The example below shows the steps required to create the executable program
simple which contains SPU code, simple_spu.c, and PPU code, simple.c.

1. Compile and link the SPE executable.

Example 5-1 Compiling SPE code

#/usr/bin/spu-gcc -g -o simple_spu simple_spu.c

2. Optionally run embedspu to wrap the SPU binary into a CESOF (CBE
Embedded SPE Object Format) linkable file. This contains additional PPE
symbol information.

Example 5-2 Embedding SPE code

#/usr/bin/ppu32-embedspu simple_spu simple_spu simple_spu-embed.o

3. Compile the PPE side and link it together with the embedded SPU binary.

Example 5-3 Linking

#/usr/bin/ppu32-gcc -g -o simple simple.c simple_spu-embed.o -lspe2

4. Or, compile the PPE side and link it directly with the SPU binary. The linker
will invoke embedspu, using the file name of the SPU binary as the name of
the program handle struct.

Example 5-4 Implicitly linking

/usr/bin/ppu32-gcc -g -o simple simple.c simple_spu -lspe2
 Chapter 5. Programming Tools and Debugging Techniques 327

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Fine Tuning: Command line options
Each of the GNU compilers offers Cell BE relevant options, whether to enable
architecture specific options, or to further optimize the generated binary code.

ppu-gcc:
-mcpu=cell Selects the instruction set architecture to generate code

for, Cell/B.E. or PowerXCell. Code compiled with
-march=celledp may make use of new instructions, and
will not run on Cell/B.E. -march=celledp also implies
-mtune=celledp.

-m32 Selects 32bit option. The ppu32-gcc defaults to 32bit.

-m64 Selects 64bit option. The ppu-gcc defaults to 64bit.

-maltivec Enables generation of code that uses Altivec vector
instructions (default in ppu-gcc)

spu-gcc:
-march=cell | celledp Selects between the Cell BE architecture and the

PowerXCell architecture, as well as its registers,
mneumonics and instruction scheduling parameters

-mtune=cell | celledp Tune the generated code for either Cell BE or PowerXCell
architecture. Mostly affects instruction scheduling
strategy.

-mfloat=accurate | fast

-mdouble=accurate | fast

Selects whether to use the fast fused-multiply operations
for floating point operations or, enable calls to library
routines that implement more precise operations).

-mstdmain Provides standard argv/argc calling convention for the
main SPU function

-fpic

-mwarn-reloc

-merror-reloc Generates positions independent code, warning if the
resulting code requires load-time relocations.

-msafe-dma

-munsafe-dma Controls whether loads and stores instructions are not
moved past the DMA operations, by the compiler
optimizations.

-ffixed-<reg>
328 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
-mfixed-range=<reg>-<reg>

Reserve specific registers for user application.

Language Options
The GNU gcc offers a few language extensions in order to provide access to
specific Cell BE architectural features, from a programming point of view.

Vectors The GNU compiler language support offers vectors data
types for both PPU and SPU, as all as arithmetic
operations with those. Please refer to 4.6.4, “SIMD
programming” on page 253 for more details.

Intrinsics The full set of AltiVec and SPU intrinsics are available.
Please refer to 4.6.2, “SPU instruction set and C/C++
language extensions (intrinsics)” on page 244 for more
details.

Optimizations
The GNU compiler offers a few mechanisms to optimize code generation
specifically to the underlying architecture.

For a complete reference of all optimization-related options, consult the GCC
manual, in particular:

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Optimize-Options.html

Basics
The -O family of options offer *predefined* generic set of optimizations at hand:

O0 (default): no optimization shortest compilation time, best results
when debugging

-O1 (-O): default optimization moderately increased compilation
time

-O2: heavy optimization significantly increased compilation
time no optimizations with potentially adverse effects

-O3: optimal execution time may increase code size, may make
debugging difficult

-Os: optimal code size may imply slower execution time than
-O3

By default, GCC generates completely unoptimized code. To switch on
optimization, use one of the -O, -O2, or -O3 flags above. Usually, -O3 is the best
 Chapter 5. Programming Tools and Debugging Techniques 329

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Optimize-Options.html

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
choice, however it activates some optimizations like automatic inlining that may
be undesirable under certain circumstances. In those cases fall back to -O2.
There may be cases (very few) where source code was heavily hand-optimized
for the SPU, in which even -O2 would generate worse code than just -O. While
these cases should be rare, when in doubt it would be good to simply first try that
option as well.

Flags for special optimization passes
GCC supports a number of specific optimization passes that are not
implemented by default at any optimization level (-O...). These can be selected
manually where appropriate. The following is a list of some of these options that
might be of particular interest on the SPE.

-funroll-loops "Unroll" loops by duplicating the loop body multiple times.
Can be helpful on the SPE as it reduces the number of
branches. On the other hand, the option will increase
code size.

-fmodulo-sched A special scheduling pass (Swing Modulo Scheduling,
also known as Software Pipelining) that attempts to
arrange instructions in loops so as to minimize pipeline
stalls. Usually beneficial on SPE.

-ffast-math Allows the compiler to optimize floating-point expressions
without preserving exact IEEE semantics. For example,
allows the vectorizer to change the order of computation
of complex expressions.

Compiler directives: Function Inlining
The function inlining is an optimization technique where performance is achieved
by replacing function calls by their explicit set of instructions (or body). The actual
formal parameters are replaced with arguments.

The benefits of such technique are basically avoiding the function call overhead
and keeping the function as a whole for combined optimization. The usual
disadvantages are code size increase and compilation time increase.

The compiler offers two choices of function inlining:

� By explicit declaration, with both the “inline” keyword in function declarations
and by defining C++ member functions inside class body

Tip: When in doubt, use the following set of compiler options to generate
optimized code for SPE:

 -O3 -funroll-loops -fmodulo-sched -ftree-vectorize -ffast-math
330 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Example 5-5 Inline keyword usage

...
static inline void swap(int a, int b) {

int tmp;
tmp = a;
a = b;
b = tmp;

}

� Activated by compiler option -finline-functions, where the compiler will apply
heuristics over the function call, considering size and complexity.

Compiler directives: Others
See 4.6.3, “Compiler directives” on page 251, for more on the usage of other
available compiler directives like volatile, aligned, builtin_expect, align_hint and
restrict.

Auto-Vectorization
This feature, enabled by the -ftree-vectorize switch, will automatically detect
situations in your source code where a loop over scalar instructions can be
transformed into a loop over vector instructions. Should be usually beneficial on
SPE; in cases where the compiler manages to transform a loop that is
performance-critical to the overall application, significant speedup can be
observed.

To help the vectorizer detect loops that are safe to transform, you should follow
some general rules when writing loops: Use countable loops (known number of
iterations), avoid function calls or "break"/"continue" in the loop; Avoid aliasing
problems by using the C99 "restrict" keyword where appropriate; Keep memory
access patterns simple; Operate on properly aligned memory addresses
whenever possible.

If your code has loops that you think should get vectorized, but aren't, you can
use the -ftree-vectorizer-verbose=[X] option to get some information why this is
so. X=1 is least amount of output, X=6 largest.

Please refer to 4.6.5, “Auto-SIMDizing by compiler” on page 264 for more on this
topic.

Profile-directed feedback optimization
Although considered an advanced optimization technique, the “Profile Directed
Feedback Optimization” allows the compiler to tune generated code according to
behavior measured during execution of trial runs.
 Chapter 5. Programming Tools and Debugging Techniques 331

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
To use this approach, you should perform the following general steps:

1. First the application needs to be built with the -fprofile-generate switch. This
will generate an instrumented executable.

2. Next, the generated instrumented application needs to be ran on a sample
input data set, resulting in a profile data file.

3. In a second compile step using the -fprofile-use switch (instead of
-fprofile-generate), the compiler will incorporate feedback from the profile run
to generate an optimized final executable.

Figure 5-4 Profile Directed Optimization process

5.2.2 Compilers: xlc

IBM XL C/C++ for Multicore Acceleration for Linux is an advanced,
high-performance cross-compiler that is tuned for the Cell Broadband Engine
Architecture (CBEA). The XL C/C++ compiler, which is hosted on an x86, IBM
PowerPC technology-based system, or a BladeCenter QS21, generates code for
the PPU or SPU. The compiler requires the GCC toolchain for the CBEA, which
provides tools for cross-assembling and cross-linking applications for both the
PPE and SPE.

gcc-ftest-coverage

profile notes
src.gcno

gcov

coverage
report

gcc-fprofile-generate

instrumented
executable

test run

profile data
src.gcda

Source Code
src.c

gcc-fprofile-use

optimized
executable
332 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
The full documentation for the IBM XL C/C++ compiler can be found at:

http://www.ibm.com/software/awdtools/xlcpp/library/

Optimization
The IBM XL C/C++ introduces several innovations, specially with regard to the
optimization options. Let’s go over the general concepts involved and a few
useful tips.

Overview
The XL compiler also offers the “predefined” optimizations options as follows:

Figure 5-5 XL Optimization levels

Levels 2 and 3
� -O2 level brings comprehensive low level optimizations while keeping partial

support for debugging

– Global assignment of user variables to registers

– Strength reduction and effective usage of addressing modes
 Chapter 5. Programming Tools and Debugging Techniques 333

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
– Elimination of unused or redundant code

– Movement of invariant code out of loops

– Scheduling of instructions for the target machine

– Some loop unrolling and pipelining

– Externals and parameter registers visible at procedure boundaries

– Snapshot™ pragma/directive creates additional program points for
storage visibility

– -qkeepparm option forces parameters to memory on entry so that they can
be visible in a stack trace

� -O3 level has extensive optimization but may introduce some precision
trade-offs

– Deeper inner loop unrolling

– Loop nest optimizations such as unroll-and-jam and interchange (-qhot
subset)

– Better loop scheduling

– Additional optimizations allowed by -qnostrict

– Widened optimization scope (typically whole procedure)

– No implicit memory usage limits (-qmaxmem=-1)

– Reordering of floating point computations

– Reordering or elimination of possible exceptions (e.g. divide by zero,
overflow)

In order to get the most of level 2 and 3 optimizations, there are some general
attention points the we need to focus on.

First of all ensure that your code is standard-compliant and also, if possible, test
and debug your code without optimization before using -O2.

With regard to the C code, ensure that pointer use follows type restrictions
(generic pointers should be char* or void*) and verify if all shared variables and
pointers to same are marked volatile.

Try to be uniform, compiling as much of your code as possible with -O2. If you
encounter problems with -O2, consider using -qalias=noansi or -qalias=nostd
rather than turning off optimization.

Next, use -O3 on as much code as possible. If you encounter problems or
performance degradations, consider using –qstrict, -qcompact, or -qnohot along
334 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
with -O3 where necessary. If you still have problems with -O3, switch to -O2 for a
subset of files/subroutines but consider using -qmaxmem=-1 and/or -qnostrict.

High order transformations (-qhot)
High order transformations are supported for all languages. The usage is
specified as:

-qhot[=[no]vector | arraypad[=n] | [no]simd]

The general optimization gain involve the following areas:

� High level transformation (e.g. interchange, fusion, unrolling) of loop nests to
optimize:

– memory locality (reduce cache/TLB misses)

– usage of hardware prefetch

– loop computation balance (typically ld/st vs. float)

� Optionally transforms loops to exploit MASS vector library (e.g. reciprocal,
sqrt, trig) - may result in slightly different rounding

� Optionally introduces array padding under user control - potentially unsafe if
not applied uniformly

� Optionally transforms loops to exploit VMX/SIMD unit

The -qhot option is designed to be used with other optimization levels, like -O2
and -O3, since it will have neutral effect if no optimization opportunities exist.

Some times you may encounter a long unacceptable compilation time or even
performance degradation, which could be solved by the combined use of
-qhot=novector, or -qstrict or -qcompact along with -qhot.

As with any other optimization option, try disabling it selectively, if needed.

Link-time Optimization (-qipa)
The XL compiler also offers a “link-time” optimization option:

-qipa[=level=n | inline= | fine tuning]

The link-time optimization can be enabled per compile unit (compile step) or on
the whole program (compile and link), where it expands the reach to the whole
final artifact (executable or library).

The following options can be explored by this feature:

� level=0: Program partitioning and simple inter procedural optimization

� level=1: Inlining and global data mapping
 Chapter 5. Programming Tools and Debugging Techniques 335

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
� level=2: Global alias analysis, specialization, inter procedural data flow

� inline=: Precise user control of inlining

� fine tuning: Specify library code behavior, tune program partitioning, read
commands from a file

Although -ipa works when building executables or shared libraries, make sure
you compile main and exported functions also with -qipa. Again, try to apply it as
much as possible.

Levels 4 and 5
Optimization levels 4 (-O4) and 5 (-O5) automatically applies all previous
optimization level techniques (-O3). Additionally, it includes its own “packages”
options:

� -qhot

� -qipa

� -qarch=auto

� -qtune=auto

� -qcache=auto

� in -O5 only,-qipa=level=2

Vectorization (VMX and SIMD)
The XL support two modes for exploitation for the vector features in the Cell BE
architecture:

� User driven, where the code is explicitly ported to make use of vector types
and intrinsics, as well as alignment constrains.

� Automatic Vectorization (SIMDization), where the compiler tries to
automatically identify parallel operations across the scalar code and
generates Vector versions of them. The compiler also performs all necessary
transformations to resolve any alignment constrains. Requires, at least,
optimization level -O3 -qhot.

Although the compiler carries a through analyzes to produce the best fit
auto-vectorized code, still the programmer may influence the overall process,
making it more efficient. The more relevant tips are:

� Loop structure

– Inline function calls inside innermost loops

– Automatically (-O5 more aggressive, use inline pragma/directives)

� Data alignment
336 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
– Align data on 16-byte boundaries

__attribute__((aligned(16))

– Describe pointer alignment, which can be placed anywhere in the code,
preferably close to the loop

_alignx(16, pointer)

– Use -O5 (enables inter-procedural alignment analysis)

� Pointer aliasing

– Refine pointer aliasing

#pragma disjoint(*p, *q) or restrict keyword

Obviously, if you already manually unrolled any of the loops, it becomes more
difficult to the simdization process. Even in that case, you can manually instruct
the compiler to skip those:

#pragma nosimd (right before the innermost loop)

5.2.3 Building

In /opt/cell/sdk/buildutils there are some top level Makefiles that control the build
environment for all of the examples. Most of the directories in the libraries and
examples contain a Makefile for that directory and everything below it. All of the
examples have their own Makefile but the common definitions are in the top level
Makefiles. The build environment Makefiles are documented in
/opt/cell/sdk/buildutils/README_build_env.txt.

Table 5-1 make.footer example configurable features

Environment Variable Description Example Value

CFLAGS_[gcc|xlc] Pass additional
compilation flags to the
compiler

-g -DLIBSYNC_TRACE

LDFLAGS_[gcc|xlc] Pass additional linker flags
to the linker

-Wl,-q -L/usr/lib/trace

CC_OPT_LEVEL Overrides specifically the
compiler optimization level

-O0

INCLUDE Additional include paths to
the compiler

-I/usr/spu/lib

IMPORTS Additional libraries to be
imported by the linker

-lnuma -lpthread
 Chapter 5. Programming Tools and Debugging Techniques 337

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Changing the Environment
Environment variables in the /opt/cell/sdk/buildutils/make.* files are used to
determine which compiler is used to build the examples. The
/opt/cell/sdk/buildutils/cellsdk_select_compiler script can be used to switch the
compiler. The syntax of this command is:

/opt/cell/sdk/buildutils/cellsdk_select_compiler [xlc | gcc]

where the xlc flag selects the XL C/C++ compiler and the gcc flag selects the
GCC compiler. The default, if unspecified, is to compile the examples with the
GCC compiler. After you have selected a particular compiler, that same compiler
is used for all future builds, unless it is specifically overwritten by shell
environment variables, SPU_COMPILER, PPU_COMPILER,
PPU32_COMPILER, or PPU64_COMPILER.

5.3 Debugger

The debugger is a tool to help finding and removing problems in your code.
Besides fixing problems, the debugger can also help you understand the
program, as it typically gives you memory and registers contexts, stack call
traces and step-by-step execution.

Figure 5-6 Debug

5.3.1 Debugger: gdb

GDB is the standard command-line debugger available as part of the GNU
development environment. GDB has been modified to allow debugging in a Cell
BE processor environment and this section describes how to debug Cell BE
338 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
software using the new and extended features of the GDBs which are supplied
with SDK 3.0. Debugging in a Cell BE processor environment is different from
debugging in a multi threaded environment, because threads can run either on
the PPE or on the SPE. There are three versions of GDB which can be installed
on a BladeCenter QS21:

� gdb which is installed with the Linux operating system for debugging
PowerPC applications. You should NOT use this debugger for Cell BE
applications.

� ppu-gdb for debugging PPE code or for debugging combined PPE and SPE
code. This is the combined debugger.

� spu-gdb for debugging SPE code only. This is the standalone debugger.

Setup and Considerations
The linker embeds all the symbolic and additional information required for the
SPE binary within the PPE binary so it is available for the debugger to access
when the program runs. You should use the -g option when compiling both SPE
and PPE code with GCC or XLC. W The -g option adds debugging information to
the binary which then enables GDB to lookup symbols and show the symbolic
information. When you use the top level Makefiles of the SDK, you can specify
the -g option on compilation commands by setting the CC_OPT_LVL makefile
variable to -g.

When you use the top level Makefiles of the SDK, you can specify the -g option
on compilation by setting the CC_OPT_LVL Makefile variable to -g.

Debugging PPE code
There are several ways to debug programs designed for the Cell BE processor. If
you have access to Cell BE hardware, you can debug directly using ppu-gdb .
You can also run the application under ppu-gdb inside the simulator.
Alternatively, you can debug remotely. Whichever method you choose, after you
have started the application under ppu-gdb, you can use the standard GDB
commands available to debug the application. The GDB manual is available at
the GNU Web site

http://www.gnu.org/software/gdb/gdb.html

and there are many other resources available on the World Wide Web.

Debugging SPE code
Standalone SPE programs or spulets are self-contained applications that run
entirely on the SPE. Use spu-gdb to launch and debug standalone SPE
programs in the same way as you use ppu-gdb on PPE programs.
 Chapter 5. Programming Tools and Debugging Techniques 339

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Debugging multi-threaded code
Typically a simple program contains only one thread. For example, a PPU "hello
world" program is run in a process with a single thread and the GDB attaches to
that single thread.

On many operating systems, a single program can have more than one thread.
The ppu-gdb program allows you to debug programs with one or more threads.
The debugger shows all threads while your program runs, but whenever the
debugger runs a debugging command, the user interface shows the single thread
involved. This thread is called the current thread. Debugging commands always
show program information from the point of view of the current thread. For more
information about GDB support for debugging multi threaded programs, see the
sections “Debugging programs with multiple threads” and “Stopping and starting
multi-thread programs” of the GDB User’s Manual, available at

http://www.gnu.org/software/gdb/gdb.html

The info threads command displays the set of threads that are active for the
program, and the thread command can be used to select the current thread for
debugging.

Debugging architecture
On the Cell BE processor, a thread can run on either the PPE or on an SPE at
any given point in time. All threads, both the main thread of execution and
secondary threads started using the pthread library, will start execution on the
PPE. Execution can switch from the PPE to an SPE when a thread executes the
spe_context_run function. See the libspe2 manual for details. Conversely, a
thread currently executing on an SPE may switch to use the PPE when executing
a library routine that is implemented via the PPE-assisted call mechanism See
the Cell BE Linux Reference Implementation ABI document for details. When you
choose a thread to debug, the debugger automatically detects the architecture
the thread is currently running on. If the thread is currently running on the PPE,
the debugger will use the PowerPC architecture. If the thread is currently running
on an SPE, the debugger will use the SPE architecture. A thread that is currently
executing code on an SPE may also be referred to as an SPE thread.

To see which architecture the debugger is using, use the following command:

show architecture

Using scheduler-locking
Scheduler-locking is a feature of GDB that simplifies multi thread debugging by
enabling you to control the behavior of multiple threads when you single-step
through a thread. By default scheduler-locking is off, and this is the
recommended setting.
340 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
In the default mode where scheduler-locking is off, single-stepping through one
particular thread does not stop other threads of the application from running, but
allows them to continue to execute. This applies to both threads executing on the
PPE and on the SPE. This may not always be what you expect or want when
debugging multi threaded applications, because those threads executing in the
background may affect global application state asynchronously in ways that can
make it difficult to reliably reproduce the problem you are debugging. If this is a
concern, you can turn scheduler-locking on. In that mode, all other threads
remain stopped while you are debugging one particular thread. A third option is
to set scheduler-locking to step, which stops other threads while you are
single-stepping the current thread, but lets them execute while the current thread
is freely running.

However, if scheduler-locking is turned on, there is the potential for deadlocking
where one or more threads cannot continue to run. Consider, for example, an
application consisting of multiple SPE threads that communicate with each other
through a mailbox. If you single-step one thread across an instruction that reads
from the mailbox, and that mailbox happens to be empty at the moment, this
instruction (and thus the debugging session) will block until another thread writes
a message to the mailbox. However, if scheduler-locking is on, that other thread
will remain stopped by the debugger because you are single-stepping. In this
situation none of the threads can continue, and the whole program stalls
indefinitely. This situation cannot occur when scheduler-locking is off, because in
that case all other threads continue to run while the first thread is single-stepped.
You should ensure that you enable scheduler-locking only for applications where
such deadlocks cannot occur.

There are situations where you can safely set scheduler-locking on, but you
should do so only when you are sure there are no deadlocks.

The syntax of the command is:

set scheduler-locking <mode>

where mode has one of the following values:

� off

� on

� step

You can check the scheduler-locking mode with the following command: show
scheduler-locking
 Chapter 5. Programming Tools and Debugging Techniques 341

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Threads and Per-Frame architecture
The most significant design change introduced by the combined debugger is the
switch from a per-thread architecture selection to a per-frame selection. The new
combined debugger for SDK 3.0 eliminates GDB's notion of a "current
architecture", that is, remove the global notion of a current architecture per
thread. In practice, the architecture will depend on the current frame. The frame
is another fundamental GDB notion; it refers to a particular level in the function
call sequence (stack back-trace) on a specific thread.

The architecture selection per-frame notion allow the Cell/B.E. back-ends to
represent flow of control that switches from PPE code to SPE code and back.
The full back-trace can thus represent e.g. the following program state:

1. (current frame) PPE libc printf routine.

2. PPE libspe code implementing a PPE-assisted call

3. SPE newlib code that issued the PPE-assisted call

4. SPE user application code that called printf

5. SPE main

6. PPE libspe code that started SPE execution

7. PPE user application code that called spe_context_run

8. PPE main

Therefore, any thread of a combined Cell BE application is executing either on
the PPE or an SPE at the time the debugger interrupted execution of the process
currently being debugged. This determines the main architecture GDB will use
when examining the thread. However, during the execution history of that thread,
execution may have switched between architectures one or multiple times. When
looking at the thread’s stack backtrace (using the backtrace command), the
debugger will reflect those switches. It will show stack frames belonging to both
the PPE and SPE architectures.

When you choose a particular stack frame to examine using the frame, up, or
down commands, the debugger switches its notion of the current architecture as
appropriate for the selected frame. For example, if you use the info registers
command to look at the selected frame’s register contents, the debugger shows
the SPE register set if the selected frame belongs to an SPE context, and the
PPE register set if the selected frame belongs to PPE code.

Breakpoints
Generally speaking, you can use the same procedures to debug code for Cell BE
as you would for PPC code. However, some existing features of GDB and one
342 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
new command can help you to debug in the Cell BE processor multi threaded
environment. These features are described below.

Setting pending breakpoints
Breakpoints stop programs running when a certain location is reached. You set
breakpoints with the break command, followed by the line number, function
name, or exact address in the program. You can use breakpoints for both PPE
and SPE portions of the code. There are some instances, however, where GDB
must defer insertion of a breakpoint because the code containing the breakpoint
location has not yet been loaded into memory. This occurs when you wish to set
the breakpoint for code that is dynamically loaded later in the program. If ppu-gdb
cannot find the location of the breakpoint it sets the breakpoint to pending. When
the code is loaded, the breakpoint is inserted and the pending breakpoint
deleted. You can use the set breakpoint command to control the behavior of GDB
when it determines that the code for a breakpoint location is not loaded into
memory.

The syntax for this command is:

set breakpoint pending <on off auto>

where:

� on specifies that GDB should set a pending breakpoint if the code for the
breakpoint location is not loaded.

� off specifies that GDB should not create pending breakpoints, and break
commands for a breakpoint location that is not loaded result in an error.

� auto specifies that GDB should prompt the user to determine if a pending
breakpoint should be set if the code for the breakpoint location is not loaded.
This is the default behavior

Multiple Defined Symbols
When debugging a combined Cell BE application consisting of a PPE program
and more or more SPE programs, it may happen that multiple definitions of a
global function or variable with the same name exist. For example, both the PPE
and SPE programs will define a global main function. If you run the same SPE
executable simultaneously within multiple SPE contexts, all its global symbols will
show multiple instances of definition. This might cause problems when
attempting to refer to a specific definition from the GDB command line, for
example when setting a break point. It is not possible to choose the desired
instance of the function or variable definition in all cases.

To catch the most common usage cases, GDB uses the following rules when
looking up a global symbol. If the command is issued while currently debugging
PPE code, the debugger first attempts to look up a definition in the PPE
 Chapter 5. Programming Tools and Debugging Techniques 343

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
executable. If none is found, the debugger searches all currently loaded SPE
executables and uses the first definition of a symbol with the given name it finds.
However, when referring to a global symbol from the command line while
currently debugging an SPE context, the debugger first attempts to look up a
definition in that SPE context. If none is found there, the debugger continues to
search the PPE executable and all other currently loaded SPE executables and
uses the first matching definition.

Architecture specific commands
The Cell/B.E. SDK 3.0, besides promoting changes to some of the common gdb
debugger commands behavior, also introduces a set of new commands to better
accommodate both PPE and SPE code needs.

Stop on SPU load
The new set spu stop-on-load stops each thread before it starts running on the
SPE. While set spu stop-on-load is in effect, the debugger automatically sets a
temporary breakpoint on the “main” function of each new SPE thread
immediately after it is loaded. You can use the set spu stop-on-load command to
do this instead of simply issuing a break main command, because the latter is
always interpreted to set a breakpoint on the “main” function of the PPE
executable.

The syntax of the command is:

set spu stop-on-load <mode>

where mode is on or off.

To check the status of spu stop-on-load, use the command:

show spu stop-on-load

Info SPU commands
In addition to the set spu stop-on-load command, the ppu-gdb and spu-gdb
programs offer an extended set of the standard GDB info commands. These are:

� info spu event

� info spu signal

� info spu mailbox

Note: The set spu stop-on-load command has no effect in the SPU
standalone debugger spu-gdb. To let an SPU standalone program proceed to
its “main” function, you can use the start command in spu-gdb.
344 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
� info spu dma

� info spu proxydma

If you are working in GDB, you can access help for these new commands. To
access help, type help info spu followed by the info spu sub command name.
This displays full documentation. Command name abbreviations are allowed if
unambiguous.

info spu event
Displays SPE event facility status. The output is similar to:

Example 5-6

(gdb) info spu event
Event Status 0x00000000
Event Mask 0x00000000

info spu signal
Displays SPE signal notification facility status. The output is similar to:

Example 5-7

(gdb) info spu signal
Signal 1 not pending (Type Or)
Signal 2 control word 0x30000001 (Type Or)

info spu mailbox
Displays SPE mailbox facility status. Only pending entries are shown. Entries are
displayed in the order of processing, that is, the first data element in the list is the
element that is returned on the next read from the mailbox. The output is similar
to:

Example 5-8

(gdb) info spu mailbox
SPU Outbound Mailbox
0x00000000
SPU Outbound Interrupt Mailbox
0x00000000
SPU Inbound Mailbox
0x00000000
0x00000000
0x00000000
0x00000000
 Chapter 5. Programming Tools and Debugging Techniques 345

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
info spu dma
Displays MFC DMA status. For each pending DMA command, the opcode, tag,
and class IDs are shown, followed by the current effective address, local store
address, and transfer size (updated as the command is processed). For
commands using a DMA list, the local store address and size of the list is shown.
The “E” column indicates commands flagged as erroneous by the MFC. The
output is similar to:

Figure 5-7 info spu dma output

info spu proxydma
Displays MFC Proxy-DMA status. The output is similar to:
346 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-8 info spu proxydma output

5.4 Simulator

Figure 5-9 Simulate

The IBM Full-System Simulator is a software application that emulates the
behavior of a full system that contains a Cell BE processor. You can start a Linux
operating system on the simulator and run applications on the simulated
operating system. The simulator also supports the loading and running of
statically-linked executable programs and standalone tests without an underlying
operating system. The simulator infrastructure is designed for modeling
processor and system-level architecture at levels of abstraction, which vary from
 Chapter 5. Programming Tools and Debugging Techniques 347

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
functional to performance simulation models with a number of hybrid fidelity
points in between:

� Functional-only simulation: Models the program-visible effects of instructions
without modeling the time it takes to run these instructions. Functional-only
simulation assumes that each instruction can be run in a constant number of
cycles. Memory accesses are synchronous and are also performed in a
constant number of cycles. This simulation model is useful for software
development and debugging when a precise measure of execution time is not
significant. Functional simulation proceeds much more rapidly than
performance simulation, and so is also useful for fast-forwarding to a specific
point of interest.

� Performance simulation: For system and application performance analysis,
the simulator provides performance simulation (also referred to as timing
simulation). A performance simulation model represents internal policies and
mechanisms for system components, such as arbiters, queues, and pipelines.
Operation latencies are modeled dynamically to account for both processing
time and resource constraints. Performance simulation models have been
correlated against hardware or other references to acceptable levels of
tolerance. The simulator for the Cell BE processor provides a cycle-accurate
SPU core model that can be used for performance analysis of
computational-intense applications. The simulator for SDK 3.0 provides
additional support for performance simulation. This is described in the IBM
Full-System Simulator Users Guide.

The simulator can also be configured to fast-forward the simulation, using a
functional model, to a specific point of interest in the application and to switch to
a timing-accurate mode to conduct performance studies. This means that various
types of operational details can be gathered to help you understand real-world
hardware and software systems.

See the /opt/ibm/systemsim-cell/doc subdirectory for complete documentation
including the simulator user’s guide.

5.4.1 Setting up and Bringing up

To verify that the simulator is operating correctly and then run it, issue the
following commands:

export PATH=/opt/ibm/systemsim-cell/bin:$PATH

systemsim -g

The systemsim script found in the simulators bin directory launches the
simulator.
348 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
The -g parameter starts the graphical user interface.

You can use the simulator's GUI to get a better understanding of the Cell BE
architecture. For example, the simulator shows two sets of PPE state. This is
because the PPE processor core is dual-threaded and each thread has its own
registers and context. You can also look at the state of the SPEs, including the
state of their Memory Flow Controller (MFC).

Access to the Simulator Image
By default the simulator does not write changes back to the simulator system root
(sysroot) image. This means that the simulator always begins in the same initial
state of the sysroot image. When necessary, you can modify the simulator
configuration so that any file changes made by the simulated system to the
sysroot image are stored in the sysroot disk file so that they are available to
subsequent simulator sessions.

To specify that you want update the sysroot image file with any changes made in
the simulator session, change the newcow parameter on the mysim bogus disk
init command in .systemsim.tcl to rw (specifying read/write access) and remove
the last two parameters. The following is the changed line from .systemsim.tcl:

� mysim bogus disk init 0 $sysrootfile rw

When running the simulator with read/write access to the sysroot image file, you
must ensure that the file system in the sysroot image file is not corrupted by
incomplete writes or a premature shutdown of the Linux operating system
running in the simulator. In particular, you must be sure that Linux writes any
cached data out to the file system before exiting the simulator. To do this, issue

� sync ; sync

in the Linux console window just before you exit the simulator.

Selecting Architecture
Many of the tools provided in SDK 3.0 support multiple implementations of the
CBEA. These include the Cell BE processor and a future processor. This future
processor is a CBEA-compliant processor with a fully pipelined, enhanced
double precision SPU.

The processor supports five optional instructions to the SPU Instruction Set
Architecture. These include:

� DFCEQ

� DFCGT

� DFCMEQ
 Chapter 5. Programming Tools and Debugging Techniques 349

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
� DFCMEQ

� DFCMGT

Detailed documentation for these instructions is provided in version 1.2 (or later)
of the Synergistic Processor Unit Instruction Set Architecture specification. The
future processor also supports improved issue and latency for all double
precision instructions.

The simulator also supports simulation of the future processor. The simulator
installation provides a tcl run script to configure it for such simulation. For
example, the following sequence of commands start the simulator configured for
the future processor with a graphical user interface.

� export PATH=$PATH:/opt/ibm/systemsim-cell/bin

� systemsim -g -f config_edp_smp.tcl

5.4.2 Operating the GUI

The simulators GUI offers a visual display of the state of the simulated system,
including the PPE and the eight SPEs.

You can view the values of the registers, memory, and channels, as well as
viewing performance statistics. The GUI also offers an alternate method of
interacting with the simulator.

The main GUI window has two basic areas:

� The vertical panel on the left.

� The rows of buttons on the right.

The vertical panel represents the simulated system and its components. The
rows of buttons are used to control the simulator.

To start the GUI from the Linux run directory, enter:

� PATH=/opt/ibm/systemsim-cell/bin:$PATH; systemsim -g

The simulator will then configure the simulator as a Cell Broadband Engine and
display the main GUI window, labeled with the name of the application program.
When the GUI window first appears, click the Go button to boot the Linux
operating system.

The simulation panel
When the main GUI window first appears, the vertical panel contains a single
folder labeled mysim.
350 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
To see the contents of mysim, click on the plus sign (+) in front of the folder icon.
When the folder is expanded, you can see its contents. These include

� a PPE (labelled PPE0:0:0 and PPE0:0:1,

� the two threads of the PPE),

� eight SPEs (SPE0... SPE7).

The folders representing the processors can be further expanded to show the
viewable objects and the options and actions available.

PPE Components
There are five PPE components visible in the expanded PPE folder. The five
visible PPE components are:

� PCTrack

� PCCCore

� GPRegs

� FPRegs

� PCAddressing

The general-purpose registers (GPRs) and the floating-point registers (FPRs)
can be viewed separately by double-clicking on the GPRegs and the FPRegs
folders respectively.

As data changes in the simulated registers, the data in the windows is updated
and registers that have changed state are highlighted.

The PPE Core window (PPCCore) shows the contents of all the registers of the
PPE, including the Vector/SIMD Multimedia Extension registers.

SPE components
The SPE folders (SPE0 ... SPE7) each have ten sub-items. Five of the sub-items
represent windows that show data in the registers, channels, and memory:

� SPUTrack

� SPUCore

� SPEChannel

� LS_Stats

� SPUMemory

Two of the sub-items, and, represent windows that show state information on the
MFC:
 Chapter 5. Programming Tools and Debugging Techniques 351

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
� MFC

� MFC_XLate

The last three sub-items represent actions to perform on the SPE:

� SPUStats

� Model

� Load-Exec

The last three items in an SPE folder represent actions to perform, with respect
to the associated SPE. The first of these is SPUStats. When the system is
stopped and you double-click on this item, the simulator displays program
performance statistics in its own pop-up window. These statistics are only
collected when the Model is set to pipeline mode.

The next item in the SPE folder is labelled either:

� Model: instruction,

� Model: pipeline, or

� Model: fast.

The label indicates whether the simulation is in:

� instruction mode for checking and debugging the functionality of a program,

� pipeline mode for collecting performance statistics on the program, or

� fast mode for fast functional simulation only.

The model can be toggled by double-clicking the item. The Perf Models button on
the GUI can also be used to display a menu for setting the simulator model
modes of all of the SPEs simultaneously.

The last item in the SPE folder, Load-Exec, is used for loading an executable
onto an SPE. When you double-click the item, a file-browsing window is
displayed, allowing you to find and select the executable file to load.

Simulation control buttons
On the right side of the GUI screen are five rows of buttons. These are used to
manipulate the simulation process. The five rows of buttons do the following:

� Advance Cycle: Advances the simulation by a set number of cycles. The
default value is 1 cycle, but it can be changed by entering an integer value in
the textbox above the buttons, or by moving the slider next to the textbox. The
drop-down menu at the top of the GUI allows the user to select the time
domain for cycle stepping. The time units to use for cycles are expressed in
352 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
terms of various system components. The simulation must be stopped for this
button to work; if the simulation is not stopped, the button is inactive.

� Go: Starts or continues the simulation. In the SDK\u2019s simulator, the first
time the Go button is clicked it initiates the Linux boot process. (In general, the
action of the Go button is determined by the startup tcl file located in the
directory from which the simulator is started.)

� Stop: Pauses the simulation.

� Service GDB: Allows the external gdb debugger to attach to the running
program. This button is also inactive while the simulation is running.

� Triggers/Breakpoints: Displays a window showing the current triggers and
breakpoints.

� Update GUI: Refreshes all of the GUI screens. By default, the GUI screens
are updated automatically every four seconds. Click this button to force an
update.

� Debug Controls: Displays a window of the available debug controls and allows
you to select which ones should be active. Once enabled, corresponding
information messages will be displayed.

� Options: Displays a window allowing you to select fonts for the GUI display.
On a separate tab, you can enter the gdb debugger port.

� Emitters: Displays a window with the defined emitters, with separate tabs for
writers and readers.

� Fast Mode: Toggles fast mode on and off. Fast mode accelerates the
execution of the PPE at the expense of disabling certain system-analysis
features. It is useful for quickly advancing the simulation to a point of interest.
When fast mode is on, the button appears depressed; otherwise it appears
normal. Fast mode can also be enabled with the mysim fast on command and
disabled with the mysim fast off command.

� Perf Models: Displays a window in which various performance models can be
selected for the various system simulator components. Provides a convenient
means to set each SPU\u2019s simulation mode to either cycle accurate
pipeline mode or instruction mode or fast functional-only mode. The same
capabilities are available using the Model:instruction, Model:pipeline,
Model:fast toggle menu sub-item under each SPE in the tree menu at the left
of the main control panel.

� SPE Visualization: Plots histograms of SPU and DMA event counts. The
counts are sampled at user defined intervals, and are continuously displayed.
Two modes of display are provided: a \u201cscroll\u201d view, which tracks
only the most recent time segment, and a \u201ccompress\u201d view, which
accumulates samples to provide an overview of the event counts during the
 Chapter 5. Programming Tools and Debugging Techniques 353

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
time elapsed. Users can view collected data in either detail or summary
panels.

– The detailed, single-SPE panel tracks SPU pipeline phenomena (such as
stalls, instructions executed by type, and issue events), and DMA
transaction counts by type (gets, puts, atomics, and so forth).

– The summary panel tracks all eight SPEs for the CBE, with each plot
showing a subset of the detailed event count data available.

� Process-Tree and Process-Tree-Stats: This feature requires OS kernel hooks
that allow the simulator to display process information. This feature is
currently not provided in the SDK kernel.

� SPU Modes: Provides a convenient means to set each SPU\u2019s
simulation mode to either cycle accurate pipeline mode or fast functional-only
mode. The same capabilities are available using the Model:instruction or
Model:pipeline toggle menu sub-item under each SPE in the tree menu at the
left of the main control panel.

� Event Log: Enables a set of predefined triggers to start collecting the log
information. The window provides a set of buttons that can be used to set the
marker cycle to a point in the process.

� Exit: Exits the simulator and closes the GUI window.

5.5 IBM Multi core Acceleration Integrated Development
Environment
354 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-10 IDE supports all parts of the process

The IBM SDK for Multi core Acceleration Integrated Development Environment
(Cell/B.E. IDE), which is built upon the Eclipse and C Development Tools (CDT)
platform, integrates the Cell BE GNU tool chain, compilers, IBM Full-System
Simulator for the Cell BE, and other development components in order to provide
a comprehensive, user-friendly development platform that simplifies Cell BE
development. Key features include the following:

� a C/C++ editor that supports syntax highlighting; a customizable template;
and an outline window view for procedures, variables, declarations, and
functions that appear in source code

� a rich visual interface for PPE (Power Processing Element) and SPE
(Synergistic Processing Element) GDB (GNU debugger)

� seamless integration of simulator into Eclipse

� automatic builder, performance tools, and several other enhancements

The Cell/B.E. IDE offers developers a complete solution for developing an
application. The IDE is capable of managing all artifacts involved in the
development, as well as deploying and testing them on the target environment.
Typically, the developer goes from projects creation, including multiple build
configurations, target environment setup and application launching/debugging.

5.5.1 Step 1: Projects

The underlying Eclipse Framework architecture offers the concept of projects as
units of agglomeration for your application artifacts. A project is responsible not
 Chapter 5. Programming Tools and Debugging Techniques 355

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
only for holding a file system structure, but also for binding your application code
with build, launch, debug configurations and even non-source code artifacts.

Defining Projects
The Cell/B.E. IDE leverages the Eclipse CDT framework, which is the tooling
support for developing C/C++ applications. As well as the CDT framework,
there’s a choice whether yourself manages the build structure, or Eclipse
automatically generates for you. This is, respectively, the difference between
Standard Make and Managed Make options for project creation.

Table 5-2 Project Management Options

If you chose File → New → Project, the New Project Wizard should pop-up,
offering the choices of Standard Make or Managed Make projects under both C
and C++ project groups.

Project Management Style Description

Standard Make C/C++ Requires you to provide a Makefile.

Managed Make C/C++ Eclipse will auto-create and manage the
makefiles for you.
356 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-11 Available project creation wizards

Creating Projects
Once you defined which style of projects better suits your needs, give your
project a name. The next step is to choose among the available project types for
Cell/B.E. development:
 Chapter 5. Programming Tools and Debugging Techniques 357

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-12 Project Types

Table 5-3 Project Type Options

Project Type Description

Cell PPU Executable Creates a PPU executable binary. This
project has the capability of referencing
any other SPU project binary, in order to
produce a CBE combined binary.

Cell PPU Shared Library Creates a PPU shared library binary. This
project has the capability of referencing
any other SPU project binary, in order to
produce a CBE combined library.

Cell PPU Static Library Creates a PPU static library binary. This
project has the capability of referencing
any other SPU project binary, in order to
produce a CBE combined library.

Cell SPU Executable Creates a SPU binary. The resulting
binary can be executed as an spulet or
embedded in a PPU binary.
358 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Project Configuration
The newly created project should appear in the C/C++ view, on the left side of the
screen. The next remaining task is to configure the project’s build options.

Select the desired project and right click on the “Properties” option. As soon as
the properties dialog should appear on the screen locate and select the “C/C++
Build” on the left portion of the dialog.

Cell SPU Static Library Creates a SPU static library. The resulting
library can be linked together with other
spu libraries and also be embedded in an
PPU binary.

Note: If you choose the Standard Make style of project management, that
implies you are responsible for maintaining and updating your makefiles.
Eclipse will only offer a thin run wrapper, where you are able to define which
are the relevant targets within your makefile (so when you hit build in Eclipse, it
will invoke the desired makefile target, instead of the default ‘all’).

Project Type Description
 Chapter 5. Programming Tools and Debugging Techniques 359

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-13 C/C++ Build options

The “C/C++ Build Options” carries all needed build and compile configuration
entry points, so we are able to customize the whole process. Each tool that is
part of the toolchain has its configuration entry point in the “Tools Settings” tab.
As soon as you finish altering/adding any of the values, you need to hit “Apply”
and “OK” buttons, which will trigger IDE’s automatic makefile generation process,
so you project’s build is updated immediately.

5.5.2 Step 2: Choosing Target Environments with Remote Tools

Now that the projects are created and properly configured, we can test our
program, but first, a Cell environment must be created and started. The Cell IDE
integrates IBM's full-system simulator for the Cell BE processor and Cell BE
Blades into Eclipse, so that your only a few clicks away from testing your
application on a Cell environment.

Simulator Integration
In the Cell Environments view at the bottom, right click on Local Cell Simulator
and select Create.
360 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
This is the Local Cell Simulator properties window, which you can use to
configure the simulator to meet any specific needs that you might have. You can
modify an existing Cell environment's configuration at any time (as long as its not
running) by right clicking on the environment and selecting Edit. Enter a name for
this simulator (e.g. My Cell Simulator), then click on Finish.

Figure 5-14 Simulator Environment Dialog

Cell BE Blade Integration
In the Cell Environments view at the bottom, right click on Cell Box and select
Create.

This is the Cell Box properties window, which you can use to configure remote
access to your Cell BE Blade to meet any specific needs that you might have.
You can modify an existing Cell environment's configuration at any time (as long
as its not running) by right clicking on the environment and selecting Edit. Enter a
name for this configuration (e.g. My Cell Blade), then click on Finish.
 Chapter 5. Programming Tools and Debugging Techniques 361

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-15 Cell Blade Environment Dialog

Starting the Environments
We need to have, at least, one of the environment configurations started in order
to proceed to the launch configuration options. For that, highlight the desired
environment configuration and locate the green “arrow shaped” button at the left
corner of environments view. When you press this button, you are activating the
connection between the chosen environment and IDE.

5.5.3 Step 3: Debugger

Next, a C/C++ Cell Application launch configuration needs to be created and
configured for the application debugging.

Creating the launch configuration
Locate the Run menu. Choose Run → Debug... Next, in the left pane, locate and
right click on C/C++ Cell Target Application, and select New
362 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-16 Launch configurations dialog

Configuring the Launch
With the launch configuration dialog opened, locate the Project field (in the Main
tab) and specify which project you are going to debug. You must also specify
which application, within the project

Now, navigate to the Target tab.
 Chapter 5. Programming Tools and Debugging Techniques 363

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-17 Target tab

The target tab allows you to select which remote environment you are about to
debug your application with. It is possible to select any of the previously
configured environments, as long as they are active (i.e. started).

The next tab, launch, allows you to specify any command line arguments as well
as shell commands that needs to be executed before and/or after your
application.
364 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-18 Launch tab

Moving on the Synchronize tab, you can specify resources (such as input/output
files) that need to be synchronized with the Cell environment's file system before
and/or after the application executes. Use New upload rule to specify resource(s)
to copy to the Cell environment before the application executes, and use New
download rule to copy resource(s) back to your local file system after execution.
Don't forget to check the Upload rules enabled and/or Download rules enabled
boxes after adding any upload/download rules.
 Chapter 5. Programming Tools and Debugging Techniques 365

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-19 Synchronize tab

The remaining step is to actually configure the debugger parameters. Go to the
Debugger tab.

Figure 5-20 Debugger Main tab
366 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Locate the Debugger field, where you can choose from Cell PPU gdbserver, Cell
SPU gdbserver, or Cell BE gdbserver. To debug only PPU or SPU programs,
select Cell PPU gdbserver or Cell SPU gdbserver, respectively. The Cell BE
gdbserver option is the combined debugger, which allows for debugging of PPU
and SPU source code in one debug session.

Since this is a remote debugging session, it’s also important to select the correct
remote side debugger (gdbserver) type, according to your application. Go to the
Connection tab, inside the Debugger tab.

Figure 5-21 Debugger Connection tab

If your application is 32-bit, choose the Cell BE 32bit gdbserver option at the
“gdbserver Debugger” combo. Otherwise, if you have a 64bit application, select
the “Cell BE 64bit gdbserver”.

If there aren’t any pending configuration problems, all is left is to hit the “Apply”
button and the “Debug” button. The IDE should switch to the Debug perspective.

Debug Perspective
Once in Eclipse’s “Debug Perspective”, you are able to carry on any of the
regular debugging features available there, like setting breakpoints, inspecting
variables, registers and memory.
 Chapter 5. Programming Tools and Debugging Techniques 367

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-22 Debug perspective

Additionally, the SPU architecture info debug commands (see Info SPU
commands) are also available thorough their respective views. Go to Window →
Show View to locate them:
368 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-23 “Info SPU” available views.

5.6 Performance Tools

As we are about to introduce the set of performance tools in the Cell BE SDK 3.0,
it is crucial to understand how each one relates to the other, according to a time
flow perspective.

Tip: As explained in “Threads and Per-Frame architecture” section above, the
info spu commands will only work when actually debugging in the SPE
architecture. Use the stack frame view of Eclipse, at the upper left corner
(under the name “Debug”) to precisely determine in which architecture your
code is executing.
 Chapter 5. Programming Tools and Debugging Techniques 369

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-24 Optimize

5.6.1 Typical Performance Tuning Cycle

The major tasks to achieve a complete development cycle can be organized as
following:

� Develop/Port the application for Cell/B.E.

– Programming best practices

– Knowledge from the architecture

� Compile, Link and Debug

– Compiler (gcc or xlc)

– Linker (ld)

– Debugger (gdb)

� Performance tuning

– oprofile, PDT, PDTR, VPA, FDPR-Pro, CPC

The following graph tries to summarizes the Cell BE tools interlock:
370 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-25 Typical Tools flow

5.6.2 CPC

The cell-perf-counter (cpc) tool purposes are for setting up and using the
hardware performance counters in the Cell BE processor. These counters allow
you to see how many times certain hardware events are occurring, which is
useful if you are analyzing the performance of software running on a Cell BE
system.

Hardware events are available from all of the logical units within the Cell BE
processor including:

� the PPE,

� the SPEs,

� the interface bus,

� memory

� and I/O controllers.

The Cell BE performance monitoring unit (PMU) provides four 32-bit counters,
which can also be configured as pairs of 16-bit counters, for counting these
 Chapter 5. Programming Tools and Debugging Techniques 371

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
events. The cpc also makes use of the hardware sampling capabilities of the Cell
BE PMU. This feature allows the hardware to collect very precise counter data at
programmable time intervals. The accumulated data can be used to monitor the
changes in performance of the Cell BE system over longer periods of time.

Operation
The tool offers two modes of execution:

Workload mode PMU counters active only during complete execution of a
workload, providing a very accurate view of the
performance of a single process.

System-wide mode PMU counters monitor all processes running on specified
CPUs for specified duration

The results are grouped according to seven logical blocks - PPU, PPSS, SPU,
MFC, EIB, MIC, and BEI, where each block has signals (hardware events)
organized in to groups. The PMU can monitor any number of signals within one
group, with a maximum of two signal groups at a time.

Hardware Sampling
The Cell BE PMU provides a mechanism for the hardware to periodically read
the counters and store the results in a hardware buffer. This allows the cpc tool to
collect a large number of counter samples while greatly reducing the number of
calls that cpc has to make into the kernel.

The following steps are performed in the Hardware Sampling mode:

� Specify initial counter values and sampling time interval

� PMU record and reset counter values after each interval

� Samples are available in hardware trace-buffer

As the default behavior, hardware buffers will contain the total number of each
monitored signal’s hit for the specified interval, which is called count mode.
Besides simply sampling the counters and accumulating to the buffers, the Cell
BE PMU also offers other sampling modes:

Occurrence mode Monitors one or two entire groups of signals, allowing the
specifying of any signal within the desired group.
Indicates whether each event occurred at least once
during each sampling interval.

Threshold mode Each event is assigned a “threshold” value. Indicates
whether each event occurred at least the specified
number of times during each sampling interval.
372 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
PPU Bookmarks
The CPC tool offers a feature that allows finer grained tracing method for signals’
sampling. The PPU Bookmark mode is provided as an option to start and/or stop
the counters when a value is written to what is called the “bookmark” register.
The triggering write can be issued from both command line or within your
application, achieving the desired sampling scope narrowing.

The chosen bookmark register must be specified as a command line option for
CPC, as well as the desired action to be performed on the counters’ sampling.
The registers can be reached as files in the sysfs filesystem:

/sys/devices/system/cpu/cpu*/pmu_bookmark

Overall Usage
The typical command line syntax for CPC is as follows:

cpc [options] [workload]

where the presence of the [workload] parameter controls whether CPC must be
ran against a single application (workload mode) or against the whole running
system (system-wide mode). In system-wide mode, the following options control
both the duration and broadness of the sampling:

--cpus <CPUS> Controls which CPUs to use, where CPUS should be a
comma separated list of CPUs, or the keyword all.

--time <TIME> Controls the sampling duration time (in seconds).

Typical Options
These are the cpc options that enable the features described above:

--list-events Returns the list of all possible events, grouped by logic
units within the Cell BE (see Example 5-9).

Example 5-9

Performance Monitor Signals

Key:
 1) Signal Number:
 Digit 1 = Section Number
 Digit 2 = Subsection Number
 Digit 3,4 = Bit Number
 .C (Cycles) or .E (Events) if the signal can record
either
 2) Count Type
 C = Count Cycles
 Chapter 5. Programming Tools and Debugging Techniques 373

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
 E = Count Event Edges
 V = Count Event Cycles
 S = Count Single-Cycle Events
 3) Signal Name
 4) Signal Description

**
* Unit 2: PowerPC Processing Unit (PPU)
**

2.1PPU Instruction Unit - Group 1 (NClk)

2100V Branch_Commit_t0Branch instruction committed. (Thread 0)

2101E Branch_Flush_t0Branch instruction that caused a misprediction
flush is committed. Branch misprediction includes: (1) misprediction
of taken or not-taken on conditional branch, (2) misprediction of
branch target address on bclr[1] and bcctr[1]. (Thread 0)

2102C Ibuf_Empty_t0Instruction buffer empty. (Thread 0)

2103E IERAT_Miss_t0Instruction effective-address-to-real-address
translation (I-ERAT) miss. (Thread 0)

2104.CC
2104.EE IL1_Miss_Cycles_t0L1 Instruction cache miss cycles. Counts
the cycles from the miss event until the returned instruction is
dispatched or cancelled due to branch misprediction, completion
restart, or exceptions (see Note 1). (Thread 0)

2106C Dispatch_Blocked_t0Valid instruction available for dispatch,
but dispatch is blocked. (Thread 0)

2109E Instr_Flushed_t0Instruction in pipeline stage EX7 causes a
flush. (Thread 0)

2111V PPC_Commit_t0Two PowerPC instructions committed. For
microcode sequences, only the last microcode operation is counted.
Committed instructions are counted two at a time. If only one
instruction has committed for a given cycle, this event will not be
raised until another instruction has been committed in a future
cycle. (Thread 0)

2119V Branch_Commit_t1Branch instruction committed. (Thread 1)
374 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
2120E Branch_Flush_t1Branch instruction that caused a misprediction
flush is committed. Branch misprediction includes: (1) misprediction
of taken or not-taken on conditional branch, (2) misprediction of
branch target address on bclr[1] and bcctr[1]. (Thread 1)

2121C Ibuf_Empty_t1Instruction buffer empty. (Thread 1)
.....

--event <ID> Specifies the event to be counted.

--event <ID.E> Some events allow counting of either (E) events or cycles
(C).

--event <ID:SUB> When specifying SPU or MFC events, the desired subunit
can be given (see Example 5-10).

Example 5-10 Specifying subunits for events.

cpc -event 4103:1 ...# Count event 4103 on SPU 1.

--event <ID[.E][:SUB],...

> Specifies multiple coma-separated events (in all of the
above forms) to be counted.

--event <ID[.E][:SUB],...

--event <ID[.E][:SUB],...

--switch-timeout <ms>

Multiple specification of the event option, allows events to
be grouped in sets, with the kernel cycling through them
at the interval defined by the switch-timeout option (see
Example 5-11).

Example 5-11 Multiple sets of events

cpc --event 4102:0,4103:0 --event 4102:1,4103:1 \
--switch-timeout 150m

--interval <TIME> Specifies the interval time for the Hardware Sampling
mode. Suffix the value with ’n’ for nanoseconds, ’u’ for
microseconds, or ’m’ for milliseconds.

--sampling-mode <MODE>

Used in conjunction with the interval option, defines the
behavior of the hardware sampling mode (as explained in
Hardware Sampling). The “threshold” mode has one
 Chapter 5. Programming Tools and Debugging Techniques 375

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
particularity, with regard to the option syntax, which
requires the specification of the desired threshold value
for each event (see Example 5-12)

Example 5-12 Hardware Sampling mode

cpc --event 4102:0=1000,4103:0=1000 --interval 10m \
--sampling-mode threshold

--start-on-ppu-th0-bookmark

Start counters upon PPU hardware-thread 0 bookmark
start.

--start-on-ppu-th1-bookmark

Start counters upon PPU hardware-thread 1bookmark
start.

--stop-on-ppu-th0-bookmark

Stop counters upon PPU hardware-thread 0 bookmark
stop.

--stop-on-ppu-th0-bookmark

Stop counters upon PPU hardware-thread 1bookmark
stop.

Example 5-13 PPU Bookmarks with command line trigger

cpc --events 4103 --start-on-ppu-th0-bookmark app # set-up bookmark

There are two choices for triggering the counters, as shown below:

Example 5-14 Command line trigger

echo 9223372036854775808 > /sys/devices/system/cpu/cpu0/pmu_bookmark

Example 5-15 Program embedded trigger

#define PMU_BKMK_START (1ULL << 63)
char str[20] ;
fd = open(“/sys/devices/system/cpu/cpu0/pmu_bookmark”, O_WRONLY);
sprintf(str, “%llu”, PMU_BKMK_START);
write(fd, str, strlen(str) + 1);
376 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
5.6.3 OProfile

OProfile for Cell BE is a system-level profiler for Cell Linux systems, capable of
profiling all running code at low overhead.

It consists of a kernel driver and a daemon for collecting sample data, and
several post-profiling tools for turning data into information.

OProfile leverages the hardware performance counters of the CPU to enable
profiling of a wide variety of interesting statistics, which can also be used for
basic time-spent profiling. All code is profiled: hardware and software interrupt
handlers, kernel modules, the kernel, shared libraries, and applications.

The OProfile tool can be used in a number of situations, like:

� low overhead is a requirement and cannot use other highly intrusive profiling
methods

� profiling of an application and its shared libraries

� profiling of interrupt handlers

� performance behavior of entire system

� there’s a need to exam the hardware effects

� requires instruction-level profiles

� requires call-graph profiles

Operation
The OProfile requires root privileges and exclusive access to the Cell BE PMU.
For those reasons, it only supports one session at a time and no other PMU
related tool (like CPC) simultaneously running.

Tools
The tool is actually composed by a few utilities, which controls the profiling
session and reporting. The most relevant here are:

Table 5-4 OProfile relevant utilities

Tool Description

opcontrol Configures and control the profiling
system. Sets the performance counter
event to be monitored and the sampling
rate.
 Chapter 5. Programming Tools and Debugging Techniques 377

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Considerations
The current SDK 3.0 version of OProfile for Cell BE supports profiling on the
POWER processor events and SPU cycle profiling. These events include cycles
as well as the various processor, cache and memory events. It is possible to
profile on up to four events simultaneously on the Cell BE system. There are
restrictions on which of the PPU events can be measured simultaneously. (The
tool now verifies that multiple events specified can be profiled simultaneously. In
the previous release it was up to the user to verify that.). When using SPU cycle
profiling, events must be within the same group due to restrictions in the
underlying hardware support for the performance counters. You can use the
following command to view the events and which group contains each event:

Example 5-16 Listing available events

opcontrol --list-events

Overall Process
The opcontrol is the utility that drives the profiling process, which can be initiated
even at compilation time, if source annotation is desired. Both the opreport and
opannotate tool are deployed at the end of the process to collect, format and
co-relate sampled information.

Step1: Compiling (optional)
Usually, OProfile does not require any changes to the compilation options, even
with regard to the optimization flags. However, in order to achieve a better
annotation experience, it is necessary to leave relocation and debugging
symbols in the application binary. The required flags are as follows:

opreport Generates the formatted profiles
according to symbols or file names.
Supports text and XML output

opannotate Generates annotated source or assembly
listings. The listings are annotated with
hits per each source code line. Requires
compilation with debug symbols (-g).

Tool Description
378 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Table 5-5

Step 2: Initializing
As previously explained, the opcontrol utility drive the process from initialization
to the end of sampling. Since the OProfile solution comprehends a kernel
module, a daemon and a collection of tools, in order to properly operate the
session, we must assure that both the kernel module and the daemon are
operational, and that no other stale session information is present:

Example 5-17 Initizalization steps

opcontrol --deinit # recommended to clear any previous Oprofile data
opcontrol --start-daemon --no-vmlinux # start the Oprofile daemon
opcontrol --init # perform the initializaton procedure
opcontrol --reset # sanity reset

Step 3: Running
After properly cleaning up and assuring the kernel module and daemon are
present, we are able to proceed with the sampling, after properly adjusting how
samples should be organized, the desired event group to monitor and the
number of events per sampling:

Example 5-18 Adjusting event group and sampling interval

opcontrol –separate=all --event=SPU_CYCLES:100000

Flag Tool Description

-g compiler Instructs the compiler to
produce debugging
symbols in the resulting
binary.

-Wl,q linker Preserve the relocation
and the line number
information in the final
integrated executable

Note: The --no-vmlinux option shown above controls whether kernel profiling
should also be carried on. The example here disables such profiling, which is
always true if sampling for the SPUs (there aren’t kernels running on them). In
case such option is needed (for PPUs only), replace the former with
--vmlinux=/path/to/vmlinux, where vmlinux is the running kernel’s
uncompressed image.
 Chapter 5. Programming Tools and Debugging Techniques 379

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
--separate Organizes samples based on the given separator. The
“lib” separates dynamically linked library samples per
application. ’kernel’ separates kernel and kernel module
samples per application; ’kernel’ implies ’library’.’thread’
gives separation for each thread and task. ’cpu’ separates
for each CPU. ’all’ implies all of the above options and
’none’ turns off separation.

--event Defines the events to be measured as well as the interval
(in number of events) to sample the Program Counter.
The --list-events option gives a complete list of the
available events, where the commonly used are: CYCLES
which measures PPU; SPU_CYCLES which measures
the SPUs.

At this point, OProfile environment is ready to initiate the sampling. We may
proceed with the following commands:

Example 5-19 Initiating Profiling

opcontrol --start # Fires profiling
app # start application ‘app’ (replace with the desired one)

Step 4: Stopping
As soon as the application returns, we should stop the sampling and dump the
results:

Example 5-20 Stopping and collecting results

opcontrol --stop
opcontrol --dump

Step 5: Reports
After sampling data is collected, OProfile offers a utility, opreport, to format and
generate profiles. The opreport tool allows the output to be created based on
symbols and files names, as well as references back to the source code (e.g.
how many times a function did perform). The following example contains
commonly used options:

Example 5-21 Commonly used options for opreport

opreport -X -g -l -d -o output.opm

-X Output generated in XML format. Required when used in
conjunction with the VPA tool (see Visual Performance
Analyzer).
380 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
-g Maps each symbol to its corresponding source file and
line.

-l Organize sampling information per symbol.

-d For each symbol, shows per-instruction details.

-o Specifies the output file name.

5.6.4 Performance Debugging Tool (PDT)

The PDT provides tracing means for recording significant events during program
execution and maintaining the sequential order of events. The main objective of
the PDT is to provide the ability to trace events of interest, in real time, and record
relevant data from the SPEs and PPE.

This objective is achieved by instrumenting the code that implements key
functions of the events on the SPEs and PPE and collecting the trace records.
This instrumentation requires additional communication between the SPEs and
PPE as trace records are collected in the PPE memory. The traced records can
then be viewed and analyzed using additional SDK tools.

Operation
Tracing is enabled at the application level (user space). After the application has
been enabled, the tracing facility trace data is gathered every time the application
is running.

Prior to each application run, the user can configure the PDT to trace events of
interest. The user can also use the PDT API to dynamically control the tracing.

During the application run, the PPE and SPE trace records are gathered in a
memory-mapped (mmap) file in the PPE memory. These records are written into
the file system when appropriate. The event-records order is maintained in this
file. The SPEs use efficient DMA transfers to write the trace records into the
mmap file. The trace records are written in the trace file using a format that is set
by an external definition (using an XML file). The PDTR (see PDTR) and Trace
Analyzer (see Trace Analyzer) tools, that use PDT traces as input, use the same
format definition for visualization and analysis.
 Chapter 5. Programming Tools and Debugging Techniques 381

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-26 Tracing Architecture

Considerations
Tracing 16 SPEs using one central PPE might lead to a heavy load on the PPE
and the bus, and therefore, might influence the application performance. The
PDT is designed to reduce the tracing execution load and provide a means for
throttling the tracing activity on the PPE and each SPE. In addition, the SPE
tracing code size is minimized so that it fits into the small SPE local store.

Events tracing is enabled by instrumenting selected function of the following SDK
libraries:

� on the PPE: DaCS, ALF, libspe2, and libsync

� on the SPE: DaCS, ALF, libsync, the spu_mfcio header file, and the overlay
manager.

Performance events are captured by the SDK functions that are already
instrumented for tracing. These functions include; SPEs activation, DMA
transfers, synchronization, signaling, user-defined events, etc. Statically linked
applications should be compiled and linked with the trace-enabled libraries.
Applications using shared libraries are not required to be rebuilt.
382 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Overall Process
The PDT tracing facility is designed to minimize the effort that is needed to
enable the tracing facility for a given application. The process includes compiling
(in most cases on the SPU code needs to be compiled since it is statically
linked), linking with trace libraries, setting environment variables, (optionally)
adjusting the trace configuration file and running the application.

Step 1: Compilation
The compilation part involves the specification of a few tracing flags and the
tracing libraries. There two sets of procedures (one for PPE and one for SPE)
involved:

SPE

1. Addition of the following compilation flags (CFLAGS variable in SDK
Makefile):

-Dmain=_pdt_main -Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE

2. Addition of the trace headers to the beginning of the include path (INCLUDE
variable in SDK Makefile):

-I/usr/spu/include/trace

3. Addition of the instrumented libraries in /usr/spu/lib/trace (e.g. libtrace.a) to
the linker process (LDFLAGS variable in SDK Makefile for the library path and
IMPORTS variable in SDK Makefile for the library) :

-L/usr/spu/lib/trace -ltrace

4. (OPTIONAL) To enable the correlation between events and the source code,
for the analysis tools, the application should be rebuilt using the linking
relocation flags (LDFLAGS variable in SDK Makefile):

-Wl,q

PPE

1. (Optional, if using libsync) Addition of the following compilation flag (CFLAGS
variable in SDK Makefile):

-DLIBSYNC_TRACE

2. Addition of the trace headers to the beginning of the include path (INCLUDE
variable in SDK Makefile):

-I/usr/include/trace

3. Addition of the instrumented libraries (e.g. libtrace.a) in /usr/lib/trace (or
/usr/lib64/trace for 64bit applications) to the linker process (LDFLAGS variable
in SDK Makefile for the library path and IMPORTS variable in SDK Makefile
for the library):
 Chapter 5. Programming Tools and Debugging Techniques 383

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
-L/usr/lib/trace -ltrace

or

-L/usr/lib64/trace -ltrace

4. (OPTIONAL) To enable the correlation between events and the source code,
for the analysis tools, the application should be rebuilt using the linking
relocation flags (LDFLAGS variable in SDK Makefile):

-Wl,q

Step 2: Preparing the Run Environment
After the build process is complete, PDT requires a few environment variables to
be set, prior to the application run:

Table 5-6 PDT Environment Variables

Step 2a: (OPTIONAL - Recommended) Preparing Configuration Files
A configuration XML file is used to configure the PDT. The PDT tracing facility
that is built into the application at run time reads the configuration file that is
defined by the PDT_CONFIG_FILE environment variable. The
/usr/share/pdt/config directory contains a reference configuration file
(pdt_cbe_configuration.xml). This file should be copied and then specifically
modified for the requirements of each application.

Variable Definition

LD_LIBRARY_PATH The full path to the traced library location:
/usr/lib/trace (or -L/usr/lib64/trace for 64bit
applications)

PDT_KERNEL_MODULE PDT kernel module installation path.
Should be /usr/lib/modules/pdt.ko

PDT_CONFIG_FILE The full path to the PDT configuration file
for the application run. The PDT package
contains a pdt_cbe_configuration.xml file
in the /usr/share/pdt/config
 directory that can be used "as is" or
copied and modified for each application
run.

PDT_TRACE_OUTPUT (Optional) The full path to the PDT output
directory (must exist prior to the
application run)

PDT_OUTPUT_PREFIX Optional variable is used to add a prefix to
the PDT output files names.
384 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
The /usr/share/pdt/config directory also contains reference configuration files for
applications that are using the DaCS and ALF libraries: pdt_dacs_config_cell.xml
for DaCS and pdt_alf_config_cell.xml for ALF. In addition, a
pdt_libsync_config.xml reference file is provided for applications that are using
the libsync library.

The first line of the configuration file contains the application name. This name is
used as a prefix for the PDT output files. To correlate the output name with a
specific run, the name can be changed before each run. The PDT output
directory is also defined in the output_dir attribute. This location will be used if the
PDT_TRACE_OUTPUT environment variable is not defined.

The first section of the file, <groups>, defines the groups of events for the run.
The events of each group are defined in other definition files (which are also in
XML format), and included in the configuration file. These files reside in the
/usr/share/pdt/config directory. They are provided with the instrumented library
and should not be modified by the programmer. Each of these files contains a list
of events with the definition of the trace-record data for each event. Note that
some of the events define an interval (with StartTime and EndTime), and some
are single events (in which the StartTime is 0 and the EndTime is set to the event
time). The names of the trace-record fields are the same as the names defined
by the API functions. There are two types of records: one for the PPE and one for
the SPE. Each of these record types has a different header that is defined in a
separate file: pdt_ppe_event_header.xml for the PPE and
pdt_spe_event_header.xml for the SPE.

The SDK provides instrumentation for the following libraries (events are defined
in the XML files):

GENERAL (pdt_general.xml)

These are the general trace events such as trace start,
trace stop, etc. Tracing of these events is always active.

LIBSPE2 (pdt_lbspe2.xml)

These are the libspe2 events.

SPU_MFCIO (pdt_mfcio.xml)

These are the spu_mfcio events that are defined in the
spu_mfcio.h header file.

LIBSYNC (pdt_libsync.xml)

These are the mutex events that are part of the libsync
library.

DACS (pdt_dacs.xml, pdt_dacs_perf.xml, and pdt_dacs_spu.xml)
 Chapter 5. Programming Tools and Debugging Techniques 385

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
These are the DaCS events (separated into three groups
of events).

ALF (pdt_alf.xml, pdt_alf_perf.xml, and pdt_alf_spu.xml)

These are the ALF events (separated into three groups of
events).

The second section of the file contains the tracing control definitions for each
type of processor. The PDT is made ready for the hybrid environment so each
processor will have a host, <host>. On each processor, several groups of events
can be activated in the group control, <groupControl>. Each group is divided into
subgroups, and each subgroup, <subgroup>, has a set of events. Each group,
subgroup, and event has an active attribute that can be either true or false. This
attribute affects tracing as follows:

� If a group is active, all of its events will be traced.

� If a group is not active, and the subgroup is active, all of its subgroup's events
will be traced.

� If a group and subgroup are not active, and an event is active, that event will
be traced.

It is highly recommended that tracing be enabled only for those events that are of
interest. It is specially recommended to turn off tracing of non-stalling events,
since the relative overhead there is higher. Depending on the number of
processors involved, programs might produce events at a high rate. If this
scenario occurs, the number of traced events might also be very high.

Step 3: Run
After both the environment variables and configuration files are set, simply
execute the application. The PDT will produce trace files in a directory that is
defined by the environment variable PDT_TRACE_OUTPUT. If this environment
variable is not defined, the output location is taken from the definition provided by
the output_dir attribute in the PDT configuration file. If neither is defined, the
current path will be used. The output directory must exist prior to the application
run, and the user must have a write access to this directory. The PDT creates the
following files in that output directory at each run.

Table 5-7 Output files

File Contents

<prefix>-<app_name>-yyyymmddhhmmss.pex Meta file of the trace.
386 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
PDTR
The PDTR tool (pdtr command) is a command-line tool that provides both
viewing and post processing of PDT traces on the target (client) machine. The
other alternative would be the graphical Trace Analyzer, part of VPA (explained
further on).

To use this tool, you must instrument your application by building with the PDT.
After the instrumented application has run and created the trace output files, the
pdtr command can be run to show the trace output.

for example, given a PDT trace fileset:

app-20071115094957.1.trace

app-20071115094957.maps

app-20071115094957.pex

run pdtr as follows:

pdtr [options] app-20071115094957

which produces the output file:

<prefix>-<app_name>-yyyymmddhhmmss.maps Maps file from /proc/<pid>/ for
the address-to-name
resolution performed by the
PDTR tool (or pdtr command).

<prefix>-<app_name>-yyyymmddhhmmss.<N>.trace Trace file. An application may
produce multiple trace files
where N is the index.

Notes:

1. The <prefix> is provided by the optional PDT_OUTPUT_PREFIX
environment variable

2. The <app_name> variable is a string provided in the PDT configuration file
application_name attribute.

3. The yyyymmddhhmmssvariable is the date and time when the application
started (trace_init() time).

4. The <N> variable is the serial number of the trace file. The maximum size
of each trace file is 32MB.

File Contents
 Chapter 5. Programming Tools and Debugging Techniques 387

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
app-20071115094957.pep

PDTR Produces various summary output reports with lock statistics, DMA
statistics, Mailbox usage statistics and overall event profiles The tool is also
capable of producing sequential reports with time-stamped event and its
parameters per line.

The following are examples of reports produced by PDTR. See the PDTR man
page for additional output examples and usage details.

Example 5-22 General Summary Report Example

General Summary Report
===

1.107017 seconds in trace

Total trace events: 3975
Count EvID Event min avg max evmin,evmax

 672 1202 SPE_MFC_READ_TAG_STATUS 139.7ns 271.2ns 977.8ns 26, 3241
 613 0206 _DACS_HOST_MUTEX_LOCK 349.2ns 1.6us 20.3us 432, 2068
 613 0406 _DACS_HOST_MUTEX_UNLOCK
 336 0402 SPE_MFC_GETF
 240 1406 _DACS_SPE_MUTEX_UNLOCK
 239 1206 _DACS_SPE_MUTEX_LOCK 279.4ns 6.6us 178.7us 773, 3152
 224 0102 SPE_MFC_PUTF
 99 0200 HEART_BEAT
 96 0302 SPE_MFC_GET
 64 1702 SPE_READ_IN_MBOX 139.7ns 3.7us 25.0us 21, 191
 16 0002 SPE_MFC_PUT
 16 2007 _DACS_MBOX_READ_ENTRY
 16 2107 _DACS_MBOX_READ_EXIT_INTERVAL 11.7us 15.2us 25.9us 557, 192
 16 0107 _DACS_RUNTIME_INIT_ENTRY
 16 2204 _DACS_MBOX_WRITE_ENTRY
 16 0207 _DACS_RUNTIME_INIT_EXIT_INTERVAL 6.6us 7.4us 8.2us 29, 2030
 16 2304 _DACS_MBOX_WRITE_EXIT_INTERVAL 4.1us 6.0us 11.3us 2011, 193
 16 0601 SPE_PROGRAM_LOAD
 16 0700 SPE_TRACE_START
 16 0800 SPE_TRACE_END
 16 2A04 _DACS_MUTEX_SHARE_ENTRY
...

Example 5-23 Sequential Trace Output Example

----- Trace File(s) --
Event type size: 0
Metafile version: 1
388 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
 0 0.000000 0.000ms PPE_HEART_BEAT PPU 00000001 TB:0000000000000000
 1 0.005025 5.025ms PPE_SPE_CREATE_GROUP PPU F7FC73A0 TB:000000000001190F *** Unprocessed event ***
 2 0.015968 10.943ms PPE_HEART_BEAT PPU 00000001 TB:0000000000037D13
 3 0.031958 15.990ms PPE_HEART_BEAT PPU 00000001 TB:000000000006FB69
 4 0.047957 15.999ms PPE_HEART_BEAT PPU 00000001 TB:00000000000A7A3B
 5 0.053738 5.781ms PPE_SPE_CREATE_THREAD PPU F7FC73A0 TB:00000000000BBD90
 6 0.053768 0.030ms PPE_SPE_WRITE_IN_MBOX PPU F7FC73A0 TB:00000000000BBF3F *** Unprocessed event ***
 :
 20 0 0.000us SPE_ENTRY SPU 1001F348 Decr:00000001
 21 163 11.384us SPE_MFC_WRITE_TAG_MASK SPU 1001F348 Decr:000000A4 *** Unprocessed event ***
 22 170 0.489us SPE_MFC_GET SPU 1001F348 Decr:000000AB Size: 0x80 (128), Tag: 0x4 (4)
 23 176 0.419us SPE_MFC_WRITE_TAG_UPDATE SPU 1001F348 Decr:000000B1 *** Unprocessed event ***
 24 183 0.489us SPE_MFC_READ_TAG_STATUS_ENTRY SPU 1001F348 Decr:000000B8
 25 184 0.070us SPE_MFC_READ_TAG_STATUS_EXIT SPU 1001F348 Decr:000000B9 >>> delta tics:1 (0.070us)
rec:24 {DMA done[tag=4,0x4] rec:22 0.978us 130.9MB/s}
 26 191 0.489us SPE_MUTEX_LOCK_ENTRY SPU 1001F348 Lock:1001E280 Decr:000000C0
 :
 33 4523 0.210us SPE_MUTEX_LOCK_EXIT SPU 1001F348 Lock:1001E280 Decr:000011AC >>> delta tics:3 (
0.210us) rec:32
 34 0 0.000us SPE_ENTRY SPU 1001F9D8 Decr:00000001
 35 96 6.705us SPE_MFC_WRITE_TAG_MASK SPU 1001F9D8 Decr:00000061 *** Unprocessed event ***
 36 103 0.489us SPE_MFC_GET SPU 1001F9D8 Decr:00000068 Size: 0x80 (128), Tag: 0x4 (4)
 37 109 0.419us SPE_MFC_WRITE_TAG_UPDATE SPU 1001F9D8 Decr:0000006E *** Unprocessed event ***
 38 116 0.489us SPE_MFC_READ_TAG_STATUS_ENTRY SPU 1001F9D8 Decr:00000075
 39 117 0.070us SPE_MFC_READ_TAG_STATUS_EXIT SPU 1001F9D8 Decr:00000076 >>> delta tics:1 (0.070us)

 rec:38 {DMA done[tag=4,0x4] rec:36 0.978us 130.9MB/s}

Example 5-24 Lock Report Example

==

 Accesses
 Hits Misses Hit hold time (uS) Miss wait time (uS)

Acount
 %Total Count %Acount Count %Acount min, avg, max min, avg, max Name
--

*
 600 (100.0) 3 (0.5) 597 (99.5) 100.8, 184.6, 402.4 13.3, 264.4, 568.0 shr_lock (0x10012180)
 2
 (66.7) 298 (49.9) 100.8, 101.1, 101.5 181.8, 249.7, 383.6 main (0x68c)(lspe=1)
 1
 (33.3) 199 (33.3) 200.7, 201.3, 202.5 13.3, 315.2, 568.0 main (0x68c)(lspe=2)
 0
 (0.0) 100 (16.8) 0.0, 0.0, 0.0 205.0, 206.8, 278.5 main (0x68c)(lspe=3)
*
-Implicitly initialized locks (used before/without mutex_init)

See the PDTR man page for additional output examples and usage details.
 Chapter 5. Programming Tools and Debugging Techniques 389

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
5.6.5 FDPR-Pro

The Post-link Optimization for Linux on POWER tool (FDPR-Pro or fdprpro) is a
performance tuning utility that reduces the execution time and the real memory
utilization of user space application programs. It optimizes the executable image
of a program by collecting information on the behavior of the program under a
workload. It then creates a new version of that program optimized for that
workload. The new program typically runs faster and uses less real memory than
the original program.

Operation
The post-link optimizer builds an optimized executable program in three distinct
phases

1. Instrumentation phase, where The optimizer creates an instrumented
executable program and an empty template profile file

2. Training phase, where the instrumented program is executed with a
representative workload and as it runs it updates the profile file.

3. Optimization phase, where the optimizer generates the optimized executable
program file. You can control the behavior of the optimizer with options
specified on the command line.

Considerations
The fdprpro tool applies advanced optimization techniques to a program. Some
aggressive optimizations might produce programs that do not behave as
expected. You should test the resulting optimized program with the same test
suite used to test the original program. You cannot re-optimize an optimized
program by passing it as input to fdprpro.

An instrumented executable, created in the instrumentation phase and run in the
training phase, typically runs several times slower than the original program. This
slowdown is caused by the increased execution time required by the
instrumentation. Select a lighter workload to reduce training time to a reasonable
value, while still fully exercising the desired code areas.

Overall process
The typical FDPR-Pro process encompasses the three steps as mentioned
above: Instrumentation, Training and Optimization.
390 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-27 FDPR-Pro process

Step 0: Prepare input files
The input to the fdprpro command must be an executable or a shared library (for
PPE files) produced by the Linux linker. fdprpro supports 32-bit or 64-bit
programs compiled by the GCC or XLC compilers.

Build the executable program with relocation information. To do this, call the
linker with the --emit-relocs (or -q) option. Alternatively, pass the -Wl,--emit-relocs
(or-Wl,-q) options to the GCC or XLC compiler.

If you are using the SDK Makefiles structure (with make.footer), set the following
variables (depending on the compiler) in the Makefile:

Example 5-25 make.footer variables

LDFLAGS_xlc += -Wl,q # for XLC
LDFLAGS_gcc += -Wl,q # for GCC
 Chapter 5. Programming Tools and Debugging Techniques 391

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Step 1: Instrumentation Phase
PPE and SPE executables are instrumented differently. For PPE executable, the
fdprpro command creates an instrumented file and a profile file. The profile file is
later populated with profile information while the instrumented program runs with
a specified workload. In contrast, for SPE executable, the profile (with extension
.mprof) is created only when the instrumented program runs.

FDPR-Pro processes (instruments or optimizes) the PPE program and the
embedded SPE images. Processing the SPE images is done by extracting them
to external files, processing each of them, then encapsulating them back into the
PPE executable. Two modes are available in order to fully process the PPE/SPE
combined file: integrated mode, and standalone mode.

Integrated Mode

The integrated mode of operation does not expose the details of SPE
processing. This interface is convenient for performing full PPE/SPE processing,
but flexibility is reduced. To completely process a PPE/SPE file, run the fdprpro
command with the -cell (or --cell-supervisor) command-line option, as shown
bellow:

Example 5-26 Instrumentation in integrated mode

fdprpro -cell -a instr myapp -o myapp.instr

Standalone Mode

As opposed to integrated mode, where the same optimization options are used
when processing the PPE file and when processing each of the SPE files, full
flexibility is available in standalone mode, where you can specify the explicit
commands needed to extract the SPE files, process them, and then encapsulate
and process the PPE file. The following list shows the details of this mode.

1. Extraction

SPE images are extracted from the input program and written as executable
files in the specified directory.

Example 5-27 Extraction in standalone mode

fdprpro -a extract -spedir somedir myapp

2. Processing

The SPE images are processed one by one. You should place all of the output
files in a distinct directory.
392 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Example 5-28 Processing in standalone mode

fdprpro -a (instr|opt) somedir/spe_i [-f prof_i] [opts ...]
outdir/spe_i

3. Encapsulation and PPE processing

The SPE files are encapsulated as a part of the PPE processing. The -spedir
option specifies the output SPE directory.

Example 5-29 Encapsulation in standalone mode

fdprpro -a (instr|opt) --encapsulate -spedir outdir [opts ...] myapp
-o myapp.instr

SPE Instrumentation
When the optimizer processes PPE executables, it generates a profile file and an
instrumented file. The profile file is filled with counts while the instrumented file
runs. In contrast, when the optimizer processes SPE executables, the profile is
generated when the instrumented executable runs. Running a PPE/SPE
instrumented executable typically generates a number of profiles, one for each
SPE image whose thread is executed. This type of profile accumulates the
counts of all threads which execute the corresponding image. The SPE
instrumented executable generates an SPE profile named <spename>.mprof in
the output directory, where <spename> represents the name of the SPE thread.

The resulting instrumented file is 5% to 20% larger than the original file. Because
of the limited local store size of the Cell BE architecture, instrumentation might
cause SPE memory overflow. If this happens, fdprpro issues an error message
and exits. To avoid this problem, the user can use the --ignore-function-list file or
-ifl file option. The file referenced by the file parameter contains names of the
functions that should not be instrumented and optimized. This results in a
reduced instrumented file size. Specify the same -ifl option in both the
instrumentation and optimization phases.

Step 2: Training Phase
The training phase consists of running the instrumented application with a
representative workload (one that fully exercises the desired code areas). While
the program runs with the workload, the PPE profile (by default with .nprof
extension) is populated with profile information. Simultaneously, SPE profiles,
one for each executed SPE thread, are generated in the current directory.

Note: Replace <spe_i> by the actual name of the spu file obtained in the
extraction process. Profile and optimization options need to be specified only
in the optimization phase (see below).
 Chapter 5. Programming Tools and Debugging Techniques 393

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
If an old profile exists before instrumentation starts, fdprpro accumulates new
data into it. In this way you can combine the profiles of multiple workloads. If you
do not want to combine profiles, remove the old SPE profiles (the .mprof files)
and replace the PPE profile (by default .nprof file) with its original copy, before
starting the instrumented program.

The instrumented PPE program requires a shared library named libfsprinst32.so
for ELF32 programs, or libfdprinst64.so for ELF64 programs. These libraries are
placed in the library search path directory during installation.

The default directory for the profile file is the directory containing the
instrumented program. To specify a different directory, set the environment
variable FDPR_PROF_DIR to the directory containing the profile file.

Step 3: Optimization Phase
The optimization phase takes all profiling information generated during the test
phase in order to optimize the application.

Example 5-30 Typical optimization

fdprpro -a opt -f myapp.nprof [opts ...] myapp -o myapp.fdpr

The same considerations shown in the instrumentation phase, with regard to
integrated mode and standalone mode, are still valid during the optimization
phase. The notable exceptions are the action command being performed (here
-a opt) and the options (here related to optimization phase). The routine is:
Extract, Process and Encapsulate

Optimization Options

If you invoke fdprpro with the basic optimization flag -O, it performs code
reordering optimization as well as optimization of branch prediction, branch
folding, code alignment and removal of redundant NOOP instructions.

To specify higher levels of optimizations, pass one of the flags -O2, -O3, or -O4 to
the optimizer. Higher optimization levels perform more aggressive function
inlining, DFA (data flow analysis) optimizations, data reordering, and code
restructuring such as loop unrolling. These high level optimization flags work well
for most applications. You can achieve optimal performance by selecting and
testing specific optimizations for your program.

5.6.6 Visual Performance Analyzer

The Visual Performance Analyzer (VPA) is an Eclipse based tool set, currently
including six plug-in applications working cooperatively: Profile Analyzer, Code
394 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Analyzer, Pipeline Analyzer, Counter Analyzer, Trace Analyzer and the
experimental Control Flow Analyzer. It aims to provide a platform independent,
easy to use integrated set of graphical application performance analysis tools,
leveraging existing platform specific non-GUI performance analysis tools to
collect a comprehensive set of data.

In doing so, VPA creates a consistent set of integrated tools to provide a platform
independent drill down performance analysis experience.

Figure 5-28 VPA Architecture

However VPA does not supply performance data collection tools. Instead, it relies
on platform specific tools, like OProfile and PDT, to collect the performance data.
 Chapter 5. Programming Tools and Debugging Techniques 395

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-29 Relationship between tools

In general, each visualization tool acts complementary to each other:

Profile Analyzer Is a system profile analysis tool. This plug-in obtains
profile information from various platform specific tools,
and provide analysis views for user to identify
performance bottle necks.

Pipeline Analyzer Gets pipeline information of Power processors, and
provides two analysis views; scroll mode and resource
mode.

Code Analyzer Reads XCOFF (AIX® binary file format) files or ELF files
running on Linux on Power, and displays program
structure with block information. With related profile
information, it can provide analysis views on hottest
program block as well as some optimization suggestions.

Counter Analyzer Reads counter data files generated by AIX
hpmcount/hpmstat, and it provides multiple views to help
users identify and eliminate performance bottlenecks by
examine the hardware performance counter values,
396 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
computed performance metrics and also CPI breakdown
models.

Trace Analyzer Reads in traces generated by the Performance
Debugging Tool for Cell BE, and displays time-based
graphical visualization of the program execution as well as
a list of trace contents and the event details for selection.

Control Flow Analyzer Reads the call trace data file, and display execution flow
graph and call tree to help user analyze when and where
one method invocation happens, and how long it runs.

The VPA is better described by its own individual tools. In the Cell BE particular
case, we have the following available relevant tools:

� oProfile

� CPC

� PDT

� FDPR-Pro

Considering the list of Cell BE performance tools above, we will be focusing on
each respective visualization tool, namely: Profile Analyzer, Counter Analyzer,
Trace Analyzer and Code Analyzer.

Profile Analyzer
Profile Analyzer is a tool that allows you to navigate through a system profile,
looking for performance bottlenecks. It provides a powerful set of graphical and
text-based views to allow users to narrow down performance problems to a
particular process, thread, module, symbol, offset, instruction or source line. It
supports profiles generated by the Cell BE OProfile.

Overall Process
The Profile Analyzer works with properly formatted data, gathered by OProfile.
The initial step consists in running the desired application with OProfile, followed
by formatting its data. After that, we load the information in the Profile Analyzer
and explore its visualization options.

Step 1: Collect profile data
As outlined by the OProfile section above (see OProfile), initiate the profile
session as usual, adding the selected events to be measured and, as a required

Note: In the following sections you will find a brief overview on each Cell BE
relevant VPA tool. For more in depth coverage of tool usage, please see
Chapter 6, “Using Performance Tools” on page 411.
 Chapter 5. Programming Tools and Debugging Techniques 397

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
step for VPA, configure the session to properly separate the samples with
“opcontrol --separate=all”

Next, as soon as the measuring is ended, prepare the output data for VPA with
the following tool:

Example 5-31 Formatting OProfile output for VPA

opreport -X –g –d –l myapp.opm

Step 2: Load Data
Start the VPA tool and select the Profile Analyzer (Tools → Profile Analyzer).

Figure 5-30 Selecting Profile Analyzer

Since we already have profile data from the previous step, simply load the
information by going to File → Open FIle, and selecting the .opm file generated
in the previous step.

Note: Consult the OProfile section above for an explanation on the options.
398 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-31 Open file screen

In VPA a profile data file loading process is able to run as a background runnable
job. When VPA is loading a file, you can click a button to put the loading job to run
in the background. While the loading job is running in the background, you can
use Profile Analyzer to view already loaded profile data files, or event start
another loading job at the same time.

The Process hierarchy view appears by default in the top center pane. It shows
an expandable list of all processes within the current profile. You can expand a
process to view its module, later thread and etc. You can also view the profile in
the form of thread or module and etc. Actually, you can define the hierarchy view
by right- click profile and choose Hierarchy Management.
 Chapter 5. Programming Tools and Debugging Techniques 399

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-32 Process Hierarchy view

Code Analyzer
Code Analyzer displays detailed information on basic blocks, functions and
assembly instructions of executable files and shared libraries. It is built on top of
FDPR-Pro (Feedback Directed Program Restructuring) technology and allows
adding of FDPR-Pro and tprof profile information. Code Analyzer is able to show
statistics, to navigate the code, to display performance comment and grouping
information on the executable and to map back to source code.

Overall Process
The Code Analyzer works with the artifacts generated from the FDPR-Pro
session on your executable. Initially the original executable is loaded, followed by
the .nprof files generated. After that, you should be able to visualize the
information

Step 1: Collect profile data
Initially, we should run at least one profiling session (without optimization) with
your application. As previously explained at the FDPR-Pro section (see
FDPR-Pro), the first step is to instrument the desired application followed by the
actual training (i.e. profile information generation). The expected results are
profiles files for both PPU (*.nprof) and SPU codes (*.mprof).
400 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Example 5-32 Typical FDPR-Pro session

rm *.mprof # remove old data
mkdir ./somespudir# create temp folder
fdprpro -a instr -cell -spedir somespudir myapp # instrument
myapp ... # run your app with a meaninful workload

Step 2: Load Data

Start the VPA tool and select the Code Analyzer (Tools → Code Analyzer).

Figure 5-33 Selecting Code Analyzer

First, locate the original application binary add it to the Code Analyzer choosing
File → Code Analyzer → Analyze Executable. Select the desired file and press
Open.

Note: Consult the FDPR-PRO section above for an explanation on the
options.
 Chapter 5. Programming Tools and Debugging Techniques 401

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-34 Open file screen

The executable will be loaded, and information tabs should appear for both ppu
code and spu code.

Figure 5-35 Executable information
402 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
To enhance the views with profile information for the loaded executable, you can
either an instrumentation profile file or a sampling profile. For that, choose File →
CodeAnalyzer → Add Profile Information for each of the executable tabs
available in the center of the screen. There needs to be matching between the
profile information added and the executable tab selected: for ppu tabs, add the
*.nprof profiles and for spus, add the respective *.nprof file.

Figure 5-36 Added profile information

Trace Analyzer
Trace Analyzer visualizes Cell BE traces containing information such as DMA
communication, locking and unlocking activities, mailbox messages, etc. Trace
Analyzer shows this data organized by core along a common time line. Extra
details are available for each kind of event: for example, lock identifier for lock
operations, accessed address for DMA transfers and etc.

The tool introduces a few concepts that we should be familiar with:

Events Events are records that have no duration, for example,
records describing non-stalling operations, such as
releasing a lock. Events’ input on performance is normally
insignificant, but they may be important for understanding
the application and tracking down sources of performance
problems.

Intervals Intervals are records that may have non-zero duration.
They normally come from stalling operations, such as
acquiring a lock. Intervals are often a very significant
 Chapter 5. Programming Tools and Debugging Techniques 403

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
performance factor, and identifying long stalls and their
sources is an important task in performance debugging. A
special case of an interval is live interval, that starts when
an SPE thread begins to execute and ends when the
thread exits.

Overall Process
The Trace Analyzer tool work with trace information generated by the PDT. The
tool then processes the trace for analysis and visualization. Most importantly, this
processing adds context parameters (e.g., estimated wall clock time, unique SPE
thread ids, etc.) to individual records.

Step 1: Collect trace data
As already shown in section 5.6.4, “Performance Debugging Tool (PDT)”, the
PDT tool require a few steps to produce the trace files needed by the Trace
Analyzer. To summarize, they are:

� Re-compile and linking with instrumented libraries

� Run time environment variables setup.

� Application execution.

If everything is properly configured, we should have three tracing related files in
the configured output directory: .pex, .maps and .trace.

Step 2: Loading the trace files
Let’s start the VPA tool and select the Trace Analyzer (Tools → Trace Analyzer).

Figure 5-37 Selecting Trace Analyzer

Go to File → Open File and locate the .pex file generated during the tracing
session. After loading in the trace data, the Trace Analyzer Perspective displays
the data in its views and editors.
404 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
Figure 5-38 Trace Perspective

Going from the top left clockwise, we see:

� Navigator View

� Trace Editor, showing the trace visualization by core, where data from each
core is displayed in a separate row, and each trace record is represented by a
rectangle. Time is represented on the horizontal axis, so that the location and
size of a rectangle on the horizontal axis represent the corresponding event's
time and duration. The color of the rectangle represents the type of event, as
defined by the Color Map View.
 Chapter 5. Programming Tools and Debugging Techniques 405

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 5-39 Trace Editor details

� Details View, showing the details of the selected record (if any)

� Color Map View, allowing the user to view and modify color mapping for
different kinds of events

� Trace Table View, which shows all the events on the trace in the order of their
occurrence

Counter Analyzer
The Counter Analyzer tool is a common tool to analyze hardware performance
counter data among many IBM eServer™ platforms, which includes systems
running on Linux on Cell BE.

The Counter Analyzer tool accepts hardware performance counter data in the
form of a cross-platform XML file format. The tool provides multiple views to help
user identify the data. The views can be divided into two categories: one
category is the “table” views, which are basically two-dimension tables displaying
406 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
data. The data could be raw performance counter values, derived metrics,
counter comparison results and so on. Another category is the “plot” views. In
these views data are represented by different kind of plots. The data could also
be raw performance counter values, derived metrics, and comparison results and
so on. Besides these “table” views and “plot” views, there are also some “utility”
views to help user configure and customize the tool.

Overall Process
In the particular case of Cell BE, the Counter Analyzer work with count data
produced by the CPC tool, in .pmf XML format files. After loading in the counter
data of .pmf file, the Counter Analyzer Perspective displays the data in its views
and editors.

Step 1: Collecting Count Data
In order to obtain the required counter data, you should proceed as explained in
the CPC section (see CPC), making sure that the output is generated in XML
format.

Typically, you may use CPC as follows:

Example 5-33 Collecting count data

cpc -e EVENT,... --sampling-mode -c CPUS -i 100000000 –X file.pmf \
-t TIME # for system wide mode
cpc -e EVENT,EVENT,... -i INTERVAL –X file.pmf some_workload # for
workload mode

Step 2: Loading the count data
Start the VPA tool and select the Counter Analyzer (Tools → Counter
Analyzer).

Figure 5-40 Selecting Counter Analyzer
 Chapter 5. Programming Tools and Debugging Techniques 407

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
Load the count data by choosing File → Open File and locating the .pmf file
generated by CPC.

After loading in the counter data of .pmf file, the Counter Analyzer Perspective
displays the data in its views and editors. Primary information of details, metrics
and CPI breakdown is displayed in Counter Editor. Resource statistics
information of the file (if available) will be showed in tabular view Resource
Statistics. The View Graph illustrates the details, metrics and CPI breakdown in a
graphic way.

Figure 5-41 Counter Analyzer Perspective

The Counter Analyzer organizes the information according to a few concepts:

� Performance Monitoring

Counter Performance monitor counter provides comprehensive reports of
events that are critical to performance on systems. It is able to gather critical
hardware events, such as the number of misses on all cache levels, the
number of floating point instructions executed, the number of instruction loads
that cause TLB misses.

� Metrics
408 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_TOOLS_DEBUG.fm
The metric information is calculated with user-defined formula and event
count from performance monitor counter. It's used to provide performance
information like CPU utilization rate, million instructions per second. This
helps the algorithm designer or programmer identify and eliminate
performance bottlenecks.

� CPI Breakdown Model

Cycles per instruction (CPI) is the measurement for analyzing the
performance of a workload. CPI is simply defined as the number of processor
clocked cycles needed to complete an instruction. It is calculated as CPI =
Total Cycles / Number of Instructions Completed. A high CPI value usually
implies under utilization of machine resources.

For more information, consult the VPA manual or go to its homepage in:

http://www.alphaworks.ibm.com/tech/vpa
 Chapter 5. Programming Tools and Debugging Techniques 409

http://www.alphaworks.ibm.com/tech/vpa

7575CH_PRGTOOLS_TOOLS_DEBUG.fm Draft Document for Review February 15, 2008 4:59 pm
410 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Chapter 6. Using Performance Tools

In this chapter we explore a practical “hands-on”example on the use of
performance tools, explaining how to collect proper information and how to
access relevant visualization features.

6

© Copyright IBM Corp. 2007. All rights reserved. 411

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
6.1 Practical case: FFT16M Analysis

In the section, we present a full example on how to explore the Cell BE
performance tools and, specially, how to visualize the results.

6.1.1 The FFT16M

The chosen target sample application for analysis is the FFT16M application that
can be found in the Cell SDK 3.0 demos bundle:

/opt/cell/sdk/src/demos/FFT16M

This application, which was hand-tuned, performs a 4-way SIMD single-precision
complex FFT on an array of size 16,777,216 elements. The available command
options are:

fft <ncycles> <printflag> [<log2_spus> <numa_flag> <largepage_flag>]

6.1.2 Prepare and Build for profiling

For the sake of flexibility, let’s setup a “sandbox” styled project tree structure, so
we have more flexibility while modifying and generating files:

Step 1: Copy the application from SDK tree
To work on a “sandbox” tree means we are going to have our own copy of the
project, on an accessible location (for example your home dir):

cp -R /opt/cell/sdk/demos/FFT16M ~/

Step 2:Prepare the Makefile
Go to your recently created project structure and locate the Makefiles. You
should be able to find the three of them:

~/FFT16M/Makefile

~/FFT16M/ppu/Makefile

~/FFT16M/ppu/Makefile

Next, let’s introduce a few modifications to the Makefiles so we prevent them from
trying to install executables back to the SDK tree, and we introduce the required
compilation flags for profiling data:
412 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Modifying the ~/FFT16M/ppu/Makefile
In Example 6-1 we comment out install directives. In Example 6-2 we introduce
the -g and -Wl,-q compilation flags in order to preserve the relocation and the line
number information in the final integrated executable.

Example 6-1 Changing ~/FFT16M/ppu/Makefile for gcc

###
#
Target
###
#

PROGRAM_ppu= fft

###
#
Objects
###
#

IMPORTS = ../spu/fft_spu.a -lspe2 -lpthread -lm -lnuma

#INSTALL_DIR= $(EXP_SDKBIN)/demos
#INSTALL_FILES= $(PROGRAM_ppu)
LDFLAGS_gcc = -Wl,-q
CFLAGS_gcc = -g

###
#
buildutils/make.footer
###
#

ifdef CELL_TOP
include $(CELL_TOP)/buildutils/make.footer

else

Note 1: No further Makefile modifications, beyond these, are required.

Note 2: There are specific changes depending whether you use gcc our xlc as
the compiler
 Chapter 6. Using Performance Tools 413

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
include ../../../../buildutils/make.footer
endif

Example 6-2 Changing ~/FFT16M/ppu/Makefile for gcc

###
#
Target
###
#

PROGRAM_ppu= fft

###
#
Objects
###
#
PPU_COMPILER = xlc

IMPORTS = ../spu/fft_spu.a -lspe2 -lpthread -lm -lnuma

#INSTALL_DIR= $(EXP_SDKBIN)/demos
#INSTALL_FILES= $(PROGRAM_ppu)
LDFLAGS_xlc = -Wl,-q
CFLAGS_xlc = -g

###
#
buildutils/make.footer
###
#

ifdef CELL_TOP
include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

� ~/FFT16M/spu/Makefile

– Introduce the -g and -Wl,-q compilation flags in order to preserve the
relocation and the line number information in the final integrated
executable.
414 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Example 6-3 Modifying ~/FFT16M/spu/Makefile for gcc

###
#
Target
###
#

PROGRAMS_spu:= fft_spu
LIBRARY_embed:= fft_spu.a

###
#
Local Defines
###
#

CFLAGS_gcc:= -g --param max-unroll-times=1 # needed to keep size of
program down
LDFLAGS_gcc = -Wl,-q -g

###
#
buildutils/make.footer
###
#

ifdef CELL_TOP
include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

Example 6-4 Modifying ~/FFT16M/spu/Makefile for xlc

###
#
Target
###
#
SPU_COMPILER = xlc
PROGRAMS_spu:= fft_spu
LIBRARY_embed:= fft_spu.a
 Chapter 6. Using Performance Tools 415

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
###
#
Local Defines
###
#

CFLAGS_xlc:= -g -qnounroll -O5
LDFLAGS_xlc:= -O5 -qflag=e:e -Wl,-q -g

###
#
buildutils/make.footer
###
#

ifdef CELL_TOP
include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

Before the actual build, make sure you set the default compiler accordingly by
issuing:

/opt/cell/sdk/buildutils/cellsdk_select_compiler [gcc|xlc]

Now we are ready for the build:

cd ~/FFT16M ; CELL_TOP=/opt/cell/sdk make

6.1.3 Creating and working with profile data

Assuming that we already have a proper set-up project tree and a successful
build, let’s collect and work with profile data.

Step 1: Collecting data with CPC
Before collecting the application data, execute a small test in order to verify that
CPC is properly work. Type the following command for measuring clock-cycles
and branch instructions committed on both hardware threads for all processes on
all CPUs for 5 seconds, and you should immediately see counter statistics:

cpc --cpus all --time 5s --events C
416 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Given that CPC is properly behaving, let’s collect counter data for the FFT16M
application. The following example count PPC instructions committed in one
event-set, and L1 cache load misses in a second event-set and write the output
in the xml format (suitable for counter analyzer) to the file fft_cpc.pmf:

cd ~/FFT16M

cpc --events C,2100,2119 --cpus all ---xml fft_cpc.pmf ./ppu/fft 40 1

As the result, you should have the following file:

~/FFT16M/fft_cpc.pmf

Step 2: Counter Analyzer
The generated counter information can now be visualized with the Counter
Analyzer tool in VPA. For that, proceed as following:

1. Open VPA and select Tools → Counter Analyzer

2. Choose File → Open File

3. Locate the fft_cpc.pmf file and select it

The result will be something similar to that shown in Figure 6-1 on page 418,
exhibiting the collected counter information:
 Chapter 6. Using Performance Tools 417

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 6-1 Counter Analyzer screen

Step 2: Collecting data with OProfile
The following steps will generate appropriate profile information (suitable for
Profile Analyzer) for both PPU and SPU, from the FFT16M application:

� Initialize OProfile environment for SPU and run the fft workload to collect SPU
average cycle events:

Example 6-5 OProfile initialization and run for SPU profiling

As root
opcontrol --deinit
opcontrol --start-daemon
opcontrol --init
opcontrol --reset
opcontrol --separate=all --event=SPU_CYCLES:100000
opcontrol --start
418 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
As regular user
fft 20 1
As root
opcontrol --stop
opcontrol --dump

For generating the report:

opreport -X -g -l -d -o fft.spu.opm

� Repeat the steps for PPU:

Example 6-6 OProfile initialization and run for PPU profiling

As root
opcontrol --deinit
opcontrol --start-daemon
opcontrol --init
opcontrol --reset
opcontrol --separate=all --event=CYCLES:100000
opcontrol --start
As regular user
fft 20 1
As root
opcontrol --stop
opcontrol --dump

For generating the report:

� opreport -X -g -l -d -o fft.ppu.opm

Step 3: Profile Analyzer
Let’s load the generated profile information with Profile Analyzer:

1. Open VPA and select Tools → Profile Analyzer

2. Choose File → Open File

3. Locate the fft.spu.opm file and select it

You should get the following screen:
 Chapter 6. Using Performance Tools 419

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 6-2 fft.spu.opm in Profile Analyzer

Next, let’s examine the disassembly information by selecting the fft_spu entry
contained inside the Modules section at the center of the screen (see above) and
double-clicking the “main” symbol at the right sided Symbol/Functions view. The
result should appear in the Disassembly view at the bottom center position.
420 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Figure 6-3 Disassembly view for fft_spu.opm

After double-clicking the symbol, the tool may ask you for that particular symbol’s
source code. In case you do have that, you may also switch to the “Source Code”
tab at the bottom center portion of the screen.
 Chapter 6. Using Performance Tools 421

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 6-4 Source view for fft_spu.opm

If desired, you may repeat the exact same procedure for analyzing fft_ppu.opm
profile results.

Step 4: Gathering profile information with FDPR-Pro
The FDPR-Pro tool, in addition to its principal optimization function, allows us to
investigate the application performance, while mapping back to the source code,
when used in combination with the Code Analyzer.

Initially, we need to proceed with the FDPR-Pro instrumentation for collecting the
profiling data:

1. Clean-up old profile information and create a temporary working dir for
FDPR-Pro:

cd ~/FFT16M/ppu ; rm -f *.mprof *.nprof ; mkdir sputmp

2. Instrument the fft executable with the following command:

fdprpro fft -cell -spedir sputmp -a instr

Example 6-7 Sample output from FDPR-Pro instrumentation

FDPR-Pro Version 5.4.0.16 for Linux (CELL)
fdprpro ./fft -cell -spedir sputmp -a instr
422 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
> spe_extraction -> ./fft ...
...
> processing_spe_file -> sputmp/fft_spu ...
...
> reading_exe ...
> adjusting_exe ...
...
> analyzing ...
> building_program_infrastructure ...
@Warning: Relocations based on section .data -- section may not be
reordered
> building_profiling_cfg ...
> spe_encapsulation -> sputmp/out ...
>> processing_spe -> sputmp/out/fft_spu ...
> instrumentation ...
>> throw_&_catch_fixer ...
>> adding_universal_stubs ...
>> running_markers_and_instrumenters ...
>> linker_stub_fixer ...
>> dynamic_entries_table_sections_bus_fixer ...
>> writing_profile_template -> fft.nprof ...
> symbol_fixer ...
> updating_executable ...
> writing_executable -> fft.instr ...
bye.

3. Run the generated instrumented profile:

./fft.instr 20 1

4. There should be two relevant generated files:

~/FFT16M/ppu/fft.nprof # PPU profile information

~/FFT16M/ppu/fft_spu.mprof # SPU profile information

Step 5: Use profile data with Code Analyzer
The Code Analyzer tool imports information from the FDPR-Pro, and creates a
visualization for it. In order to work with that, we need the following procedures:

1. With VPA open, select Tools → Code Analyzer.

2. Go to Tools → Code Analyzer → Analyze Executable and locate the
original fft executable file. At this point, we should get two opened editor tabs
at the center view of the screen: one for PPU and one for SPU.
 Chapter 6. Using Performance Tools 423

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 6-5 PPU and SPU editors in Code Analyzer

3. Associate the PPU profile information by selecting the PPU editor tab view
and going to File → Code Analyzer → Add Profile Info and locating the
fft.nprof file.
424 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Figure 6-6 Adding profile info

4. Repeat the same procedure for the SPU part, by selecting the SPU editor tab,
going to File → Code Analyzer → Add Profile Info and locating the
fft_spu.mprof file.

The immediate effect, after loading the profile information, is the coloring of the
instructions on both editor’s tab, showing red for highly frequent executed
instructions.
 Chapter 6. Using Performance Tools 425

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 6-7 Code Analyzer showing rates of execution

Instead of only instructions, we can also associate the source code by selecting
symbols in the Program Tree, right clicking, choosing “Open Source Code” and
locating the proper source code. The result should be the addition of the “Source
Code” tab at the center of the screen, where you will be able to see rates of
execution per line of source code.
426 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Figure 6-8 Code Analyzer source code tab

Calculate dispatch grouping boundaries for both fft PPE and fft SPU tabs by
selecting each tab and pressing the "Collect display information about dispatch
groups" button. You can also simultaneously select “Collect hazard info” button in
order to collect comments about performance bottlenecks, right above source
lines that apply.

Figure 6-9 “Collect ...” buttons in code analyzer
 Chapter 6. Using Performance Tools 427

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 6-10 Hazards Info commented source code

Display pipeline population for each dispatch group, by choosing the "Dispatch
Info" tab on right lower corner view (inside “Instruction Properties tab”) and
pressing its "Link with table" button.
428 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Figure 6-11 Dispatch Info tab with “Link with Table” option

The Latency Info tab, on right lower corner view, display latencies for each
selected instruction
 Chapter 6. Using Performance Tools 429

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 6-12 Latency Info view

The Code Analyzer also offers the possibility of inspecting SPU Timing
information, at the pipeline level, with detailed stages of the Cell pipeline
population. For that, select the fft SPU editor tab, locate the desired symbol at the
Program Tree, right-click and choose “Show SPU-Timing”.
430 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Figure 6-13 Selecting SPU-Timing information
 Chapter 6. Using Performance Tools 431

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 6-14 Cell Pipeline tab

6.1.4 Creating and working with trace data

The PDT tool produces tracing data, which can be viewed and analyzed in the
Trace Analyzer tool. In order to properly collect trace data, we need to recompile
the fft application according to the required PDT procedures:

Step 1: Collecting trace data with PDT
1. Prepare the spu Makefile according to PDT requirements, depending on the

compiler of your choice:

Example 6-8 Modifying ~/FFT16M/spu/Makefile for gcc compiler

###
#
Target
###
#

PROGRAMS_spu:= fft_spu
432 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
LIBRARY_embed:= fft_spu.a

###
#
Local Defines
###
#

CFLAGS_gcc:= -g --param max-unroll-times=1 -Wall -Dmain=_pdt_main
-Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE
LDFLAGS_gcc = -Wl,-q -g -L/usr/spu/lib/trace
INCLUDE = -I/usr/spu/include/trace
IMPORTS = -ltrace

###
#
buildutils/make.footer
###
#

ifdef CELL_TOP
include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

Example 6-9 Modifying ~/FFT16M/spu/Makefile for xlc compiler

###
#
Target
###
#
SPU_COMPILER = xlc
PROGRAMS_spu:= fft_spu
LIBRARY_embed:= fft_spu.a

###
#
Local Defines
###
#

 Chapter 6. Using Performance Tools 433

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
CFLAGS_xlc:= -g -qnounroll -O5
CPP_FLAGS_xlc := -I/usr/spu/include/trace -Dmain=_pdt_main
-Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE
LDFLAGS_xlc:= -O5 -qflag=e:e -Wl,-q -g -L/usr/spu/lib/trace -ltrace

###
#
buildutils/make.footer
###
#

ifdef CELL_TOP
include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

2. Re-build the fft application:

cd ~/FFT16M ; CELL_TOP=/opt/cell/sdk make

3. As it is strongly recommended in order to focus on stalls here, let’s setup a
configuration file with only the relevant stalls (mailboxes and read tag status
for SPE):

a. Copy the default xml to the place the FFT is ran, so we can modify it.

cp /usr/share/pdt/config/pdt_cbe_configuration.xml ~/FFT16M

b. Open the copied file for editing. At the first line, change the application
name value to “fft”.

c. Next, search for <configuration name="SPE">, and below that line you will
find the MFCIO group tag. Set it to active="false". And finally delete the
SPE_MFC group. This should be sufficient to trace only the *stalls* in the
SPE.

4. Prepare the environment by setting the following variables:

export LD_LIBRARY_PATH=/usr/lib/trace

export PDT_KERNEL_MODULE=/usr/lib/modules/pdt.ko

export PDT_CONFIG_FILE=~/FFT16M/pdt_cbe_configuration.xml

5. Run the fft application at least three times, so we have better sampling:

cd ~/FFT16M/ppu ; ./fft 1 1 4 1 0
434 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
6. You should have the three trace files - .pex, .map and .trace - available right
after the execution.

Step 7: Importing PDT data into Trace Analyzer
The Trace Analyzer allows the visualization of the application’s stages of
execution. It works with data generated from the PDT tool, more specifically it
reads information available in the generated .pex file. Execute the following
procedure to visualize the data on the Trace Analyzer:

1. With VPA open, select Tools → Trace Analyzer.

2. Go to File → Open File and locate the .pex file, generated in the previous
steps. The following screen should appear:

Note 1: The default PDT_CONFIG_FILE for the SDK establishes the trace
files prefix as “test”. If you haven’t modified the file, you should look for the
trace files with “test” as the prefix.

Note 2: Remember to unset LD_LIBRARY_PATH environment variable,
before running the original (non-PDT) binary later.
 Chapter 6. Using Performance Tools 435

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 6-15 Trace Analyzer screen

The screen shown above corresponds to FFT16M application ran with 16 SPEs
and no huge pages. As we can observe, a less intensive blue has been selected
for the MFC_IO group, and we now see the difference between the borders and
the internals of the interval. Additionally we’ve used the color map to change the
color of read_in_mbox to be red rather than its group’s default blue. You see a
huge stall in the middle. This is where the benchmark driver verifies the result of
the test run to make sure the benchmark computes correctly. The timed run is the
thin blue strip after the stall. So next we zoom into this area, which is all that
interests us in this benchmark.
436 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_PRGTOOLS_PERF_TUNING.fm
Figure 6-16 Zoomed trace view

As we can observe above, the mailboxes (red bars) break the execution into 6
stages. Different stages have different behavior, for example, the 3rd and 6th
stages are much longer than the rest and have a lot of massive stalls. Trace
Analyzer allows the selection of a stall, to obtain further details, by simply clicking
on it (as shown in the picture by the yellow highlight). The selection marker rulers
on the left and top show the location of the selected item (and can be used to get
back to it if you scroll away). The data collected by the PDT for the selected stall
is shown in the record details window. We see the stall is huge – almost 12K
ticks. We can now check Cell BE performance tips for a possible cause of the
stall, and arrive at TLB misses as a possible culprit as well as huge pages as a
possible fix.

This is a sample on how trace visualization allows us to discover a significant
amount of information regarding the potential application problems.
 Chapter 6. Using Performance Tools 437

7575CH_PRGTOOLS_PERF_TUNING.fm Draft Document for Review February 15, 2008 4:59 pm
It’s possible to observe how well balanced the application is, by looking at
execution and start/stop time for each SPU. Since It breaks down, by kind, which
are the causes of stalls in the code, we can identify synchronization problems.
438 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Chapter 7. Programming in distributed
environments

The intent of this chapter is to provide an overview on a few of the distributed
programming techniques available on Cell BE. We introduce the Hybrid
Programming Model, as well as its libraries in SDK 3.0, and the Dynamic
Application Virtualization (DAV) case.

The topics available here are:

� 7.1.1, “Hybrid DaCS” on page 443.

� 7.1.2, “Hybrid ALF” on page 456

� 7.1.3, “DAV - Dynamic Application Virtualization” on page 468

7

© Copyright IBM Corp. 2007. All rights reserved. 439

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
7.1 Hybrid Programming Models in SDK 3.0

The Cell BE architecture is one of the answers for the problems being faced by
the computer industry with regard to the performance degradation on traditional
single threaded styled solutions. The power, frequency and memory wall
problems lead us to the multi/many core solutions, and the exploitation of
memory hierarchies enforcing the data locality.

Figure 7-1 Single thread performance

Although Cell BE has been performing in an outstanding manner for certain
types of applications, there’s a need to consider other requirements into this
picture, like power balance, legacy application integration and larger cluster
scenarios, where network latency has a great influence on the performance.

The Hybrid Model Architecture proposal is a combination of characteristics from
traditional superscalar multi-core solutions and Cell BE accelerated features.
440 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Figure 7-2 Hybrid Model System

The basic idea is to leverage traditional general purpose surperscalar cluster of
machines as “processing masters” (Hosts), handling large data partitioning and
I/O bound computations (e.g message passing), while off-loading well
characterized computational intensive functions to computing kernels running on
Cell BE accelerator nodes.

The solution enables a finer grain control over the applications’ parallelism and a
more flexible offering, as it easily accommodates MPMD (Multiple Process
Multiple Data) tasks with SPMD tasks (Single Process Multiple Data).

Motivations
There’s a well known balance between generality and performance. While Cell
BE is definitely not an all general purpose solution, it still maintain a strong
general purposes capabilities, specially with the presence of the PPE.

Figure 7-3 Balance between special and general purpose solutions
 Chapter 7. Programming in distributed environments 441

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
To understand the motivations behind the Hybrid architecture, we need to
understand a few high performance scenario requirements:

� When moving from single-threaded to multi-core solutions, although there’s a
significant performance boost (throughput), there may be a power (energy)
demand increase.

� There exists legacy solutions based on homogenous architectures.

� There are applications which need finer grain parallel computation control,
since different components have different computational profiles.

The Hybrid Model system architecture address those requirements by:

� Increasing the throughput performance with the addition of the accelerators
(Cell BE), in a more energy efficient way. Since Cell BE has outstanding
performance for computation specific parallel tasks, given the same energy
footprint, the whole system perform better as if simply kept as a
homogeneous solution.

Figure 7-4 Performance curves: single thread, multi-core, hybrid

� Accommodating legacy solutions, since includes general purpose units.
442 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
� Achieving finer grain parallelism, since it is capable of mixing MPMD and
SPMD at different levels (Host and Accelerator).

7.1.1 Hybrid DaCS

The Hybrid version of the Data Communication and Synchronization (DaCS)
library provides a set of services which ease the development of applications and
application frameworks in a heterogeneous multi-tiered system (for example a 64
bit x86 system (x86_64) and one or more Cell BE systems). The DaCS services
are implemented as a set of APIs providing an architecturally neutral layer for
application developers on a variety of multi-core systems. One of the key
abstractions that further differentiates DaCS from other programming
frameworks is a hierarchical topology of processing elements, each referred to as
a DaCS Element (DE). Within the hierarchy each DE can serve one or both of the
following roles:

 A general purpose processing element, acting as a supervisor, control or
master processor. This type of element usually runs a full operating system and
manages jobs running on other DEs. This is referred to as a Host Element (HE).

 A general or special purpose processing element running tasks assigned by
an HE. This is referred to as an Accelerator Element (AE).

Figure 7-5 Hybrid DaCS System
 Chapter 7. Programming in distributed environments 443

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
DaCS for Hybrid Implementation
DaCS for Hybrid (DaCSH) is an implementation of the DaCS API specification
which supports the connection of an HE on an x86_64 system to one or more
AEs on Cell Broadband Engines (CBEs). In SDK 3.0, DaCSH only supports the
use of sockets to connect the HE with the AEs. DaCSH provides access to the
PowerPC Processor Element (PPE), allowing a PPE program to be started and
stopped and allowing data transfer between the x86_64 system and the PPE.
The SPEs can only be used by the program running on the PPE.

A PPE program that works with the SPEs can also be a DaCS program. In this
case the program will use DaCS for Cell (DaCSC - see DaCS Programmers
Guide and API Reference for Cell BE); the PPE will act as an AE for DaCSH
(communicating with the x86_64 system) and as an HE for DaCSC
(communicating with the SPEs). The DaCS API on the PPE is supported by a
combined library which, when the PPE is being used with both DaCSH and
DaCSC, will automatically use the parameters passed to the API to determine if
the PPE is an AE talking to its HE (DaCSH) or an HE talking to its AEs (DaCSC).

In order to manage the interactions between the HE and the AEs DaCSH starts a
service on each of them. On the host system the service is the Host DaCS
daemon (hdacsd) and on the accelerator the service is the Accelerator DaCS
daemon (adacsd). These services are shared between all DaCSH processes for
an operating system image. For example, if the x86_64 system has multiple
cores that each run a host application using DaCSH, only a single instance of the
hdacsd service is needed to manage the interactions of each of the host
applications with their AEs via DaCSH. Similarly, on the accelerator, if the CBE is
on a Cell Blade (which has two CBEs), a single instance of the adacsd service is
needed to managed both of the CBEs acting as AEs, even if they are used by
different HEs.
444 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Figure 7-6 Hybrid DaCS architecture

When a host application starts using DaCSH this connects to the hdacsd service.
This service manages the system topology from a DaCS perspective (managing
reservations) and starts the accelerator application on the AE. Only process
management requests will use the hdacsd and adacsd services. All other
interactions between the host and accelerator application will flow via a direct
socket connection.

Services
The DaCS services can be divided into the following categories:

Resource reservation The resource reservation services allow an HE to reserve
AEs below itself in the hierarchy. The APIs abstract the
specifics of the reservation system (O/S, middleware,
etc.) to allocate resources for an HE. Once reserved, the
AEs can be used by the HE to execute tasks for
accelerated applications.

Process management The process management services provide the means for
an HE to execute and manage accelerated applications
on AEs, including, but not limited to, remote process
 Chapter 7. Programming in distributed environments 445

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
launch and remote error notification. The host system
DaCSd (hdacsd) provides services to the HE applications.
The accelerator DaCSD (adacsd) provides services to the
hdacsd and HE application, including the launching of the
AE applications on the accelerator for the HE
applications.

Group management The group management services provide the means to
designate dynamic groups of processes for participation
in collective operations. In SDK 3.0 this is limited to
process execution synchronization (barrier).

Remote memory The remote memory services provide the means to
create, share, transfer data to, and transfer data from a
remote memory segment. The data transfers are
performed using a one-sided put/get remote direct
memory access (rDMA) model. These services also
provide the ability to scatter/gather lists of data, and
provide optional enforcement of ordering for the data
transfers.

Message passing The message passing services provide the means for
passing messages asynchronously, using a two-sided
send/receive model. Messages are passed point-to-point
from one process to another.

Mailboxes The mailbox services provide a simple interface for
synchronous transfer of small (32-bit) messages from one
process to another.

Process Synchronization

The process synchronization services provide the means
to coordinate or synchronize process execution. In SDK
3.0 this is limited to the barrier synchronization primitive.

Data Synchronization The data synchronization services provide the means to
synchronize and serialize data access. These include
management of wait identifiers for synchronizing data
transfers, as well as mutex primitives for data serialization.

Error Handling The error handling services enable the user to register
error handlers and gather error information.

Programming Considerations
The DaCS library API services are provided as functions in the C language. The
protocols and constants required are made available to the compiler by including
the DaCS header file dacs.h as:
446 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
#include <dacs.h>

In general the return value from these functions is an error code. Data is returned
within parameters passed to the functions.

Process management model
When working with the host and accelerators there has to be a way to uniquely
identify the participants that are communicating. From an architectural
perspective, each accelerator could have multiple processes simultaneously
running, so it is not enough simply to identify the accelerator. Instead the unit of
execution on the accelerator (the DaCS Process) must be identified using its
DaCS Element Id (DE id) and its Process Id (Pid). The DE Id is retrieved when
the accelerator is reserved (using dacs_reserve_children()) and the Pid when the
process is started (using dacs_de_start()). Since the parent is not reserved, and
no process is started on it, two constants are provided to identify the parent:
DACS_DE_PARENT and DACS_PID_PARENT. Similarly, to identify the calling
process itself, the constants DACS_DE_SELF and DACS_PID_SELF are
provided.

Resource sharing model
The APIs supporting the locking primitives, remote memory access and groups
follow a consistent pattern of creation, sharing, usage and destruction:

� Creation: An object is created which will be shared with other DEs, for
example with dacs_remote_mem_create().

� Sharing: The object created is then shared by linked share and accept calls.
The creator shares the item (for instance with dacs_remote_mem_share()),
and the DE it is shared with accepts it (in this example with
dacs_remote_mem_accept()). These calls must be paired. When one is
invoked it waits for the other to occur. This is done for each DE the share is
action with.

� Usage: This may require closure (such as in the case of groups) or the object
may immediately be available for use. For instance remote memory can
immediately be used for put and get.

� Destruction: The DEs that have accepted an item can release the item when
they are done with it (for example by calling dacs_remote_mem_release()).
The release does not block, but notifies the creator that it is not longer being
used and cleans up any local storage. The creator does a destroy (in this
case dacs_remote_mem_destroy()) which will wait for all of the DEs it has
shared with to release the item, and then destroy the shared item.

API environment
To make these services accessible to the runtime code each process must
create a DaCS environment. This is done by calling the special initialization
 Chapter 7. Programming in distributed environments 447

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
service dacs_runtime_init(). When this service returns the environment is set up
so that all other DaCS function calls can be invoked. When the DaCS
environment is no longer required the process must call dacs_runtime_exit() to
free all resources used by the environment.

Building and Running Hybrid DaCS application
Three versions of the DaCS libraries are provided with the DaCS packages:
optimized, debug and traced. The optimized libraries have minimal error
checking and are intended for production use. The debug libraries have much
more error checking than the optimized libraries and are intended to be used
during application development. The traced libraries are the optimized libraries
with performance and debug trace hooks in them. These are intended to be used
to debug functional and performance problems that might be encountered. The
traced libraries use the interfaces provided by the Performance Debug Tool
(PDT) and require that this tool be installed.

Both static and shared libraries are provided for the x86_64 and PPU. The
desired library is selected by linking to the chosen library in the appropriate path.
The static library is named libdacs.a, and the shared library is libdacs.so.

DaCS Configuration
The host daemon service is named hdacsd and the accelerator daemon service
is named adacsd. Both daemons are configured using their respective
/etc/dacsd.conf files.

Default versions of these files are automatically installed with each of the
daemons. These default files contain comments on the parameters and values
currently supported.

When one of these files is changed the changes will not take affect until the
respective daemon is restarted as described above.

DaCS Topology
The topology configuration file /etc/dacs_topology.config is only used by the host
daemon service. Back up this file before changing it. Changes will not take effect
until the daemon is restarted.

Important: DaCS for Hybrid and DaCS for Cell BE share the same API set,
although they are two different implementations. For more on DaCS API,
please refer to 4.7.1, “DaCS - Data Communication and Synchronization” on
page 284
448 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
The host DaCS daemon might stop if there is a configuration error in the
dacs_topology.config file. Check the log file specified by the dacsd.conf file
(default is /var/log/hdacsd.log) for configuration errors.

The topology configuration file identifies the hosts and accelerators and their
relationship to one another. The host can contain more than one CPU core, for
example a multi core x86_64 Blade. The host can be attached to one or more
accelerators, for example Cell BE Blade. The topology configuration file allows
you to specify a number of configurations for this hardware. For example, it can
be configured such that each core is assigned one Cell Broadband Engine or it
might be configured so that each core can reserve any (or all) of the Cell
Broadband Engines.

The default topology configuration file is for a host that has four cores and is
attached to a single Cell BE Blade:

Example 7-1 Default topology file

<DaCS_Topology
 version="1.0">
 <hardware>
 <de tag="OB1" type="DACS_DE_SYSTEMX" ip="192.168.1.100">
 <de tag="OC1" type="DACS_DE_SYSTEMX_CORE"></de>
 <de tag="OC2" type="DACS_DE_SYSTEMX_CORE"></de>
 <de tag="OC3" type="DACS_DE_SYSTEMX_CORE"></de>
 <de tag="OC4" type="DACS_DE_SYSTEMX_CORE"></de>
 </de>
 <de tag="CB1" type="DACS_DE_CELLBLADE" ip="192.168.1.101">
 <de tag="CBE11" type="DACS_DE_CBE"></de>
 <de tag="CBE12" type="DACS_DE_CBE"></de>
 </de>
 </hardware>
 <topology>
 <canreserve he="OC1" ae="CB1"/>
 <canreserve he="OC2" ae="CB1"/>
 <canreserve he="OC3" ae="CB1"/>
 <canreserve he="OC4" ae="CB1"/>
 </topology>
</DaCS_Topology>

The <hardware> section identifies the host system with its four cores (OC1-OC4)
and the Cell BE BladeCenter (CB1) with its two Cell Broadband Engines (CBE11
and CBE12).

The <topology> section identifies what each core (host) can use as an
accelerator. In this example, each core can reserve and use either the entire Cell
 Chapter 7. Programming in distributed environments 449

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
BE BladeCenter (CB1) or one or more of the Cell Broadband Engines on the
BladeCenter. The ability to use the Cell BE is implicit in the <canreserve>
element. This element has an attribute only which defaults to false. When it is set
to true, only the Cell BE BladeCenter can be reserved. If the fourth <canreserve>
element was changed to <canreserve he="OC4" ae="CB1"
only="TRUE"></canreserve>, then OC4 can only reserve the Cell BE
BladeCenter. The usage can be made more restrictive by being more specific in
the <canreserve> element. If the fourth <canreserve> element is changed to
<canreserve he="OC4" ae="CBE12"></canreserve>, then OC4 can only reserve
CBE12 and can not reserve the Cell BE BladeCenter.

Modify the topology configuration file to match your hardware configuration.
Make a copy of the configuration file before changing it. At a minimum, update
the IP addresses of the ip attributes to match the interfaces between the host and
the accelerator

DaCS Daemons
The daemons can be stopped and started using the shell service command in
the sbin directory. For example, to stop the host daemon type:

/sbin/service hdacsd stop

and to restart the host daemon type:

/sbin/service hdacsd start

The accelerator daemon (adacsd) may be restarted in like manner. See the man
page for service for more details on the service command.

Running an Application
A hybrid DaCS application on the host (x86_64) must have processor affinity to
start, which can be done on the command line. Here is a command line example
to set affinity of the shell to the first processor:

taskset -p 0x00000001 $$

The bit mask, starting with 0 from right to left, is an index to the processor affinity
setting. Bit 0 is on or off for CPU 0, bit 1 for CPU 1, and bit number x is CPU
number x. $$ means the current process gets the affinity setting.

taskset -p$$

will return the mask setting as an integer. Using the -c option makes the taskset
more usable. For example,

taskset -pc 3 $$
450 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
will set the processor CPU affinity to CPU 3for the current process. The -pc
parameter sets by process and CPU number.

taskset -pc $$

will return the current CPU setting for affinity for the current process. According to
the man page for taskset a user must have CAP_SYS_NICE permission to
change CPU affinity. See the man page for taskset for more details.

To launch a DaCS application use a taskset call, for example:

taskset 0x00000001 MyDaCSApp arg1

where the application program is MyDaCSApp and is passed an argument of
“arg1”.

Step-by-Step Example
Let’s create, next, a simple Hybrid DaCS Hello World application, from building to
deploying.

Step 0: Verify the configuration
In order to properly build and run this example, we need to verify e few
requirements on the configuration:

� You will need one x86_64 Blade server and one QS21 Cell Blade, both
configured with the SDK 3.0

� Verify if you have a properly configured DaCS topology files in your x86_64
node (see above).

� Make sure hdacsd is started on the x86_64 and adacsd is started on the
QS21 Blade.

Step 1: Create the build structure
Although the build process will occur on the host (x86_64) machine, create the
following directory structure, under the root of your user home dir, on both host
and accelerator machines:

Example 7-2 Directory structure

hdacshello
hdacshello/ppu
hdacshello/ppu/spu

We will also need a Makefile in each of the created folders (only on the host
machine):
 Chapter 7. Programming in distributed environments 451

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 7-3 hdacshello/Makefile

DIRS := ppu
INCLUDE := -I/opt/cell/sdk/prototype/usr/include
IMPORTS := /opt/cell/sdk/prototype/usr/lib64/libdacs_hybrid.so
CC_OPT_LEVEL := -g
PROGRAM := hdacshello
include $(CELL_TOP)/buildutils/make.footer

Example 7-4 hdacshello/ppu/Makefile

DIRS := spu
INCLUDE := -I/opt/cell/sdk/sysroot/usr/include
IMPORTS :=
/opt/cell/sysroot/opt/cell/sdk/prototype/usr/lib64/libdacs_hybrid.so
spu/hdacshello_spu
LDFLAGS += -lstdc++
CC_OPT_LEVEL = -g
PROGRAM_ppu64 := hdacshello_ppu
include $(CELL_TOP)/buildutils/make.footer

Example 7-5 hdacshello/ppu/spu/Makefile

INCLUDE := -I/opt/cell/sdk/sysroot/usr/include
IMPORTS := /opt/cell/sysroot/usr/spu/lib/libdacs.a
CC_OPT_LEVEL := -g
PROGRAM_spu := hdacshello_spu
include $(CELL_TOP)/buildutils/make.footer

Step 2: Create the source files
The following are the source files for each part of the application (only on the
Host machine):

Example 7-6 hdacshello/hdacshello.c

#include <dacs.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

de_id_t cbe[2];
dacs_process_id_t pid;
452 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
int main(int argc __attribute__ ((unused)), char* argv[] __attribute__
((unused)))
{
 DACS_ERR_T dacs_rc;
 dacs_rc = dacs_runtime_init(NULL,NULL);
 printf("HOST: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 uint32_t num_cbe = 1;
 dacs_rc = dacs_reserve_children(DACS_DE_CBE,&num_cbe,cbe);
 printf("HOST: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);
 printf("HOST: %d : num children = %d, cbe =
%08x\n",__LINE__,num_cbe,cbe[0]); fflush(stdout);

 char const * argp[] = {0};
 char const * envp[] = {0};
 char program[1024];
 getcwd(program,sizeof(program));
 strcat(program,"/ppu/hdacshello_ppu");

 dacs_rc =
dacs_de_start(cbe[0],program,argp,envp,DACS_PROC_REMOTE_FILE,&pid);
 printf("HOST: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 int32_t status = 0;
 dacs_rc = dacs_de_wait(cbe[0],pid,&status);
 printf("HOST: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 dacs_rc = dacs_release_de_list(num_cbe,cbe);
 printf("HOST: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 dacs_rc = dacs_runtime_exit();
 printf("HOST: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 return 0;
}

Example 7-7 hdacshello/ppu/hdacshello_ppu.c

#include <dacs.h>
 Chapter 7. Programming in distributed environments 453

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
#include <libspe2.h>
#include <malloc.h>
#include <inttypes.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

extern spe_program_handle_t hdacshello_spu;

de_id_t spe[2];
dacs_process_id_t pid;

int main(int argc __attribute__ ((unused)), char* argv[] __attribute__
((unused)))
{
 DACS_ERR_T dacs_rc;
 dacs_rc = dacs_runtime_init(NULL,NULL);
 printf("PPU: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 uint32_t num_spe = 1;
 dacs_rc = dacs_reserve_children(DACS_DE_SPE,&num_spe,spe);
 printf("PPU: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);
 printf("PPU: %d : num children = %d, spe =
%08x\n",__LINE__,num_spe,spe[0]); fflush(stdout);

 char const * argp[] = {0};
 char const * envp[] = {0};
 void * program;
 program = &hdacshello_spu;
 DACS_PROC_CREATION_FLAG_T flags = DACS_PROC_EMBEDDED;
 dacs_rc = dacs_de_start(spe[0],program,argp,envp,flags,&pid);
 printf("PPU: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 int32_t status = 0;
 dacs_rc = dacs_de_wait(spe[0],pid,&status);
 printf("PPU: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 dacs_rc = dacs_release_de_list(num_spe,spe);
 printf("PPU: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);
454 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
 dacs_rc = dacs_runtime_exit();
 printf("PPU: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 return 0;
}

Example 7-8 hdacshello/ppu/spu/hdacshello_spu.c

#include <dacs.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc __attribute__ ((unused)), char* argv[] __attribute__
((unused)))
{
 DACS_ERR_T dacs_rc;

 dacs_rc = dacs_runtime_init(NULL,NULL);
 printf("SPU: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 printf("Hello !\n"); fflush(stdout);

 dacs_rc = dacs_runtime_exit();
 printf("SPU: %d : rc = %s\n",__LINE__,dacs_strerror(dacs_rc));
fflush(stdout);

 return 0;
}

Step 3: Build and deploy the files
Change to the topmost folder (hdacshello), and build the application:

Example 7-9 Build

cd ~/hdacshello
CELL_TOP=/opt/cell/sdk make

If everything proceeded as expected, you should have the following binaries
available:

hdacshello/hdacshello

hdacshello/ppu/hdacshello_ppu
 Chapter 7. Programming in distributed environments 455

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
hdacshello/ppu/spu/hdacshello_spu

Assure that you have permission to execute each of then. The following
command may be of help:

chmod a+x ~hdacshello/hdacshello # repeat on the other executables

Next, we need to deploy the CBE binary hdacshello/ppu/hdacshello_ppu to the
matching location on the accelerator (QS21 Cell Blade) machine. You may use
scp, for instance:

scp ~/hdacshello/ppu/hdacshello_ppu user@qs21:~/hdacshello/ppu

Step 4: Run
Since Hybrid DaCS requires a few variable and commands to be run, create a
helper script like the following:

Example 7-10 hdacshello/run.sh

Set the environment
export
LD_LIBRARY_PATH=/opt/cell/sdk/prototype/usr/lib64:$LD_LIBRARY_PATH
export
DACS_START_ENV_LIST="LD_LIBRARY_PATH=/opt/cell/sdk/prototype/usr/lib64:
$LD_LIBRARY_PATH"
Set the shell's cpu affinity
taskset -pc 1 $$

Launch the target program
~/hdacshello/hdacshello

Make sure all daemons are properly running on the Host and the Accelerator,
and execute the helper script:

~/hdacshello/run.sh

7.1.2 Hybrid ALF

There are two implementations of ALF: the ALF Cell implementation and the ALF
Hybrid implementation. The ALF Cell implementation executes on the Cell PPU
host and schedules tasks and work blocks on Cell SPUs. The ALF Hybrid
implementation executes on an x86_64 host and schedules tasks and work
blocks on an associated set of Cell SPUs through a communications mechanism,
which in this case uses the Data Communications and Synchronization (DaCS)
library
456 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
ALF for Hybrid-x86 Implementation

ALF for Hybrid-x86 is an implementation of the ALF API specification in a system
configuration with an Opteron x86_64 system connected to one or more Cell BE
processors. In this implementation, the Opteron system serves as the host, the
SPEs on the Cell BE BladeCenters act as accelerators, and the PPEs on the Cell
BE processors act as facilitators only. From the ALF application programmer’s
perspective, the application interaction, as defined by the ALF API, is between
the Hybrid-x86 host and the SPE accelerators.

This implementation of the ALF API uses the Data Communication and
Synchronization (DaCS) library as the process management and data transport
layer. Refer to the DaCS for Hybrid section above for more information about how
to set up DaCS in this environment.

Figure 7-7 Hybrid ALF stack

To manage the interaction between the ALF host runtime on the Opteron system
and the ALF accelerator runtime on the SPE, this implementation starts a PPE
process (ALF PPE daemon) for each ALF runtime. The PPE program is provided
as part of the standard ALF runtime library.
 Chapter 7. Programming in distributed environments 457

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 7-8 Hybrid ALF flow

Programming Considerations
As occurs with DaCS and Hybrid DaCS, ALF and Hybrid ALF are two different
implementations of the same API set. For more on the ALF programming model,
please refer to 4.7.2, “ALF - Accelerated Library Framework” on page 291.

Building and Running a Hybrid ALF application
Three versions of the ALF for Hybrid-x86 libraries are provided with the SDK:

� Optimized: This library has minimal error checking on the SPEs and is
intended for production use.

� Error-check enabled: This version has a lot more error checking on the SPEs
and intended to be used for application development.

� Traced: These are the optimized libraries with performance and debug trace
hooks in them. These are intended for debugging functional and performance
problems associated with ALF.

Additionally, both static and shared libraries are provided for the ALF host
libraries. The ALF SPE runtime library is only provided as static libraries.

An ALF for Hybrid-x86 application must be built as two separate binaries as
follows:
458 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
� The first binary is for the ALF host application, and you need to do the
following:

a. Compile the x86_64 host application with the
-D_ALF_PLATFORM_HYBRID define variable, and specify the
/opt/cell/sdk/prototype/usr/include include directory.

b. Link the x86_64 host application with the ALF x86_64 host runtime library,
alf_hybrid, found in the /opt/cell/sdk/prototype/usr/lib64 directory and the
DaCS x86_64 host runtime library, dacs_hybrid, also found in the
/opt/cell/sdk/prototype/usr/lib64 directory.

� The second binary is for the ALF SPE accelerator computational kernel, and
you need to do the following:

a. Compile the application’s SPE code with the
-D_ALF_PLATFORM_HYBRID define variable, and specify the
/opt/cell/sysroot/usr/spu/include and the
/opt/cell/sysroot/opt/cell/sdk/prototype/usr/spu/include include directories.

b. Link the application’s SPE code with the ALF SPE accelerator runtime
library, alf_hybrid, found in the
/opt/cell/sysroot/opt/cell/sdk/prototype/usr/spu/lib directory.

c. Use the ppu-embedspu utility to embed the SPU binary into a PPE ELF
image. The resulting PPE ELF object needs to be linked as a PPE shared
library.

Running an Hybrid ALF application
The following steps describe how to run an ALF application.

To run an application, do the following:

1. Build the ALF for Hybrid-x86 application, both the host application as an
executable, my_appl, and the accelerator computational kernel as a PPE
shared library, my_appl.so.

2. Copy the PPE shared library with the embedded SPE binaries from the host
where it was built to a selected directory on the Cell BE where it is to be
executed. For example:

scp my_appl.so <CBE>:/tmp/my_directory

Note: You need to ensure that the dynamic libraries libalf_hybrid and
libdacs_hybrid are accessible. You can set this through LD_LIBRARY_PATH.
For example:

export LD_LIBRARY_PATH=/opt/cell/sdk/prototype/usr/lib64
 Chapter 7. Programming in distributed environments 459

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
3. Set the environment variable ALF_LIBRARY_PATH to the above selected
directory on the Cell BE. For example:

export ALF_LIBRARY_PATH=/tmp/my_directory

4. Set the processor affinity on the Hybrid-x86 host. For example:

taskset –p 0x00000001 $$

5. Run the x86_64 host application in the host environment. For example:

./my_appl

Step-by-Step Example
The following is a simple Hybrid ALF Hello World application, from building to
deploying.

Step 1: Create the build structure
The build process will occur on the host (x86_64) machine. Start by creating the
following directory structure, under the root of your user home dir for instance:

Example 7-11 Directory structure

halfhello
halfshello/host
halfhello/spu

We will also need a Makefile in each of the created folders:

Example 7-12 halfhello/Makefile

DIRS := spu host
include $(CELL_TOP)/buildutils/make.footer

Example 7-13 halfhello/spu/Makefile

INCLUDE := -I/opt/cell/sysroot/opt/cell/sdk/prototype/usr/spu/include
IMPORTS := -lalf_hybrid
LDFLAGS := -L/opt/cell/sysroot/opt/cell/sdk/prototype/usr/spu/lib
CPPFLAGS := -D_ALF_PLATFORM_HYBRID_
OBJS_alf_hello_world_spu := main_spu.o
PROGRAMS_spu := alf_hello_world_spu
SHARED_LIBRARY_embed64 := alf_hello_world_hybrid_spu64.so
include $(CELL_TOP)/buildutils/make.footer

Example 7-14 halfhello/host/Makefile

TARGET_PROCESSOR := host
460 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
INCLUDE := -I/opt/cell/sdk/prototype/usr/include
IMPORTS := -lalf_hybrid -lpthread -ldl -ldacs_hybrid -lnuma -lstdc++
-lrt
LDFLAGS := -L/opt/cell/sdk/prototype/usr/lib64
CPPFLAGS := -D_ALF_PLATFORM_HYBRID_
PROGRAM := alf_hello_world_hybrid_host64
include $(CELL_TOP)/buildutils/make.footer

Step 2: Create the source files
The following are the source files for each part of the application:

Example 7-15 Host source code (~/halfhello/host/main.c)

#include <stdio.h>
#include <alf.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>

#define DEBUG

#ifdef DEBUG
#define debug_print(fmt, arg...) printf(fmt,##arg)
#else
#define debug_print(fmt, arg...) { }
#endif

#define IMAGE_PATH_BUF_SIZE 1024 // Max length of path to PPU image
char spu_image_path[IMAGE_PATH_BUF_SIZE]; // Used to hold the
complete path to SPU image
char library_name[IMAGE_PATH_BUF_SIZE]; // Used to hold the name of
spu library
char spu_image_name[] = "alf_hello_world_spu";
char kernel_name[] = "comp_kernel";
char input_dtl_name[] = "input_prep";
char output_dtl_name[] = "output_prep";

int main()
{
 int ret;
 alf_handle_t handle;
 alf_task_desc_handle_t task_desc_handle;
 alf_task_handle_t task_handle;
 Chapter 7. Programming in distributed environments 461

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
 alf_wb_handle_t wb_handle;
 void *config_parms = NULL;

 sprintf(library_name, "alf_hello_world_hybrid_spu64.so");

 debug_print("Before alf_init\n");

 if ((ret = alf_init(config_parms, &handle)) < 0) {
 fprintf(stderr, "Error: alf_init failed, ret=%d\n", ret);
 return 1;
 }

 debug_print("Before alf_num_instances_set\n");
 if ((ret = alf_num_instances_set(handle, 1)) < 0) {
 fprintf(stderr, "Error: alf_num_instances_set failed, ret=%d\n",
ret);
 return 1;
 } else if (ret > 0) {
 debug_print("alf_num_instances_set returned number of SPUs=%d\n",
ret);
 }

 debug_print("Before alf_task_desc_create\n");
 if ((ret = alf_task_desc_create(handle, 0, &task_desc_handle)) < 0) {
 fprintf(stderr, "Error: alf_task_desc_create failed, ret=%d\n",
ret);
 return 1;
 } else if (ret > 0) {
 debug_print("alf_task_desc_create returned number of SPUs=%d\n",
ret);
 }

 debug_print("Before alf_task_desc_set_int32\n");
 if ((ret = alf_task_desc_set_int32(task_desc_handle,
ALF_TASK_DESC_MAX_STACK_SIZE, 4096)) < 0) {
 fprintf(stderr, "Error: alf_task_desc_set_int32 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_desc_set_int32\n");
 if ((ret = alf_task_desc_set_int32(task_desc_handle,
ALF_TASK_DESC_WB_PARM_CTX_BUF_SIZE, 0)) < 0) {
 fprintf(stderr, "Error: alf_task_desc_set_int32 failed, ret=%d\n",
ret);
462 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
 return 1;
 }

 debug_print("Before alf_task_desc_set_int32\n");
 if ((ret = alf_task_desc_set_int32(task_desc_handle,
ALF_TASK_DESC_WB_IN_BUF_SIZE, 0)) < 0) {
 fprintf(stderr, "Error: alf_task_desc_set_int32 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_desc_set_int32\n");
 if ((ret = alf_task_desc_set_int32(task_desc_handle,
ALF_TASK_DESC_WB_OUT_BUF_SIZE, 0)) < 0) {
 fprintf(stderr, "Error: alf_task_desc_set_int32 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_desc_set_int32\n");
 if ((ret = alf_task_desc_set_int32(task_desc_handle,
ALF_TASK_DESC_WB_INOUT_BUF_SIZE, 0)) < 0) {
 fprintf(stderr, "Error: alf_task_desc_set_int32 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_desc_set_int32\n");
 if ((ret = alf_task_desc_set_int32(task_desc_handle,
ALF_TASK_DESC_TSK_CTX_SIZE, 0)) < 0) {
 fprintf(stderr, "Error: alf_task_desc_set_int32 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_desc_set_int64\n");
 if ((ret = alf_task_desc_set_int64(task_desc_handle,
ALF_TASK_DESC_ACCEL_IMAGE_REF_L, (unsigned long long)spu_image_name)) <
0) {
 fprintf(stderr, "Error: alf_task_desc_set_int64 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_desc_set_int64\n");
 Chapter 7. Programming in distributed environments 463

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
 if ((ret = alf_task_desc_set_int64(task_desc_handle,
ALF_TASK_DESC_ACCEL_LIBRARY_REF_L, (unsigned long long)library_name)) <
0) {
 fprintf(stderr, "Error: alf_task_desc_set_int64 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_desc_set_int64\n");
 if ((ret = alf_task_desc_set_int64(task_desc_handle,
ALF_TASK_DESC_ACCEL_KERNEL_REF_L, (unsigned long long)kernel_name)) <
0) {
 fprintf(stderr, "Error: alf_task_desc_set_int64 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_desc_set_int64\n");
 if ((ret = alf_task_desc_set_int64(task_desc_handle,
ALF_TASK_DESC_ACCEL_INPUT_DTL_REF_L, (unsigned long
long)input_dtl_name)) < 0) {
 fprintf(stderr, "Error: alf_task_desc_set_int64 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_desc_set_int64\n");
 if ((ret = alf_task_desc_set_int64(task_desc_handle,
ALF_TASK_DESC_ACCEL_OUTPUT_DTL_REF_L, (unsigned long
long)output_dtl_name)) < 0) {
 fprintf(stderr, "Error: alf_task_desc_set_int64 failed, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_task_create\n");
 if ((ret = alf_task_create(task_desc_handle, NULL, 1, 0, 0,
&task_handle)) < 0) {
 fprintf(stderr, "Error: alf_task_create failed, ret=%d\n", ret);
 return 1;
 }

 debug_print("Before alf_task_desc_destroy\n");
 if ((ret = alf_task_desc_destroy(task_desc_handle)) < 0) {
464 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
 fprintf(stderr, "Error: alf_exit alf_task_desc_destroy, ret=%d\n",
ret);
 return 1;
 }

 debug_print("Before alf_wb_create\n");
 if ((ret = alf_wb_create(task_handle, ALF_WB_SINGLE, 1, &wb_handle))
< 0) {
 fprintf(stderr, "Error: alf_wb_create failed, ret=%d\n", ret);
 return 1;
 }

 debug_print("Before alf_wb_enqueue\n");
 if ((ret = alf_wb_enqueue(wb_handle)) < 0) {
 fprintf(stderr, "Error: alf_wb_enqueue failed, ret=%d\n", ret);
 return 1;
 }

 debug_print("Before alf_task_finalize\n");
 if ((ret = alf_task_finalize(task_handle)) < 0) {
 fprintf(stderr, "Error: alf_task_finalize failed, ret=%d\n", ret);
 return 1;
 }

 debug_print("Before alf_task_wait\n");
 if ((ret = alf_task_wait(task_handle, -1)) < 0) {
 fprintf(stderr, "Error: alf_task_wait failed, ret=%d\n", ret);
 return 1;
 } else if (ret > 0) {
 debug_print("alf_task_wait returned number of work blocks=%d\n",
ret);
 }

 debug_print("In main: alf_task_wait done.\n");
 debug_print("Before alf_exit\n");
 if ((ret = alf_exit(handle, ALF_EXIT_POLICY_FORCE, 0)) < 0) {
 fprintf(stderr, "Error: alf_exit failed, ret=%d\n", ret);
 return 1;
 }

 debug_print("Execution completed successfully, exiting.\n");

 return 0;
}

 Chapter 7. Programming in distributed environments 465

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 7-16 SPU source code (~/halfhello/host/main_spu.c)

#include <stdio.h>
#include <alf_accel.h>
int debug = 1; // set to 0 to turn-off debug

int comp_kernel(void *p_task_context, void *p_parm_context,
 void *p_input_buffer, void *p_output_buffer,
void *p_inout_buffer,
 unsigned int current_count, unsigned int
total_count)
{
 if (debug)
 printf
 ("Entering alf_accel_comp_kernel, p_task_context=%p,
p_parm_context=%p, p_input_buffer=%p, p_output_buffer=%p,
p_inout_buffer=%p, current_count=%d, total_count=%d\n",
 p_task_context, p_parm_context, p_input_buffer,
p_output_buffer, p_inout_buffer, current_count, total_count);
 printf("Hello World!\n");
 if (debug)
 printf("Exiting alf_accel_comp_kernel\n");
 return 0;
}

int input_prep(void *p_task_context, void *p_parm_context, void *p_dtl,
 unsigned int current_count, unsigned
int total_count)
{
 if (debug)
 printf
 ("Entering alf_accel_input_list_prepare, p_task_context=%p,
p_parm_context=%p, p_dtl=%p, current_count=%d, total_count=%d\n",
 p_task_context, p_parm_context, p_dtl, current_count,
total_count);
 if (debug)
 printf("Exiting alf_accel_input_list_prepare\n");
 return 0;
}

int output_prep(void *p_task_context, void *p_parm_context, void
*p_dtl, unsigned int current_count,
 unsigned int total_count)
{
 if (debug)
466 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
 printf
 ("Entering alf_accel_output_list_prepare, p_task_context=%p,
p_parm_context=%p, p_dtl=%p, current_count=%d, total_count=%d\n",
 p_task_context, p_parm_context, p_dtl, current_count,
total_count);
 if (debug)
 printf("Exiting alf_accel_output_list_prepare\n");
 return 0;
}

ALF_ACCEL_EXPORT_API_LIST_BEGIN
 ALF_ACCEL_EXPORT_API("", comp_kernel);
 ALF_ACCEL_EXPORT_API("", input_prep);
 ALF_ACCEL_EXPORT_API("", output_prep);
ALF_ACCEL_EXPORT_API_LIST_END

Step 3: Build and deploy the files
Change to the topmost folder and build the application:

Example 7-17 Build and deploy the files

cd ~/halfhello
CELL_TOP=/opt/cell/sdk make

If everything proceeded as expected, you should have the following binaries
available:

halfhello/alf_hello_world_hybrid_host64

halfhello/spu/alf_hello_world_hybrid_spu64.so

Next, we need to deploy the ALF spu shared library
halfhello/spu/alf_hello_world_hybrid_spu64.so to the matching location on
the accelerator (QS21 Cell Blade) machine. You may use scp, for instance:

scp ~/halfhello/spu/alf_hello_world_hybrid_spu64.so user@qs21:/tmp

Step 4: Run
In order to properly run the application, execute the following sequence:

Example 7-18 Running the application

Set the environment
export LD_LIBRARY_PATH=/opt/cell/sdk/prototype/usr/lib64
export ALF_LIBRARY_PATH=/tmp
 Chapter 7. Programming in distributed environments 467

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
taskset -pc 1 $$
~/halfhello/alf_hello_world_hybrid_host64

Make sure all Hybrid DaCS daemons are properly running on the Host and the
Accelerator, before running

7.1.3 DAV - Dynamic Application Virtualization

IBM DAV, Dynamic Application Virtualization, is a technology offering available
from the IBM Alphaworks web site1. DAV implements the function offload
programming model. Using DAV, applications running under Microsoft Windows
can transparently tap on the compute power of the Cell BE. The originality lies in
the fact that the application that we wish to accelerate does not require any
source code changes. Of course, the offloaded functions will have to be written to
exploit the accelerator, the Cell BE in this case, but the main application remains
unaware. It will just benefit from an increased level of performance.

The technology was developped initially for the financial services sector but can
be used in other areas. The ideas are applicable wherever an application exhibits
computational kernels with a high computational intensity (ratio of computation
over data transfers) and cannot be re-written using other Cell BE frameworks,
possibly because we do not have its source code or because we do not wish to
port the whole application to the Cell BE environment.

This opens up a whole new world of opportunities to exploit the Cell BE
architecture for applications which did not initially target the Cell BE. It also offers
an increased flexibility as an application may have its front-end run on a laptop or
desktop with nice GUI bells and whistles and have the hardcore, number
crunching part run on specialized hardware like the Cell BE based blade servers.

From the accelerator perspective, DAV is a way to gain grounds into more
application areas without a need to port the necessary middleware to run the full
application. This is true for every type of acceleration model. The accelerator
platform, the Cell BE here, does not need to support many database clients,
external filesystems, job schedulers or grid middleware. This is taken care of at
the client level. This separation of work lets the accelerator have a very light
operating system and middleware layer as it is only providing raw computing
power.

DAV target applications
In its current implementation, DAV can be used to speed up Microsoft Windows
applications written in Visual C/C++ or Visual Basic (Excel spreasheets). DAV

1 http://www.alphaworks.ibm.com/tech/dav
468 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
supports accelerator platforms (the server) running Linux. They can be any x86
or ppc64 server, including Cell BE blade servers. DAV refers to the Windows part
of the application as the client side and the accelerator part as the server side.

The best candidate functions for offloading to a Cell BE platform are the ones
that show a high ratio of computation over communication. The increased levels
of performance obtained by running on the Cell BE should not be offset by the
communication overhead between the client and the server. The transport
mechanism currently used by DAV is TCP/IP sockets. Other options may be
explored in the future, to lower the latency and increase the network bandwidth.
Clearly, any advance on this front will increase, for a given application, the
number of functions that could be accelerated.

Workloads that have a strong affinity for parallelization are optimal. A good
example is option pricing using Monte-Carlo methods, like we describe in
Chapter 8, “Case study: Monte Carlo Simulation” on page 493.

DAV architecture
The DAV trick is to make a clever use of DLL or (Dynamically Loaded Libraries)2.
In fact, only functions that reside in a DLL can be offloaded to the server. What
DAV does is to fake the Microsoft Windows DLL that contains the client code with
a new one which communicates with the server to implement the offloaded
functions. Enabling an application with DAV means the following steps.

On the client side
First identify the functions to be offloaded : their C prototypes, what data they
need on input and what they produce on output. These functions need to reside
in a DLL.

On the server side
Then, write an implementation of the exact same functions, exploiting all the Cell
BE strengths. The implementation can use any Cell BE programming techniques.
The functions need to be made into 32bit DLLs (the equivalent of shared libraries
in Linux.)

Back to the client side
We then need to fake the application with a DAV DLL that will replace the original
DLL. It is called the stub library. This DLL will make the application happy but will
in fact interface with the DAV infrastructure to ship data back and forth between
the client and the server. We will show how to use the IBM DAV Tooling
component to create the stub library from the C prototypes of the offloaded
functions

2 See http://en.wikipedia.org/wiki/Dynamic-link_library
 Chapter 7. Programming in distributed environments 469

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
The whole process is described in the (Figure 7-9 on page 470). It shows the
unchanged application linked with the stub library on the client side (left) and the
actual implementation of the accelerated library on the server side (right).

Figure 7-9 How DAV works

Running a DAV enabled application
To run the application, we need to make sure the DAV runtime on the client side
knows how to contact the server and that on the server side that the DAV server
is running, waiting for being called by the client DAV infrastructure. We will show
how to start the DAV service on the DAV server and how to set the various DAV
runtime configuration parameters.

The client application is then run as usual. Only will it be faster, thanks to the
acceleration provided by the Cell BE.
470 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
System requirements
To install the DAV components, you need Microsoft Windows XP SP2 on the
client side and RHEL5 or Fedora7 on the Cell BE side. After downloading the
DAV software, you will get 3 files.

� DAVClientInstall.exe : run this executable to install the client part of the DAV
infrastructure. This needs to be installed on any machine where a DAV
application will run.

� dav-server.ppc64.rpm : install this RPM on every server that is to become a
DAV accelerator node.

� DAVToolingInstall.exe : run this executable to install the DAV Tooling part : the
one that creates the stub DLLs from the C prototypes of the functions to be
offloaded. This needs to be installed only on the machine where the stub
DLLs are to be created. The DAV Tooling requires the DAV client package to
be installed too.

A C compiler is required to create the DAV stub library. Although a Cygwin
environment with gcc would probably work, we have used Microsoft Visual C++®
2005 Express Edition as this is likely to be more common among Microsoft
developers. This is a trial version of Microsoft Visual C++ 2005. The installation is
described in the DAV user guide available at :
http://dl.alphaworks.ibm.com/technologies/dav/IBM_DAV_User_Guide.pdf.

The DAV client package comes with a few samples located under the C:\Program
Files\IBM\DAV\sample directory. We will describe the use of DAV following one of
the examples.

A Visual C++ application example
We will show the steps needed to DAV enable a Visual C++ application. The
application is very simple. It initializes two arrays and calls two functions to
perform some computations on the arrays. Here is the C source code for the
main program.

Example 7-19 The main() function

#include “Calculate.h”
int main(int argc, char * argv[])
{

#define N 100
int i;
double in[N],out[N];

for(i=0;i<N;i++)
in[i]=1.*i;
 Chapter 7. Programming in distributed environments 471

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
printf("calculate_Array sent %f\n",calculate_Array(in,out,N));
printf("calculate_Array2 sent %f\n",calculate_Array2(in,out,N));

return 0;
}

The two functions calculate_Array and calculate_Array2 are listed here. They
are the ones that we wish to offload to the accelerator. They take the in array as
input and compute the out array and the ret result.

Example 7-20 The computational functions

#include “Calculate.h”
double calculate_Array(double *in,double *out,int size)
{

int i;
double ret=0.;
for(i=0;i<size;i++) {

out[i]=2.*in[i];
ret+=in[i];

}
return ret;

}
double calculate_Array2(double in[],double out[],int size)
{

int i;
double ret=0.;
for(i=0;i<size;i++) {

out[i]=0.5*in[i];
ret+=out[i];

}
return ret;

}

The function prototypes are defined in a header file. This file is very important as
this is the input for the whole DAV process. In real situations, the C source code
for the main program, the functions and the header may not be available. But you
should find a way to create a prototype for each function that you wish to offload.
This is the only source file that is absolutely reauired to get DAV to do what it
needs to do. You may have to ask the original writer of the functions or do some
reverse engineering to figure out the parameters that are passed to the function.

Here is our header file for this example.
472 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Example 7-21 The Calculate.h header file.

// Calculate.h

#if defined(__cplusplus)
extern "C" {
#endif

double calculate_Array(double *in,double *out,int size);
double calculate_Array2(double in[],double out[],int size);

#if defined(__cplusplus)
}
#endif

We will now go through the steps required to enable DAV acceleration for this
application. The steps are listed below :

� build the original application : this will create an exe file and a DLL file for the
functions,

� do the DAV tooling using the header file for the functions. This will create the
stub DLL that will replace the original DLL,

� instruct the original application to use the stub DLL,

� on the Cell BE, compile the functions and put them in a shared library

� start the DAV server on the Cell BE

� change the DAV parameters on the client machine so that it points to the right
accelerator node

� run the application with DAV acceleration

Build the original application
Figure 7-10 shows how the original application is built. The .c and .h files are the
compute functions source code.
 Chapter 7. Programming in distributed environments 473

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 7-10 The original application

We have used the Visual C++ 2005 Express Edition for this. Here is a picture
showing the two projects : CalculateApp, the main program and Calculate, the
functions.
474 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Figure 7-11 The CalculateApp and Calculate projects in Visual C++ 2005 Express Edition

DAV tooling
Next, we apply the DAV Tooling which produces the stub DLLs and the source
code for the server side data marshalling. This is depicted in (Figure 7-12). This
step only requires the .h file.
 Chapter 7. Programming in distributed environments 475

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 7-12 The IBM DAV Tooling step

The DAV Tooling component comes bundled with Eclipse 3.3. You should have
your header file ready before starting the tooling. After starting the IBM DAV
Tooling, open a new project as shown on (Figure 7-13 on page 477) and choose
the IBM DAV Tooling wizard.
476 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Figure 7-13 Open a new project

Choose a name for the project and open the header file. We used the one
supplied in the IBM DAV client package, located under C:\Program
Files\IBM\DAV\sample\Library\Library.h. See (Figure 7-14 on page 478). You
must check the syntax using the “Check syntax” button. The “Finish” button will
not be active until you check the syntax of the header file.
 Chapter 7. Programming in distributed environments 477

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 7-14 Choose the header file

Next, you will then be taken to the DAV Tooling itself. For each function in the list,
double click the function prototype and you will then fill the semantic information,
describing for each argument, the type of data that is behind. This information will
be stored in DAV to generate the necessary code to send data between the client
and the server. This is shown below in (Figure 7-15 on page 479).
478 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Figure 7-15 Creating the semantic information for the functions

Once every function has been completely described, it’s time to generate the
stub DLL. This is accomplished by pressing the “Generate stub code” button as
shown in (Figure 7-16).

Figure 7-16 This will create the stub DLL

We experienced a slight problem with the Visual C++ 2005 Express Edition here.
The free version lacks some libraries that the linker tries to bring in when creating
the stub DLL. These libraries (odbc32.lib and odbccp32.lib) are not needed and
we just changed the following DAV script : C:\Program Files\IBM\IBM DAV
Tooling\eclipse\plugins\com.ibm.oai.appweb.tooling_1.0.1\SDK\compilers\vc so
that it would not try to link them in. This step creates many important files for the
client and the server side.

The files are located under the C:Documents and
settings\<username>\workspace\<projectname> directory. We find there :
 Chapter 7. Programming in distributed environments 479

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 7-22 List of files created by the DAV Tooling

client directory :
<libraryname>_oai.dll
<libraryname>_oai.lib
<libraryname>_stub.dll
<libraryname>_stub.lib

server directory :
<libraryname>_oai.cpp
<libraryname>_oai.h
makefile
changes_to_server_config_file

The client files will be needed to run the DAV enabled application. They must be
available in the search path for shared libraries. The _stub tagged files contain
the fake functions. The _oai tagged files contain the client side code for the input
and output data marshalling between the client and the server. We copied the
four files to the C:\Program Files\IBM\DAV\bin directory. We will point the
executable file to this path later on so that it can find the DLLs when it needs to
load them.

The server files (tagged _oai) contain the server side code for the input and
output data marshalling between the client and the server. These files will have to
be copied over and compiled on the server node. The makefile is provided to do
so. The changes_to_server_config_file file contains the instructions to make
the changes to the DAV configuration files on the server to be able to serve our
now offloaded functions.

Build the server side shared libraries
The next step is to implement the offloaded functions on the Cell BE server. In
our case, we just compiled them using the gcc compiler. In the real world, we
would implement the functions using the compute power of the SPE. The
process is shown in (Figure 7-17).
480 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Figure 7-17 Create the shared libraries on the Cell BE

Just like on the client side, we build the lib<libraryname>_oai.so library
containing the data marshalling library and the lib<libraryname>.so library
containing the actual computational functions. This last one is built using the
Calculate.cpp and Calculate.h files listed in Example 7-20 on page 472 and
Example 7-21 on page 473 using a command like :
 Chapter 7. Programming in distributed environments 481

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Example 7-23 Build the offloaded functions as a shared library

$ gcc -shared -fPIC -o libLibrary.so Calculate.cpp

We then have two libraries called libLibrary.so and libLibrary_oai.so that we
decided to put under /usr/dav/services/Library. This path can be changed to
some other location provided you also change the server config file accordingly.

Configure the server
The last step on the server is to configure it to be able to receive requests from
the client. There are a few things to do.

First we need to set a system wide IBM_DAV_PATH environment variable to point at
the location where DAV has been installed. The default is /usr/dav. We added a
dav.sh file under /etc/profile.d.

Next, we need to change the server DAV config file located under
$IBM_DAV_PATH/IBM_DAV.conf. We need to incorporate the changes that were
suggested in the changes_to_server_config_file file when we did the tooling
step. They basically tell the name by which the service will be called as well as
some path information regarding where the shared libraries for the application
and the data marshalling libraries are to be found. We can also adjust the logging
settings and the port number that the DAV server will be listening to. The exact
same port number will have to be specified in the client config file.. The contents
of our server file is shown in (Example 7-24)

Example 7-24 The contents of the IBM_DAV.conf file

#Logging level - 2 = normal
dav.log.level=2

#Log file location - change as desired
#ensure that the location specified has write access for the user
running dav
dav.log.directory=/var/log
dav.log.filename=ibm_dav.log

dav.listen.port=12456
dav.listen.max=20

#Services
dav.server.service.restarts=1
dav.server.service.restart.interval=3
482 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
dav.server.service.root=services
#Relatve path specified resulting in path of "$IBM_DAV_PATH/services"
#If this entry is missing it defaults to "$IBM_DAV_PATH/bin"

#Service Entries
#These entries will be automatically generated by IBM DAV Tooling in a
"changes_to_server_config_file.txt" file.
#The entries should be inserted here

#This is the sample library and its library path resulting in a
location of "$IBM_DAV_PATH/services/Library"
dav.server.service.Library=Library get_Library_oai Library_oai
dav.server.service.Library.root=Library

The last step on the server is to start the DAV server.

Example 7-25 Starting the DAV server

$IBM_DAV_PATH/bin/davStart -t Library

Library is the name of our service here. The Cell BE server is ready to receive
requests from the client application. We now get back to the client side.

Link the client application with the stub library
The last step before running the accelerated application is to relink the
application with the stub DLL. This is done using Visual C++ 2005 by changing
the linker parameters in the project properties dialog putting the C:\Program
Files\IBM\DAV\bin directory at the top of the list of searched paths.

Setting client side parameters
We need to tell the DAV client side where to get its acceleration from. This is
done by editing the IBM_DAV.conf file on the client. The file is located under
C:\Program Files\IBM\DAV. The contents of this file is listed on (Example 7-26 on
page 483). Our Cell BE blade address is listed there together with the port
number where the DAV server is listening to.

Example 7-26 The client IBM_DAV.conf file

#Logging level - 2 = normal
dav.log.level=2

#Log file location - change as desired
dav.log.directory=c:\
 Chapter 7. Programming in distributed environments 483

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
dav.log.filename=ibm_dav.log

#Connections to servers
#If sample1 is not available, sample2 will be tried
dav.servers=qdc221
qdc221.dav.server.ip=9.3.84.221
qdc221.dav.server.port=12456

The server is ready. The application has been instructed to load its computational
DLL from the path where the stud DLL has been stored. The DAV client know
which accelerator it can work with. We are ready to run the application using Cell
BE acceleration.

Run the application
We can now run the application, which although we have not changed it at all, will
enjoy Cell BE acceleration. (Figure 7-18 on page 485) shows how this all works.
Here are the steps :

1. the application calls a function which now lives in the stub library,

2. the control is passed to the data marshalling library that send input data to the
Cell BE server,

3. the data is shipped to the Cell BE server,

4. the data is received by the data marshalling library on the server side which in
turn calls the compute functions,

5. the results are handed back to the data marshalling library,

6. the output data is transferred back to the client side,

7. the data movement library handles the output data received,

8. the control is passed back to the stub compute library which will resume the
main application.
484 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Figure 7-18 The flow of the Cell BE accelerated application

Let’s start the application. See (Figure 7-19 on page 486).
 Chapter 7. Programming in distributed environments 485

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 7-19 Launching the application

Quickly after being started, the application will call the CalculateArray function
which is now coming from the stub library. This stub library will call the server
side. The system on which we ran the application had the Zone Alarms
Checkpoint Integrity Flex™ firewall installed. This software traps all socket
connections for security purposes. This is a simple way to see that our
application is now going to the network for its computational functions. This is
shown in (Figure 7-20).

Figure 7-20 Firewall captured the acceleration request
486 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
Of course you don’t want this to happen all the time, but this shows that we are
going to the network. Once we tell the firewall to allow the connection to
9.3.84.221:12456, our Cell BE listening on port 12456, the server side of DAV
will load the library containing our computation functions, get them to do their
work and ship back the output data. Upon returning from the computational
routines the application will continue its work as shown in (Figure 7-21 on
page 487).

Figure 7-21 The results from the DAV server have come back.

If we look at the server side, we see that transactions get logged to the DAV log
file. See (Figure 7-22). We are calling from 9.41.223.243.
 Chapter 7. Programming in distributed environments 487

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 7-22 All transactions are logged

Looking at the processes runnning on the server, we see that we have two
processes running on the host, the davStart daemon and the davService
process forked to handle our request. See (Figure 7-23 on page 488).

Figure 7-23 The DAV processes running on the server
488 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSPGM.fm
We also see from the maps file that our shared libraries have been loaded into
the DAV server process. Take a look at the seventh to tenth lines of output on
(Figure 7-24 on page 489).

Figure 7-24 The maps file for the davService process

In essence, this is how IBM DAV works. Every application, provided it gets its
computational functions from a DLL, can be accelerated on a Cell BE using DAV.

Visual Basic example: an Excel 2007 spreadsheet.
IBM DAV is a great tool for bringing Cell BE acceleration to Microsoft Windows
applications running on Intel processors. It requires no source code changes to
the application and provides the quickest path to Cell BE as it limits the porting
effort to the number crunching functions only. Still, some usage considerations
are important.

IBM DAV is best used for accelerating highly computational functions requiring
litlle input and output. This is a general statement but it is exacerbated here by
the fact that the data transfer is currently performed with TCP/IP which has high
latency. It should be kept in mind that no state data can be kept on the
 Chapter 7. Programming in distributed environments 489

7575CH_SYSPGM.fm Draft Document for Review February 15, 2008 4:59 pm
accelerator side between two invocations. Also, all the data needed by the
accelerated functions need to be passed as arguments for the DAV runtime to be
able to ship all the required information to the accelerator. The functions should
be self-contained.

The davServer process running on the Cell BE is a 32 bit Linux program and we
are therefore limited to 32 bit shared libraries on the server side.
490 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575PART_APP_REENGINEERING.fm
Part 3 Application
Re-engineering

In this part of the book we focus on specific application re-engineering topics:
Monte Carlo Simulation, and FFT Algorithms.

Part 3
© Copyright IBM Corp. 2007. All rights reserved. 491

7575PART_APP_REENGINEERING.fm Draft Document for Review February 15, 2008 4:59 pm
492 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
Chapter 8. Case study: Monte Carlo
Simulation

Monte Carlo simulation is a popular computational technique used in Financial
Services Sector, for example, to calculate stock prices, interest rates, exchange
rates, commodity prices, and risk management that requires estimating losses
with certain probability over a time period. Besides Financial Services Sector,
Monte Carlo simulation method is widely used in other engineering and scientific
areas, for example, Computational Physics. Calculating option pricing (option
value) is an important area in Financial Services Sector. An option is an
agreement between a buyer and a seller; the buyer of a European call option
buys the right to buy a financial instrument for a preset price(strike price) at
expiration (maturity). Similarly, the buyer of a European put option buys the right
to sell a financial instrument for a preset price at expiration. The buyer of an
option is not obligated to exercise the option; for example, if the market price of
the underlying asset is below the strike price on the expiration date, then the
buyer of a call option can decide not to exercise that option. In this chapter, we
show how to implement Monte Carlo simulation on Cell BE to calculate option
pricing based on Black-Scholes model by providing sample codes. We include
techniques to improve the performance and provide performance data. Also,
since mathematical functions such as log, exp, sine and cosine are used
extensively in option pricing, we discuss the use of the following SDK 3.0 libraries
by providing examples and Makefile:

8

© Copyright IBM Corp. 2007. All rights reserved. 493

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
� SIMD Math; this consists of SIMD versions(short vector versions) of the
traditional libm math functions on Cell BE.

� MASS (Mathematical Acceleration Subsystem); this provides both SIMD and
vector versions of mathematical intrinsic functions, which are tuned for
optimum performance on Cell BE; MASS treats exceptional values differently
and may produce slightly different results, compared to SIMD math.

;

494 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
8.1 Monte Carlo simulation for option pricing

Option pricing involves the calculation of option payoff values that depend on the
price of the underlying asset. The Block-Scholes model is based on the
assumption that the price of an asset follows geometric Brownian Motion, which
is described by a SDE (Stochastic Differential Equation). An Euler scheme is
used to discretize the SDE, and the resulting equation can be solve using Monte
Carlo simulation1. In Example 8-1, we show the basic steps for Monte Carlo
simulation to calculate the price S of an asset (stock) at different time steps 0 =
t0 < t1< t2 <...tM=T, where T is time to expiration(maturity). The current
stock price at time t0,S(t0)=S0, the interest rate, r, and the volatility, v, are
known.

Example 8-1 Pseudo code for Monte Carlo cycles; N is the number of cycles and M is the
number of time points in each cycle. r is the interest rate, v is the volatility

for i=0, 1, 2, .., N-1
{

 for j=0, 1, 2, .. M-1
{

get a standard normal random number Xij
 dtj = t j-t j-1

Si(t j) = S i(t j-1)*exp((r-0.5v2)*dt j+v*sqr t(dtj)*X
i
j))

}
}

In Example 8-2, we show a pseudo code example for calculating European
option call and put values.

Example 8-2 European option pricing; S is the spot price and K is the strike price

Ci= MAX(0,S[M-1] - K); i=0,1, ..., N-1

Pi= MAX(K-S[M-1],0); i=0,1, ..., N-1

Average current call value = exp(-rT)*(C0+C1+....+CN-1)/N

Average current put value = exp(-rT)*(P0+P1+....+PN-1)/N

1 See references [12] or [24] in “Other publications” on page 619.
 Chapter 8. Case study: Monte Carlo Simulation 495

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
In Example 8-3, we give a pseudo code to calculate Asian option call and put
values.

Example 8-3 Asian option pricing; S is the spot price and K is the strike price.

Bi = (S i(t0) + S
i(t1) ++ S

i(tM-1))/M; i=0,1,2, ..., N-1
Ci = MAX(0,B i-K); i=0,1,2, ..., N-1
Pi = MAX(B i-K, 0); i=0,1,2, ..., N-1
Average current call value = exp(-rT)*(C0+C1+....+CN-1)/N
Average current put value = exp(-rT)*(P0+P1+....+PN-1)/N

We note that there are different types of options traded in the market; for
example, an American call/put option gives the buyer the right to sell/buy the
underlying asset at strike price on or before the expiration date2.

The main computational steps for option values are in Example 8-1; further, the
most time consuming part is getting the standard Gaussian(normal) random
variables; these are random numbers that have the following probability density
function with mean 0 and standard deviation 1::

8.2 Methods to generate Gaussian(normal) random
variables

In this section, we discuss some of the algorithms available to generate
Gaussian random numbers. The general procedure is as follows:

1. generate a 32-bit random unsigned integer x

2. convert x to a float or double uniform random variable y in (0,1)

3. transform y to a standard normal random variable z

Mersenne Twister3 is a popular method to generate random numbers that are
32-bit unsigned integers. This method has good properties such as long period,

2 For more details on American style option calculation methods, see reference [12] in “Other
publications” on page 619.

f x() 1
2Π
------- 1

2
---x2

–⎝ ⎠
⎛ ⎞ , -∞ x ∞< <exp=

3 See reference [11] in “Other publications” on page 619.
496 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
good distribution property, and efficient use of memory. Also, there are other
methods that are equivalently good. SDK3.0 provides Mersenne Twister as one
of the random number generators4. This method takes an unsigned integer as
seed and generates a sequence of random numbers. Next step is to change
these unsigned 32-bit integers to uniform random variables in (0, 1). The final
step is to transform the uniform random numbers to standard normal random
numbers for which Box-Muller method or its variant polar method can be used.
Box-Muller method as well as the polar method requires two uniform random
numbers and returns two normal random numbers5. In the following example, we
give a sample code to generate two standard normal single precision random
numbers; the code can be easily changed to generate two standard normal
double precision random numbers.

Example 8-4 Sample code to generate standard normal random numbers

//generate uniform random numbers
float rand_unif()
{

float c1= 0.5f, c2 = 0.2328306e-9f;
 return (c1 + (signed) rand_MT() * c2);

}

//Box-Muller method
void box_muller_normal(float *z)
{
 float pi=3.14159f;
 float t1,t2;

 t1 = sqrtf(-2.0f *logf(rand_unif());
 t2 = 2.0f*pi*rand_unif();

 z[0] = t1 * cos(t2);
z[1] = t1 * sin(t2);

}
//polar method
void pollar_normal(float *z)
{

float t1, t2, y;

do {
t1 = 2.0f * rand_unif() - 1.0f;

4 See reference [22] in “Other publications” on page 619.
5 See reference [23] in “Other publications” on page 619.
 Chapter 8. Case study: Monte Carlo Simulation 497

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
 t2 = 2.0f * rand_unif() - 1.0f;
y = t1 * t1 + t2 * t2;

} while (y >= 1.0f);

y = sqrtf((-2.0f * logf(y)) / y);
z[0] = t1 * y;
z[1] = t2 * y;

}

8.3 Parallel and vector implementation of Monte Carlo
algorithm on Cell

In this section, we show how to parallelize and vectorize the above Monte Carlo
simulation algorithm for option pricing on Cell. Also, we discuss the use of SIMD
Math, MASS SIMD and MASS Vector libraries.

8.3.1 Logical steps

In Figure 8-1 we show the logical steps for parallelizing the Monte Carlo
simulation.
498 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
Figure 8-1 Logical steps: parallelizing the Monte Carlo simulation

The logical steps from Figure 8-1 are as follows:

1. Input data: Reads input values such as number of Monte Carlo simulations,
spot_price, strike_price, interest_rate, volatility, time_to_maturity, num_of_
time steps.

2. Work partitioning: Decides how many SPEs to use based on the number of
simulations required; partitions the work and prepares the data needed for
each SPE.

3. Set up SPE threads: Creates SPE contexts and execution threads, loads the
SPE program, starts the execution of SPE threads using libspe2 functions.

4. Get data: Each SPE gets initial seed values and data for Monte Carlo
simulation using DMA.
 Chapter 8. Case study: Monte Carlo Simulation 499

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
5. Gaussian random numbers: Each SPE generates unsigned integer random
numbers and converts them to standard Gaussian random numbers using
Box-Muller transformation.

6. Monte Carlo cycles: Each SPE performs its portion of Monte carlo cycles
and computes an average option value as result.

7. Send the result: Each SPE sends its result to PPE using DMA.

8. Collect results: Checks if work is done by SPEs and collects the results form
SPEs.

9. Final value: Calculates the average of the results collected and computes the
final option value.

In what follows we give more details for some of the above steps; also, because
the computational steps for getting European option call and put values and
Asian option values are similar, we restrict our discussion to European option call
value.

In general, the number of Monte Carlo simulations, N, is very large(millions or
hundreds of thousands) since the rate of convergence for Monte Carlo simulation
method is 1/sqrt(N). Further, the Monte Carlo cycles (simulations) are
independent; hence, we can divide the number of cycles, N in Example 8-1, by
the number of available SPEs and distribute the work load among the SPEs in
Step 2 in the graph. Further, in each SPE, four Monte Carlo cycles can be done
simultaneously for single precision (two cycles for double precision) using Cell
BE SIMD instructions. So, it is important that the number of Monte Carlo cycles
allocated for each SPE is a multiple of four for single precision and two for double
precision.

As we have noted before, in Example 8-1, the main computational part is
generating standard normal random numbers, so it requires careful
implementation to reduce the overall computing time. For computational
efficiency and because of limited local stores available on SPEs, precomputing
all random numbers and storing them should be avoided. Instead, generating the
random numbers during the Monte Carlo cycles in each SPE is recommended.
But, this poses a major challenge in the sense that we cannot simply implement
the serial random number generators such as Mersenne Twister that generates a
sequence of random numbers based on a single seed value as input. At a
minimum, generating random numbers on SPEs in parallel requires different
seed values as input6. However, using different seeds on different SPEs is not
enough since the generated random numbers may be correlated; that is, the
random numbers are not independent; hence, the quality of Monte Carlo
simulations will not be good and that leads to inaccurate results. Note that these

6 Note: the Mersenne Twister random number generator with different seeds on SPEs is used in
reference [13], “Other publications” on page 619
500 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
remarks apply to all parallel machines, not specific to Cell BE. One way to avoid
these problems is to use parallel random number generators such as Dynamic
Creator7 on Cell.

Dynamic Creator is based on Mersenne Twister algorithm, which depends on a
set of parameters, called Mersenne Twister parameters, to generate a sequence
of random numbers for a given seed. The main difference in Dynamic Creator
algorithm is that we can make certain Mersenne Twister parameters different on
different SPEs so that the generated sequences are independent to each other,
resulting in high quality random numbers overall. Also, Dynamic Creator provides
the capability to precompute these parameters, which can be done on PPE and
saved in an array; note that this has to be done only once for a given period.

Following the logical steps given in step 2 of Figure 8-1, on PPE, we store the
values such as number of simulations, J=N/number_of_SPUs, interest rate, r,
volatility, v, number of time steps, Mersenne Twister parameters, and the initial
seeds in the control structure, defined in Example 8-5, to transfer the data to
SPEs. Based on these input values, in step 6 Figure 8-1, the average call value:

Ck = (C
0+ C1+ ...+ CJ-1)/J; k= 1, 2, ... number_of_SPUs,

where Ci is defined in Example 8-2 on page 495. As indicated in the final step in
Figure 8-1, these results are combined to compute the present call value:

exp(-rT)*((C1+C2+...+Ck)/number_of_SPUs)

In Example 8-6, we provide a sample code for the main program on SPUs to
calculate European option call value. First, in Example 8-5 we define the control
structure that will be used to share data between PPU and SPUs.

Example 8-5 Sample control structure to share data between PPU and SPUs

typedef struct _control_st {
 unsigned int seedvs[4]; /* array of seeds */
 unsigned int dcvala[4]; /* MT parameters */
 unsigned int dcvalb[4]; /* MT parameters */
 unsigned int dcvalc[4]; /* MT parameters */
 int num_simulations; /* number of MC simulations */
 float spot_price;
 float strike_price;
 float interest_rate;
 float volatility;
 int time_to_maturity;
 int num_time_steps;;
 float *valp;

7 See reference [10] in “Other publications” on page 619.
 Chapter 8. Case study: Monte Carlo Simulation 501

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
 char pad[28]; /* padding */
} control_st;

Example 8-6 Sample SPU main program for Monte Carlo simulation

#include <spu_mfcio.h>

/* control structure */
control_st cb __attribute__ ((aligned (128)));
//

int main(unsigned long long speid, unsigned long long parm)
{
/*

DMA control structure cb into local store.
*/

spu_writech(MFC_WrTagMask, 1 << 0);
spu_mfcdma32((void *)(&cb), (unsigned int)parm,

sizeof(cb),0,MFC_GET_CMD);
 (void)spu_mfcstat(2);

//Get input values for Monte Carlo simulation.

 my_num_simulations = cb.num_simulations;
 s = cb.spot_price;
 x = cb.strike_price;
 r = cb.interest_rate;

sigma = cb.volatility;
 T = cb.time_to_maturity;

nt = cb.num_time_steps;

//get seed
seed = ((vector unsigned int){cb.seedvs[0], cb.seedvs[1],

cb.seedvs[2], cb.seedvs[3]});

//
//Get Mersenne Twister parameters that are different on SPUs

 A = ((vector unsigned int){cb.dcvala[0], cb.dcvala[1],
cb.dcvala[2], cb.dcvala[3]});
502 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
 maskB = ((vector unsigned int){cb.dcvalb[0], cb.dcvalb[1],
cb.dcvalb[2], cb.dcvalb[3]});

 maskC = ((vector unsigned int){cb.dcvalc[0], cb.dcvalc[1],
cb.dcvalc[2], cb.dcvalc[3]});

/Intialize the random number generator
rand_dc_set(seed, A, maskB, maskC);

// compute European option average call value -- Monte Carlo simulation
 monte_carlo_eur_option_call(s, x , r, sigma, T, nt,

,my_sim_size, &value);

// send the value to PPU
spu_writech(MFC_WrTagMask, 1 << 0);

spu_mfcdma32((void *)(&value),
(unsigned int)(cb.valp), sizeof(float),0,MFC_PUT_CMD);

// wait for the DMA to complete
(void)spu_mfcstat(2);

 return 0;
}

8.3.2 Sample code for European option on SPU

Next, we provide a sample code to compute European option call value on SPUs.
Since the Monte Carlo cycles are independent, four cycles can be done
simultaneously by vectorizing the outer loop in Example 8-1 on page 495. The
following sample code uses SPU vector intrinsics and SIMD Math functions.

Example 8-7 Sample SPU vector code for European option call value

#include <spu_intrinsics.h>
#include <simdmath/expf4.h>
#include <simdmath/sqrtf4.h>
//
#include <sum_across_float4.h>

Attention: In control_st, padding, pad[28], is done so that its size is 128 bytes.
otherwise, the DMA commands in the above program will give bus error
because the minimum length for a DMA is 128 bytes.
 Chapter 8. Case study: Monte Carlo Simulation 503

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
//
/*
 s spot price
 x strike (exercise) price,
 r interest rate
sigma volatility
t_m time to maturity
nt number of time steps
*/
void monte_carlo_eur_option_call(float s, float x, float r,

float sigma, float t_m,int nt,int nsim,float *avg)
{
 vector float c,v0,q,zv;
 vector float dtv,rv,vs,p,y,rvt,sigmav,xv;
 vector float sum,u,sv,sinitv,sqdtv;
 int i,j,tot_sim;
//
 v0 = spu_splats(0.0f);
 c = spu_splats(-0.5f);
 dtv = spu_splats((t_m/(float)nt));
 sqdtv = _sqrtf4(dtv);
 sigmav = spu_splats(sigma);
 sinitv = spu_splats(s);
 xv = spu_splats(x);
 rv = spu_splats(r);
 vs = spu_mul(sigmav, sigmav);
 p = spu_mul(sigmav, sqdtv);
 y = spu_madd(vs, c, rv);
 rvt = spu_mul(y,dtv);

 tot_sim = ((nsim+3)&~3) >> 2;
sum = spu_splats(0.0f);

 for (i=0; i < tot_sim; i++)
 {
 sv = sinitv;
 for (j=0; j < nt; j++)
 {

rand_normal(zv);
 u = spu_madd(p , zv, rvt);
 sv = spu_mul(sv,_expf4(u));
 }
 q = spu_sub(sv,xv);

sv = _fmaxf4(q ,v0);
504 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
 sum = spu_add(sum,sv);

 }

 *avg = _sum_across_float4(sum)/((float)tot_sim*4.0f);

Note that in the above example, in the step that computes tot_sim, we first make
the number of simulations a multiple of four before dividing it by four. In addition
to using simdmath functions expf4 and sqrtf4, we have also used the function
_fmaxf4 to get the component-wise maximum of two vectors and SDK library
function _sum_across_float4 to compute the sum of the vector components.

8.4 Generating Gaussian random numbers on SPUs

In this section, we discuss some techniques to generate Gaussian(normal)
random numbers on SPUs. Note that the main parts in Example 8-7 are the
routine rand_normal for generating standard Gaussian random numbers and the
rest of the instructions for option value calculations. As we noted in section 8.2,
“Methods to generate Gaussian(normal) random variables” on page 496,
obtaining standard Gaussian random numbers requires two main computational
steps;

1. Generating random unsigned integer numbers.

2. Computing standard normal random numbers, for example, using Box-Muller
method or Polar method.

For step 1, we recommend a parallel random number generator such as
Dynamic Creator8. We note that the library9 consists of functions to generate
different random numbers, but it doesn’t include Dynamic Creator. The code in
Dynamic Creator for generating random numbers requires only integer
computations, which can be easily changed to vector instructions using SPU
intrinsics. For the vector version of Dynamic Creator, the components of a seed
vector should be independent; thus, on 16 SPUs, 64 independent seed values,
unsigned integers, are needed. As an example, one can use thread ids as seed
values. We note that for Dynamic Creator. as indicated in Example 8-7, only

8 See reference [10] in “Other publications” on page 619.
9 See reference [23] in “Other publications” on page 619.
 Chapter 8. Case study: Monte Carlo Simulation 505

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
three Mersenne Twister parameters A, maskB and maskC that are different on
SPUs need to be set when the random number generator is initialized; the rest of
the Mersenne Twister parameters do not change and they can be inlined in the
random number generator code.

For step2, we give a sample SPU code in Example 8-8, which is a vector version
of Box-Muller method in Example 8-4; here, we convert the vectors of random
unsigned integers to vectors of floats, generate uniform random numbers, and
use Box-Muller transformation to obtain vectors of standard normal random
numbers.

Example 8-8 Sample single precision SPU code to generate standard Gaussian random
numbers.

#include <spu_mfcio.h>
#include <simdmath/sqrtf4.h>
#include <simdmath/cosf4.h>
#include <simdmath/sinf4.h>
#include <simdmath/logf4.h>

//

void rand_normal_sp(vector float *z)
{
 vector float u1,u2,v1,v2,w1,p1;
 vector float c1 = ((vector float) { 0.5f,0.5f,0.5f,0.5f});
 vector float c2 = ((vector float) { 0.2328306e-9f, 0.2328306e-9f,

0.2328306e-9f, 0.2328306e-9f});
 vector float c3 = ((vector float) { 6.28318530f, 6.28318530f,

6.28318530f, 6.28318530f});
 vector float c4 = ((vector float) { -2.0f,-2.0f,-2.0f,-2.0f});
 vector unsigned int y1, y2;

// get y1, y2 from random number generator.

//convert to uniform random numbers
 v1 = spu_convtf((vector signed int) y1, 0) ;
 v2 = spu_convtf((vector signed int) y2, 0) ;
 u1 = spu_madd(v1, c2, c1);
 u2 = spu_madd(v2, c2, c1);

// Box-Muller transformation
 w1 = _sqrtf4(spu_mul(c4,_logf4(u1)));
 p1 = spu_mul(c3, u2);
 z[0] = spu_mul(w1, _cosf4(p1));
506 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
 z[1] = spu_mul(w1, _sinf4(p1));
}

In the above example, the C statement (vector signed int) y1 converts the
components of y1 that are unsigned integers to signed integers; the instruction
spu_convtf converts each component of the resulting vector signed int to a
floating-point value and divides it by 2 scale; scale=0. For double precision, the
generated 32-bit unsigned integer random numbers are converted to
floating-point values and extended to double precision values; note that a double
precision vector will have only two elements because each element is 64-bit long.
In the above example, the vector y1 has four elements that are 32-bit unsigned
integer random numbers. So, we can compute the required two double precision
vectors of uniform random numbers for Box-Muller transformation by shuffling the
components of y1; this avoids the computation of y2 in the above example. To
explain this idea, we give a sample code in Example 8-9.

Example 8-9 Sample double precision SPU code to generate standard Gaussian random
numbers.

#include <spu_mfcio.h>
#include <simdmath/sqrtd2.h>
#include <simdmath/logd2.h>
#include <simdmath/cosd2.h>
#include <simdmath/sind2.h>

//

void rand_normal_dp(vector double *z)
{
 vector double u1,u2,v1,v2,w1,p1;
 vector double c1 = ((vector double) { 0.5, 0.5});
 vector double c2 = ((vector double) { 0.2328306e-9, 0.2328306e-9});
 vector double c3 = ((vector double) { 6.28318530, 6.28318530});
 vector double c4 = ((vector double) { -2.0, -2.0});

vector unsigned char pattern={4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15,
8, 9, 10, 11};
 vector unsigned int y1, y2;

// get y1 from random number generator.

 y2 = spu_shuffle(y1, y1, pattern);
 Chapter 8. Case study: Monte Carlo Simulation 507

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
//convert to uniform random numbers
 v1 = spu_extend(spu_convtf((vector signed int) y1, 0)) ;
 v2 = spu_extend(spu_convtf((vector signed int) y2, 0)) ;
 u1 = spu_madd(v1, c2, c1);
 u2 = spu_madd(v2, c2, c1);

// Box-Muller transformation
 w1 = _sqrtd2(spu_mul(c4,_logd2(u1)));
 p1 = spu_mul(c3, u2);
 z[0] = spu_mul(w1, _cosd2(p1));
 z[1] = spu_mul(w1, _sind2(p1));
}

Next, we discuss some ideas to tune the code on SPUs. In order to improve
register utilization and instruction scheduling, the outer loop in Example 8-7 can
be unrolled. Further, since a vector version of Box-Muller method as well as Polar
method computes two vectors of standard normal random numbers out of two
vectors of unsigned integer random numbers, we can use all generated vectors
of normal random numbers by unrolling the outer loop, for example, to a depth of
two or four.

Note that the in the above examples, we have used mathematical intrinsic
functions such as exp, sqrt, cos and sin that are from SIMD math library, which
takes advantage of SPU SIMD (vector) instructions and provides significant
performance gain over the standard libm math library10. The Mathematical
Acceleration Subsystem (MASS), available in SDK3.0, provides mathematical
intrinsic functions that are tuned for optimum performance on PPU and SPU.
MASS libraries provide better performance than SIMD math libraries for most of
the intrinsic functions. In some cases the results for MASS functions may not be
as accurate as the corresponding functions in SIMD math libraries, and MASS
may handle the edges differently11. We found with our implementation of
European option pricing that performance can be improved using MASS and the
accuracy of the computed result using MASS is about the same as that using
SIMD math. We note that the current version of MASS in SDK 3.0 provides only
single precision math intrinsic functions.

Use of MASS inline functions instead of SIMD math functions is easy; for
example, it requires only changing the SIMD math include statements in

10 See reference [21] in “Other publications” on page 619.
11 Note, a comparison of the accuracy of results between MASS functions and SIMD math functions

can be found in reference [22] in “Other publications” on page 619.
508 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
Example 8-7 on page 503 and in Example 8-8 on page 506 by the corresponding
include statements given in Example 8-10 and in Example 8-11, respectively.

Example 8-10 Include statements to include MASS intrinsic functions on SPUs

#include <mass/expf4.h>
#include <mass/sqrtf4.h>

Example 8-11 Sample include statements to include MASS intrinsic functions on SPUs.

#include <mass/sqrtf4.h>
#include <mass/cosf4.h>
#include <mass/sinf4.h>
#include <mass/logf4.h>

Alternatively, in the above examples, one can use MASS SIMD library functions
instead of inlining them; for this, one needs to change the include statements and
the function names. Example 8-12, which is a modified version of Example 8-8
on page 506, shows this. Further, the MASS SIMD library libmass_simd.a should
be added at the link step; see the Makefile, Example 8-13 on page 510.

Example 8-12 Sample SPU code to generate standard Gaussian random numbers using
MASS SIMD library

#include <spu_mfcio.h>
#include <mass_simd.h>
//

void rand_normal_sp(vector float *z)
{
 vector float u1,u2,v1,v2,w1,p1;
 vector float c1 = ((vector float) { 0.5f,0.5f,0.5f,0.5f});
 vector float c2 = ((vector float) { 0.2328306e-9f, 0.2328306e-9f,

0.2328306e-9f, 0.2328306e-9f});
 vector float c3 = ((vector float) { 6.28318530f, 6.28318530f,

6.28318530f, 6.28318530f});
 vector float c4 = ((vector float) { -2.0f,-2.0f,-2.0f,-2.0f});
 vector unsigned int y1, y2;

// get y1, y2 from random number generator.

//convert to uniform random numbers
 Chapter 8. Case study: Monte Carlo Simulation 509

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
 v1 = spu_convtf((vector signed int) y1, 0) ;
 v2 = spu_convtf((vector signed int) y2, 0) ;
 u1 = spu_madd(v1, c2, c1);
 u2 = spu_madd(v2, c2, c1);

// Box-Muller transformation
 w1 = sqrtf4(spu_mul(c4,logf4(u1)));
 p1 = spu_mul(c3, u2);
 z[0] = spu_mul(w1, cosf4(p1));
 z[1] = spu_mul(w1, sinf4(p1));
}

Example 8-13 Sample Make file to use MASS SIMD library

CELL_TOP = /opt/cell/sdk/
SDKLIB = /opt/cell/sdk/prototype/sysroot/usr/lib

Choose xlc over gcc because it gives slightly better performance
SPU_COMPILER = xlc
#

PROGRAMS_spu := mceuro_spu

INCLUDE = -I/usr/spu/include

OBJS = mceuro_spu.o

LIBRARY_embed := mceuro_spu.a

use default optimization because higher levels do not improve
CC_OPT_LEVEL := -O3

IMPORTS = /usr/spu/lib/libmass_simd.a

###
#
make.footer
###
#

ifdef CELL_TOP
 include $(CELL_TOP)/buildutils/make.footer
else
510 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
 include ../../../../../make.footer
endif

It is straightforward to get a double precision version of the above example from
Example 8-9 on page 507.

Recall that the number of Monte Carlo cycles for European Option pricing is
typically very large -- millions or hundreds of thousands. In such cases, the call
overhead for math functions can degrade the performance. In order to avoid call
overhead and improve the performance, one can use the MASS Vector library12
to provide the math functions to calculate the results for an array of input values
with a single call. To link to MASS vector library, we need to replace
libmass_simd.a by libmassv.a in IMPORTS in the Makefile, Example 8-13 on
page 510. The following example shows how to restructure the code,
Example 8-12 on page 509, to use MASS vector functions.

Example 8-14 Sample code to use MASS vector functions

#include <spu_mfcio.h>
#include <massv.h>

//define buffer length
#define BL 32
#define BL2 64

void rand_normal_sp(vector float *z)
{

vector float c1 = ((vector float) { 0.5f,0.5f,0.5f,0.5f});
 vector float c2 = ((vector float) { 0.2328306e-9f, 0.2328306e-9f,

0.2328306e-9f, 0.2328306e-9f});
 vector float c3 = ((vector float) { 6.28318530f, 6.28318530f,

6.28318530f, 6.28318530f});
 vector float c4 = ((vector float) { -2.0f,-2.0f,-2.0f,-2.0f});

vector unsigned int y[BL2] __attribute__ ((aligned (16)));
 vector float u1[BL] __attribute__ ((aligned (16)));
 vector float u2[BL] __attribute__ ((aligned (16)));
 vector float w[BL] __attribute__ ((aligned (16)));

vector float v1,v2;
int i, size=4*BL;

// get random numbers in the array y
//convert to uniform random numbers

12 See reference [22] in “Other publications” on page 619.
 Chapter 8. Case study: Monte Carlo Simulation 511

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
for (i=0, j=0; i < BL; i++, j+=2)
 {
 v1 = spu_convtf((vector signed int) y[j], 0) ;
 v2 = spu_convtf((vector signed int) y[j+1], 0) ;
 u1[i] = spu_madd(v1, c2, c1);
 u2[i] = spu_madd(v2, c2, c1);

 }

//MASS
vslog ((float *) u1, (float *) u1, &size);

for (i=0; i < BL; i++)
 {
 u1[i] = spu_mul(c4,u1[i]);
 u2[i] = spu_mul(c3,u2[i]);
 }

 vssqrt ((float *)u1, (float *)u1, &size);
 vssincos ((float *)w, (float *)u2, (float *)u2, &size);

for (i=0, j=0; i < BL; i++, j+=2)
 {
 z[j] = spu_mul(u1[i], u2[i]);
 z[j+1] = spu_mul(u1[i], w[i]);
 }

Note that in the above example, pointers to vector floats such as u1 and u2 are
cast to pointers of floats in the MASS vector function calls since the array
arguments in the MASS vector functions are defined as pointers to floats; for
details, see the prototypes for the SPU MASS vector functions in
/usr/spu/include/massv.h.

8.5 Improving the performance

In this section, we discuss ideas to improve the performance and provide
performance data13. With our European option pricing code implementation, we
512 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_MONTECARLO.fm
found that xlc gives better performance than gcc. Further, besides using MASS,
we used the following techniques to improve the performance.

� Unrolled the outer loop in Example 8-7 to improve register utilization and
instruction scheduling. Note that, since a vector version of Box-Muller method
as well as Polar method computes two vectors of standard normal random
numbers out of two vectors of unsigned integer random numbers, all
generated vectors of normal random numbers can be used by unrolling the
outer loop, for example, to a depth of eight or four.

� Inlined some of the routines to avoid call overhead.

� Avoided branching (if and else statements) as much as possible within a loop.

� Reduced the number of global variables to help compiler with register
optimization.

Moreover, we used -O3 compiler optimization flag with xlc; also, we tried higher
level optimization flags such as -O5, which didn’t make a significant performance
difference, compared to -O3.

In Figure 8-2 on page 514, we provide the performance results in terms of
millions of simulations per second (M/sec) for the tuned single precision code for
European option on QS21(clock speed 3.0 GHz); the input values are given in
Example 8-15 on page 513.

Example 8-15 Input values for Monte Carlo simulation

num_simulations = 200000000
spot_price = 100.0

strike_price = 50.0
interest_rate = 0.10

volatility = 0.40;
time_to_maturity = 1

num_time_steps = 1

13 Note: some general guidelines for improving performance of an application on SPUs are provided
buy reference [14] in “Other publications” on page 619.
 Chapter 8. Case study: Monte Carlo Simulation 513

7575CH_EXAMPLES_MONTECARLO.fm Draft Document for Review February 15, 2008 4:59 pm
Figure 8-2 Performance of Monte Carlo simulation on QS21.

150
300

600

1197

2392

0

500

1000

1500

2000

2500

SPU 1 SPUs 2 SPUs 4 SPUs 8 Spus 16

M/sec
514 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_SEISMIC.fm
Chapter 9. Case study: Implementing
an FFT algorithm

This chapter describes the code development process and stages for an FFT
library that is included as a prototype project in the Cell BE SDK 3. FFT
algorithms are key in many problem domains including the siesmic industry.

The focus of this chapter is to provide a real world example of the code
development process for the Cell BE processor running on an IBM QS21 Blade.
The snippets of source code found in this chapter are included for illustration and
do not consititue a complete FFT solution.

The following topics are presented in the following sections of this chapter:

� A description of the FFT algorithm implemented on Cell BE

� A description of the development process

� Evolution of select SPU code fragments during development

� Various performance improvement techniques

9

© Copyright IBM Corp. 2007. All rights reserved. 515

7575CH_EXAMPLES_SEISMIC.fm Draft Document for Review February 15, 2008 4:59 pm
9.1 Motivation for an FFT algorithm

FFTs (Fast Fourier Transforms) are used in many applications that process raw
data looking for a signal. There are many FFT algorithms ranging from relatively
simple powers-of-two algorithms to powerful, but CPU intensive algorithms
capable of working on arbitrary inputs. FFT algorithms are well suited to the Cell
BE processor because they are floating point intensive and exhibit regular data
access patterns.

The IBM Cell BE SDK 3.0 contains a prototype FFT library written to explicitly
exploit the features of the Cell BE processor. This library uses several different
implementations of an algorithm to solve a small class of FFT problems. The
algorithm is based on a modified Cooley-Tukey type algorithm. All of the
implementations use the same basic algorithm, but each implementation does
something different to make the algorithm perform the best for a particular range
of problem sizes.

The first step in any development process is to start with a good algorithm that
maps well to the underlying architecture of the machine. The best compilers and
hardware can not hide the deficiencies imposed by a poor algorithm - it is
necessary to start with a good algorithm. The following are some of the
considerations that went into selecting an algorithm:

� Requirement: support for problem sizes that can be factored into powers of 2,
3, and 5. This eliminated straight 'powers of two' or PFA (Prime Factor
Algorithm) algorithms.

� A single problem should fit within the memory of an SPU. This kept the code
simpler by eliminating the need for two or more SPUs to coordinate and work
on a single problem.

9.2 Development Process

There is no formal set of rules or process for for developing or porting an existing
application to the Cell BE processor. The program team that wrote this FFT
library developed an interative development process mapped on top of a
pre-defined set of logical stages. The interative development process was useful
during some or all of the development statges.

Figure 9-1 on page 517 is a pictorial representation of the stages and process
used during implementation of the FFT code for Cell BE processor. The following
sections provide a description of this figure in more detail.
516 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_SEISMIC.fm
Figure 9-1 Development states and process

9.2.1 Code

The box labeled “code” represents the actual physical writing of code. This may
include the implementation of a formal program specification or coding done
without any documentation other than code directly from the programmers brain.

Experienced programers may require fewer code interations while less
experienced programmers normally take more iterations. There is no concept of
duration other than it is not unusal to break code sessions into logical functional
elements.

Coding can be performed in whatever is convienent to the programmers. The
IBM Eclipse IDE for Cell BE found in the SDK is a good choice for writing and
debugging Cell BE code. Some of the team that implemented the FFT library
used in IBM Eclipse IDE for Cell BE while others on the team make use of classic
Linux based editors and debuggers or the C programmers friend, printf.
 Chapter 9. Case study: Implementing an FFT algorithm 517

7575CH_EXAMPLES_SEISMIC.fm Draft Document for Review February 15, 2008 4:59 pm
9.2.2 Test

The “test” box inside the Process box in Figure 9-1 on page 517 represents the
testing of code that has been compiled. For Cell BE applications, testing is still a
necessary and critical step in producing well performing applications.

The test process for Cell BE application will undoubtably require testing for code
performance. Testing is normally focused on code that runs on the Cell BE SPU
and the focus is more on making sure all code paths are processed and the
accuracy of the output.

9.2.3 Verify

The “verify” box in the process box in Figure 9-1 on page 517 represents an
important aspect of many Cell BE applications. The need for verification of code
that runs on the SPU is of special importance. The Cell BE SPE single-precision
floating point is not the same implementation as found in the PPU and other
processors.

Code being ported from other processor platforms present a unique oppurtunity.
The verification of Cell BE programs by comparing output from the original
application for accuracy. A binary comparison of single-precision floating point be
performed to eliminate conversions to and from textual format.

The FFT coding team chose to write a separate verification program to verify
output. The verification code made use of a well known open source FFT library
which is supported on PowerPC processors. The results from the Cell BE FFT
code was compared at a binary level with the results from the open source FFT
results. The example code in Example 9-2 on page 519 shows how
single-precision floating point was converted to displayable hexidecimal and then
converted back to single-precsion floating point. These functions are one way to
compare SPE and PPE floats.

Example 9-1 on page 518 shows a simple C function from the test program
which illustrates how two single-precsion floating point values representing an
complex number is output in displayable hexidecimal form.

Example 9-1 Single-precision floats as displayable hexidecimal

typedef union {
 unsigned int i;
 float f;
} Conv_t;

void printOutput(float f1, float f2) {
518 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_SEISMIC.fm
 if (Output) {
 Conv_t t1, t2;
 t1.f = f1;
 t2.f = f2;
 printf("%08x %08x\n", t1.i, t2.i);
 }
 else {
 printf("%f %f\n", f1, f2);
 }
}

Figure 9-2 is a code snippet from the verification program which reads
displayable hexadecimal from stdin and converts it into a complex datatype. The
verify program reads multiple FFT results from stdin which explains why variable
p is a two dimensional matrix.

Example 9-2 Reading Complex numbers from displayable hexidecimal format

typedef struct {
foat real;
floatimag;

} Complex;

Complex *t = team[i].srcAddr;
MT_FFTW_Complex *p = fftw[i].srcAddrFC;
unsigned int j;
for (j=0; j < n; j++) {
 volatile union {
 float f;
 unsigned int i;
 } t1, t2;
 scanf("%x %x\n", &t1.i, &t2.i);
#define INPUT_FMT "i=%d j=%d r=%+13.10f/%8.8X i=%+13.10f/%8.8X\n"

(verbose ? fprintf(stdout, INPUT_FMT, i, j, t1.f, t1.i, t2.f,
t2.i) : 0);
 t[j].real = p[j][0] = (double)t1.f;
 t[j].imag = p[j][l] = (double)t2.f;
 } // for j (number of elements in each fft)

The code shown in Example 9-2 on page 519 will accurately reconstitute a
single-precision floating point value this is only true for data generated by the
same mathematical, floating-point representations (i.e. PowerPC to PowerPC).
The FFT library verification program compares single-precision floating point
 Chapter 9. Case study: Implementing an FFT algorithm 519

7575CH_EXAMPLES_SEISMIC.fm Draft Document for Review February 15, 2008 4:59 pm
values between PowerPC and SPE single-precision format. The format of the two
floating point representations are similar and can normally be ignored for
verificaiton purposes.

9.3 Development Stages

The development stages list in Figure 9-2 were arrived at prior to the beginning
of the code development and later revised. The purpose of introducing these
stages was to provide a way to monitor progress of the project and seemed like a
practical way to develop the solution.

The following sections describe in more detail the different stages and include
sample code to illustrate the evolution of some aspects of the code that are
unique to the Cell BE processor.

9.3.1 x86 implementation

The goal or deliverable from this stage was a functional FFT implementation that
ran on x86 Linux hardware. Very little effort was invested in producing code that
performed optimally on x86; the goal was to prove that the basic algorithm
produced correct results and would meet our requirements for running in an
SPU.

This version of the FFT code included an initial functional interface from a test
program to the actual FFT code and a primative method for displaying the
results. The verification of FFT output was essential to ensure accuracy.

9.3.2 Port to PowerPC

The x86 FFT implementation was ported to PowerPC hardware by recompiling
the x86 source code on an IBM QS20 Blade. The effort to do this was almost
trivial as can be expected.

The PowerPC version of the code performed much slower than the x86 version of
the code. This is due to the difference in the relative power of the PPU portion of
the Cell BE compared to a fairly high end dual core x86 CPU on which the x86
code was developed. Even though this code was simple and single threaded,
the x86 processor core used for development is a much more power processor
core than the PPU. The good news for Cell BE is that the power of the chip lies in
the eight SPUs, which we would be taking advantage of shortly. (The PPU would
eventually be left to just managing the flow of work to the SPUs.)
520 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_SEISMIC.fm
9.3.3 Single SPU

The first real specific Cell BE coding task was to take the PowerPC (PPU) code
and run the compute kernel on a single SPU. This involved restructuring the code
by adding calls to the SDK to load an SPU module. More code was added to
implement a simple DMA model for streaming data into the SPU and streaming it
back to main store memory.

Example 9-3 shows a code snippet demonstrating how a single SPU thread is
started from the main FFT PPU code. The use of the spe_context_run() is a
synchronous API and will block until the SPU program finishes execution. The
multiple-SPU version of this code using pThread support is the prefered solution
and is discussed in 9.3.5, “Using multiple SPUs” on page 523.

Example 9-3 Runing a single SPU

#include <stdio.h>
#include <stdlib.h>
#include <libspe2.h>

spe_context_ptr_t ctx;
unsigned int entry = SPE_DEFAULT_ENTRY;

/* Create context */
if ((ctx = spe_context_create (0, NULL)) == NULL) {

perror ("Failed creating context");
exit (1);

}

/* Load program into context */
if (spe_program_load (ctx, &dma_spu)) {

perror ("Failed loading program");
exit (1);

}

/* Run context */
if (spe_context_run(ctx,&entry,0,buffer,(void *)128,NULL)< 0) {

perror ("Failed running context");
exit (1);

}
/* Destroy context */
if (spe_context_destroy (ctx) != 0) {

perror("Failed destroying context");
 Chapter 9. Case study: Implementing an FFT algorithm 521

7575CH_EXAMPLES_SEISMIC.fm Draft Document for Review February 15, 2008 4:59 pm
exit (1);
}

9.3.4 DMA Optimization

The initial versions of the code were CPU intensive and slow because they did
not use the SIMD features of the SPUs. The code was not well structured or
optimized. As a result, the time spent doing DMA transfers was very small
relative to the time spent computing results. In this stage of the project DMA
optimization was not considered to be important. Early measurements showed
that without double buffering, DMA transfer time was only about 2 percent of the
total time it took to solve a problem.

The time spent in the computation phase of the problem shrank as the code
became more optimized using various techniques described later in this section.
As a result, DMA transfer time was growing larger relative to the time spent
performing the computation phase. Eventually the team turned their attention
from focusing on the computation phase to the growing DMA transfer time.

The programming team knew double buffering could be used to hide the time it
takes to do DMA transfers if done correctly. At this phase of the project, it was
determined that DMA transfers were about 10 percent of the total time it took to
solve a problem. Correctly implemented DMA transfers were added to the code
at this phase to overlap with current on-going computations. Given the
optimization effort had been put into the base algorithm, being able to reduce our
run time per problem by 10 percent was worth the effort in the end.

However, double buffering does not come for free. In this case, the double
buffering algorithm required three buffer areas, one buffer for incoming data and
outgoing DMAs, and two for the current computation. The use of a single buffer
for both input and output DMAs was possible by observing that the data transfer
time was significantly smaller than compute time. It would be possible to allocate
the third buffer area when working on a small problem, but for the largest
problems memory was already constrained and another buffer area would not be
possible.

The solution to the problem was to have several implementations of the
algorithm, where each specific implementation would use a different data transfer
strategy:

The program above could as easily be compiled and run as a spulet.
522 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_SEISMIC.fm
� For large problems where an extra data buffer was not possible, double
buffering would not be attempted.

� For smaller problems where an extra data buffer was possible, one extra data
buffer would be allocated and used for background data transfers, both to and
from SPU memory.

The library on the PPU that dispatched the problems to the SPUs now would
have to look at the problem size provided by the user and choose between two
different implementations. The appropriate implementation would then be
loaded on an SPU, and problems suitable for that implemention would be sent to
that SPU.

With this solution, the code was flexible enought to have it both ways - small
problems were able to take advantage of double buffering, while large problems
were still possible to execute.

9.3.5 Using multiple SPUs

The original project requirements specified that no single FFT problem would be
larger than 10,000 points. This allowed for implementing a serial FFT algorithm
where a single SPU could solve the largest sized FFT problem instead of a more
complicated parallel algorithm using multiple SPUs in concert. (The SDK
provides an example of a large parallel FFT algorithm in the sample codes.)

As a result, extending the code to run on multiple SPUs allowed for increasing
the throughput, not the maximum problem size. All of the SPUs that get used will
work independently, getting their work from a master work queue maintained in
PPU memory.
 Chapter 9. Case study: Implementing an FFT algorithm 523

7575CH_EXAMPLES_SEISMIC.fm Draft Document for Review February 15, 2008 4:59 pm
9.4 Strategies for using SIMD

The SPUs are designed from the ground up as vector units. If a coding style
does not make use of these vector registers, 75 percent of the potential
performance is lost.

FFT implementations based on 'powers-of-two' algorithms are relatively easy to
implement on a vector processor because of the regular data access patterns
and boundary alignments of the data. A non 'powers-of-two' algorithm is
significantly more difficult to map to a vector architecture because of the data
access patterns and boundary issues.

The FFT prototype library chose two different vectorization strategies:

� Striping multiple problems across a vector

� Synthesizing vectors by loop unrolling

9.4.1 Striping multiple problems across a vector

A relatively easy way to use the vector registers of the SPU is to treat each
portion of the register independently from other portions of the register. For
example, given four different floating point values from four different problems, all
of the floating point values can be resident in a single register at a time. This
allows for computation on four different problems in a register at the same time.
The code to do this a simple extension of the original scalar code, except now
instead of loading one value from one problem into a register, the four values are
loaded from four problems into a single vector register. One way to visualize this
technique is to consider it as ‘striping’ multiple problems across a single register.

If there are four FFT problems in memory and those problems are of the same
length then this is trivial to implement. All four problems will be done in lockstep,
and the code which performs the indexing, the twiddle calculations, and other
code can be reused for all four problems.

The problem with this approach is that it requires multiple FFT problems be
resident in SPU memory. For the very smallest problem sizes (up to around
2500 points) this is feasible, but for larger problem sizes this technique could not
be leveraged because the memory requirements were too great for a single SPU.

9.4.2 Synthesizing vectors by loop unrolling

For the larger problems in the FFT prototype, ‘striping’ multiple problems across
a register was not possible because there was not enough space in SPU
524 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_SEISMIC.fm
memory to have multiple problems resident. But it was still necessary to make
use of the vector features of the SPU for performance reasons.

The solution to this problem was to:

– Unroll the inner computation loop by a factor of four to give four sets of
scalar values to work with.

– Use shuffle operations to synthesize vector registers from the scalar
values.

– Perform the math using the vector registers.

– Split the results in the vector registers apart and put them back into their
proper places in memory.

The advantage of this solution is that it allowed the use of the vector capabilities
of the SPU with only one FFT problem resident in memory. Parallelism was
achieved by performing loop unrolling on portions of the code.

A disadvantage of this solution was the need to constantly assemble and
disassemble vector registers. Although there was a large net gain, a 4x speedup
was not realized by using the vector registers. This is because the time spent
assembling and disassembling the vector registers was fairly large compared to
the time spent computing with those vector registers. (On a more intensive
calculation this technique would have shown a greater improvement.)

9.4.3 Measuring and tweaking performance

The primary tools for measuring performance of the FFT code were the
simulator, the spu-timing tool, and a stopwatch. (An actual stopwatch was not
used, but a simple stopwatch was implemented in the code). Since the time the
FFT was developed additional performance tools have become available, some
of which are explained in this book.

The spu-timing tool allowed for analyzing the code generated by the compiler to
look for inefficient sections of code. Understanding why the code was inefficient
provided insight into where to focus efforts on generating better perfoming code.
The simulator gave insight as to how the code would behave on real hardware.
The dynamic profiling capability of the simulator let us verify our assumptions
about branching behavior, DMA transfer time, and overall SPU utilization. And
finally the stopwatch technique provided verification that the changes to the code
were actually faster than the code that was replaced.

Below are some of the performance lessons that were learned during this
project:
 Chapter 9. Case study: Implementing an FFT algorithm 525

7575CH_EXAMPLES_SEISMIC.fm Draft Document for Review February 15, 2008 4:59 pm
Use the SIMD Math Library
An FFT algorithm is a very intensive user of the sinf() and cosf() function in the
math library. These are expensive functions to call so minimizing their use is
critical.

An important feature of the SIMD Math library are special vector versions of sinf()
and cosf() that will take four angles in a vector as input and return four sine or
cosine values in a vector as output. These functions were used to dramatically
reduce the amount of time spent computing sines and cosines. The source code
for the functions is available in the SDK which allows you do adapt them for your
specific needs. A merged sinf() and cosf() function was coded that generates
eight outputs (four sines and four cosines) from a single vector of input angles.
(This merged function was even faster than calling the two vector functions
separately.) There are also inline versions of the functions available, which are
used to improve branching performance.

Use code inlining and branch hints to improve performance
In this code two methods were used to improve performance:

Code inlining
Code inlining is a great way to improve branching performance, because the
fastest branch is the one that you didn't take. During the development cycle code
was often written in functions or procedures to keep the code modular. During
the performance tuning stage these functions and procedure calls were reviewed
for potential candidates that could be inlined. Besides reducing branching,
inlining has a side benefit of giving the compiler more code to work with, allowing
it to possibly make better use of the SPU pipelines.

A certain amount of judgement has to be used when inlining code - if the code is
called from many locations the compiled size of the code may grow to an
unacceptable level. It is also possible to have so much code in a basic block that
the compiler starts to spill registers to the stack, which is leads to degraded
performance.

Branch hint directives
Most of the branching in the FFT code was caused by loop structures. The
compilers will generate the correct branch hints for loop structures, so we did not
worry about them. In the rare place where ‘if-then-else' logic was needed an
analysis of the code was performed to determine which path was the most used,
and a branch hint was inserted by hand. This improved the performance of the
runtime by about one percent which was well worth the effort. Code with lots of
'if-then-else' logic where the most taken path can be predicted would probably
benefit more from branch hints than this code did.
526 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_SEISMIC.fm
Using the Shuffle intrinsic effectively
In section 9.4.1, “Striping multiple problems across a vector” on page 524 a
technique was discussed where four FFT problems in memory were 'striped'
across vector registers. This allowed all four problems to be computed in lockstep
using code that was basically an extension of the original scalar code.

When the FFT problems first come into memory they are in an interleaved format
where the real portion of a complex number is followed immediately by the
imaginary portion of the complex number. Loading a vector from memory would
result in two consecutive complex numbers from the same problem in a vector
register. That would then require shuffle operations to split the reals from the
imaginaries, and more shuffle operations to end up with four problems striped
across the vector registers.

It is most efficient to do all of the data re-arrangement after the problems are in
SPU memory, but before computation begins. The example code in Example 9-4
is a simple data structure used to represent the problems in memory and a loop
that does the re-arrangement:

Example 9-4 Rearranging complex numbers

typedef union {
 Complex_t prob[4][MAX_PROB_SIZE_C2C_4];
 union {
 struct {
 float real[MAX_PROB_SIZE_C2C_4*4];
 float imag[MAX_PROB_SIZE_C2C_4*4];
 } sep;

 struct {
 vector float real[MAX_PROB_SIZE_C2C_4];
 vector float imag[MAX_PROB_SIZE_C2C_4];
 } vec;
 } u;
} Workarea_t __attribute__ ((aligned (128)));

Workarea_t wa[2];
// Separate into arrays of floats and arrays of reals
// Do it naively, one float at at time for now.
short int i;
for (i=0; i < worklist.problemSize; i++) {
 wa[0].u.sep.real[i*4+0] = wa[1].prob[0][i].real;
 wa[0].u.sep.real[i*4+1] = wa[1].prob[1][i].real;
 wa[0].u.sep.real[i*4+2] = wa[1].prob[2][i].real;
 wa[0].u.sep.real[i*4+3] = wa[1].prob[3][i].real;
 wa[0].u.sep.imag[i*4+0] = wa[1].prob[0][i].imag;
 wa[0].u.sep.imag[i*4+1] = wa[1].prob[1][i].imag;
 Chapter 9. Case study: Implementing an FFT algorithm 527

7575CH_EXAMPLES_SEISMIC.fm Draft Document for Review February 15, 2008 4:59 pm
 wa[0].u.sep.imag[i*4+2] = wa[1].prob[2][i].imag;
 wa[0].u.sep.imag[i*4+3] = wa[1].prob[3][i].imag;
}

The data structure provides access to memory in three ways:

� Four problems where the reals and imaginaries are interleaved

� One array of floats representing all of the reals, and one array of floats
representing all of the imaginaries

� One vector array of floats representing all of the reals, and one vector array of
floats representing all of the imaginaries. (Note that these arrays have one
fourth as many elements as the previous arrays because they are vector
arrays.)

On entry to the code wa[1] contains four problems in interleaved format. This
code copies all of the interleaved real and imaginary values from wa[1] to wa[0],
where they appear as separate arrays of reals and imaginaries. At the end of the
code the view in wa[0] is of four problems stripped across vectors in memory.

While this code works, it is hardly optimal:

� Only four bytes is moved at a time.

� It is scalar code so the compiler must shuffle the floats into the preferred slots
of the vector registers, even though the values are going to be written back to
memory immediately.

� When writing each value to memory, the compiler must generate code to load
a vector, merge the new data into the vector, and store the vector back into
memory.

A review of the assembly code generated by the compiler and annotated by the
spu_timing tool (see Example 9-5) shows that the code is very inefficient for this
architecture:

Example 9-5 spu_timing output for suboptimal code

.L211:
002992 1 2 hbrp # 2
002993 0 3456 shli $17,$25,3
002994 0 4567 shli $79,$25,4
002995 0 5678 shli $35,$25,2
002996 0D 67 il $61,4
002996 1D 6 lnop
002997 0D 78 a $10,$17,$82
002997 1D 012 789 lqx $39,$17,$82
002998 0D 89 a $78,$17,$30
002998 1D 0123 89 lqx $36,$79,$80
002999 0D 0 9 ai $6,$35,1
528 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_SEISMIC.fm
002999 1D 012 9 cwx $38,$79,$80
003000 0D 01 ai $7,$35,2
003000 1D 0123 cwx $8,$79,$24
003001 0 1234 shli $71,$6,2
003002 0 2345 shli $63,$7,2
003003 0D 34 a $70,$17,$29
003003 1D 3 hbrp # 2
003004 1 4567 rotqby $37,$39,$10
003005 0 56 ai $5,$35,3
003006 0D 67 a $62,$17,$28
003006 1D 6789 cwx $32,$71,$80
003007 0D 7890 shli $54,$5,2
003007 1D 7890 cwx $21,$63,$80
003008 0D 89 ai $11,$10,4
003008 1D 8901 shufb $34,$37,$36,$38
003009 0D 90 ai $77,$78,4
003009 1D 9012 cwx $75,$71,$24
003010 0D 01 ai $69,$70,4
003010 1D 0123 cwx $67,$63,$24
003011 0D 12 ai $60,$62,4
003011 1D 1234 cwx $14,$54,$80
003012 0D 23 ai $27,$27,1
003012 1D 234567 stqx $34,$79,$80
003013 0D 34 ai $26,$26,-1
003013 1D 345678 lqx $33,$17,$30
003014 1 456789 lqx $25,$71,$80
003015 1 5678 cwx $58,$54,$24
003019 1 ---9012 rotqby $31,$33,$78
003023 1 ---3456 shufb $23,$31,$25,$32
003024 0d 45 ori $25,$27,0
003027 1d ---789012 stqx $23,$71,$80
003028 1 890123 lqx $22,$17,$29
003029 1 901234 lqx $19,$63,$80
003034 1 ----4567 rotqby $20,$22,$70
003038 1 ---8901 shufb $18,$20,$19,$21
003042 1 ---234567 stqx $18,$63,$80
003043 1 345678 lqx $16,$17,$28
003044 1 456789 lqx $13,$54,$80
003049 1 012 ----9 rotqby $15,$16,$62
003053 1 ---3456 shufb $12,$15,$13,$14
003057 1 ---789012 stqx $12,$54,$80
003058 1 890123 lqx $9,$10,$61
003059 1 901234 lqx $4,$79,$24
003064 1 ----4567 rotqby $2,$9,$11
003068 1 ---8901 shufb $3,$2,$4,$8
003072 1 ---234567 stqx $3,$79,$24
003073 1 345678 lqx $76,$78,$61
003074 1 456789 lqx $73,$71,$24
003079 1 ----9012 rotqby $74,$76,$77
003083 1 ---3456 shufb $72,$74,$73,$75
003087 1 ---789012 stqx $72,$71,$24
003088 1 890123 lqx $68,$70,$61
003089 1 901234 lqx $65,$63,$24
003094 1 ----4567 rotqby $66,$68,$69
003098 1 01 ---89 shufb $64,$66,$65,$67
003102 1 --234567 - stqx $64,$63,$24
003103 1 345678 lqx $59,$62,$61
003104 1 456789 lqx $56,$54,$24
003109 1 ----9012 rotqby $57,$59,$60
003113 1 ---3456 shufb $55,$57,$56,$58
003117 1 ---789012 stqx $55,$54,$24
 .L252:
003118 1 8901 brnz $26,.L211
 Chapter 9. Case study: Implementing an FFT algorithm 529

7575CH_EXAMPLES_SEISMIC.fm Draft Document for Review February 15, 2008 4:59 pm
Notice the large number of stall cycles. The loop body takes 126 cycles to
execute.

The code in Example 9-6, while less intuitive, shows how the shuffle intrinsic can
be used to dramatically speed up the rearranging of complex data:

Example 9-6 Better performing complex number rearrangement code

// Shuffle patterns
 vector unsigned char firstFloat = (vector unsigned char){ 0, 1, 2, 3, 16, 17, 18, 19,
0, 0, 0, 0, 0, 0, 0, 0 };
 vector unsigned char secondFloat = (vector unsigned char){ 4, 5, 6, 7, 20, 21, 22, 23,
0, 0, 0, 0, 0, 0, 0, 0 };
 vector unsigned char thirdFloat = (vector unsigned char){ 8, 9, 10, 11, 24, 25, 26, 27,
0, 0, 0, 0, 0, 0, 0, 0 };
 vector unsigned char fourthFloat = (vector unsigned char){ 12, 13, 14, 15, 28, 29, 30, 31,
0, 0, 0, 0, 0, 0, 0, 0 };

 vector unsigned char firstDword = (vector unsigned char){ 0, 1, 2, 3, 4, 5, 6, 7,
16, 17, 18, 19, 20, 21, 22, 23 };

vector float *base0 = (vector float *)(&wa[1].prob[0]);
vector float *base1 = (vector float *)(&wa[1].prob[1]);
vector float *base2 = (vector float *)(&wa[1].prob[2]);
vector float *base3 = (vector float *)(&wa[1].prob[3]);
short int i;
for (i=0; i < worklist.problemSize; i=i+2) {

// First, read a quadword from each problem
 vector float q0 = *base0;
 vector float q1 = *base1;
 vector float q2 = *base2;

vector float q3 = *base3;

 vector float r0 = spu_shuffle(
 spu_shuffle(q0, q1, firstFloat),
 spu_shuffle(q2, q3, firstFloat),
 firstDword);

 vector float i0 = spu_shuffle(
 spu_shuffle(q0, q1, secondFloat),
 spu_shuffle(q2, q3, secondFloat),
 firstDword);

 vector float r1 = spu_shuffle(
 spu_shuffle(q0, q1, thirdFloat),
530 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_EXAMPLES_SEISMIC.fm
 spu_shuffle(q2, q3, thirdFloat),

 firstDword);

 vector float i1 = spu_shuffle(
 spu_shuffle(q0, q1, fourthFloat),
 spu_shuffle(q2, q3, fourthFloat),
 firstDword);

wa[0].u.vec.real[i] = r0;
a[0].u.vec.real[i+1] = r1;
wa[0].u.vec.imag[i] = i0;
wa[0].u.vec.imag[i+1] = i1;
base0++;
base1++;

 base2++;
 base3++;
 }

This code executes much better on the SPU for the following reasons:

� All loads and stores to main memory are done using full quadwords. This
makes the best use of memory bandwidth.

� The compiler is working exclusivley with vectors, avoiding the need to move
values into 'preferred slots'

The code annotated with the spu_timing tool is shown in Example 9-7.

Example 9-7 spu_timing output for more optimal code

.L211:
002992 0D 23 ai $74,$16,1
002992 1D 234567 lqd $72,0($15)
002993 0D 3456 shli $59,$16,4
002993 1D 345678 lqx $73,$15,$27
002994 0D 4567 shli $56,$74,4
002994 1D 456789 lqx $70,$15,$26
002995 0D 56 cgt $55,$20,$22
002995 1D 0 56789 lqx $71,$15,$25
002996 0 67 ori $16,$22,0
002997 0 78 ai $15,$15,16
002998 0d 89 ai $22,$22,2
002999 1d 012 -9 shufb $68,$72,$73,$23
003000 1 0123 shufb $66,$72,$73,$21
003001 1 1234 shufb $69,$70,$71,$23
003002 1 2345 shufb $67,$70,$71,$21
003003 1 3456 shufb $64,$72,$73,$18
003004 1 4567 shufb $65,$70,$71,$18
003005 1 5678 shufb $62,$72,$73,$19
003006 1 6789 shufb $63,$70,$71,$19
003007 1 7890 shufb $61,$68,$69,$17
003008 1 8901 shufb $60,$66,$67,$17
003009 1 9012 shufb $58,$64,$65,$17
003010 1 0123 shufb $57,$62,$63,$17
003011 1 123456 stqx $61,$59,$80
 Chapter 9. Case study: Implementing an FFT algorithm 531

7575CH_EXAMPLES_SEISMIC.fm Draft Document for Review February 15, 2008 4:59 pm
003012 1 234567 stqx $60,$59,$24
003013 1 345678 stqx $58,$56,$24
003014 1 456789 stqx $57,$56,$80
 .L252:
003015 1 5678 brnz $55,.L211

This loop body is much shorter at only 23 cycles. It also has virtually no stall
cycles. The body of the second loop is approximately five times faster than the
body of the first loop. However, examination of the code shows that the second
loop is executed one half as many times as the first loop. With the savings
between the reduced cycles for the loop body and the reduced number of
iterations the second loop works out to be 10 times faster than the first loop. This
result was verified with the simulator as well.
532 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575PART_SYSTEMS.fm
Part 4 Systems

In this part of the book we provide a chapter that covers detailed system
installation, configuration, and management topics.

Part 4
© Copyright IBM Corp. 2007. All rights reserved. 533

7575PART_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
534 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Chapter 10. SDK 3.0 and Bladecenter
QS21 System Configuration

In this chapter, we will discuss installing the IBM BladeCenter QS21, Installing
SDK 3.0 on a QS21, Firmware considerations, Blade management
considerations, and finally suggesting a method for installing a distribution so that
it utilizes a minimal amount of the QS21 Bladecenter’s resources.

The sections covered in this book are as follows:

� IBM BladeCenter QS21 characteristics

� Installing the operating system

� Installing SDK 3.0 on a QS21 Bladecenter

� Firmware considerations

� Options for managing multiple blades

� Method for installing a minimized distribution

The SDK3.0 Installation Guide, available through IBM’s Alphaworks website,
covers in great detail the necessary steps to install the operating system on a
QS21 blade as well as the additional required steps for setting up a diskless
system. This chapter places such detail into consideration, and addresses topics
complementary to that guide.

10
© Copyright IBM Corp. 2007. All rights reserved. 535

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
10.1 BladeCenter QS21 Characteristics

The Bladecenter QS21 has two 64-bit Cell Broadband Engine (Cell BE)
processors directly mounted onto the blade planar board in order to provide
multiprocessing capability. The memory on a BladeCenter QS21 consists of 18
XDR memory modules per Cell BE chip, which creates 1GB of memory per Cell
BE chip.

The Bladecenter QS21 is a single-wide blade which uses one Bladecenter H slot
and can coexist with any other Blade in the same chassis. To ensure
compatibility with existing Blades, the BladeCenter QS21 provides two midplane
connectors that contain Gigabit Ethernet links, USB ports, power and a unit
management bus. The local service processor supports environmental
monitoring, front panel, chip initialization, and the BladeCenter unit Advanced
Management Module Interface.

The blade includes support for an optional Infiniband expansion card and an
optional Serial Attached SCSI (SAS) card.

Additionally, the BladeCenter QS21 has the following major components:

• 2 Cell BE processor chips (Cell BE-0 and Cell BE-1) operating at 3.2
GHz

• 2 GB XDR system memory with ECC, 1 GB per Cell BE chip v 2 Cell
BE companion chips, one per Cell BE chip

• 2x8 PCIe as High Speed Daughter Cards (HSDC)

• 1*PCI-X as Daughter Card

• Interface to optional DDR2 memory, for use as the I/O Buffer

• Onboard Dual Channel Gb-Ethernet controller BCM5704S

• Onboard USB controller NEC uPD720101

• 1 BladeCenter PCI-X expansion card connector

• 1 BladeCenter High-Speed connector for 2 times x 8 PCIe buses

• 1 Special additional I/O expansion connector for 2 times x 16 PCIe
buses

• 4 DIMM slots (2 slots per Cell BE companion chip) for optional I/O
Buffer DDR2 VLP DIMMs

• Integrated Renesas 2166 Service processor (BMC supporting IPMI
and SOL)
536 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
An important characteristic to point out about the BladeCenter QS21 is that it
does not contain onboard hard disk or other storage. Storage on the BladeCenter
QS21 can be allocated through network or a SAS attached device. The following
section will cover installing an operating system, through network storage, on a
QS21 Blade.

10.2 Installing the Operating System

The BladeCenter QS21 does not contain local storage, storage can be provided
through a SAS device or through another server in the same network. We will
briefly cover the steps for accomplishing the installation of an operating system
through network storage.

Section10.24, “Example for installing through network storage” on page 544, will
show how to apply these steps through the use of bash scripts.

10.2.1 Important Considerations

Before proceeding further with the installation process, there are considerations
to be made first.

– The BladeCenter QS21 is accessible only through SOL or serial interface.
For serial interface, a specific UART breakout cable will be needed.

– A POWER-based system with storage is needed for initial installation of
Linux, which is needed for a root filesystem.

– A DHCP server is needed to upload the kernel zImage to the BladeCenter
QS21, this can only be done through ethernet modules on the
BladeCenter H chassis.

– While the media tray on the BC-H chassis does work on the BladeCenter
QS21, it is not a supported feature.

– For RHEL5.1, an individual kernel zImage will need to be created for each
BladeCenter QS21.

Note The Bladecenter QS21 support is only available with the Bladecenter H
Type 8852 Unit.

Note: If you do not have a POWER based system, you can execute
your initial installation on a BladeCenter QS21 with USB storage
attached.
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 537

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
– For Fedora 7, the same kernel zImage can be applied across multiple
blades and is accessible through the Barcelona supercomputing site.

– Each Blade must have it’s own separate root filesystem over the NFS
server. This restriction applies even if the root filesystem is read only.

– SWAP is not supported over NFS. Any root filesystem that will be NFS
mounted cannot have SWAP space.

– SELinux cannot be enabled on nfsroot clients.

– SDK3.0 supports both Fedora7 and RHEL5.1, but it is officially supported
only for RHEL5.1

– External internet access is needed for installing SDK3.0 open source
packages.

10.2.2 Managing and accessing the Blade server

There are currently six options for managing and configuring the blade server,
this includes being able to access the blade’s console.

Advanced Management Module through the web interface
The Advanced Management Module (AMM) is a management and configuration
program for the BladeCenter system. Through it’s web interface, the AMM allows
for configuring the Bladecenter unit, including components like the Bladecenter

Note: Through the use of cluster management tools such as DIM or
xCAT, the process of creating inividual zImages can become
automated. For DIM, it has the capabality of applying one RHEL5.1
kernel zimage to multiple BladeCenter QS21s.For more details, refer to
“DIM implementation on BladeCenter QS21s” on page 565.

Note: While each BladeCenter QS21 must have it’s own root
filesystem, some directories can be shared as read only amongst
multiple BladeCenter QS21s.

Note: If your BladeCenter QS21 does not have external internet
access, you can download the SDK3.0 open source components from
the Barcelona Supercomputing website from another machine that
does have externel internet access and apply them to the BladeCenter
QS21.
538 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
QS21. Systems status and an event log is also accessible to monitor errors
related to the chassis or it’s connected blades.

For further information on the extent of the offerings provided by the Advanced
Management Module, please refer to the IBM BladeCenter Advanced
Management Module User's Guide.

Advanced Management Module through Command-line
In addition to the AMM being accessible through a web browser, it can also be
directly accessed through command-line interface. Through this interface, you
can issue commands to control the power and configuration of the blade server
along with other components of the BladeCenter unit.

For further information and instructions on using the command line interface,
please refer to the IBM BladeCenter Management Module Command-Line
Interface Reference Guide.

Serial over LAN
The Serial over LAN (SOL) connection is one option for accessing the blade’s
console, accessing the blade’s console allows for viewing firmware progress and
accessing the Linux terminal. By default, the blade server sends output and
receives over the SOL connection.

In order to establish an SOL connection, you must ensure to configure the SOL
feature and start an SOL session. The Bladecenter and Advanced Management
Module must also be configured properly in order to enable SOL connection.

For further information and details on establishing SOL connection, please refer
to the IBM BladeCenter Serial over LAN Setup Guide.

Serial Interface
Another method aside from SOL for accessing the BladeCenter QS21 server’s
console is through a serial interface. This can be accomplished through the use
of a specific UART cable connected to the BladeCenter H chassis. This particular
cable is not included with included with the BladeCenter H, so it must be
accessed separately.

Ensure that the following parameters for serial connection are set on the terminal
client:

• 115200 baud

• 8 data bits

• No parity

• One Stop bit
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 539

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
• No flow control

Note that by default, input is provided to the blade server through SOL
connection, thus, if you prefer input to be provided through a device connected to
the serial port, ensure you press any key on that device while the server boots.

For further information and details on establishing serial interface connection,
please refer to the BladeCenter H Type 8852 Installation and User’s Guide.

SMS utility program
The System Management Services (SMS) utility program is another utility which
can provide, in some cases, more information than what is accessible through
the Advanced Management Module.

To access the SMS utility program, you must have input to the Blade’s console
(accessible either through serial interface or SOL) as it’s booting up. Early into it’s
boot process, as shown below, make sure, to type “F1” as it boots up.

Example 10-1 Initial BladeCenter QS21 boot up

QS21 Firmware Starting
 Check ROM = OK
 Build Date = Aug 15 2007 18:53:50
 FW Version = "QB-1.9.1-0"

Press "F1" to enter Boot Configuration (SMS)

Initializing memory configuration...
MEMORY
 Modules = Elpida 512Mb, 3200 MHz
 XDRlibrary = v0.32, Bin A/C, RevB, DualDD
 Calibrate = Done
 Test = Done

SYSTEM INFORMATION
 Processor = Cell/B.E.(TM) DD3.2 @ 3200 MHz
 I/O Bridge = Cell Companion chip DD2.x
 Timebase = 26666 kHz (internal)
 SMP Size = 2 (4 threads)
 Boot-Date = 2007-10-26 23:52
 Memory = 2048MB (CPU0: 1024MB, CPU1: 1024MB)

Additional configurations on the SMS utility that can’t be implemented on the
Advanced Management Module are the following:

– SAS configurations
540 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
– Choosing which firmware image to boot from, whether TEMP or PERM

– Choosing Static IP for network boot up, otherwise, the default method is
strictly DHCP.

For more information on firmware, please refer to “Firmware considerations” on
page 560.

10.2.3 Installing through Network Storage

Because the Bladecenter QS21 does not contain storage, and you cannot
directly install Linux on a network device attached to the BladeCenter QS21, you
must create an initial installation on a disk. From this initial installation, you can
establish a network boot up that can be used by the BladeCenter QS21.

Due to Cell’s Power based architecture, the system to create the initial
installation for storage must be on a 64-bit POWER based system. After this
installation, you then copy the resulting root file system to a Network File System
(NFS) server, make it network bootable so that it can be mounted via NFS, and
adapt it to the specifics of an individual blade server.

Setting up the root filesystem
First we want to obtain a root filesystem that can be NFS mounted to the
BladeCenter QS21.

Below are the steps for this NFS setup:

1. Install RHEL5.1 or Fedora 7 on a 64-bit POWER based system

2. Copy the root filesystem from the POWER-based installation to an NFS
Server

3. Edit the copied root filesystem to reflect the specific blade you want to mount
the filesystem to.

Note: You can create multiple copies of this filesystem if you want to
apply the same distribution on multiple BladeCenter QSS1 systems. For
more information on this, please refer to section 10.2.4 “Example for
installing through network storage” on page 544.

Note: In addition to changing basic network configuration files on the
root filesystem, you will also need to change a few specific files to
enable NFS root, these files wil be covered in the example shown in
section “Example for installing through network storage” on page 544.
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 541

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Obtaining a zImage with NFS root enabled
The RHEL5.1 and Fedora 7 default kernels do not have options that would allow
NFS root enabled. Due to this reason, you won’t be able to boot an nfsroot
system on these default kernels.

Because of these reasons, you will need to have a zImage with an initial RAM
disk (initrd) that supports booting from NFS and apply it to your BladeCenter
QS21 through a Trivial File Transfer Protocol (TFTP) server.

Below are the steps for obtaining a zImage and applying it to the tftp server:

1. Obtain or create your zImage file:

a. For Fedora 7, you can download the zImage file from:
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulato
r/sdk3.0/zImage.initrd-2.6.22-5.20070920bsc.

b. For RHEL5.1, you will need to create the zImage file. All steps provided
below should be applied on the POWER based system that contains the
filesystem and kernel that you want to mount onto the BladeCenter QS21.
You can use the following steps for this:

i. Make sure the correct boot configuration is stored in the zImage. To do
this, ensure that BOOTPROTO=dhcp on
/etc/sysconfig/network-scripts/ifcfg-eth0

ii. Create the initrd image by using the following command:

mkinitrd --with=tg3 --rootfs=nfs --net-dev=eth0 \

--rootdev=<nfs server>:/<path to nfsroot> \

~/initrd-<kernel-verson>.img <kernel-version>

iii. Create the zImage by using the following command:

mkzimage /boot/vmlinuz-<kernel-version>
/boot/config-<kernel-version> \
/boot/System.map-<kernel-version> <initrd> \
/usr/share/ppc64-utils/zImage.stub <zImage>

2. Apply your created or downloaded zImage to the exported directory of your
TFTP server

Applying the zImage and root filesystem
Now that you’ve obtained the most important components needed to boot up a
BladeCenter QS21, these being the root filesystem to be mounted and the
zImage file, you’ll need to establish how to pass these onto the BladeCenter
QS21.
542 Programming the Cell Broadband Engine: Examples and Best Practices

http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/zImage.initrd-2.6.22-5.20070920bsc
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/zImage.initrd-2.6.22-5.20070920bsc.
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/zImage.initrd-2.6.22-5.20070920bsc.

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
When a BladeCenter QS21 system boots up, the first component it will need to
access is the kernel, which is achieved through loading the zImage file. Once the
kernel is successfully loaded and booted up, the root filesystem is mounted via
NFS.

The zImage file can be provided to the BladeCenter QS21 communicating with a
Dynamic IP Configuration (DHCP) server which can provide the zImage file via
TFTP.

Here are the steps you will need to follow in ensuring this

1. Ensure DHCP and TFTP packages are installed and the corresponding
services are enabled on the server.

2. Place your zImage file in a directory that will be exported. Ensure this
directory is exported and TFTP server is enabled by editing the
/etc/xinet.d/tftp file:

disable = no

server_args = -s <directory to export> -vvvvv

3. Edit /etc/dhcpd.conf file to reflect your settings for the zImage by editing the
“filename” argument.

Booting up the BladeCenter QS21
Now that the root filesystem has been created, modified and configured for being
exported, and the zImage file has been placed on a TFTP server, you can
proceed to boot your QS21.

The BladeCenter QS21 can boot from:

– The optical drive of the BladeCenter unit media tray

– A SAS storage device, typically one or more hardisks attached to the
BladeCenter unit.

– A storage device attached to the network.

To boot up through a device attached to the network, ensure that the boot
sequence for the BladeCenter QS21 is set to “Network”. This configuration can
be established through the AMM web-browser by going to Blade Tasks →
Configuration → Boot Sequence → . You should now be able to boot up your
Bladecenter QS21 system.

Note: If you are booting up a Fedora 7 filesystem, you will need to add
the following option entry to your /etc/dhpd.conf file:

option root-path “<NFS server>:<path to nfsroot>”;
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 543

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
10.2.4 Example for installing through network storage

We will now show an example on applying the steps mentioned in Section 13.2.3.
In this example, we will cover some specific modifications to the root filesystem in
order for it to successfully boot up on the BladeCenter QS21. We will implement
these steps mainly thru the use of bash scripts, to show how these steps can be
applied in an aautomated fashion.

On section 10.5, “Example DIM implementation on BladeCenter QS21 cluster”
on page 572, we cover an example of implementing a cluster of QS21s through
the use of the Distributed Image Management tool.

This example will assume that we’ve already installed the Linux distribution of
choice on a POWER-based system.

First, let’s establish the parameters that will be used for this example:

Example 10-2 Network settings specific to this example

Linux Distribution: RHEL5.1
Kernel Version: 2.6.18-53.el5
POWER based system with initial install IP & hostname:
192.168.170.30/POWERbox
NFS, PTFTP & DHCP Server: 192.168.170.50
QS21 Hostnames: qs21cell51-62
QS21 Private Network IP Address (eth0) : 192.168.170.51-62
NFS root path: /srv/netboot/QS21/RHEL5.1/boot/192.168.170.51

First, we utilize the “cell_build_master.sh” script, this script will copy the root tree
directory from the RHEL5.1 installation on a POWER based system to the NFS
server. It will also modify some files in this master root filesystem so as to
prepare it for nfsroot.

root@dhcp-server# ./cell_build_master.sh 192.168.170.50 \
/srv/netboot/QS21/RHEL5.1/master

Example 10-3 cell_build_master.sh script

#!/bin/bash
##
QS21 Cell Build Master Root Tree
#

Note: Notice that we will be using the NFS, TFTP and DHCP server as the
same system. Ideally, you would want them to be the same, but you can have
the NFS server be a different machine if preferred for storage purposes.
544 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
#
##

Show help information
usage()
{
 cat << EOF
 ${0##*/} - Creates master root tree for Cell QS21.

 usage: $0 [POWER_MACHINE] [DESTINATION_PATH]

 Arguments:
 POWER_MACHINE Server where '/' will be copied from
 DESTINATION_PATH Path where the master directory wil be
 stored

 Example:

 ./cell_build_master 10.10.10.1 /srv/netboot/qs21/RHEL5.1/master

 This will copy the root directory from machine
 '10.10.10.1' and store it in /srv/netboot/qs21/RHEL5.1/master

EOF
 exit 1
}

if [$# != 2]; then
 usage
fi

POWER_MACHINE=$1
DESTINATION_DIR=$2
RSYNC_OPTS="-avp -e ssh -x"

set -u
set -e
Check if master tree already exists
test -d $DESTINATION_DIR || mkdir -p $DESTINATION_DIR

Copy root filesystem from POWER-based machine to NFS server
rsync $RSYNC_OPTS $POWER_MACHINE:/ $DESTINATION_DIR

Remove 'swap', '/' and '/boot' entries from /etc/fstab
grep -v "swap" $DESTINATION_DIR/etc/fstab | grep -v " / " \
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 545

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
| grep -v " /boot" > $DESTINATION_DIR/etc/fstab.bak
Ensure SELinux is disabled
sed -i "s%^\(SELINUX\=\).*%\\1disabled%" \
$DESTINATION_DIR/etc/selinux/config

Note that /etc/fstab has some changes that are placed on /etc/fstab.bak, this
backup file will eventually overwrite the /etc/fstab file. For now we have a master
copy for this distribution, we can now apply this to multiple BladeCenter QS21s.

Next, we’ll grab a copy of this master root filesystem and edit some files to make
it more specific to the individual BladeCenter QS21s. We will use the
“cell_copy_rootfs.sh” script.

root@dhcp-server# ./cell_copy_rootfs.sh \
/srv/netboot/qs21/RHEL5.1/master /srv/netboot/qs21/RHEL5.1/boot/ \
192.168.70.30 192.168.70.51-62 -i qs21cell 51 - 62

Notice that in this case, we’re copying the master root filesystem to 12 individual
BladeCenter QS21s, additionally, we are configuring some files in each of the
copied root filesystems so as to accurately reflect the network identity of each
corresponding BladeCenter QS21.

Example 10-4 cell_copy_rootfs.sh script

#!/bin/bash
##
QS21 Cell Copy Master Root Filesystem
#
#
##

Show help information
usage()
{
 cat << EOF
 ${0##*/} - Copy Master Root Tree for individual BladeCenter QS21.

 usage: $0 [MASTER] [TARGET] [NFS_IP] [QS21_IP] -i [QS21_HOSTNAME]

 Arguments:
 MASTER Full path of master root filesystem
 TARGET Path where the root filesystems of the blades
 will be stored.
 NFS_IP IP Address of NFS Server
 QS21_IP IP Address of QS21 Blade(s). If creating
 for multiple blades, put in range form:
546 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
 10.10.2-12.10
 -i [QS21_HOSTNAME] Hostname of Bladecenter QS21. If creating
 root filesytems for multiple blades, use:

 -i <hostname> <first> - <last>
 -h Show this message

 Example:

 ./cell_copy_master.sh /srv/netboot/qs21/RHEL5.1/master \
/srv/netboot/qs21/RHEL5.1 10.10.10.50 10.10.10.25-30 \
-i cell 25 - 30

 This will create root paths for QS21 blades cell25 to cell30,
 with IP addresses ranging from 10.10.10.25 to 10.10.10.25.
 These paths will be copied from
 /srv/netboot/qs21/RHEL5.1/master into
 /srv/netboot/qs21/RHEL5.1/cell<25-30> on NFS server 10.10.10.50

EOF
 exit 1
}

Process QS21 IP Address passed
proc_ip (){
 PSD_QS21_IP=(`echo "$1"`)
 QS21_IP_ARY=(`echo $PSD_QS21_IP | sed "s#\.# #g"`)
 QS21_IP_LENGTH=${#QS21_IP_ARY[*]}
 for i in $(seq 0 $((${#QS21_IP_ARY[*]} - 1)))
 do
 PSD_RANGE=`echo ${QS21_IP_ARY[i]} | grep "-"`
 if ["$PSD_RANGE" != ""]; then
 RANGE=`echo ${QS21_IP_ARY[i]} | \
 sed "s#-# #"`
 QS21_IP_ARY[i]=new
 QS21_TEMP=`echo ${QS21_IP_ARY[*]}`
 for a in `seq $RANGE`; do
 NEW_IP=`echo ${QS21_TEMP[*]} | \
 sed "s#new#$a#" | sed "s# #.#g"`
 QS21_IP[b]=$NEW_IP
 ((b++))
 done
 echo ${QS21_IP[*]}
 break
 fi
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 547

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
 done
 if [-z "$QS21_TEMP"]; then
 echo $PSD_QS21_IP
 fi
}

Show usage if no arguments passed
if [$# = 0]; then
 usage
fi

MASTER=$1
TARGET=$2
NFS_IP=$3
QS21_IP=$4
shift 4

QS21_IP=(`proc_ip "$QS21_IP"`)

Capture QS21 Hostname(s)
while getopts hi: OPTION; do
case $OPTION in
 i)
 shift
 BLADES=($*)
 ;;
 h|?)
 usage
 ;;
esac
done

If a range of blades is provided, process them here
if ["${BLADES[2]}" = "-"]; then
 BASE=${BLADES[0]}
 FIRST=${BLADES[1]}
 LAST=${BLADES[3]}
 BLADES=()
 for i in `seq $FIRST $LAST`;
 do
 BLADES[a]=${BASE}${i}
 ((a++))
 done
fi
548 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Ensure same number of IP and Hostnames have been provided
if ["${#BLADES[*]}" != "${#QS21_IP[*]}"] ; then
 echo "Error: Mismatch in number of IP Addresses & Hostnames"
 exit 1
fi

Creation & configuration of individual Blade paths
for i in $(seq 0 $((${#BLADES[*]} - 1)))
do
 ### Check if master root filesystem already exists #######
 test -d "${TARGET}${BLADES[i]}" && \
 { echo "target \"$TARGET/${BLADES[i]}\" exists"; exit 1; }

 ### Copy master root filesystem for a specific blade ####
 /usr/bin/rsync -aP --delete ${MASTER}/* \
 ${TARGET}${BLADES[i]}

 #### Edit /etc/fstab for specific machine ################
 echo "${NFS_IP}:${TARGET}${BLADES[i]} \
 nfs tcp,nolock 1 1" >>
$TARGET/${BLADES[i]}/etc/fstab.bak
 echo "spufs /spu \
 spufs defaults 0 0" >>
$TARGET/${BLADES[i]}/etc/fstab.bak
 cp -f $TARGET/${BLADES[i]}/etc/fstab.bak
$TARGET/${BLADES[i]}/etc/fstab
 mkdir $TARGET/${BLADES[i]}/spu

 #### Setup Network #######################################
 echo "Now configuring network for target machine...."

 SUBNET=`echo $NFS_IP | cut -f1-2 -d.`
 sed -i "s%^${SUBNET}.*%${QS21_IP[i]} ${BLADES[i]} \
 ${BLADES[i]}%" $TARGET/${BLADES[i]}/etc/hosts
 sed -i "s%^\(HOSTNAME\=\).*%\\1${BLADES[i]}%" \
 $TARGET/${BLADES[i]}/etc/sysconfig/network
done
echo "Tree build and configuration completed."
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 549

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Now we have a root filesystem modified and ready to be NFS mounted to our
BladeCenter QS21. But before this, we need to create a corresponding zImage.
For this particular purpose, we will use the “BLUEcell_zImage.sh” script, this
script will be ran on the POWER based system where the RHEL5.1 installation
was done.

root@POWERbox# ./cell_zImage 192.168.70.50 2.6.18-53.el5
/srv/netboot/qs21/RHEL5.1/boot/ -i cell 51 - 62

Here, we’ve created 12 zImage files, one for each BladeCenter QS21.

Example 10-5 cell_zImage.sh script

#/bin/bash
##
QS21 zImage Creation Script
#
#
#
##

set -e

Show help information
usage()
{
 cat << EOF
 ${0##*/} - creates zImage for Cell QS21.

 usage: $0 [NFS_SERVER] [KERN_VERSION] [NFS_PATH] -i [IDENTIFIER]

 Arguments:
 NFS_SERVER Server that will mount the root filesystem
 to a BladeCenter QS21.

Note: There may be situations where you want to have two ethernet
connections for the BladeCenter QS21.

For example, if on eth0 you have a private network and you want to
establish public access to the BladeCenter QS21 via eth1. In this case,
make sure you edit the ifcnfg-eth1 file located on
‘/etc/sysconfig/network-scripts/’. So in our example, we would edit
‘/srv/netboot/QS21boot/192.168.170.51/etc/sysconfig/network-scripts/ifcfg
-eth1’ so that it reflects the network settings for BladeCenter QS21.
550 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
 KERN_VERSION Kernel version zImage wil be based on
 NFS_PATH Path on NFS_SERVER where the root
 filesystems for blades will be stored

 -i [identifier] Directory name that will identify specific
 blade on NFS_SERVER. If creating zImage
 for multiple blades, use:

 -i <hostname> <first> - <last>
 -h Show this message

 Example:

 ./cell_zImage.sh 10.10.10.1 2.6.18-53.el5 \
/srv/netboot/qs21/RHEL5.1 -i cell 25 - 30

 This will create zImages for QS21 blades cell21 to cell34, based
 on kernel 2.5.18-53.el5, and whose NFS_PATH will be
 10.10.10.1:/srv/netboot/qs21/RHEL5.1/cell<25-30>

EOF
 exit 1
}

if [$# = 0]; then
 usage
fi

NFS_SERVER=$1
KERN_VERSION=$2
NFS_PATH=$3

shift 3
while getopts hi: OPTION; do
case $OPTION in
 i)
 shift
 BLADES=($*)
 ;;
 h|?)
 usage
 ;;
esac
done
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 551

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Ensure to set BOOTPROT0=dhchp on eth0 config files
sed -i "s%^\(BOOTPROTO\=\).*%\\1dhcp%" \
/etc/sysconfig/network-scripts/ifcfg-eth0

If a range of blades is provided, process them here
if ["${BLADES[2]}" = "-"]; then
 BASE=${BLADES[0]}
 FIRST=${BLADES[1]}
 LAST=${BLADES[3]}
 BLADES=()
 for i in `seq $FIRST $LAST`;
 do
 BLADES[a]=${BASE}${i}
 ((a++))
 done
fi

Create the initrd and zImages
for QS21 in ${BLADES[*]}; do

 ### Create initrd image ##################################
 mkinitrd --with "tg3" --net-dev "eth0" \
 --rootdev=${NFS_SERVER}:${NFS_PATH}/${QS21} --rootfs=nfs \
 initrd-nfs-${QS21}-${KERN_VERSION}.img ${KERN_VERSION}

 ### Create kernel zImage #################################
 mkzimage vmlinuz-${KERN_VERSION} config-${KERN_VERSION} \
 System.map-${KERN_VERSION} \
 initrd-nfs-${QS21}-${KERN_VERSION}.img \
 /usr/share/ppc64-utils/zImage.stub \
 zImage-nfs-${QS21}-${KERN_VERSION}.img
 rm -rf initrd-nfs-${QS21}-${KERN_VERSION}.img > \
 /dev/null 2>&1
 echo "zImage has been built as zImage-nfs-${QS21}-\
${KERN_VERSION}.img"
done

Finally, we copy the zImage file to our DHCP server:

root@POWERbox# scp /boot/zImage.POWERbox-2.6.18-53.el5
root@192.168.170.50:/srv/netboot/QS21/RHEL5.1/images/

Now that we’ve placed the two most important components, the root filesystem in
our NFS server and the zImage file in our DHCP server, we can more forward to
ensure these are accessible by our BladeCenter QS21
552 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
First, we edit our /etc/exports file in our NFS server so as to give the proper
access permissions, our file will look like this:

/srv/netboot/QS21/RHEL5.1/boot/192.168.70.51
192.168.170.0(rw,sync,no_root_squash)

We now edit our /etc/xinet.d/tftp file, we’re mostly interested in the “server_args”
and “disable” parameters, our file now looks as such:

Example 10-6 Sample /etc/xinet.d/tftp configuration file

#default: off
description: The tftp server serves files using the trivial file
#transfer protocol. The tftp protocol is often used to boot diskless
#workstations, download configuration files to network-aware printers,
#and to start the installation process for some operating systems.
service tftp
{

socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = -vvv -s /srv/netboot/QS21/images
 disable = no
 per_source = 11
 cps = 100 2
 flags = IPv4
}

Now we pay attention to our /etc/dhcpd.conf file in our DHCP server. In order for
changes made to the dhcpd.conf file to take into affect, you have to restart the
dhcpd service each time you make a change on the dhcp.conf file.

To minimize this need, we’ll create soft link that points to the zImage file. In the
future, if we want to change the zImage for our BladeCenter QS21, we change
where the soft link points to instead of having to edit the dhcpd.conf file and
restart the dhcpd service.

root@192.168.170.50# ln -snf \
/srv/netboot/QS21/RHEL5.1/images/POWERbox/zImage-POWERbox-2.6.18-53\
.el5 /srv/netboot/QS21/images/QS21BLADE

Next, we ensure our /etc/dhcpd.conf file is properly set, our file now looks like
this:
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 553

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Example 10-7 Sample entry on /etc/dhcpd.conf file

subnet 192.168.170.0 netmask 255.255.255.0 {
next-server 192.168.170.50;
}
host QS21Blade{
 filename “QS21Blade";
 fixed-address 192.168.170.51;
 option host-name "POWERbox";
 hardware ethernet 00:a1:b2:c3:d4:e5;
}

Notice for the “filename” variable, we have called it “QS21Blade”, this file is
named in reference to the directory specified on the variable “server_args”,
defined under /etc/xinet.d/tftp’ file. Recall that “POWERbox” is a soft link we
assigned earlier that points to the appropriate zImage file of interest.

Let’s assume that we did edit our /etc/dhcpd.conf file, in this case, we’ll have to
restart the dhcpd service as such:

root@192.168.170.50# service dhcpd restart

We are now completed with this setup, assuming our BladeCenter QS21 is
properly configured for booting up via Network, we can move forward and restart
our BladeCenter QS21.

10.3 Installing SDK3.0 on BladeCenter QS21

The BladeCenter QS21 and SDK 3.0 supports the following operating systems:

• Red Hat Enterprise Linux 5.1

• Fedora 7

Furthermore, while SDK 3.0 is available for both of these Linux distributions,
SDK3.0 support is available only for Red Hat Enterprise Linux 5.1.

Additionally, note that the following SDK3.0 components are not available for
RHEL5.1

• Crash SPU Commands

• Cell Performance Counter

• OProfile

• SPU-Isolation
554 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
• Full-System Simulator and Sysroot Image

The following table provides the SDK 3.0 SO images provided for each
distribution, how they’re obtainable, and their corresponding contents.

Table 10-1 Red Hat Enterprise Linux (RHEL5).1 ISO Images

Table 10-2 Fedora 7 ISO Images

Product Set ISO Name Location

The Product package is
intended for production
purposes. This package
contains access to IBM
support and all of the
mature technologies in
SDK3.0.

CellSDK-Product-RHEL_.
3.0.0.1.0.iso

http://www.ibm.com/soft
ware/howtobuy/passporta
dvantage

The Developer package is
intended for evaluation of
the SDK in a development
environment and contains
all of the mature
technologies in SDK 3.0

CellSDK-Devel-RHEL_3.0.
0.1.0.iso

http://www.ibm.com/deve
loperworks/power/cell/d
ownloads.html

The Extras package
contains the latest
technologies in the SDK.
These packages are
usually less mature or are
technology preview code
that may or may not
become part of the
generally available product
in the future.

CellSDK-Extra-RHEL_3.0.
0.1.0.iso

http://www.ibm.com/deve
loperworks/power/cell/d
ownloads.html

Product Set ISO Name Locations

The Developer package is
intended for evaluation of
the SDK in a development
environment and contains
all of the mature
technologies in SDK 3.0

CellSDK-Devel-Fedora_3.
0.0.1.0.iso

http://www.ibm.com/deve
loperworks/power/cell/d
ownloads.html
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 555

http://www.ibm.com/software/howtobuy/passportadvantage
http://www.ibm.com/developerworks/power/cell/downloads.html
http://www.ibm.com/developerworks/power/cell/downloads.html
http://www.ibm.com/developerworks/power/cell/downloads.html

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
In addition to these packages, there are a set of open source SDK components
which are usually accessed directly through YUM from a direcotory on the
Barcelona Supercomputing Web site.

If your BladeCenter QS21 does not have outside internat access, you can
download these components into one of your local servers that does have
external access and install the RPMs manually on the BladeCenter QS21 of
interest. The table below outlines these open source components.

Table 10-3 SDK 3.0 Open Source Components

The Extras package
contains the latest
technologies in the SDK.
These packages are
usually less mature or are
technology preview code
that may or may not
become part of the
generally available product
in the future.

CellSDK-Extra-Fedora_3.0
.0.0.1.0.iso

http://www.ibm.com/deve
loperworks/power/cell/d
ownloads.html

Component RHEL5.1 Fedora 7

Crash SPU Commands Not Available http://www.bsc.es/proje
cts/deepcomputing/linux
oncell/cellsimulator/sd
k3.0/CellSDK-Open-Fedor
a/cbea/

GCC Toolchain http://www.bsc.es/proje
cts/deepcomputing/linux
oncell/cellsimulator/sd
k3.0/CellSDK-Open-RHEL/
cbea/

http://www.bsc.es/proje
cts/deepcomputing/linux
oncell/cellsimulator/sd
k3.0/CellSDK-Open-Fedor
a/cbea/

LIBSPE/LIBSPE2 Included with distribution http://www.bsc.es/proje
cts/deepcomputing/linux
oncell/cellsimulator/sd
k3.0/CellSDK-Open-Fedor
a/cbea/

netpbm Included with distribution http://www.bsc.es/proje
cts/deepcomputing/linux
oncell/cellsimulator/sd
k3.0/CellSDK-Open-Fedor
a/cbea/

Product Set ISO Name Locations
556 Programming the Cell Broadband Engine: Examples and Best Practices

http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/CellSDK-Open-Fedora/cbea/
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/CellSDK-Open-RHEL/cbea/
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/CellSDK-Open-Fedora/cbea/
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/CellSDK-Open-Fedora/cbea/
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/CellSDK-Open-Fedora/cbea/
http://www.ibm.com/developerworks/power/cell/downloads.html

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
10.3.1 Pre-installation steps

Before proceeding forward to the SDK 3.0 installation on a BladeCenter QS21,
ensure the following preparatory steps are established.

1. Ensure the BladeCenter QS21 has the appropriate firmware, level
QB-01.08.0-00 or higher. For further information on firmware, please refer to
the “Firmware Considerations” section of this chapter.

2. Ensure YUM updater daemon is disabled as it cannot be running when
installing SDK. To turn YUM updater daemon off, type:

/etc/init.d/yum-updatesd stop

3. For RHEL5.1 only:

a. If you plan on installing FDPRO-Pro, you must ensure compat-libstdc++
RPM is installed first, otherwise, the FDPR-Pro installation will fail.

b. Ensure that the LIBSPE2 libraries provided in the RHEL5.1
Supplementary CD are installed, these rpms are:

• libspe2-2.2.0.85-1.el5.ppc.rpm

• libspe2-2.2.0.85-1.el5.ppc64.rpm

c. Ensure that elfspe utility is provided by installing elfspe2 rpms as provided
in the RHEL5.1 Supplementary CD, these rpms are:

• elfspe2-2.2.0.85-1.el5.rpm

numactl http://www.bsc.es/proje
cts/deepcomputing/linux
oncell/cellsimulator/sd
k3.0/CellSDK-Open-RHEL/
cbea/

http://www.bsc.es/proje
cts/deepcomputing/linux
oncell/cellsimulator/sd
k3.0/CellSDK-Open-Fedor
a/cbea/

Oprofile Not Available http://www.bsc.es/proje
cts/deepcomputing/linux
oncell/cellsimulator/sd
k3.0/CellSDK-Open-Fedor
a/cbea/

Sysroot Image Not Available http://www.bsc.es/proje
cts/deepcomputing/linux
oncell/cellsimulator/sd
k3.0/CellSDK-Open-Fedor
a/cbea/

Component RHEL5.1 Fedora 7
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 557

http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/CellSDK-Open-RHEL/cbea/
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/CellSDK-Open-Fedora/cbea/
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/CellSDK-Open-Fedora/cbea/
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk3.0/CellSDK-Open-Fedora/cbea/

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
• libspe2-devel-2.2.0.85-1.el5.ppc.rpm (if application development
applies)

• libspe2-devel-2.2.0.85-1.el5.ppc64.rpm (if application development
applies)

After installing this rpm, ensure spufs is loaded correctly by doing the
following steps:

i. # mkdir -p /spu

ii. If if you want to mount spufs immediately:

mount /spu

To ensure it automatically mounts on boot, place the following line
under /etc/fstab:

spufs /spu spufs defaults 0 0

4. Ensure that rsync, sed, tcl, and wget packages are installed in your
BladeCenter QS21, the SDK Installer requires these packages.

5. If you will be installing SDK3.0 through ISO images, ensure to create the
/tmp/sdkiso directory and place the SDK3.0 ISO images in this directory.

Now that you’ve established the prerequisites for installation, you can proceed to
installation.

10.3.2 Installation Steps

The installation for SDK3.0 is mostly covered by the SDK Installer, which is
obtained after installing the cell-install-<rel>-<ver>.noarch rpm.

After you install the cell-install RPM, you can install SDK3.0 through the use of
the cellsdk script, using the iso option:

cd /opt/cell

./cellsdk --iso /tmp/cellsdkiso install

Make sure to read the corresponding license agreements, these licenses being
GPL and LGPL. Additionally, either the International Programming License
Agreement (IPLA) or the International License Agreement for Non-Warranted
Programs (ILAN). If you install the “Extras” ISO, you will also be presented with
the International License Agreement for Early Release of Programs (ILAER).

Note: If you prefer to install through a GUI, you can add the --gui flag
when executing the cellsdk script.
558 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Once the license agreements have been read and established, confirm to YUM
install the specified SDK.

10.3.3 Post-Installation Steps

Now you have installed the default components for SDK3.0. The only necessary
steps at this point are related to configuration updates for YUM.

First, if you do not intend on installing additional packages, you’ll need to
unmount the isos that were automatically mounted when you ran the install. To
do this, run the following command.

./cellsdk --iso /tmp/cellsdkiso unmount

Next, you’ll have to edit the /etc/yum.conf file from preventing automatic updates
from overwriting certain SDK components. Add the following clause to the [Main]
section of this file to prevent YUM update from overwriting SDK versions of the
following runtime RPMs:

exclude=blas kernel numactl oprofile

The next and final step is to re-enable the yum updater daemon that was initially
disabled before SDK3.0 installation:

/etc/init.d/yumupdater start

You’ve now established all of the necessary post-installation steps. If you are
interested in installing additional SDK3.0 components for development purposes,
please refer to the IBM Software Development Kit for Multicore Acceleration
Version 3.0.0 Installation Guide.

For additional details on SDK3.0 installation and installing a supported
distribution on a BladeCenter QS21 system, please refer to the IBM Software
Development Kit for Multicore Acceleration Version 3.0.0 Installation Guide,
located at http://www.ibm.com/alphaworks/tech/cellsw/download.

Note: If you find the need to install additional packages that are included in the
SDK3.0 but are not part of the default install, make sure to mount these isos
once again. You can accomplish this using the following command:

./cellsdk --iso /tmp/cellsdkiso mount

Afterwards, run ‘yum install <package_name>’
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 559

http://www.ibm.com/alphaworks/tech/cellsw/download

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
10.4 Firmware considerations

Firmware for the BladeCenter QS21 comes primarily through two packages, one
is through the baseboard management controller (BMC) firmware, and the other
through the basic input/output system (BIOS) firmware. In a more detailed
manner, here is what each firmware packages covers;

– BMC firmware

• Communicates with advanced management module

• Controls power on

• Initializes board, including the Cell BE processors and clock chips

• Monitors the physical board environment

– System firmware

• Takes control once BMC has successfully initialized the board

• Acts as basic input/output system (BIOS)

• Includes boot-time diagnostics and power-on self test

• Prepares the system for operating system boot

It is important that both of these packages match at any given time in order to
avoid problems and system performance issues.

10.4.1 Updating firmware for the BladeCenter QS21

When updating the firmware for the BladeCenter QS21, it is highly recommended
that both the BMC and system firmware are updated, with the system firmware
being updated first. Both of these packages can be downloaded from
http://www.ibm.com/support/us/en.

Checking current firmware version
There are two ways to check the firmware level on a BladeCenter QS21. The first
way is through the Advanced Management Module, while the other is through the
command line.

The Advanced Management Module can give you information on not only the
system firmware, but also the BMC firmware. Through this interface, you can
view the build identifier, release, and revision level of both firmware types. These
are viewable under Monitors → Firmware VPD.

You can also view the system firmware level through the command line by typing
the following command:
560 Programming the Cell Broadband Engine: Examples and Best Practices

http://www.ibm.com/support/us/en

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
xxd /proc/device-tree/openprom/ibm,fw-vernum_encoded

On the output, the value of interest is the last field, which starts with “QB”, this will
be your system firmware level.

Updating system firmware
To update the system firmware, you can download the firmware update script fro
IBM’s online support site, once downloaded into your BladeCenter QS21, run the
following comand on your running BladeCenter QS21:

./<firmware_script> -s

This will automatically update the firmware silently and reboot the machine, you
can also extract the .bin system firmware file into a directory:

./<firmware_script> -x <directory to extract to>

Once you have obtained the .bin file into a chosen directory, you can update the
firmware using the following command under Linux:

update_flash -f <rom.bin file obtained from IBM support site>

Now that you’ve updated and successfully booted up to the new system
firmware, you must ensure that you have a backup copy of this firmware image
on your server. There are always two copies of the system firmware image on the
blade server, these being TEMP and PERM.

TEMP Firmware image normally used in the boot process.
When you update the firmware, it is the TEMP
image that is updated.

PERM This is a backup copy of the system firmware boot
image. Should your TEMP image be corrupt, you
can recover to a working firmware from this copy.
More info is provided on this process later in this
section.

You can check from which image the Blade server has booted up from by running
the following command:

cat /proc/device-tree/openprom/ibm,fw-bank

If the output returns a “P”, this means you have booted on the PERM side, you
will usually boot on the TEMP side unless that particular image is corrupt.

Note: Both of the previous commands will cause the BladeCenter QS21
machine to reboot, so make sure you run this while having access to the
machine’s console, either via serial connection or through SOL connection.
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 561

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
After you have successfully booted up your blade server from the TEMP image
with the new firmware, you can copy this image to the backup PERM side by
typing the following command:

update_flash -c

Additionally, you can accomplish this task of copying from TEMP to PERM by
typing the following command:

echo 0 > /proc/rtas/manage_flash

Please refer to the “Recovering a working system firmware ” section if you
encounter problems with your TEMP image file.

Updating BMC firmware
Once you’ve obtained and uncompressed .tgz file, you will have the BMC
firmware image whose filename will be BNBT<version number>.pkt.

To update, first, log into the corresponding BC-H Advanced Management Module
through a browser. Once you’ve logged in, make sure to turn off the BladeCenter
QS21 whose firmware you’re going to update. Next, go to Blade Tasks →
Firmware Update, select the blade server of interest, then select “Update” and
“Continue” on the following screen.

You should now be set with your updated BMC firmware, you can now boot up
your BladeCenter QS21.

Updating firmware for Infiniband Daughter Card
If you have the optional, Infiniband daughter card on your BladeCenter QS21,
you may have to occasionally update the firmware. For this task to be completed,
the “openib-tvflash” package will need to be installed.

First, obtain the .tgz packaged file from the IBM support site, uncompress it on
your BladeCenter QS21.

tar xvzf cisco-qs21-tvflash.tgz

Next, run the following command:

./tvflash -p <firmware .bin file>

At this point you should have your Infiniband daughter card firmware updated.
For further information on features and supplementary information, please refer
to the “Topspin_LinuxHost_ReleaseNotes_3.2.0” under
http://www.ibm.com/support/en/us.
562 Programming the Cell Broadband Engine: Examples and Best Practices

http://www.ibm.com/support/en/us

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Recovering to a working system firmware
The system firmware is contained in two separate images of the flash memory,
these being the temporary (TEMP) and the permanent (PERM) image. Usually,
when a BladeCenter QS21 boots up, it will boot from the TEMP image. However,
in instances where he TEMP image is corrupt or damaged, the system will then
boot up from the PERM image.

To choose which image to boot from, you can do this by accessing the SMS utility
and on the main menu and selecting “Firmware Boot Side Options”. For more on
accessing the SMS utility, please refer back to the THIS SECTION.

To check which image your machine is currently booted on, type the following
command:

cat /proc/device-tree/openprom/ibm,fw-bank

A returned value of “P” means you’ve booted from the PERM side.

If you have booted from the PERM side and would like to boot from the TEMP
side instead, First copy the PERM image to the TEMP image by running the
following command:

update_flash -r

Shut down the blade server, restart the blade system management processor
through the Advanced Management Module and turn the BladeCenter QS21
back on.
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 563

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
10.5 Options for managing multiple blades

As previously covered, the BladeCenter QS21’s characteristic of being a diskless
system implies the need for additional configurations to ensure initial
functionality. Some of these steps, more specifically for RHEL5.1, require
individual BladeCenter QS21 configurations, which can become mundane when
amplified to a cluster network of BladeCenter QS21s.

This section will introduce two tools in particular which can be implemented to
not only set an ease to such configuration steps for scalabe purposes, but also
establish such cluster environment in an organized fashion. These two tools are
Extreme Cluster Administration Toolkit (xCAT) and Distributed Image
Management for Linux Clusters (DIM).

10.5.1 Distributed Image Management

Distributed Image Management for Linux Clusters (DIM) is a tool that was
developed for scalable image management purposes. This tool allows diskless
blades in particular, to run a Linux distribution over the network. Addtionally,
traditional maintenance tasks can be easily and quickly applied to multitude of
blades at the same time. Distributed Image Management for Linux Clusters was
first implemented for use in IBM’s MareNostrum supercomputer, which consists
of over 2,500 IBM JS21 Blades.

Distributed Image Management for Linux Clusters is a cluster image
management utility, it does not contain tools for cluster monotoring, event
management, or remote console management. DIM’s primary primary focus is to
adddress the difficult task of managing Linux distribution images for all nodes of
a fairly sized cluster.

Some additional characterstics of DIM are the following:

– Automated IP and DHCP configuration through an XML file that describes
the cluster network and naming taxonomy.

– Allows set up of multiple images(i.e. can have Fedora and RHEL5.1
images setup for one blade) for every node in parallel

– Allows for fast incremental maintenance of filesystem images, changes
such as user ID’s, passwords, and RPM installations.

– Manages multiple configurations to be implemented accross a spectrum of
individual blades, these being:

• IP addresses

• DHCP
564 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
• NFS

• File system images

• network boot images (BOOTP/PXE)

• Node remote control

While DIM is not a comprehensive cluster management tool, if so needed, it can
by complemented by other cluster management tools such as xCAT.

DIM has been tested on BladeCenter QS21s and the latest release supports DIM
implementation on Cell blades.

DIM implementation on BladeCenter QS21s
The most recent release of DIM supports and documents how to implement it for
BladeCenter QS21 node clusters. DIM has the ability to provide configuration,
set-up, and provisioning for all these nodes through one or more image servers.
We will show generalized steps for implementing DIM on a cluster of QS21s, and
will follow forward with this in providing an example implementation.

The following prerequsities are needed before proceeding to installing and
setting up DIM:

– A single, regular disk-based installation on a POWER-based machine.

– A POWER-based or x86-64 machine to be the DIM server

– An image server where the master and node trees will be stored(This can
be the same as the DIM-Server). It is recommended to have at least 20GB
of storage space + .3 GB per node.

– The the following software:

• BusyBox

• Perl Net-SNMP

• PERL XML-Simple

• PERL XML-Parser

We will assume that the POWER-based installation has been already
established, ensure that when you do the initial install, the “Development Tools”
package is included. We will also assume that the dim server in this case also
contain the distribution that will be deployed to the BladeCenter QS21s.

We recommend establishing a local YUM repository to ease the process of
package installation and for instances where your BladeCenter QS21 does not
have external internet access. Assuming you will be applying the rpms from a
distribution install DVD, You can accomplish this through the following steps:
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 565

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
mount /dev/cdrom /mnt

rsync -a /mnt /repository

umount /dev/cdrom

 rpm -i /repository/Server/createrepo-*.noarch.rpm

createrepos /repository

Next, create the /etc/yum.repos.d/local.repo configuration file to reflect this newly
created repository:

[local]

name=Local repository

baseurl=file:///repository

enabled=1

DIM server setup steps
On your DIM server, ensure the following packages are installed and enabled:

• dhcp

• xinetd

• tftp-server

Because DIM will loop mount the BladeCenter QS21 images, you’ll need to
increase the number of allowed loop devices. Additionally, you’ll want to
automatically start DIM_NFS upon bootup of the dim-server. You can accomplish
both both of these tasks by editing the /etc/rc.d/rc.local file so that it’s configured
as shown below:

Example 10-8 /etc/rc.d/rc.local file for DIM server.

#!/bin/sh
#
This script will be executed *after* all the other init scripts.
You can put your own initialization stuff in here if you don't
want to do the full Sys V style init stuff.
DIM_SERVER=<DIM_IP_ADDRESS>
touch /var/lock/subsys/local
if grep -q "^/dev/root / ext" /proc/mounts; then
 #commands for the DIM Server
 modprobe -r loop
 modprobe loop max_loop=64
 if [-x /opt/dim/bin/dim_nfs]; then
 /opt/dim/bin/dim_nfs fsck -f
 /opt/dim/bin/dim_nfs start
566 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
 fi
else
 # commands for the DIM Nodes
 ln -sf /proc/mounts /etc/mtab
 test -d /home || mkdir /home
 mount -t nfs $DIM_SERVER:/home /home
 mount -t spufs spufs /spu
fi
if [-x /etc/rc.d/rc.local.real]; then
. /etc/rc.d/rc.local.real
fi

Note that you’ll have to replace the variable DIM_SERVER with your particular
DIM server IP address. Next, run the following commands to edit /etc/init.d/halt:

root@dim-server# perl -pi -e \
's#loopfs\|autofs#\\/readonly\|loopfs\|autofs#' /etc/init.d/halt

root@dim-server# perl -pi -e \
's#/\^\\/dev\\/ram/#/(^\\/dev\\/ram|\\/readonly)/#' /etc/init.d/halt

This edit will prevent the reboot command from failing on BladeCenter QS21
nodes as without this fix, the QS21 will try to unmount its own root file system
when switching into runlevel 6.

Now you can reboot your DIM server and we’ll proceed to installing DIM.

DIM Software Install
Now, we’ll show the steps for installing DIM on your designated DIM server.

First, obtain the latest DIM rpm from the IBM alphaworks website, this rpm can
be downloaded from http://www.alphaworks.com/tech/dim.

Next, download the additional needed software:

• For Busybox:

http://www.busybox.net/downloads/busybox-1.1.3.targ.gz

• For Perl Net-SNMP:

http://www.cpan.org/modules/by-module/Net/Net-SNMP-5.1.0.tar.g
z

• For Perl XML-Parser:

http://www.cpan.org/modules/by-module/XML/XML-Parser-2.34.tar.
gz

• For Perl XML-Simple
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 567

http://www.alphaworks.com/tech/dim
http://www.busybox.net/downloads/busybox-1.1.3.targ.gz
http://www.cpan.org/modules/by-module/Net/Net-SNMP-5.1.0.tar.gz
http://www.cpan.org/modules/by-module/XML/XML-Parser-2.34.tar.gz

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
http://www.cpan.org/modules/by-module/XML/XML-Simple-2.18.tar.
gz

Place all of these downloaded packages and the DIM rpm into a created
/tmp/dim_install directory. Install the DIM rpm from this directory.

Next, add /opt/dim/bin to the PATH enviroment variable:

root@dim-server# echo 'export PATH=$PATH:/opt/dim/bin' >> \
$HOME/.bashrc

root@dim-server# . ~/.bashrc

Install the additional PERL modules required for DIM (Net-SNMP, XML-Parser,
XML-Simple), you can ignore the warnings that may be displayed.

root@dim-server# cd /tmp/dim_install

make -f /opt/dim/doc/Makefile.perl

make -f /opt/dim/doc/Makefile.perl install

Next, build Busybox and copy the BusyBox binary to the DIM directory:

root@dim-server# cd /tmp/dim_install

tar xzf busybox-1.1.3.tar.gz

cp /opt/dim/doc/busybox.config \
busybox-1.1.3/.config

patch -p0 < /opt/dim/doc/busybox.patch

 cd busybox-1.1.3

make

cp busybox /opt/dim/dist/busybox.ppc

 cd /

At this point DIM and it’s dependent packages has been installed on your DIM
server, we can move forward to setup steps.

DIM setup
This section will outline some of the basic setup steps, provide descriptions and
options to these steps, and additionally point out some specific configuration files
where modifications can be made to meet your specific network needs.

Note: The Busybox binary must be built on a POWER based system,
otherwise the kernel zimage will not boot up on a BladeCenter QS21.
568 Programming the Cell Broadband Engine: Examples and Best Practices

http://www.cpan.org/modules/by-module/XML/XML-Simple-2.18.tar.gz

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
First, we’ll point three DIM configuration files in particular that will need to be
modificed to meet your specific network setup.

– /opt/dim/config/dim_ip.xml

This file you will need to initially create, you can copy one of the template
examples named “dim_ip.xml.<example>” and modify it as you see fit. The
main purpose of this file is to set a DIM IP configuration for your Cell
clusters. It will define your Cell DIM nodes, their corresponding
hostnames, ip addresses and it will also define the DIM server.

– /opt/dim/config/dim.cfg

This file defines the larger scale locations of the NFS, DHCP and DIM
configuration files. For the most part, the default values will apply in most
cases, however these variables may frequently change:

• DIM_DATA

This is the directory where the all of the data relevant to the distro
you’re deplying accross your network will be stored. This data includes
the zImages, the master root filesystem, and the blade filesystem
images.

• NFS_NETWORK

This will define your specific IP address deployment network.

• PLUGIN_MAC_ADDR

This will define the IP address of your BladeCenter H, it is through this
variable that DIM will access the BladeCenter H to obtain MAC address
info on the QS21 nodes along with executing basic, operational, blade
specific commands.

– /opt/dim/config/<DISTRO>/dist.cfg

This file will define some variables that are specific to your distribution
deployment. It will also define the name of the DIM_MASTER machine,
should it be different. Some variables of interest that you may need to
change:

• KERNEL_VERSION

The kernel version you’ll want for creating bootable zImages on your
particular distribution.

• KERNEL_MODULES

The modules that you’ll want to and aren’t enabled by default on your
kernel. Note that the only module you’ll need for BladeCenter QS21 to
function is “tg3”.

• DIM_MASTER
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 569

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
This variable defines the machine that contains the master root
filesystem. In cases where the distribution you want to deploy in your
cluster is in a different machine, you’ll specify which machine to grab
the root filesystem from. Otherwise, if it is located in the same box as
your DIM server, you can leave the default value.

– /opt/dim/<DIST>/master.exclude

This file contains a list of directories that wil be excluded from being copied
to the master root filesystem.

– /opt/dim/<DIST>/image.exclude

This file contains a list of directories that wil be excluded from being copied
to the image root filesystem of each BladeCenter QS21.

Before you proceed further to the DIM commands which will begin to create your
images, ensure that you adapt the files and variables defined above to meet your
particular network needs and preferences.

Now, you can execute the DIM commands which will create you distribution and
node specific images. You can find the extent of the DIM commands offered
under the /opt/dim/lib directory. Each one of these commands should have an
accessible manual page on your system, run “man <dim_command>”.

First, create the DIM master directory for your distribution of interest:

root@dim-server# dim_sync_master -d <distribution>

Now, build the DIM network boot image:

root@dim-server# dim_zImage -d <distribution>

Next, create the the read-only and “x” read-write DIM images representing the
number of nodes in your network.

root@dim-server# dim_image -d <distribution> readonly
dim-server[y]-blade[{1..x}]

Where “y” is the corresponding DIM server number(if there is more than one) and
“x” represents the number of BladeCenter QS21 nodes. Add all of these DIM
images to /etc/exports:

root@dim-server# dim_nfs add -d <distribution> all

Now mount and confirm all the DIM images for NFS exporting:

root@dim-server# dim_nfs start

dim_nfs status
570 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Next, set the base configuration of DHCPD with your own IP subnet address:

root@dim-server# dim_dhcp add option -O
UseHostDeclNames=on:DdnsUpdateStyle=none

dim_dhcp add subnet -O Routers=<IP_subnet> \
dim-server[1]-bootnet1

dim_dhcp add option -O DomainName=dim

The following steps will require that the BladeCenter QS21 be connected in the
BladeCenter H chassis, the steps mentioned previously did not require this. In
this instance, you now add each QS21 blade to the dhcp.conf file through the
following command:

root@dim-server# dim_dhcp add node -d <distribution> \
dim-server[y]-blade[x]

Once again, where “y” represents the dim-server number(if there are is more
than one dim server) and “x” represents the QS21 blade. Once you’re done
adding all of the nodes of interest, ensure to restart the dhcp service:

root@dim-server# dim_dhcp restart dhcpd

You should now be ready to boot up your QS21 to your distribution as configured
under DIM.

Once your setup is complete, you may want to eventually add aditionally software
to your nodes, for these purposes, it is recommended you apply software
maintenance on the original machine where the root filesystem was copied from,
then, you can sync the master root filesystem and DIM images.

root@powerbox# dim_sync_master -d <distribution> <directory
updated>..<directory updated>..

root@powerbox# dim_sync_image -d <distribution> <directory
updated>..<directory updated>..

Notice that you’ll list out the directories to sync on the master and DIM images,
depending on which directories are affected by your software installation.

Note: Ensure that you have enabled the max number of loop devices on your
dim-server, otherwise, you may see an error related to this when running the
command above. To increase the number of loop devices, run:

root@dim-server# modrpobe -r loop

modprobe loop max_loop=64
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 571

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Example DIM implementation on BladeCenter QS21 cluster
We will now show an example of applying DIM on a small cluster of BladeCenter
QS21s.

This example will address the issue where POWER-based servers are in limited
availability. We have two initial installs on a POWER based machine, while the
dim-server will be an X-series machine.

Here are the variables for our example:

Example 10-9 Settings for DIM implementatoin example

Distributions: Fedora 7 and RHEL5.1
Fedora 7 Server:f7-powerbox
RHEL5.1 Server: rhel51-powerbox
DIM Boot Image Creation Server: POWER-based
qs21-imagecreate(192.168.20.70)
Dim Server: xSeries qs21-dim-server(192.168.20.30)
Kernel Version: 2.6.22-5.20070920bsc and 2.6.18-53.el5
Dim Nodes: qs21cell{1..12}(192.168.20.71..82)
BladeCenter H IP address: 192.168.20.50

We’ve chosen to use both Fedora 7 and RHEL5.1 distributions to split half of our
cluster between RHEL5.1 and Fedora. Also, note that we have have our DIM
server and our image server be two different machines.

Notice that our dim-server will be an System x server while our DIM Boot Image
server will be a POWER based system. We have chosen our boot image server
to be a POWER based system because a POWER based system is needed for
creating the kernel zImage file. Due to the fact we’re working with two different
distributions, we will need to copy the root filesystem from two different
power-based installations into our System x server.

We will install DIM only on the dim server and when needing to create a zImage,
mount the DIM directory to our boot image server. We will specify the machine if
a procedure is to applied to only one of these two servers.

We won’t show the steps for the initial hard-disk installation on a POWER based
machine, we’ll only mention that we did ensure to include the “Development
Tools’ package in our installation.

Note: If you do not have a POWER based system, you can install your
distribution on a BladeCenter QS21 by using USB storage, copy this installed
filesystem to your non-POWER based dim-server, and use the USB storage
strictly for creating needed boot zImage files.
572 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
We’ll want to give our dim-server the ability to partially manage the BladeCenter’s
QS21 from the dim-server’s command prompt. In order to achieve this, we’ll need
to access the Advanced Management Module (AMM) through a web browser.
Once we access the AMM, we’ll go to MM Control → Network Protocols →
Simple Network Management Protocol (SNMP) and set the following values:

SNMPv1 Agent : enable

Community Name : public

Access Type: : set

Hostname or IP : 192.168.20.50

Since one of our distributions is Fedora7, we need to install the kernel rpm that is
provided on the Barcelona Supercomputing web site on our Fedora 7 machine:

root@f7-powerbox# wget \
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/s
dk3.0/kernel-2.6.22-5.20070920bsc.ppc64.rpm

rpm -ivh --force --noscripts \
kernel-2.6.22-5.20070920bsc.ppc64.rpm

depmod -a 2.6.22-5.20070920bsc

First we’ll want to ensure we have increased the numer of max loop devices and
start the nfs service by default. This is accomplished by editing the file as shown
in Example 10-8 on page 566, the file will look the same, except we’ll assigning
the variable DIM-Server to the IP address in our example, 192.168.20.70.

Next, we’ll make the two changes needed on the /etc/init.d/halt file on both the
f7-powerbox and rhel51-powerbox:

root@f7-poerbox# perl -pi -e \
's#loopfs\|autofs#\\/readonly\|loopfs\|autofs#'\

/etc/init.d/halt

 perl -pi -e \
's#/\^\\/dev\\/ram/#/(^\\/dev\\/ram|\\/readonly)/#’\

/etc/init.d/halt

Finally, we’ll add all of the QS21 blade hostnames under /etc/hosts, this will only
apply to the dim-server:

root@dim-server# echo "192.168.20.50 mm mm1" >> /etc/hosts

echo "192.168.20.70 dim-server" >> /etc/hosts

for i in ̀ seq 71 82`; do echo "192.168.20.$i cell$i\
b$i"; done >> /etc/hosts
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 573

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Now we’ve established all the steps before proceeding to the DIM software
install.

For DIM software install, first we’ll download the DIM RPM from the IBM
Alphaworks website (http://www.alphaworks.com/tech/dim) and the required
dependent software for DIM.

We will create a /tmp/dim_install directory and place our downloaded DIM rpm on
there, this will apply to both the dim-server and the dim-storage machine.

root@dim-server # mkdir /tmp/dim_install

The script “dim_install.sh” will setup the procedures for installing our DIM
software, this script will be ran on both servers as well:

root@dim-server # ./dim_install.sh

Example 10-10 dim_install.sh script

#/bin/bash
##
DIM Installation Script
#
#
#
##

set -e

Download the additional sofware needed by DIM
cd /tmp/dim_install
wget http://www.busybox.net/downloads/busybox-1.1.3.tar.gz
wget http://www.cpan.org/modules/by-module/Net/Net-SNMP-5.1.0.tar.gz
wget http://www.cpan.org/modules/by-module/XML/XML-Parser-2.34.tar.gz
wget http://www.cpan.org/modules/by-module/XML/XML-Simple-2.18.tar.gz

Add /opt/dim/bin to PATH environment variable
echo "export PATH=$PATH:/opt/dim/bin" >> $HOME/.bashrc
chmod u+x ~/.bashrc
~/.bashrc

Install perl modules required for DIM
cd /tmp/dim_install
make -f /opt/dim/doc/Makefile.perl
make -f /opt/dim/doc/Makefile.perl install
574 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Add /opt/dim/bin to PATH environment variable
echo "export PATH=$PATH:/opt/dim/bin" >> $HOME/.bashrc
. ~/.bashrc
echo "Completed"

The needed busybox binary must be built on a POWER based system. Because
of this, we’ll build this binary on our boot image creation POWER machine.

root@qs21-imagecreate# cd /tmp/dim_install

tar xzf busybox-1.1.3.tar.gz

cp /opt/dim/doc/busybox.config \
busybox-1.1.3/.config

patch -p0 < /opt/dim/doc/busybox.patch

cd busybox-1.1.3

make

scp busybox \
root@qs21-dim-server:/opt/dim/dist/busybox.ppc

Now that ‘we’ve installed DIM on our server, we’ll have to make some
modifications to setup DIM.

The first file of interest is /opt/dim/config/dim_ip.xml, we’ll use one of the example
templates (dim_ip.xml.example4) and modify it to our needs. This will need to be
modified on both servers. The xml file is provided below.

root@dim-server# cp /opt/dim/config/dim_ip.xml.example4 \
/opt/dim/config/dim_ip.xml

Example 10-11 /opt/dim/config/dim_ip.xml file

<?xml version="1.0" ?>
<!-- $Id: dim_ip.xml.example4 1654 2007-09-02 09:03:44Z morjan $ -->
<!--

 Simple DIM IP configuration file for CELL
 - boot network 192.168.70.0/24 (eth0)
 - user network 10.0.0.0/8 (eth1, optional)
 - 13 DIM Nodes (blade 1-13)

Note: Ensure that the following packages are installed before executing the
script above:

• gcc

• expat-devel
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 575

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
 - 1 DIM Server (blade 14)

 Examples:
 DIM Component IP-Address Hostname Comment

===
dim-server[1]-bootnet1 192.168.70.14 s1 DIM Server JS21 Slot 14 eth0
dim-server[1]-blade[1]-bootnet1 192.168.70.1 cell1 Cell Blade 1 Slot 1 eth0
dim-server[1]-blade[13]-bootnet1 192.168.70.13 cell13 Cell Blade 13 Slot 13 eth0
dim-server[1]-blade[1]-usernet1 10.0.0.1 cell1u Cell Blade 1 Slot 1 eth1
-->
<dim_ip xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="dim_ip.xsd">
 <configuration name="dim">
 <component name="server" min="1" max="1">
 <network name="bootnet1">
 <mask>255.255.255.0</mask>
 <addr>192.168.20.0</addr>
 <ip>192, 168, 20, 30</ip>
 <hostname>dim-server%d, server</hostname>
 </network>
 <component name="blade" min="1" max="13">
 <network name="bootnet1" use="1">
 <mask>255.255.255.0</mask>
 <addr>192.168.20.0</addr>
 <ip>192, 168, 20, (blade + 70)</ip>
 <hostname>qs21cell%d, (blade + 70)</hostname>
 </network>
 <network name="usernet1">
 <mask>255.0.0.0</mask>
 <addr>10.10.10.0</addr>
 <ip>10, 10, 10, (blade + 70)</ip>
 <hostname>qs21cell%du, blade</hostname>
 </network>
 </component>
 </component>
 </configuration>
</dim_ip>

We’ll note the main changes done form the example template revolve around the
IP addresses, tand hostnames for both the DIM server and the individual
BladeCenter QS21s. Note that this file is open to be modified to meet your
specific hardware considerations.

Next we modify /opt/dim/config/dim.cfg to fit our needs:
576 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Example 10-12 /opt/dim/config/dim.cfg file

#--
(C) Copyright IBM Corporation 2004
All rights reserved.
#

#--
$Id: dim.cfg 1563 2007-07-11 10:12:07Z morjan $
#--

DIM data directory (no symbolic links !)
DIM_DATA /var/dim

DHCPD config file
DHCPD_CONF /etc/dhcpd.conf

dhcpd restart command
DHCPD_RESTART_CMD service dhcpd restart

NFS config file
NFS_CONF /etc/exports

NFS server restart command
NFS_RESTART_CMD /etc/init.d/nfsserver restart

NFS export options read-only image
NFS_EXPORT_OPTIONS_RO rw,no_root_squash,async,mp,no_subtree_check

NFS export options read-write image
NFS_EXPORT_OPTIONS_RW rw,no_root_squash,async,mp,no_subtree_check

NFS export option network
NFS_NETWORK 192.168.20.0/255.255.255.0

TFTP boot dir
TFTP_ROOT_DIR /srv/tftpboot

plugin for BladeCenter MAC addresses
PLUGIN_MAC_ADDR dim_mac_addr_bc -H 192.168.20.50

name of dim_ip configuration file
DIM_IP_CONFIG dim_ip.xml

name of zimage linuxrc file
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 577

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
LINUX_RC linuxrc

network interface
NETWORK_INTERFACE eth0

boot type (NBD|NFS)
BOOT_TYPE NFS

In the file provided above, we mainly changed the NFS_NETWORK,
TFTP_ROOT_DIR, and PLUGIN_MAC_ADDR variables so as to reflect our
settings, the file is shown to provide a glimpse on what can additionally be
configured.

Because we are working with two distributions, we’ll need to create entries for
both distributions.

root@qs21-storage# mkdir /opt/dim/config/Fedora7

mkdir /opt/dim/dist/Fedora7

mkdir /opt/dim/config/RHEL51

mdkir /opt/dim/dist/RHEL51

cp /opt/dim/CELL/* /opt/dim/config/Fedora7

cp /opt/dim/dist/CELL/* /opt/dim/dist/Fedora7/

cp /opt/dim/CELL/* /opt/dim/config/RHEL51

cp /opt/dim/dist/CELL/* /opt/dim/dist/RHEL51

As can be seen, we copied all the files under /opt/dim/CELL and
/opt/dim/dist/CELL into our distribution config directories. The files copied from
/opt/dim/CELL we’re “dist.cfg”, “image.exclude”, and “master.exclude”. We’ll
configure these files to meet our needs. For the files under /opt/dim/dist/CELL,
we shouldn’t need to change modify them.

Below are the “dist.cfg” files for Fedora7 and RHEL5.1 respectively.

Example 10-13 /opt/dim/config/Fedora7/dist.cfg file

#--
(C) Copyright IBM Corporation 2006
All rights reserved.
#
#--
$Id: dist.cfg 1760 2007-10-22 16:30:11Z morjan $
#--
578 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Image file size for readwrite part in Megabytes
IMAGE_SIZE_RW 200

Image file size for readonly part in Megabytes
IMAGE_SIZE_RO 5000

Read only directories
DIR_RO bin boot lib opt sbin usr lib64

Read write directories
DIR_RW root dev etc var srv selinux

Create additional directories
DIR_ADD media mnt proc readonly sys spu huge tmp
home

Ethernet DHCP trials
ETHERNET_DHCP_TRIALS 3

Reboot delay in seconds on failure
REBOOT_DELAY 60

Zimage command line options
ZIMAGE_CMDLINE not used

Mount options readwrite tree
MOUNT_OPTIONS_RW rw,tcp,nolock,async,rsize=4096,wsize=4096

Mount options readonly tree
MOUNT_OPTIONS_RO ro,tcp,nolock,async,rsize=4096,wsize=4096

Boot method
BOOT_METHOD bootp

Name of zimage linuxrc file
LINUX_RC linuxrc

Kernel release (uname -r)
KERNEL_VERSION 2.6.22-5.20070920bsc

Kernel modules
KERNEL_MODULES tg3.ko sunrpc.ko nfs_acl.ko lockd.ko nfs.ko

DIM master node (hostname | [user@]hostname[:port]/module)
DIM_MASTER f7-powerbox
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 579

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
DIM server (hostname | [user@]hostname[:port]/module
[,...])
DIM_SERVER localhost

The only variables we have changed here are the KERNEL_VERSION,
KERNEL_MODULES, and DIM_MASTER. We additionally modified
MOUNT_OPTIONS_RW and MOUNT_OPTIONS_RO variables to include “tcp”.

The rest of the variables we have left with their default values. In this example,
the only difference between the Fedora7 and RHEL5.1 configuration file are the
KERNEL_VERSION, KERNEL_MODULES, and DIM_MASTER variables.

Example 10-14 /opt/dim/config/RHEL51/dist.cfg file

#--
(C) Copyright IBM Corporation 2006
All rights reserved.
#
#--
$Id: dist.cfg 1760 2007-10-22 16:30:11Z morjan $
#--

Image file size for readwrite part in Megabytes
IMAGE_SIZE_RW 200

Image file size for readonly part in Megabytes
IMAGE_SIZE_RO 5000

Read only directories
DIR_RO bin boot lib opt sbin usr lib64

Read write directories
DIR_RW root dev etc var srv selinux

Create additional directories
DIR_ADD media mnt proc readonly sys spu huge tmp
home

Ethernet DHCP trials
ETHERNET_DHCP_TRIALS 3

Reboot delay in seconds on failure
REBOOT_DELAY 60
580 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Zimage command line options
ZIMAGE_CMDLINE not used

Mount options readwrite tree
MOUNT_OPTIONS_RW rw,nolock,async,rsize=4096,wsize=4096

Mount options readonly tree
MOUNT_OPTIONS_RO ro,nolock,async,rsize=4096,wsize=4096

Boot method
BOOT_METHOD bootp

Name of zimage linuxrc file
LINUX_RC linuxrc

Kernel release (uname -r)
KERNEL_VERSION 2.6.18-53.el5

Kernel modules
KERNEL_MODULES tg3.ko fscache.ko sunrpc.ko nfs_acl.ko lockd.ko
nfs.ko

DIM master node (hostname | [user@]hostname[:port]/module)
DIM_MASTER rhel51-powerbox

DIM server (hostname | [user@]hostname[:port]/module
[,...])
DIM_SERVER localhost

The “image.exclude” and “master.exclude” are text files which contain a list of
directories to be excluded from image root filesystems and the master root
filesystem. We will leave the default directories on these files.

Next, we’ll create the master image. First, we’ll need to copy the root filesystems
from the initial Fedora 7 and RHEL5.1 machines into our qs21-storage server.

We’ve already specified these initial machines in our
/opt/dim/config/<DIST>/dist.cfg file, now we want to create public ssh public key
authentication for each machine.

root@dim-server# ssh-keygen -t dsa

root@dim-server# cat ~/.ssh/id_dsa.pub | ssh root@f7-powerbox "cat \
- >> ~/.ssh/authorized_keys"
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 581

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
root@dim-server# cat ~/.ssh/id_dsa.pub | ssh root@rhel51-powerbox \
"cat - >> ~/.ssh/authorized_keys"

Now, we can move forward to creating the master images:

root@dim-server# dim_sync_master -d Fedora7

dim_sync_master -d RHEL5.1

We now create the zimages, in this case, since our dim-server is an Xseries
machine, we’ll cannot run the command on the dim-server machine. Instead, we
will mount the /opt/dim, /var/dim and /srv/tftpboot direcotories from the Xseries
dim server onto a power-based machine, in this case, our boot image server.

root@dim-server# echo “/opt/dim” >> /etc/exports

root@dim-server# echo “/var/dim” >> /etc/exports

root@dim-server# echo “/srv/tftpboot” >> /etc/exports

Now that we’ve made these directories exportable from the dim-server, we’ll
mount them on the power based boot image server:

root@qs21-imagecreate# mkdir /opt/dim

mkdir /var/dim

mkdir /srv/tftpboot

mount dim-server:/opt/dim /opt/dim

mount dim-server:/var/dim /var/dim

mount dim-server:/srv/tftpboot /srv/tftpboot

echo "export PATH=$PATH:/opt/dim/bin" >> \
$HOME/.bashrc

. ~/.bashrc

Next, we’ll want to create the zImage files on the dim boot image server and
afterwards, umount the directories:

root@qs21-imagecreate# dim_zimage -d Fedora7

dim_zimage -d RHEL5.1

umount /opt/dim

umount /var/dim

umount /srv/tftpboot

We return to the dim-server and create the images
582 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
root@dim-server# dim_image -d Fedora7 readonly \
dim-server[1]-blade[{1..5}]

dim_image -d RHEL5.1 readonly \
dim-server[1]-blade[{6..12}]

dim_nfs add -d Fedora7 all

dim_nfs add -d RHEL5.1 all

dim_nfs start

Next we’ll add the base configuration to our dhcpd.conf file, this will apply to our
dim-server only:

root@dim-server# dim_dhcp add option -O \
UseHostDeclNames=on:DdnsUpdateStyle=none

 dim_dhcp add subnet -O Routers=192.168.20.100 \
dim-server[1]-bootnet1

dim_dhcp add option -O DomainName=dim

Now, we’ll add the entries into our /etc/dhcp.conf file:

root@dim-server# for i in ‘seq 1 5’; do dim_dhcp add node -d Fedora7\
dim-server[1]-blade[i]; done

for i in ‘seq 6 12’; do dim_dhcp add node -d \
RHEL5.1 dim-server[1]-blade[i]; done

dim_dhcp restart

Finally, we can use DIM to ensure each blade is configured to boot up via
network and also boot up each QS21 blade node.

root@dim-server# for i in ‘seq 1 12’; do dim_bbs -H mm1 i network;\
done

for i in ‘seq 1 12’; do dim_bctool -H mm1 i on; done

We have now completed implementing DIM on 12 of our QS21 nodes, using both
Fedora7 and RHEL5.1 as deployment distributions.

10.5.2 Extreme Cluster Administration Toolkit

The Extreme Cluster Administration Toolkit (xCAT) is a toolkit used for
deployment and administration of Linux clusters, with many of it’s features taking
advantage of the IBM xSeries® hardware.

xCAT is written entirely using scripting languages such as korn, shell, perl, and
Expect. Many of these scrips can be altered to reflect the needs of your particular
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 583

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
network. xCAT provides cluster management through four main branches, these
being automated installation, hardware management and monitoring, software
administration, and remote console support for text and graphics.

Here is a more detailed view of xCAT’s offerings:

– Automated Installation

• Network booting with PXE or Etherboot/GRUB

• Red Hat installation with Kickstart

• Automated Parallel installation for RedHat and SuSE

• Automated Parallel installation via imaging with Windows, or other
operating systems

• Other OS installation using imaging or cloning

• Automatic node configuration

• Automatic errata installation

• Hardware management and monitoring

– Hardware Management and monitoring

• Supports the Advanced Systems Management features in IBM xSeries

Remote Power control (on/off/state) via IBM Management Processor
Network and/or APC Master Switch

Remote Network BIOS/firmware update and configuration on extensive
IBM hardware

Remote vital statistics (fan speed, temperatures, voltages)

Remote inventory (serial numbers, BIOS levels)

Hardware event logs

Hardware alerts via SNMP

Create and manage diskless clusters.

• Supports remote power control switches for control of other devices

APC MasterSwitch

BayTech Switches

Intel EMP

• Traps SNMP alerts and notify administrators via e-mail

– Software administration

• Parallel shell to run commands simultaneously on all nodes or any
subset of nodes
584 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
• Parallel copy and file synchronization

• Provides Installation and configuration assistance of the HPC software
stack

Message Passing Interface: Build scripts, documentation, automated
set-up for MPICH, MPICH-GM, and LAM

Maui and PBS for scheduling and queuing of jobs

GM for fast and low latency inter-process communication using Myrinet

– Remote console support for text and graphics

• Terminal servers for remote console

Equinox ELS and ESP

iTouch In-Reach and LX series

Remote Console Redirect feature in IBM ^ xSeries BIOS

• VNC for remote graphics

As can be seen, the offerings from xCAT are mostly geared towards automating
many of the basic setup and management steps for small and larger, more
complex clusters.

As previously mentioned, xCAT’s offerings are broad to the extend that they can
complement the cluster management offerings that DIM doesn’t provide.
Additionally, xCAT does provide it’s own method of handling diskless clusters.
While we wont’ go into further detail on xCAT’s full offerings and implementation,
we briefly will cover xCAT’s solution to diskless clusters.

Diskless systems on xCAT
Similar to DIM, there is a stateless cluster solution that can be implemented with
xCAT provides an alternative method for installing and configuring diskless
systems.

Warewulf1 is a tool utilized in conjunction with xCAT in providing a stateless
solution for High Performance Computing (HPC) clusters. It was originally
designed and implemented by the Lawrence Berkley National Laboratory as part
of the Scientific Cluster Support (SCS) program to meet the need of a tool that
would allow deployment and management of a large number of clusters.

Warewulf’s main purpose is to provide ease to maintaining and monitoring
stateless images and nodes as well as allowing such tasks to be applied in a
scalable fashion.

1 See http://www.perceus.org/portal/project/warewulf
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 585

http://www.perceus.org/portal/project/warewulf

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Offerings provided by Warewulf are the following:

– Master/Slave relationship

• Master Nodes

Supports interactive logins and job dispatching to slaves

Gateway between outside world and cluster network

Central Management for all nodes

• Slave Nodes

Slave nodes optimized primarily for computation

Only available on private cluster network(s)

– Multiple physical cluster network support

• Fast ethernet administration

• High speed data networks(i.e. Myricom, Infiniband, GigE)

– Modular design which facilitates cusomization

• Can change between kernel, linux distribution, cluster applications

– Network booting

• Boot image is built from Virtual Node Filesystem(VNFS)

A small chroot’able Linux distribution residing on the master node

Network boot image created using VNFS as a template

Destined to live in the RAM on the nodes

• Nodes boot utilizing Etherboot

Open source project that faciliatates network booting

Uses DHCP and TFTP to obtain boot image

• Implements RAM-disk filesystems

All nodes capable of running diskless

• Account user management

Builds password file for all nodes

Standard authentication schemes (files, NIS, LDAP)

Rsync used to push files to nodes

As shown above, the extent of Warewulf’s offerings rest on providing
customization and scalability on a small or large cluster.

There are many similarities between Warewulf and DIM, among them, mostly
revolving around easing the process of installation and management in an
586 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
efficient, scalable manner. Both of these tools automate many of the initial install
steps required for a BladeCenter QS21 to boot up.

The primary difference between these two node install and management tools
rests on machine state. Warewulf provides solutions for stateless machines
through the use of RAM-disk filesystems that are shared and read only. DIM
preserves the state of inidividual nodes by using NFS root methods to provide
read/write images on each node along with making certain components of the file
system read only.

Warewulf version 2.6.x in conjuction with xCAT version 1.3 has been tested on
BladeCenter QS21s. DIM version 9.14 has been tested on BladeCenter QS21s.

These offerings are both good solutions whose benefits depend on the needs of
a particular private cluster setup. In instances where storage is a limited resource
and maintaining node state is not important, Warewulf may be better suited for
you needs. If storage is not a limited resource and maintaining the state of
individual nodes is important, then DIM may be the preferred option.

10.6 Method for installing a minimized distribution

The BladeCenter QS21’s diskless characteristic coupled with the common need
to have the operating system utilize a minimal amount of resources, brings forth
the topic covered in this chapter. Achieving this process not only saves storage
space but also minimizes memory usage.

This solution of minimal usage of resources by the operating system can be
further extended by decreasing the size of the kernel zImage that is loaded to the
BladeCenter QS21. Additionally, the storage footprint of the root filesystem
utilized by each BladeCenter QS21 can be minimized through decreasing the
directories to be mounted or making the some of the directories read only.

Those two topics will not be covered in this section as they are beyond the scop
of this documentation. Additionally, DIM addresses both of these issues and
provides a resource efficient root filesystem and kernel zImage.

We will cover further steps that can be taken during and briefly after installation in
removing packages that won’t be neccessary in most cases for a BladeCenter
QS21. This example will be shown for RHEL5.1 only, but can closely be applied
to Fedora 7 installs as well.
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 587

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
10.6.1 During installation

Detailed steps of installing on RHEL5.1 will not be covered in this section. The
main point of interest we want to establish during installation are the packages to
be installed. When you are in the “Package Installation” step of the process,
ensure to select “Customize Software Selection” as shown below:

Example 10-15 Package Selection step of RHEL5.1 Installation Proccess

 +----------------¦ Package selection +-----------------+
 ¦ ¦
 ¦ The default installation of Red Hat Enterprise ¦
 ¦ Linux Server includes a set of software applicable ¦
 ¦ for general internet usage. What additional tasks ¦
 ¦ would you like your system to include support for? ¦
 ¦ ¦
 ¦ [] Software Development ¦
 ¦ [] Web server ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ [*] Customize software selection ¦
 ¦ ¦
 ¦ +----+ +------+ ¦
 ¦ ¦ OK ¦ ¦ Back ¦ ¦
 ¦ +----+ +------+ ¦
 ¦ ¦
 ¦ ¦
< +--+
 <Tab>/<Alt- xt screen

In the following screen, you will be asked to specify which group of software
packages you would like to install, some will have already been selected by
default, ensure to de-select all of the packages as shown below:

Example 10-16

Welcome to Red Hat Enterprise Linux Server

Note: These steps are all to be implemented on a POWER based system that
contains actual disk storage. The product of this process will then be mounted
on to a BladeCenter QS21.
588 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
 +----------¦ Package Group Selection +----------+
 ¦ ¦
 ¦ Please select the package groups you would ¦
 ¦ like to have installed. ¦
 ¦ ¦
 ¦ [] Administration Tools ? ¦
 ¦ [] Authoring and Publishing ? ¦
 ¦ [] DNS Name Server ¦ ¦
 ¦ [] Development Libraries ¦ ¦
 ¦ [] Development Tools ¦ ¦
 ¦ [] Editors ? ¦

 ¦ [] Engineering and Scientific ? ¦
 ¦ [] FTP Server ? ¦
 ¦ [] GNOME Desktop Environment ¦ ¦
 ¦ [] GNOME Software Development ¦ ¦
 ¦ [] Games and Entertainment ¦ ¦
 ¦ [] Graphical Internet ? ¦

 ¦ [] Graphics ? ¦
 ¦ [] Java Development ¦ ¦
 ¦ [] KDE (K Desktop Environment) ? ¦
 ¦ [] KDE Software Development ¦ ¦
 ¦ [] Legacy Network Server ¦ ¦
 ¦ [] Legacy Software Development ? ¦

 ¦ [] Mail Server ? ¦
 ¦ [] MySQL Database ¦ ¦
 ¦ [] Network Servers ¦ ¦
 ¦ [] News Server ? ¦
 ¦ [] Office/Productivity ¦ ¦
 ¦ [] PostgreSQL Database ? ¦

 ¦ [] Printing Support ? ¦
 ¦ [] Server Configuration Tools ¦ ¦
 ¦ [] Sound and Video ¦ ¦
 ¦ [] System Tools ? ¦
 ¦ [] Text-based Internet ¦ ¦
 ¦ [] Web Server ? ¦

 ¦ [] Windows File Server ? ¦
 ¦ [] X Software Development ¦ ¦
 ¦ [] X Window System ? ¦

 ¦ +----+ +------+ ¦
 ¦ ¦ OK ¦ ¦ Back ¦ ¦
 ¦ +----+ +------+ ¦
 ¦ ¦
 ¦ ¦

 +---+

 <Space>,<+>,<-> selection | <F2> Group Details | <F12> next screen
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 589

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Once you’ve ensured that none of the package groups have been selected, you
can proceed forward with your installation.

10.6.2 Post-installation package removal

Now we’ll focus on removing packages that were installed by default. In order to
ease the process of package removal and dependency check, we strongly
recommend you establish a local yum repository in your installed system.

Our main approach towards determining which packages to remove from our
newly installed system is geared towards keeping the common purpose of a
BladeCenter QS21 server into consideration. We will remove packages related to
graphics, video, sound, documentation/word processing,network/email, security,
and other categories which contain packages for the BladeCenter QS21 which
may be unneccessary.

Graphics and audio
A great majority of the packages that are installed by default are related to Xorg
and GNOME. Despite the fact we have selected to not install these particular
package groups during our installation process, there are nevertheless packages
that get installed related to these tools.

First, we’ll remove the Advanced Linux Sound Architecture (ALSA) library, the
removal of this particular package through YUM, will also remove other
dependent packages:

yum remove alsa-lib

Table 10-4 Packages removed with alsa-lib

Package GNOME Sound Other
Graphics

Doc Other

 alsa-utils X

antlr X

esound X

firstboot X

gjdoc X

gnome-mount X

gnome-python2 X

gnome-python2-bonobo X
590 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
Next, remove the ATK library, which adds accessibility support to applications
and graphical user interface toolkits. Removing this package will also remove the
following packages through YUM:

yum remove atk

Table 10-5 Packages removed with atk

gnome-python2-canvas X

gnome-python2-extras X

gnome-python2-gconf X

gnome-python2-gnomevfs X

gnome-python2-gtkhtml2 X

gnome-vfs2 X

gtkhtml2 X

gtkhtml2-ppc64 X

java-1.4.2-gcj-compat X

libbonoboui X

libgcj X

libgcj-ppc64 X

libgnome X

libgnomeui X

rhn-setup-gnome X

sox X

Package GNOME Other Graphics Other

GConf2 X

GConf2-ppc64 X

authconfig-gtk X

bluez-gnome X

bluez-utils X

Package GNOME Sound Other
Graphics

Doc Other
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 591

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Next, remove the X.org X11 runtime library:

yum remove libX11

Table 10-6 Packages removed with libX11

gail X

gail-ppc64 X

gnome-keyring X

gtk2 X

gtk2-ppc64 X

gtk2-engines X

libglade2 X

libglade2-ppc64 X

libgnomecanvas X

libgnomecanvas-ppc64 X

libnotify X

libwnck X

metacity X

notification-daemon X

notify-python X

pygtk2 X

pygtk2-libglade X

redhat-artwork X

usermode-gtk X

xsri X

Package X.org Other Graphics Other

libXcursor X

libXcursor-ppc64 X

libXext X

Package GNOME Other Graphics Other
592 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
libXext-ppc64 X

libXfixes X

libXfixes-ppc64 X

libXfontcache X

libXft X

libXft-ppc64 X

libXi X

libXi-ppc64 X

libXinerama X

libXinerama-ppc64 X

libXpm X

libXrandr X

libXrandr-ppc64 X

libXrender X

libXrender-ppc64 X

libXres X

libXtst X

libXtst-ppc64 X

libXv X

libXxf86dga X

libXxf86misc X

libXxf86vm X

libXxf86vm-ppc64 X

libxkbfile X

mesa-libGL X

mesa-libGL-ppc64 X

tclx

Package X.org Other Graphics Other
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 593

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Next, remove X.org X11 libICE runtime library:

yum remove libICE

Table 10-7 Packages removed with libICE

Remove the vector graphics library next, cairo:

yum remove cairo

Table 10-8 Packages removed with cairo

Continue trying to remove remaining X.org packages:

tk X X

Package X.org Other

libSM X

libSM-ppc64 X

libXTrap X

libXaw X

libXmu X

libXt X

libXt-ppc64 X

startup-notification X

startup-notification-ppc64 X

xorg-x11-server-utils X

xorg-x11-xkb-utils X

Package Doc Printing Other Graphics

cups X

pango X

pango-ppc64 X

paps X

pycairo X

Package X.org Other Graphics Other
594 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
yum remove libfontenc

This will also remove “libXfont” and “xorg-x11-font-utils” packages

yum remove x11-utils

This will also remove “xorg-x11-utils” package

yum remove libFS libXau libXdmcp xorg-x11-filesystem

Remove the following remaining graphics packages:

yum remove libjpeg

This will also remove “libtiff” package

yum remove libart_lgpl fbset libpng gnome-mime

Now, wrap up the audio packages removal:

yum remove audiofile libvorbis talk

There are other graphics related packages which will be removed by default due
to dependencies on other non-graphics packages.

Documentation, word processing, and file manipulation packages
Next, remove packages that are related with documentation, word processing
and file manipulation.

First, remove the file comparison tool, diffutils:

yum remove diffutils

Table 10-9 Packages removed with diffutils

Packages X.org SELinux GNOME Other

chkfontpath X

policycoreutils X

rhpxl X

sabayon-apply X

selinux-policy X

selinux-policy-targeted X

urw-fonts X

xorg-x11-drv-evdev X

xorg-x11-drv-keyboard X
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 595

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
Remove the relevant packages that are left in this category:

yum remove aspell aspell-en ed words man man-pages groff bzip2 zip\
unzip

Network, email and printing packages
Now you can move forward and remove any network, printing and email related
packages from your default distribution insall. First, remove the network
packages.

yum remove ppp

This will remove packages “rp-pppoe” and “wvdial”.

yum remove avahi avahi-glib yp-tools ypbind mtr lftp NetworkManager

Now remove printing related packages:

yum remove cups-libs mgetty

And finally, the email related packages

yum remove mailx coolkey

Security, management and DOS-related packages
Because we cannot utilize SELinux for the BladeCenterQS21, we can look to
remove these packages from our default install.

yum remove checkpolixy setools libsemanage

Now remove the machine management related packages.

yum remove conman anacron dump vixie-cron

And now you remove the DOS-related packages

xorg-x11-drv-mouse X

xorg-x11-drv-vesa X

xorg-x11-drv-void X

xorg-x11-fonts-base X

xorg-x11-server-Xnest X

xorg-x11-server-Xorg X

xorg-x11-xfs X

Packages X.org SELinux GNOME Other
596 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575CH_SYSTEMS.fm
yum remove mtools unix2dos dos2unix dosfstools

USB and others
Now you can remove USB packages and other packages that will most likely not
be needed for the typical BladeCenter QS21 implementation.

yum remove cccid usbutils

We now cover the remaining packages to be removed from the RHEL5.1 default
installation:

yum remove bluez-libs irda-utils eject gpm hdparm hicolor \
ifd-egate iprutils parted pcsc-lite pcsc-lite-libs smartmontools \
wpa_supplicant minicom

At this point, we’ve removed packages mostly relevant to graphics, audio,
word-processing, neworking and other tools. This process described above
should cut your number of installed packages about one half.

10.6.3 Shutting off services

The final step we’re providing in making your system faster and more efficient is a
small list of remaining services that can be turned off. This will save run-time
memory along with speed up your BladeCenter QS21 boot process. Use
‘chkconfig’ as shown below to turn off the services specified.

chkconfig --level 12345 atd off

chkconfig --level 12345 auditd off

chkconfig --level 12345 autofs off

chkconfig --level 12345 cpuspeed off

chkconfig --level 12345 iptables off

chkconfig --level 12345 ip6tables off

chkconfig --level 12345 irqbalance atd off

chkconfig --level 12345 isdn off

chkconfig --level 12345 mcstrans off

chkconfig --level 12345 rpcgssd off

chkconfig --level 12345 rhnsd off

With the distribution stripped down to a lower amount of installed packages and a
minimum amount of services running, you can copy this root filesystem to a
master directory and on forward to individual BladeCenter QS21s for
deployment. As stated prior, DIM takes steps at implement further resource
 Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration 597

7575CH_SYSTEMS.fm Draft Document for Review February 15, 2008 4:59 pm
efficiency, such implementation can be complemented with the process shown in
this section.
598 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575PART_APPX.fm
Part 5 Appendixes

In this part of the book we provide two Appendixes:

� Appendix A, “SDK 3.0 Topic Index” on page 601

� Appendix B, “Additional material” on page 609

Part 5
© Copyright IBM Corp. 2007. All rights reserved. 599

7575PART_APPX.fm Draft Document for Review February 15, 2008 4:59 pm
600 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575APPX_SDK3_EXTINFOLIST.fm
Appendix A. SDK 3.0 Topic Index

This appendix contains a cross reference of programming topics relating to Cell
BE application development to the Cell BE SDK 3.0 document containing that
topic. This information in the following tables are subject to change when a new
Cell BE SDK is released by IBM.

Table A-1 Programming topics cross reference

A

Topic Cell BE SDK 3.0 Documentation

C and C++ Standard Libraries C/C++ Language Extensions for Cell BE
Architecture

Access Ordering Cell Broadband Engine Architecture

Aliases, Assemlber SPU Assembly Language Specification

Audio Resample Library Audio Resample Library
DELETED: See change log of
Example Library API Reference, Version 3.0

Cache Management
(software-managed cache)

Programming Guide V3.0 <-- missing
VARIABLE

CBEA-Specific PPE Special
Purpose Registers

Cell Broadband Engine Architecture
© Copyright IBM Corp. 2007. All rights reserved. 601

7575APPX_SDK3_EXTINFOLIST.fm Draft Document for Review February 15, 2008 4:59 pm
Completion Variables
(Sync library)

Example Library API Reference

Composite Intrinsics C/C++ Language Extensions for Cell BE
Architecture

Conditional Variables
(Sync library)

Example Library API Reference

Data Types and Programming
Directives

C/C++ Language Extensions for Cell BE
Architecture

Debug Format (DWARF) SPU Application Binary Interface Specification,
Version 1.7 <-- missing VARIABLE

DMA Transfers and Inter-Processor
Communication

Cell Broadband Engine Programming Handbook

Evaluation Criteria for Performance
Simulations

Performance Analysis with Mambo

Extensions to the PowerPC
Architecture

Cell Broadband Engine Architecture

FFT Library Example Library API Reference

Floating-Point Arithmetic on the
SPU

C/C++ Language Extensions for Cell BE
Architecture

Game Math Library Example Library API Reference

Histograms Example Library API Reference

I/O Architecture Example Library API Reference

Image Library Example Library API Reference

Instruction Set and Instruction
Syntax

SPU Assembly Language Specification

Large Matrix Library Example Library API Reference

Logical Partitions and a Hypervisor Cell Broadband Engine Programming Handbook

Low-Level Specific and Generic
Intrinsics

C/C++ Language Extensions for Cell BE
Architecture

Low-Level System Information SPU Application Binary Interface Specification

Topic Cell BE SDK 3.0 Documentation
602 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575APPX_SDK3_EXTINFOLIST.fm
Mailboxes Cell Broadband Engine Programming Handbook
Cell Broadband Engine Programming Tutorial

Math Library Example Library API Reference

Memory Flow Controller Cell Broadband Engine Architecture
Cell Broadband Engine Programming Handbook
Cell Broadband Engine Programming Tutorial

Memory Map Cell Broadband Engine Registers
Cell Broadband Engine Architecture
Cell Broadband Engine Programming Handbook

Memory Maps Cell Broadband Engine Architecture

MFC Commands Cell Broadband Engine Architecture
Cell Broadband Engine Registers

Multi-Precision Math Library Example Library API Reference

Mutexes Example Library API Reference

Noise LibraryPPE DELETED: See change log of
Example Library API Reference, Version 3.0
Cell Broadband Engine SDK Libraries

Object Files SPU Application Binary Interface Specification

Objects, Executables, and SPE
Loading

Cell Broadband Engine Programming Handbook

Oscillator Libraries DELETED: See change log of
Example Library API Reference, Version 3.0
Cell Broadband Engine SDK Libraries

Overview of the Cell Broadband
Engine Processor

Cell Broadband Engine Programming Handbook

Parallel Programming Cell Broadband Engine Programming
Handbookk

Performance Data Collection and
Analysis with Emitters

IBM Full-System Simulator Performance
Analysis

Performance Instrumentation with
Profile Checkpoints and Triggers

IBM Full-System Simulator Performance
Analysis

Performance Monitoring Cell Broadband Engine Programming Handbook

Performance Simulation and
Analysis with Mambo

IBM Full-System Simulator Performance
Analysis

Topic Cell BE SDK 3.0 Documentation
 Appendix A. SDK 3.0 Topic Index 603

7575APPX_SDK3_EXTINFOLIST.fm Draft Document for Review February 15, 2008 4:59 pm
PowerPC Processor Element Cell Broadband Engine Programming Handbook
Cell Broadband Engine Architecture

PPE Interrupts Cell Broadband Engine Programming Handbook

PPE Multithreading Cell Broadband Engine Programming Handbook

PPE Oscillator Subroutines DELETED: See change log of
Example Library API Reference, Version 3.0
Cell Broadband Engine SDK Libraries

PPE Serviced SPE C Library
Functions
PPE-Assisted Funcitons

Security SDK Installation and User’s Guide

Privileged Mode Environment Cell Broadband Engine Architecture

Problem State Memory-Mapped
Registers

Cell Broadband Engine Architecture

Program Loading and Dynamic
Linking

SPU Application Binary Interface Specification

Shared-Storage Synchronization Cell Broadband Engine Programming Handbook

Signal Notification Cell Broadband Engine Programming Handbook
SPE Runtime Management library
C/C++ Language Extensions for Cell BE
Architecture
Cell Broadband Engine Programming Tutorial

IMD Programming Cell Broadband Engine Programming Handbook

SPE Channel and Related MMIO
Interface

Cell Broadband Engine Programming Handbook

SPE Context Switching Cell Broadband Engine Programming Handbook

SPE Events Cell Broadband Engine Programming Handbook
SPE Runtime Management library

SPE Local Storage Memory
Allocation

SEARCH-MORE
Cell Broadband Engine SDK Libraries

SPE Oscillator Subroutines DELETED: See change log of
Example Library API Reference, Version 3.0
Cell Broadband Engine SDK Libraries

SPE Programming Tips Cell Broadband Engine Programming Handbook
Cell Broadband Engine Programming Tutorial

Topic Cell BE SDK 3.0 Documentation
604 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575APPX_SDK3_EXTINFOLIST.fm
SPE Serviced C Library Functions Security SDK Installation and User’s Guide

SPU and Vector Multimedia
Extension Intrinsics

C/C++ Language Extensions for Cell BE
Architecture

SPU Application Binary Interface SPU Application Binary Interface Specification
Cell Broadband Engine Programming Handbook

SPU Architectural Overview SPU Instruction Set Archtecture

SPU Channel Instructions SPU Instruction Set Archtecture
Cell Broadband Engine Architecture
Cell Broadband Engine Programming Handbook

SPU Channel Map Cell Broadband Engine Architecture

SPU Compare, Branch, and Halt
Instructions

SPU Instruction Set Archtecture

SPU:Constant-Formation
Instructions

SPU Instruction Set Archtecture

SPU Control Instructions SPU Instruction Set Archtecture

SPU Floating-Point Instructions SPU Instruction Set Archtecture

SPU Hint-for-Branch Instructions SPU Instruction Set Archtecture

SPU Integer and Logical
Instructions

SPU Instruction Set Archtecture

SPU Interrupt Facility SPU Instruction Set Archtecture
Cell Broadband Engine Programming Handbook

SPU Isolation Facility Cell Broadband Engine Architecture

SPU Load/Store Instructions SPU Instruction Set Archtecture

SPU Performance Evaluation Performance Analysis with Mambo

SPU Performance Evaluation
Criteria and Statistics

Performance Analysis with Mambo

SPU Rotate and Mask Cell Broadband Engine Programming Handbook

SPU Shift and Rotate Instructions SPU Instruction Set Archtecture

SPU Synchronization and Ordering Cell Broadband Engine Programming Handbook

Topic Cell BE SDK 3.0 Documentation
 Appendix A. SDK 3.0 Topic Index 605

7575APPX_SDK3_EXTINFOLIST.fm Draft Document for Review February 15, 2008 4:59 pm
The Cell BE SDK 3.0 documentation is installed as part of the install package
regardless of the product selected. The following is a list of the online
documentation.

Software Development Kit (SDK) 3.0 for Multicore Acceleration

– IBM SDK for Multicore Acceleration Installation Guide
– Cell Broadband Engine Programming Tutorial
– Cell Broadband Engine Programming Handbook
– Security SDK Installation and User’s Guide

Programming Tools and Standards

– C/C++ Language Extensions for Cell BE Architecture
– IBM Full-System Simulator Users Guide and Performance Analysis
– IBM XL C/C++ single-source compiler
– SPU Application Binary Interface Specification
– SIMD Math Library Specification
– Cell BE Linux Reference Implementation Application Binary Interface

Specification

Storage Access Ordering Cell Broadband Engine Architecture
Cell Broadband Engine Programming Handbook
PowerPC Virtual Environment Architecture -
Book II

Storage Models Cell Broadband Engine Architecture

Sync Library Example Library API Reference

Synergistic Processor Elements Cell Broadband Engine Programming Handbook
Cell Broadband Engine Architecture

Synergistic Processor Unit SPU Instruction Set Archtecture
Cell Broadband Engine Architecture

Synergistic Processor Unit
Channels

Cell Broadband Engine Architecture

Time Base and Decrementers Cell Broadband Engine Programming Handbook

User Mode Environment Cell Broadband Engine Architecture

Vector Library Example Library API Reference

Vector/SIMD Multimedia Extension
and SPU Programming

Cell Broadband Engine Programming Handbook

Virtual Storage Environment Cell Broadband Engine Programming Handbook

Topic Cell BE SDK 3.0 Documentation
606 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575APPX_SDK3_EXTINFOLIST.fm
– SPU Assembly Language Specification

Programming Library Documentation

– ALF Programmer’s Guide and API Reference For Cell
– ALF Programmer’s Guide and API Reference For Cell For Hybrid-x86 (P)
– BLAS Programmer’s Guide and API Reference (P)
– DACS Programmer’s Guide and API Reference For Cell
– DACS Programmer’s Guide and API Reference- For Hybrid-x86

(prototype)
– Example Library API Reference
– Monte Carlo Library API Reference Manual (prototype)
– SPE Runtime Management library
– SPE Runtime Management Library Version 1.2 to 2.2 Migration Guide
– SPU Timer Library (prototype)

Hardware Documentation

– PowerPC User Instruction Set Architecture - Book I
– PowerPC Virtual Environment Architecture - Book II
– PowerPC Operating Environment Architecture - Book III
– Vector/SIMD Multimedia Extension Technology Programming

Environments Manual
– Cell Broadband Engine Architecture
– Cell Broadband Engine Registers
– Synergistic Processor Unit (SPU) InSample caption
 Appendix A. SDK 3.0 Topic Index 607

7575APPX_SDK3_EXTINFOLIST.fm Draft Document for Review February 15, 2008 4:59 pm
608 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575APPX_ADDMaterial.fm
Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

B

© Copyright IBM Corp. 2007. All rights reserved. 609

7575APPX_ADDMaterial.fm Draft Document for Review February 15, 2008 4:59 pm
Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247575

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247575.

Using the Web material

The additional Web material that accompanies this book includes the following
files:

� SG247575_addmat.zip

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
610 Programming the Cell Broadband Engine: Examples and Best Practices

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Draft Document for Review February 15, 2008 4:59 pm 7575APPX_ADDMaterial.fm
Additional material content

The additional materials file for this book is structured as shown in below.

Figure B-1 Contents of additional materials file SG247575_addmat.zip

In the rest of this appendix we describe each of the contents of the additional
material examples in more detail.

DaCS programming example

This section describe a DaCS code example which is related to the
Chapter 4.7.1, “DaCS - Data Communication and Synchronization” on page 284.

DaCS synthetic example

File name: dacs_hello_ide.tar

Description: The tar file contains an IDE project in a format suitable for import
using the File->Import menu in Eclipse. This code calls almost all the DaCS
functions and is both an introduction to the API and a good way to check that
DaCS is functioning correctly.
 Appendix B. Additional material 611

7575APPX_ADDMaterial.fm Draft Document for Review February 15, 2008 4:59 pm
Although this is an IDE project, it can also be compiled outside Eclipse using the
make command.

The contents of the dacs_hello.tar is listed below.

Example: B-1 dacs_hello.tar contents

dacs_hello/.cdtproject
dacs_hello/.project
dacs_hello/.settings/org.eclipse.cdt.core.prefs
dacs_hello/Makefile
dacs_hello/Makefile.example
dacs_hello/README.txt
dacs_hello/dacs_hello.c
dacs_hello/dacs_hello.h
dacs_hello/spu/Makefile
dacs_hello/spu/Makefile.example
dacs_hello/spu/dacs_hello_spu.c

Task parallelism and PPE programming examples

This section describe code example which are related to the 4.1, “Task
parallelism and PPE programming” on page 78.

Simple PPU vector/SIMD code

� Directory name: ppe_vectors

� Description: A code that demonstrate some simple vector/SIMD insructions
on a PPU program.

� Related book example: Example 4-1 on page 81

Running a single SPE

Directory name: simple_single_spe

Description: A code that demonstrate how a PPU program can insitate a single
SPE thread.

Related book examples: Example 4-2 on page 86, Example 4-3 on page 86, and
Example 4-4 on page 88.
612 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575APPX_ADDMaterial.fm
Running multiple SPEs concurrently

Directory name: simple_two_spes

Description: A code that demonstrate how a PPU program can insitate a multiple
SPE threads concurrently. The program execute two threads but can easily
extended to use more threads.

Related book examples: Example 4-5 on page 90 and Example 4-6 on page 92.

Data transfer examples

This section describes code examples which are related to 4.3, “Data transfer” on
page 109.

Direct SPE access ‘get’ example

Directory name: ppe_direct_spe_access_get

Description: A PPU program that uses ordinary load and store instructions to
directly access the problem state of some SPE and intiate DMA ‘get’ command.

Related book example: Example 4-14 on page 106

SPU initiated basic DMA between LS and main storage

Directory name: spe_simple_get_put

Description: Demonstrate how SPU program initiated DMA transfers between LS
and main storage. This example also shows how to use the stall-and-notify
mechanism of the DMA, and implementing event handler on the SPU program to
handle the stall-and-notify events.

Related book examples: Example 4-16 on page 122 and Example 4-17 on
page 123

SPU initiated DMA list transfers between LS and main storage

Directory name: spe_dma_list

Description: Demonstrate how SPU program initiated DMA list transfers between
LS and main storage. This example also shows how to use the stall-and-notify
 Appendix B. Additional material 613

7575APPX_ADDMaterial.fm Draft Document for Review February 15, 2008 4:59 pm
mechanism of the DMA, and implementing event handler on the SPU program to
handle the stall-and-notify events.

Related book examples: Example 4-19 on page 128 and Example 4-20 on
page 129

PPU initiated DMA transfers between LS and main storage

Directory name: ppe_simple_get_put

Description: A PPU program that intiate DMA transfers between LS and main
storage.

Related book examples: Example 4-22 on page 141 and Example 4-23 on
page 142

Direct PPE access to LS of some SPE

Directory name: ppe_direct_ls_access

Description: A PPU program that uses ordinary load and store instructions to
directly access the local store of some SPE.

Related book example: Example 4-24 on page 144

Multistage pipeline using LS to LS DMA transfer

Directory name: dma_ls_to_ls

Description: Uses DMA transfer between LS to LS to implement a multistage
pipeline programming mode. This example doesn’t pretend to provide the most
optimized multistage pipeline model but just to demonstrate potential usage of
the LS to LS transfer and potenitally a starting point for developing a highly
optimized multistage pipeline model.

Related book example: None.

SPU software managed cache

Directory name: sw_cache
614 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575APPX_ADDMaterial.fm
Description: Demonstrate how SPU program to intiate the software managed
cache and later use it either to perform synchronous data access using safe
mode, or to perform asynchronous data access using unsafe mode.

Related book examples: Example 4-25 on page 150, Example 4-26 on
page 151, and Example 4-27 on page 152.

Double buffering

Directory name: spe_double_buffer

Description: A SPU program that implemented double buffering mechanism.

Related book examples: Example 4-28 on page 158, Example 4-29 on
page 159, and Example 4-30 on page 161

Huge pages

Directory name: simple_huge

Description: A PPU program that uses buffers that are allocated on huge pages.

Related book example: Example 4-33 on page 167.

Inter-processor communication examples

This section describe code example which are related to the Chapter 4.4,
“Inter-processor communication” on page 174.

Simple mailbox

Directory name: simple_mailbox

Description: A simple PPU and SPU program that demonstrate how to use the
SPE inbouind and outbound mailboxes.

Related book examples: Example 4-35 on page 183, Example 4-36 on
page 185, and Example 4-39 on page 195.
 Appendix B. Additional material 615

7575APPX_ADDMaterial.fm Draft Document for Review February 15, 2008 4:59 pm
Simple signals

Directory name: simple_signals

Description: A simple PPU and SPU program that demonstrate how to use the
SPE singal notification mechanism.

Related book examples: Example 4-37 on page 191, Example 4-38 on
page 194, Example 4-39 on page 195, Example 4-40 on page 198.

PPE event handler

Directory name: ppe_event_handler

Description: An example of PPU program that implement an event handler that
handles several SPE events.

Related book example: Example 4-41 on page 204.

SPU programming examples

This section describe code example which are related to the Chapter 4.6, “SPU
programming” on page 240

SPE loop unrolling

Directory name: spe_loop_unroll

Description: A SPU program that demonstrate how to do the loop unrolling
technique to schieve better performance.

Related book example: Example 4-56 on page 260

SPE SOA loop unrolling

Directory name: spe_soa_unroll

Description: A SPU program that demonstrate how to do the loop unrolling using
SOA data organization to schieve better performance.

Related book example: Example 4-57 on page 263
616 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575APPX_ADDMaterial.fm
SPE scalar to vector conversion using insert and extract intrinsics

Directory name: spe_vec_scalar

Description: A SPU program that demonstrate how to cluster several scalars into
vector using spu_insert intrinsics, perform some SIMD operations on them and
extract them back to their scalar shape using spu_extract intrinsic.

Related book example: Example 4-63 on page 273

SPE scalar to vector conversion using unions

Directory name: spe_vec_scalar_union

Description: A SPU program that demonstrate how to cluster several scalars into
vector using unions.

Related book examples: Example 4-64 on page 275 and Example 4-65 on
page 276.
 Appendix B. Additional material 617

7575APPX_ADDMaterial.fm Draft Document for Review February 15, 2008 4:59 pm
618 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575bibl.fm
Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

This is the first IBM Redbook on the Cell Broadband Engine. There are no other
related IBM Redbooks or Redpieces at this time.

Other publications

These publications are also relevant as further information sources:

1. K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D.
Patterson, W. Plishker, J. Shalf, S. Williams, K. Yelik. "The Landscape of
Parallel Computing Research: A View from Berkeley". Technical report,
EECS Department, University of California at Berkeley,
UCB/EECS-2006-183, December, 2006.

2. Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands,
Katherine Yelick. "Scientific Computing Kernels on the Cell Processor".
International Journal of Parallel Computing, 2007.

3. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. “Design
Patterns. Elements of Reusable Object-Oriented Software”. Addison Wesley,
1994.

4. Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill. “Patterns for
Parallel Programming”. Addison Wesley, 2004.

5. Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, Toshio Nakatani. “AA-sort :
A new parallel sorting algorithm for multi-core SIMD processors”.
International Conference on Parallel Architecture and Compilation
Techniques, 2007.

6. Marc Snir. “Programming design patterns, patterns for high performance
computing”. http://www.cs.uiuc.edu/homes/snir/PDF/Dagstuhl.pdf, Feb 2006.

7. Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack Dongarra.
"MPI: The Complete Reference". Massachusetts Institute of Technology,
1996.

8. Phillip Colella. “Defining software requirements for scientic computing”. 2004.
© Copyright IBM Corp. 2007. All rights reserved. 619

7575bibl.fm Draft Document for Review February 15, 2008 4:59 pm
9. P. Dubey. “Recognition, Mining and Synthesis Moves Computers to he Era of
Tera”, Technology@Intel Magazine. Feb, 2005.

10.Makoto Matsumoto and Takaji Nishimura, Dynamic Creation of
Pseudorandom Number
Generators.http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dgene.pdf

11.M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator", ACM Trans. on
Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 (1998)

12.Glasserman, Paul , “Monte Carlo Methods in Financial Engineering”, Springer
Verlag, October 2003.

13.http://dl.alphaworks.ibm.com/technologies/cellsw/cellFMwhitepaper.pdf
14.Daniel A. Brokenshire, "Maximizing the power of the Cell Broadband Engine

processor: 25 tips to optimal application performance developerWorks",
http://www-128.ibm.com/developerworks/power/library/pa-celltips1

15.IDC, “Solutions for the data center’s thermal challenges”,
http://www-03.ibm.com/systems/pdf/IDC_Cool_Blue_Whitepaper_1-24-2007.
pdf,

16.Kursad Albayraktaroglu, Jizhu Lu, Michael Perrone, Manoj Franklin,
“Biological sequence analysis on the Cell BE. HMMer-Cell”, 2007,
http://sti.cc.gatech.edu/Slides/Lu-070619.pdf,

17.Christopher Mueller, “Synthetic programming on the Cell BE”, 2006,
http://www.cs.utk.edu/~dongarra/cell2006/cell-slides/06-Chris-Mueller.pdf,

18.Digital Medics, “Multigrid Finite Element Solver.”, 2006,
http://www.digitalmedics.de/projects/mfes,

19.Thomas Chen, Ram Raghavan, Jason Dale, Eiji Iwata, “Cell Broadband
engine Architecture and its first implementation, a performance view”,
november 2005,
http://www.ibm.com/developerworks/power/library/pa-cellperf/

20.David Kunzmann, Gengbin Zhang, Eric Bohm, Laxmikant V. Kale, ”Charm++,
offload api and the Cell processor”, 2006,
http://charm.c.uiuc.edu/papers/CellPMUP06.pdf,

21.SIMD Math Function Library reference,
http://www.ibm.com/chips/techlib/techlib.nsf/techdocs/6DFAEFEDE179041E8
725724200782367?S_TACT=105AGX16&S_CMP=LP

22.Mathematical Acceleration Subsystem,
http://www.ibm.com/support/search.wss?rs=2021&tc=SSVKBV&q=mass_cb
eppu_docs&rankfile=08

23.Monte Carlo Library API Reference,
http://www.ibm.com/chips/techlib/techlib.nsf/techdocs/8D78C965B984D1DE0
0257353006590B7?S_TACT=105AGX16&S_CMP=LP

24.Domingo Tavella, Quantitative Methods in Derivatives Pricing, John Wiley &
Sons, Inc., 2002

25.Mike Acton, Eric Christensen, “Developing technology for ratchet and clank
future : tools of destruction”, http://sti.cc.gatech.edu/Slides/Acton-070619.pdf,
june 2007.
620 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575bibl.fm
26.Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
James Demmel, “Optimization of sparse matrix-vector multiplication on
emerging multicore platforms”, Supercomputing 2007.

27.Eric Christensen, Mike Acton, “Dynamic Code Uploading on the SPU”,
http://www.insomniacgames.com/tech/articles/0807/files/dynamic_spu_code.
txt, may 2007.

Online resources

These Web sites are also relevant as further information sources:

� Cell BE site on IBM DeveloperWorks with complete documentation

http://www-128.ibm.com/developerworks/power/cell/

� Distributed Image Management (DIM) on Alphaworks

http://alphaworks.ibm.com/tech/dim

� Extreme Cluster Adminstration Toolcat (xcat)

http://www.alphaworks.ibm.com/tech/xCAT/

� oprofile on sourceforge.net
http://oprofile.sourceforge.net

� IBM Dynamic Application Virtualization
http://www.alphaworks.ibm.com/tech/dav

� MASS web site
http://www.ibm.com/software/awdtools/mass

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support
 Related publications 621

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www-128.ibm.com/developerworks/power/cell/
http://oprofile.sourceforge.net
http://alphaworks.ibm.com/tech/dim
http://www.xcat.org/
http://www.alphaworks.ibm.com/tech/dav
http://www.ibm.com/software/awdtools/mass
http://www.ibm.com/software/awdtools/mass
http://www.ibm.com/software/awdtools/mass
http://www.ibm.com/software/awdtools/mass

7575bibl.fm Draft Document for Review February 15, 2008 4:59 pm
IBM Global Services

ibm.com/services
622 Programming the Cell Broadband Engine: Examples and Best Practices

http://www.ibm.com/services/
http://www.ibm.com/services/

Draft Document for Review February 15, 2008 4:59 pm 7575IX.fm
Index

Symbols
(PGAS) 38
/etc/fstab 546
‘bisled’ instructions 200

Numerics
13 dwarfs 32
3-level memory structure 7
7 33

A
ABAQUS 33
ABI 324
ABI-compliant 103
Accelerator Element (AE) 443
accelerator mode 37
accelerator task

memory layout 301
Access Ordering 601
accessing events

programming interface 201
accessing signaling

programming interface 189
acosf4.h 259
ADA 18
adacsd 451
adacsd service 444
additional material 609
Advanced Management Module 538
AES 33
affinity 93
ALF

accelerator API functions 306
Accelerator code writer 42
accelerator task workflow 294
ALF runtime 42
architecture 293
Computational kernel 296
concepts 295
Data partitioning 301
Datasets 301
defined 41
© Copyright IBM Corp. 2007. All rights reserved.
host API functions 306
Host code writer 42
optimization tips 307
runtime and programmer’s tasks 292
Tasks and task descriptors 299
word blocks 300

ALF (Accelerated Library Framework) 291
ALF Library 22
alf_accel.h 296, 305
Algorithm match 47
align_hint 252
aligned attribute 251
Alphaworks 535
altivec.h 81
AMM 538
Analyze Executable 423
Application Binary Interface 324
application enablement process 61
application libraries

Fast Fourier Transform (FFT) 23
Game math 23
Image processing 23
Matrix operation 23
Multi-precision math 23
Software managed cache 23
Synchronization 23
Vector 23

application profiling 61
Argonne National Laboratory 41
array of structures (AOS) 262
Assembly-language instructions 103
asynchronous computation server 203
Asynchronous data access

using unsafe mode 152
asynchronously monitoring 200
atomic addition 229
atomic cache 206
atomic operation

SPEs updating shared structures 238
atomic operations 235
Atomic synchronization 229

load-and-reserve instructions 230
Store-conditional instructions 230

atomic unit 206
 623

7575IX.fm Draft Document for Review February 15, 2008 4:59 pm
atomic_read 207
atomic_set 207
Automatic software caching on SPE 155
Auto-SIMDizing by compiler 264
Auto-Vectorization 331

B
backtrace 342
Back-track 34
Back-track and Branch+Bound 49
barrier 117
Barrier command 224
barrier command 117
Barrier commands 223, 225
barrier-option 236
Basic DMA transfer 137
Basic Linear Algebra Subprograms (BLAS) 21
Basic linear algebra subprograms (BLAS) library
311
Bayesian networks 34
benchmark suites 32

EEMBC 32
HPCC 33
NAS 33
SPEC int and fp 32

Beowulf 39
BIF protocol 168
big-endian 15
Big-Endian Byte and Bit Ordering 15
Binary operators 255
bioinformatics 34
Bit numbering 15
Bit Ordering and Numbering 15
BlackScholes 308
BladeCenter QS21

Characteristics 536
BLAS 21, 33, 311
BLAS API 21
BLAST 33
Blocking (mailboxes) 178
blocking versus non-blocking access (mailboxes)
180
Boot Sequence 543
BOOTPROTO 542
Box-Muller 310, 506
Box-Muller method 497
Box-Muller transformation 506
branch elimination 277

Branch hint instructions 281
branch prediction 277

dynamic 283
static 282

Branch+Bound 34
Branches

 243
programming considerations 316

Branchless control flow statement 280
branch-target buffer (BTB) 281
Breakpoints 342
Buffer (mailboxes) 178
buildutils 337
Builtin intrinsics 249
builtin_expect 252
Bus Error message 116
Byte operations 250

C
C Development Tools (CDT) 355
Cache line size 148
CACHE_NAME 150
cache-api.h 150
Cactus 33
CAF 38, 60
call_user_routine 294
Casting 274
casting

header file 275
cbe_mfc.h 106, 138
CBEA 26
cbea_map.h 106–107
Cell BE Libraries 20
Cell Broadband Engine Architecture 4, 26
Cell Broadband Engine Interface Unit 10
cell-perf-counter (cpc) tool 371
Cell-perf-counter tool 24
cellsdk_select_compiler 338
CESOF 324
Channel interface 223, 227
channel problem-state 97
channels 95

MFC_Cmd 121
MFC_EAH 121
MFC_LSA 121
MFC_RdTagStat 122
MFC_Size 121
MFC_TagID 121
624 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575IX.fm
MFC_WrTagMask 121
Channels interface 98
Chapel 50
chgrp 165
chmod 165
Christoper Alexander 69
closed-page controller 10
Clustering scalars into vectors 273
Code Analyzer 25, 396, 423
Code Sourcery 44
collecting trace data with PDT 432
Combinatorial logic 33, 49
command queues 10
compat-libstdc++ 557
Compiler directives 251
Compilers 17

xlc 332
completion variables 235
complex number rearrangement 530
complex numbers 527
Composite Intrinsics 602
Composite intrinsics 102
Compressed Sparce Row format 70
computation kernels 32
computational kernels 31
condition variables 235
Conditional Variables 602
Constant formation 250
Constraint optimization 34
context switching 84
contexts 84
continuous area of LS 124
Control Flow Analyzer 25, 397
Conversion 250
Cooley-Tukey 516
Counter (mailboxes) 178
Counter Analyzer 25, 396, 406, 417
CPC 416

Hardware Sampling 372
Occurrence mode 372
Threshold mode 372

cpc 371
CPI breakdown 408
Crash SPU Commands 556
Creating a DMA list 125
creating SPE physical chain 94
cross-element shuffle instructions 247
Cygwin 471

D
DaCS 443

Common patterns 289
concepts 287
defined 40
elements (HE/AE) 287
Group management 288
groups 287
Hybrid Implementation 444
Mailboxes 288
Message passing 288
mutex 287
Programming Considerations 446
Remote memory operations 288
remote memory regions 287
Resource and process management 288
services 288
Step-by-Step Example 451
Synchronization 288
wait identifiers 288

DaCS - Data Communication and Synchronization
284
DaCS Configuration 448
DaCS Daemons 450
DaCS Services

API environment 447
Data Synchronization 446
Error Handling 446
Group management 446
Mailboxes 446
Message passing 446
Process management 445
Process management model 447
Process Synchronization 446
Remote memory 446
Resource reservation 445
Resource sharing model 447

DaCS Topology 448
Data alignment 336
Data communication 38
Data Communication and Synchronization (DaCS)
443
Data distribution 37
data ordering 213
Data organization

AOS versus SOA 261
Data transfer 109
Data transfers and synchronization guidelines 318
DAV 45
 Index 625

7575IX.fm Draft Document for Review February 15, 2008 4:59 pm
architecture 469
defined 43
IBM Alphaworks 468
log file 487
running a DAV enabled application 470
stub library 469
target applications 468

DAV - Dynamic Application Virtualization 468
DAVClientInstall.exe 471
David Patterson 32
dav-server.ppc64.rpm 471
davService 488
davStart daemon 488
DAVToolingInstall.exe 471
DAXPY 311
DCOPY 311
DDOT 311
Debug Format (DWARF) 602
Debug Perspective 367
Debugger

per-frame selection 342
Debugging 323

architecture 340
using scheduler-locking 340

Debugging multi-threaded code 340
Decision tree 33
decrementer 202
Decrementer events 200
Dense matrices 33, 48
DES 33
Device memory 219
DGEMM 311–312
DGEMV 312
DHCP server 537
dhcpd.conf 543
DIM implementation example 572
DIM_DATA 569
DIM_MASTER 569
Direct problem state access 105
Direction (mailboxes) 178
discontinuous areas 124
Distributed array 60–61
Distributed Image Management 564
distributed programming 439
Divide and conquer 59, 61
DMA

‘get’ and ‘put’ transfers 122
Creating a DMA list 125
list command 126

list data transfer 124
DMA commands 111–112
DMA controller 324
DMA data transfer

SPU initiated LS to LS 145
DMA list dynamic updates 202
DMA transfer

initiating 120
PPU initiated between LS and main storage
137
waiting for completion 121

DMA Transfers 112
domain decomposition 37
domains 96

channel problem-state 97
user-state 97

domain-specific libraries 283
Double buffering 157

common header file 158
PPU code mechanism 161
SPU code mechanism 159
using barrier-option 237

Double-precision instructions 243
DSCAL 311
DSYRK 312
DTRSM 312
dual issue 243
Dual-Issue

programming considerations 317
dual-issue optimization 248
DWARF 602
Dynamic Application Virtualization 45
Dynamic Application Virtualization (DAV) 468
Dynamic branch prediction 283
Dynamic Creator 505
Dynamic Linking 604
Dynamic loading of SPE executable 84
Dynamic programming 33, 49

E
EA 98
Eclipse 355
Eclipse IDE 25
EEMBC 32
Effective Address (EA) space 98
effective address (EA) space 324
effective auto-SIMDization 265
effective-address space 5, 97
626 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575IX.fm
EIB 9
EIB bus 121
EIB exploitation 59
Element Interconnect Bus (EIB) 9
elfspe 557
embedspu 327
Enabling applications on Cell BE 29
Encapsulation 393
encryption 33
Eric Christensen 73
Euler scheme 495
Event Mask channel 201
Event-based coordination 59, 61
events 199

decrementer 200
Mailbox or signals 200
MFC DMA 200
SPU

write event acknowledgement 201
Write Event Mask 201

SPU read event mask 201
SPU read event status 201
synchronization 200

Extreme Cluster Administration Toolkit 583

F
fabsf4.h 258
Fast Fourier Transform (FFT) library 309
Fast Fourier Transforms 516
fast-path mode 10
FDPR_PROF_DIR 394
FDPRO-Pro 557
FDPR-Pro 24, 390, 422
FDPRPro 244
fdprpro 422
FDPR-Pro process 391
Fedora 538
Feedback Directed Program Restructuring (FD-
PR-Pro) 24
Fence or barrier command options 223
Fenced command 224
fenced-option 235
fetch-and-increment 230
FFT

Branch hint directives 526
code inlining 526
DMA Optimization 522
multiple SPUs 523

performance 525
Port to PowerPC 520
SIMD Strategies 524
Single SPU 521
Striping multiple problems across a vector 524
Synthesizing vectors by loop unrolling 524
using the Shuffle intrinsic 527
using the SIMD Math Library 526

FFt
x86 implementation 520

FFT algorithm 515
FFT Library 602
FFT library 515
FFT transforms 33
FFT16M

Makefile 412
FFT16M Analysis 412
FFTW 33
FIDAP 33
Financial Services 493
finite elements 33
Finite state machine 34, 49
firewall 487
firmware 560
Firmware considerations 560
First pass SPU implementation 154
Fixed work assignment 70
Floating-point operations 243
Fluent 33
Fork/Join 59, 61
FORTRAN 21
FORTRAN 77/90 311
FPRegs 351
Frameworks 283
fstab 546
Full System Simulator 19
Full-System Simulator 347
function inlining 330
function offload 37
function specific header files 235
Functional-only simulation 19
Function-inlining 278

G
Game Math Library 602
gang 93
Gaussian random numbers 505
Gaussian variables 496
 Index 627

7575IX.fm Draft Document for Review February 15, 2008 4:59 pm
GCC
Compiler directives 330
specific optimization passes 330

gcc 327, 471
GCC compiler 327
GCC Toolchain 556
gdb 338

Debugging PPE code 339
Debugging SPE code 339

gdbserver 367
Gedae 44
Generic and Builtin intrinsics 249
genomics 34
Geometric decomposition 59, 61
get 113
getb 113
getbs 114
getf 113
getfs 114
getl 114
getlb 114
getlf 114
getllar 118
gets 113
GNU ADA Compiler 18
GNU tool chain 327
GNU Toolchain 18
GPRegs 351
gprof 23
Graph traversal 33, 49
Graphical models 34, 49
graphical Trace Analyzer 387
GROMACS 33
groupadd, 165

H
hard disk 537
Hardware Sampling 372
hbr 281
hbra 281
hbrr 281
hdacsd service 445
hello_world 308
hierarchy of accelerators 286
hint-for branch (HBR) 281
HMMER 34
Host Element (HE) 443
host-accelerator model 57

hotspots 61
HPCC 33

FFT 33
HPL 33

huge pages 163
Hybrid ALF

Step-by-Step Example 460
Hybrid ALF application

building and running 458
Hybrid Architecture

motivations 441
Hybrid DaCS 443

building and running an application 448
Hybrid Implementation of DaCS 444
Hybrid Model

architecture 440
performance 442
System 441

Hybrid Programming Model 439
Hybrid Programming Models 440
Hybrid-x86 programming model 26

I
IBM DAV Tooling component 469
IBM DAV Tooling wizard 476
IBM Eclipse IDE for the SDK 25
IBM Full System Simulator 19
IBM SDK for Multicore Acceleration 17
IBM XL C/C++ 333
IBM XLC/C++ Compiler 18
IBM_DAV_PATH 482
IDAMAX 311
IEEE-754 81
Image Management 564
IMD Programming 604
Inbound mailboxes 177
independent processor elements 4
Indirect addressing 70
Infiniband 39, 562
initrd 542
inlining 330
inout_buffer 308
Installing SDK3.0 554
Instruction Barrier 218
Instruction Set Architecture (ISA) 245
Instruction Sets 12
Inter-processor communication 174

programming considerations 320
628 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575IX.fm
inter-processor communication
PPU and SPU macros for tracing 198

Interrupt Handler 203
Intrinsics

functional types 250
programming considerations 315

intrinsics 244
Arithmetic 250
Bits and masks 250
branch 250
Channel Control 250
Compare 250
Composite 102
Constant formation 250
Control 250
Conversion 250
halt 250
Logical 250
Low level 103
Ordering 250
Scalar 250
Shift and rotate 250
Synchronization 250

Intrinsics classes 249
inverse_matrix_ovl 308
IOIF 10
Irregular grids 33
ISA 245
ISA SIMD instructions 245
ISAMAX 311

K
kernel zImage 537
KERNEL_MODULES 569
KERNEL_VERSION 569
Kirkpatrick-Stoll 310

L
Language Options 329
LAPACK 21, 311
Large Matrix Library 602
libhugetlbfs 167
libmassv.a 259
libnuma library 169
libsimdmath.a 83, 258
libspe library 83
LIBSPE/LIBSPE2 556
libspe2 40

libspe2.h 85, 90, 105, 112, 138, 143, 179, 189, 201
libspe2_types.h 106–107
libsync.h 234
lightweight mailbox operation 66
Linpack (HPL) benchmark 21
Linux Kernel 20
little-endian 15
load-and-reserve 234
Load-and-reserve instructions 230
Load-Exec 352
Local Store

programming considerations 315
Local store (LS) 241
local store (LS) 109
Local Store Address (LSA) 98
lock 118
Lock Report Example 389
Loop parallelism 59, 61
Loop unrolling for converting scalar data to SIMD
data 259
Loops

programming considerations 315
Loop-unrolling 279
Los Alamos National Laboratory 41
Low level intrinsics 103
LS 109
LS arbitration 242
LSA 98, 126

M
Mailbox or signal events 200
Mailboxes 176
mailboxes

attributes 178
blocking vs. non-blocking access 180
MFC functions for accessing 179
programming interface for accessing 179

mailboxes and signals
comparison 175

main storage 98
Main storage and DMA 242
main-storage domain 97
Mambo 603
Managed Make 356
managing SPE threads 83
many-to-one signalling mode 188
Map-reduce 33, 49
Markov models 33
 Index 629

7575IX.fm Draft Document for Review February 15, 2008 4:59 pm
MASS 21, 494, 508
MASS and MASSV libraries 258
MASS intrinsic functions 509
Master Nodes 586
Master/Slave relationship 586
Master/Worker 59, 61, 70
Mathematical Acceleration Subsystem 494, 508
Mathematical Acceleration Subsystem (MASS) li-
braries 21
matrix libraries 312
matrix_add 308
matrix_transpose 308
matrix-matrix operations 33
Matrix-vector operations 33
Mattson 52
Memory Flow Controller 349, 603
memory flow controller 324
memory initialization 10
Memory Interface Controller 10
memory latency 5
memory locality 335
Memory Management Unit (MMU)

MMU 111
Memory Maps 603
memory scrubbing 10
Memory structure of an accelerator 58
Mercury Computer Systems 43
Mersenne Twister 310, 496–497
Mersenne Twister algorithm 501
MESI 72
MESIF 72
message passing 38
MFC 98, 349

MMIO interface programming methods 104
multisource synchronization 227
multisource synchronization facility 226
ordering mechanisms 222

MFC channels 98
MFC DMA events 200
MFC functions 101, 104–105
MFC functions for accessing mailboxes 179
MFC multisource synchronization facility 215–216
mfc_barrier 117, 226
MFC_Cmd channel 121
MFC_CMDStatus register 139
MFC_EAH channel 121
MFC_EAL channel 126
mfc_eieio 118, 226
mfc_get 113, 120

mfc_getb 113–114
mfc_getf 113, 223
mfc_getl 114, 126
mfc_getlf 114
mfc_getllar 209, 231
MFC_GETS_CMD 112, 138
mfc_list_element 125–126
MFC_LSA channel 121
MFC_MAX_DMA_LIST_SIZE 117
MFC_MAX_DMA_SIZE 116
MFC_MSSync 227
MFC_OUT_MBOX_AVAILABLE_EVENT 201
mfc_put 112, 120
MFC_PUT_CMD 112, 138
mfc_putb 112, 223
mfc_putf 112
mfc_putl 113, 126
mfc_putlb 113
mfc_putlf 113
mfc_putllc 209, 231
mfc_putlluc 232
mfc_putqlluc 232
MFC_RdTagStat channel 122, 127
mfc_read_tag_status_all 121
mfc_read_tag_status_any 121
MFC_SIGNAL_NOTIFY_1_EVENT 201
MFC_Size channel 121, 126
mfc_sndsig 189
mfc_sync 226
mfc_tag_release 120
mfc_tag_reserve 120
MFC_TagID channel 121
mfc_write_tag_mask 121
MFC_WrMSSyncReq 228
MFC_WrTagMask channel 121, 127
mfceieio 118
mfcsync 118
MIC 10
microprocessor performance 6
Microsoft Visual C++ 471
minimized distribution 587
mkinitrd 542
MMIO interface 187, 223, 227
MMIO interfaces 95, 98
MMIO registers 14
MOESI 72
Monte Carlo

Dynamic Creator 501
European option sample code 503
630 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575IX.fm
Gaussian random numbers 500
Gaussian variables 496
Improving the performance 512
option pricing 493
Parallel and Vector implementation 498
Parallelizing the simulation 499
Polar method 513
simulation for option pricing 495
Work partitioning 499

Monte Carlo libraries 310
Monte Carlo simulation 493
Monte-Carlo 33
Moro’s Inversion 310
most-significant bit 15
MPI 38, 41, 60
MPI - DaCS application arrangement 285
MPICH 41, 60
MPMD 22
Multi core Acceleration Integrated Development En-
vironment 355
Multibuffering 163
multibuffering 158
Multicore Acceleration 43
multiple-program-multiple-data (MPMD) program-
ming module 22
Multiplies

programming considerations 317
Multi-Precision Math Library 603
multisource synchronization facility 227
multi-SPE implementation 61
multi-stage pipeline 71
multi-threaded program - SPE 89
mutex 229
mutex lock 230

SPE implementation 233
Mutexes 603
mutexes 235
MVAPICH 41, 60
mysim 349

N
NAMD 33
NAS 33

CG 33
EP 33
FT 33
LU 33
MG 33

N-body methods 33, 49
netpbm 556
Network booting 586
newlib 40
NFS 544
NFS_NETWORK 569
Noise LibraryPPE 603
noncoherent I/O interface (IOIF) protocol 10
Non-Uniform Memory Architecture 165
notify_event_handler function 127
NUMA 39, 110, 319

BladeCenter 168
code example 170
command utility (numactl) 173
improving memory access 168
policy considerations 173

NUMA (Non-Uniform Memory Architecture) 165
numactl 173, 557

O
Object Files 603
Ohio State University 41
one-to-one signalling mode 188
opannotate 378
opcontrol 377
OpenIB (OFED) for Infiniband networks 41
OpenMP 38, 43, 60
OpenMPI 41
Operating System

Installation 537
opreport 378
OProfile 24, 377, 418
Oprofile 557
optical drive 543
optimization level 265
ordering and synchronization mechanisms 235
Ordering reads 236
Oscillator Libraries 603
Outbound mailboxes 177
Overrun (mailboxes) 178

P
package removal 590
Package Selection 588
page hit ratio 163
parallel computing research community 33
parallel programming models 36

taxonomy 52
 Index 631

7575IX.fm Draft Document for Review February 15, 2008 4:59 pm
parallelism 47
PDT 24, 381, 432
PDT data

importing into Trace Analyzer 435
PDT trace fileset 387
pdt_cbe_configuration.xml 434
PDT_CONFIG_FILE 435
PDT_TRACE_OUTPUT 386
PDTR 388
PDTR Report Example 388
PeakStream 44
Peakstream 50
pending breakpoints 343
Performance bottlenecks 34
Performance Debug Tool (PDT) 24
Performance Debugging Tool (PDT) 381
Performance Instrumentation 603
Performance simulation 19
Performance Tools 23, 411
Performance tuning 64
performance/watt 47
PFA 516
Phillip Colella 32
Pipeline 59, 61, 243
Pipeline Analyzer 25, 396
pipeline model 57
PLUGIN_MAC_ADDR 569
Pointer aliasing 337
Polar Method 310
Polar method 513
Post-link Optimization for Linux 390
Power Processing Element (PPE) 21
PowerPC 78
PowerPC Architecture 8
PowerPC processor storage subsystem (PPSS) 12
PPE

atomic implementation 231
barrier intrinsics 217
mutex_lock function implementation in sync li-
brary 232
ordering instructions 217
programming 78
variables 325

PPE Interrupts 604
PPE Multithreading 604
PPE Oscillator Subroutines 604
PPE-Assisted Funcitons 604
PPE-assisted library facilities 204
PPE-ELF 324

PPE-to-SPE communications 238
PPSS 12
PPU

double buffering code 159, 161
PPU Executable 358
PPU Shared Library 358
PPU Static Library 358
ppu_intrinsics.h 231
ppu32-embedspu 327
ppu32-gcc 327
ppu-embedspu utility 459
ppu-gcc

command line options 328
Prime Factor Algorithm 516
Privileged Mode Environment 604
Problem State Memory-Mapped Registers 604
processor affinity 460
Processor Elements 8
Profile Analyzer 25, 396, 419
Profile Checkpoints 603
profile data 416
Profile Directed Feedback Optimization 331
profile information

gathering with FDPR-Pro 422
profiling 61, 412
Profiling or watchdog of SPU program 202
Program Loading 604
programming considerations 32
Programming Environment 12
programming frameworks 60
Programming guidelines 313
Programming models 38
programming techniques 75
Project Configuration 359
proxydma 345
Prxy_QueryMask register 139
Prxy_TagStatus register 140
pthread.h 90
pthreads 38, 60
put 112
putb 112
putbs 113
putf 112
putfs 113
putl 113
putlb 113
putlf 113
putllc 118
putlluc 118
632 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575IX.fm
putqlluc 118
puts 112

Q
QS21

boot up 540
Firmware considerations 560
Installing the Operating System 537
network installation 541
Overview 536
Updating firmware 560

quadword boundaries 253
queues 98
Quicksort 33

R
RA 98
random data access using SPU software cache
146
Random data access with high cache hit rate 154
random numbers

Monte Carlo generation 497
RapidMind 44
Rapidmind 50
Ray tracing 33
rc.sysinit 165
reader/writer locks 235
Real Address (RA) range 98
Redbooks Web site 621

Contact us xv
Register file 242
Relational Operators 255
remote direct memory access (rDMA) 38
Remote Procedure Call (RPC) 291
Remote Tools 360
removing alsa-lib packages 590
removing atk packages 591
removing cairo packages 594
removing diffutils packages 595
removing libICE packages 594
removing libX11 packages 592
restrict qualifier 252
RHEL5.1 538
RHEL5.1 Installation

Package Selection 588
RISC 8
root filesystem 541
Running a single SPE

PPU code 86
shared header file 86

Running a single SPE program 85
Running multiple SPEs concurrently

PPU code 90
SPU code version 93

Runtime Environment 15

S
safe mode 151
SAS 536
SAXPY 311
ScaLAPACK 21, 33, 311
Scalar 250
Scalar Overlay on SIMD in SPE 247
Scalar overlay on SIMD instructions 272
Scalar related instructions 246
Scalars

programming considerations 316
Scatter-gather 267
scenarios 65
Scientific Cluster Support 585
SCOPY 311
SCS 585
SDE 495
SDK3.0

Installation 554
Pre-installation steps 557

SDOT 311
SELinux 538
semaphore 230
sequence alignment 33
Sequential Trace Output Example 388
Serial Attached SCSI 536
Serial Interface 539
serial interface 537
Serial over LAN 539
SGEMM 312
SGEMV 312
Shared data 59, 61
shared memory 4
Shared queue 60–61
Shared storage

synchronizing 213
Shared Storage model 216
Shared-Storage Synchronization 604
Shift and rotate 250
shuffle instructions 247
 Index 633

7575IX.fm Draft Document for Review February 15, 2008 4:59 pm
Shutting off services 597
Signal Notification 604
Signal notification 187
signalling

OR mode 188
Overwrite mode 188

signalling commands
sndsig 188
sndsigb 188
sndsigf 188

signals
notification code example 191

signals and mailboxes
comparison 175

SIMD
arithmetic and logical operators 255
low level intrinsics 256
scalar overlay in SPE 247

SIMD Math 494
SIMD operations 245, 255
SIMD programming 253

programming considerations 315
SIMDization 336
SIMDization problems 269
SIMDmath library 83, 257
simdmath.h 83, 258
Simplex algorithm 34
Simulation control 352
Simulator 347

GUI 350
Integration 360

Simulator Image 349
Single thread performance 440
Single-precision instructions 243
Slave Nodes 586
slow mode 10
SMM 14
SMS 540
SMS utility program 540
sndsig 118, 188
sndsigb 118, 188
sndsigf 118, 188
Sobol 310
Software cache 40
software cache 149

when and how to use 153
software cache activity 147
Software Pipelining 330
software-controlled modes 10

SOL 539
Sparse matrices 33, 48
SPE

affinity using gang 93
atomic implementation 231
automatic software caching 155
Channel and Related MMIO Interface 604
Context Switching 604
contexts 84
Events 604
events 199
Local Storage Memory Allocation 604
managing threads 83
multi-threaded program 89
Oscillator Subroutines 604
persistent threads on each 58
process-management primitives 325
Programming Tips 604
running a single SPE program 85
Runtime Management Library 20
Runtime Management library 84
Serviced C Library Functions 605
SPU_RdSigNotify 187
updating shared structures 238
writing notifications to PPE 235

SPE code compile 327
SPE Instrumentation 393
SPE programs

loading 84
SPE Runtime Management library 227
SPE runtime management library 83
spe_context_create 85, 106
spe_context_destroy 85
spe_context_run 85
spe_cpu_info_get 170
spe_event_wait 202
spe_ls_area_get 143, 146
SPE_MAP_PS 106
spe_mfcio.h 127
spe_mfcio_getf 223
spe_mfcio_put 112
spe_mfcio_putb 112, 223
spe_mfcio_putf 112
spe_mfcio_tag_status_read 139
spe_ps_area_get 105–106
SPEC int and fp 32
Specific Intrinsics 249
SPECInt

gcc 34
634 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575IX.fm
Spectral methods 33, 49
speculative read 10
SPE-to-SPE DMA transfers 94
SPMD 59, 61
SpMV 33
SPU

Application Binary Interface 605
Architectural Overview 605
as computation server 203
C/C++ language extensions (intrinsics) 248
Channel Instructions 605
Channel Map 605
code transfer using SPU code overlay 276
Compare, Branch, and Halt Instructions 605
Constant-Formation Instructions 605
Control Instructions 605
Floating-Point Instructions 605
Hint-for-Branch Instructions 605
instruction set 244
Integer Instructions 605
Interrupt Facility 605
intrinsics 249
Logical Instructions 605
Multimedia Extension Intrinsics 605
ordering instructions 219
Performance Evaluation 605
Performance Evaluation Criteria 605
programming methods 100
Read Event Mask (SPU_RdEventMask) 201
Read Event Status (SPU_RdEventStat) 201
Rotate and Mask 605
Rotate Instructions 605
Shift 605
static timing tool 23, 244
Statistics 605
Synchronization and Ordering 605
Write Event Acknowledgment
(SPU_WrEventAck) 201
Write Event Mask (SPU_WrEventMask) 201

SPU Executable 358
SPU instruction set 244
SPU Isolation Facility 605
SPU Load/Store Instructions 605
SPU Programming 606
SPU programming 240
SPU Signal Notification 189
SPU Static Library 359
spu_absd 250
spu_add 249–250

spu_and 250
spu_cmpeq 250
spu_cmpgt 250
spu_convtf 250
spu_convts 250
spu_dsync 221, 250
spu_extract 250, 272
spu_idisable 250
spu_ienable 250
spu_insert 250, 272–273
spu_internals.h 220
spu_intrinsics.h 159, 248
spu_madd 250
spu_mfcdma32 251
spu_mfcdma64 251
spu_mfcio.h 112, 116, 120–121, 159, 179, 189,
228
spu_mfcstat 251
spu_nmadd 250
spu_or 250
spu_promote 250, 272
SPU_RdSigNotify 187
spu_read_event_status 201
spu_readch 250
spu_rlqw 250
spu_rlqwbyte 250
spu_sel 250
spu_shuffle 250
spu_splats 250, 273
spu_stat_event_status 201
spu_stop 250
spu_sync 221–222
spu_sync_c 221–222
spu_timing 23
spu_timing tool 531
spu_writech 250
spu2vmx.h 82
spu-gcc 327

command line options 328
SPUStats 352
SPU-Timing information 431
SSCAL 311
SSYRK 312
stall 437
Stall-And-Notify event 127
stall-and-notify flag 127
stalling mechanism 99
Standard Make 356
Static branch prediction 282
 Index 635

7575IX.fm Draft Document for Review February 15, 2008 4:59 pm
Static loading of SPE object 84
static timing tool 23
Stochastic Differential Equation 495
Stop on SPU load 344
stop-on-load 344
Storage

domains 96
Storage Access Ordering 606
Storage Barriers 217
Storage domains 95
Storage Domains and Interfaces 12
Storage Models 606
store-conditional 234
Store-conditional instructions 230
streaming 37
streaming model 56
StreamIt 39
Streamit 50
STRSM 312
structure of arrays (SOA) 262
Structured grids 33, 49
SuperLU 33
SWAP 538
Swing Modulo Scheduling 330
Symbols 343
Sync Library 606
sync library facilities 234
Synchronization events 200
synchronization primitives 38
Synchronous data access

using safe mode 151
synchronous monitoring 200
synergistic memory management (SMM) unit 14
Synergistic Processing Elements (SPEs) 21
Synergistic Processor Elements 606
Synergistic Processor Unit 606
Synergistic Processor Unit Channels 606
Synergistic Processor Unit Instruction Set Architec-
ture 9
Sysroot Image 557
System Management Services 540
System memory 219
System root image 20
systemsim script 348

T
Tag manager 119
task descriptors 299

Task parallelism 58, 60
Task synchronization 38
task_context 308
Tasks 299
test-and-set 230
TFTP 542
Time Base 606
TLB misses 437
Tools 323
Tprofs 25
Trace Analyzer 25, 381, 397, 403, 435
trace data 432
Tracing 381
Tracing Architecture 382
transactional memory mechanisms 38
translation lookaside buffers (TLBs) 164
Tree 59, 61
Triggers 353

U
Unary operators 255
unsafe mode 152
Unstructrured grids 33, 49
UPC 38, 60
User Mode Environment 606
usermod 165
user-state 97

V
vec_types.h 83
Vector data types 253
Vector data types intrinsics 80
Vector Library 606
Vector subscripting 255
Vector/SIMD Multimedia Extension 606
Virtual Node Filesystem 586
Virtual Storage Environment 606
Visual Performance Analyzer (VPA) 25, 394
vmx2spu.h 82
VNFS 586
volatile keyword 251
VPA 25, 394, 417

W
Warewulf 585
Work blocks 300
Work distribution 37
636 Programming the Cell Broadband Engine: Examples and Best Practices

Draft Document for Review February 15, 2008 4:59 pm 7575IX.fm
work flow 66
Workload specific libraries 43
WRF 33

X
X10 60
X10 (PGAS) 38
xCAT 583

diskless systems 585
XCOFF 396
XDR memory 536
XL compiler 333

High order transformations 335
Link-time Optimization 335
Optimization levels 333
Vectorization 336

xlc 332
XML parsing 33

Y
YUM 557
YUM updater daemon 557

Z
zImage 537

creating zImage files 550
 Index 637

7575IX.fm Draft Document for Review February 15, 2008 4:59 pm
638 Programming the Cell Broadband Engine: Examples and Best Practices

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 F

ebruary 15, 2008 4:59 pm
7575sp

in
e.fm

639

(0.1”spine)
0.1”<

->
0.169”

53<
->

89 pages

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

Program
m

ing the Cell Broadband Engine: Exam
ples and

Program
m

ing the Cell
Broadband Engine: Exam

ples

Program
m

ing the Cell
Broadband Engine: Exam

ples
and Best Practices

Program
m

ing the Cell Broadband Engine: Exam
ples and Best

(2.0” spine)
2.0” <

->
 2.498”

1052 <
->

 1314 pages

(2.5” spine)
2.5”<

->
nnn.n”

1315<
->

 nnnn pages

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 F

ebruary 15, 2008 4:59 pm
7575sp

in
e.fm

640

Program
m

ing the Cell
Broadband Engine:
Exam

ples and Best

Program
m

ing the Cell
Broadband Engine:
Exam

ples and Best

®

SG24-7575-00 ISBN

Draft Document for Review February 15, 2008 5:00 pm

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Programming the Cell
Broadband Engine
Examples and Best

Practical code
development and
porting examples
included

Make the most of
SDK 3.0 debug and
performance tools

Understand and
apply different
programming
models and
strategies

This Redbook will provide an examples driven programming
manual that defines and illustrates various best practice
development strategies, using the latest Cell BE SDK, the
Full-System Simulator, and actual Cell BE systems, to
illustrate how to develop both libraries and applications. This
Redbook should compliment the library of existing Cell BE
Programming Manuals, tutorials, and other resources with a
more practical reference illustrating the most recent methods
for leveraging the platform, with special emphasis on
industry specific end-to-end examples, including debugging
methods. This Redbook should lay the foundation for version
1 of a programmer's handbook. A handbook that could be
updated as each version of the Cell BE SDK is released, along
with major revisions to the hardware platform(s). SDK
programs and sample code developed to demonstrate
programming methods in this book are available for
download.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Preface
	The team that wrote this book
	Acknowledgements
	Become a published author
	Comments welcome

	Notices
	Trademarks

	Part 1 Introduction to the Cell Broadband Engine
	Chapter 1. Cell Broadband Engine Overview
	1.1 Motivation
	1.2 Scaling the three performance-limiting walls
	1.2.1 Scaling the power-limitation wall
	1.2.2 Scaling the memory-limitation wall
	1.2.3 Scaling the frequency-limitation wall
	1.2.4 How the Cell Broadband Engine overcomes performance limitations

	1.3 Hardware Environment
	1.3.1 The Processor Elements
	1.3.2 The Element Interconnect Bus
	1.3.3 Memory Interface Controller
	1.3.4 Cell Broadband Engine Interface Unit

	1.4 Programming Environment
	1.4.1 Instruction Sets
	1.4.2 Storage Domains and Interfaces
	1.4.3 Bit Ordering and Numbering
	1.4.4 Runtime Environment

	Chapter 2. IBM SDK for Multicore Acceleration
	2.1 Compilers
	2.1.1 GNU Toolchain
	2.1.2 IBM XLC/C++ Compiler
	2.1.3 GNU ADA Compiler
	2.1.4 IBM XL Fortran for Multicore Acceleration for Linux

	2.2 IBM Full System Simulator
	2.2.1 System root image for Simulator

	2.3 Linux Kernel
	2.4 Cell BE Libraries
	2.4.1 SPE Runtime Management Library
	2.4.2 SIMD Math Library
	2.4.3 Mathematical Acceleration Subsystem (MASS) libraries
	2.4.4 Basic Linear Algebra Subprograms (BLAS)
	2.4.5 ALF Library
	2.4.6 Data Communication and Synchronization library (DaCS)

	2.5 Code examples and example libraries
	2.6 Performance Tools
	2.6.1 SPU Timing Tool
	2.6.2 OProfile
	2.6.3 Cell-perf-counter tool
	2.6.4 Performance Debug Tool (PDT)
	2.6.5 Feedback Directed Program Restructuring (FDPR-Pro)
	2.6.6 Visual Performance Analyzer (VPA)

	2.7 IBM Eclipse IDE for the SDK
	2.8 Hybrid-x86 programming model

	Part 2 Programming Environment
	Chapter 3. Enabling applications on the Cell BE
	3.1 Concepts and terminology
	3.1.1 The computation kernels
	3.1.2 Important Cell BE features
	3.1.3 The parallel programming models
	3.1.4 The Cell BE programming frameworks

	3.2 Does the Cell BE fit the application requirements?
	3.2.1 Higher performance/watt
	3.2.2 Opportunities for parallelism
	3.2.3 Algorithm match
	3.2.4 Ready to make the effort?

	3.3 Which parallel programming model ?
	3.3.1 Parallel programming models basics
	3.3.2 Chip or board level parallelism
	3.3.3 More on the host-accelerator model
	3.3.4 Summary

	3.4 Which Cell BE programming framework to use ?
	3.5 The application enablement process
	3.5.1 Performance tuning for Cell BE programs

	3.6 A few scenarios
	3.7 Design patterns for Cell BE programming
	3.7.1 Shared queue
	3.7.2 Indirect addressing
	3.7.3 Pipeline
	3.7.4 Multi-SPE software cache
	3.7.5 Plugin

	Chapter 4. Cell BE programming
	4.1 Task parallelism and PPE programming
	4.1.1 PPE architecture and PPU programming
	4.1.2 Task parallelism and managing SPE threads
	4.1.3 Creating SPEs affinity using gang

	4.2 Storage domains, channels and MMIO interfaces
	4.2.1 Storage domains
	4.2.2 MFC channels and MMIO interfaces and queues
	4.2.3 SPU programming methods to access MFC’s channel interface
	4.2.4 PPU programming methods to access MFC’s MMIO interface

	4.3 Data transfer
	4.3.1 DMA commands
	4.3.2 SPE initiated DMA transfer between LS and main storage
	4.3.3 PPU initiated DMA transfer between LS and main storage
	4.3.4 Direct problem state access and LS to LS transfer
	4.3.5 Facilitate random data access using SPU software cache
	4.3.6 Automatic software caching on SPE
	4.3.7 Efficient data transfers by overlapping DMA and computation
	4.3.8 Improving page hit ratio using huge pages
	4.3.9 Improving memory access using NUMA

	4.4 Inter-processor communication
	4.4.1 Mailboxes
	4.4.2 Signal notification
	4.4.3 SPE events
	4.4.4 Using atomic unit and the atomic cache

	4.5 Shared storage synchronizing and data ordering
	4.5.1 Shared Storage model
	4.5.2 Atomic synchronization
	4.5.3 Using sync library facilities
	4.5.4 Practical examples using ordering and synchronization mechanisms

	4.6 SPU programming
	4.6.1 Architecture overview and its impact on programming
	4.6.2 SPU instruction set and C/C++ language extensions (intrinsics)
	4.6.3 Compiler directives
	4.6.4 SIMD programming
	4.6.5 Auto-SIMDizing by compiler
	4.6.6 Using scalars and converting between different vector types
	4.6.7 Code transfer using SPU code overlay
	4.6.8 Eliminating and predicting branches

	4.7 Frameworks and domain-specific libraries
	4.7.1 DaCS - Data Communication and Synchronization
	4.7.2 ALF - Accelerated Library Framework
	4.7.3 Domain-specific libraries

	4.8 Programming guidelines
	4.8.1 General guidelines
	4.8.2 SPE programming guidelines
	4.8.3 Data transfers and synchronization guidelines
	4.8.4 Inter-processor communication

	Chapter 5. Programming Tools and Debugging Techniques
	5.1 Tools Taxonomy and basic Time line approach.
	5.1.1 Dual Toolchain
	5.1.2 Typical Tools Flow

	5.2 Compiling and Building
	5.2.1 Compilers: gcc
	5.2.2 Compilers: xlc
	5.2.3 Building

	5.3 Debugger
	5.3.1 Debugger: gdb

	5.4 Simulator
	5.4.1 Setting up and Bringing up
	5.4.2 Operating the GUI

	5.5 IBM Multi core Acceleration Integrated Development Environment
	5.5.1 Step 1: Projects
	5.5.2 Step 2: Choosing Target Environments with Remote Tools
	5.5.3 Step 3: Debugger

	5.6 Performance Tools
	5.6.1 Typical Performance Tuning Cycle
	5.6.2 CPC
	5.6.3 OProfile
	5.6.4 Performance Debugging Tool (PDT)
	5.6.5 FDPR-Pro
	5.6.6 Visual Performance Analyzer

	Chapter 6. Using Performance Tools
	6.1 Practical case: FFT16M Analysis
	6.1.1 The FFT16M
	6.1.2 Prepare and Build for profiling
	6.1.3 Creating and working with profile data
	6.1.4 Creating and working with trace data

	Chapter 7. Programming in distributed environments
	7.1 Hybrid Programming Models in SDK 3.0
	7.1.1 Hybrid DaCS
	7.1.2 Hybrid ALF
	7.1.3 DAV - Dynamic Application Virtualization

	Part 3 Application Re-engineering
	Chapter 8. Case study: Monte Carlo Simulation
	8.1 Monte Carlo simulation for option pricing
	8.2 Methods to generate Gaussian(normal) random variables
	8.3 Parallel and vector implementation of Monte Carlo algorithm on Cell
	8.3.1 Logical steps
	8.3.2 Sample code for European option on SPU

	8.4 Generating Gaussian random numbers on SPUs
	8.5 Improving the performance

	Chapter 9. Case study: Implementing an FFT algorithm
	9.1 Motivation for an FFT algorithm
	9.2 Development Process
	9.2.1 Code
	9.2.2 Test
	9.2.3 Verify

	9.3 Development Stages
	9.3.1 x86 implementation
	9.3.2 Port to PowerPC
	9.3.3 Single SPU
	9.3.4 DMA Optimization
	9.3.5 Using multiple SPUs

	9.4 Strategies for using SIMD
	9.4.1 Striping multiple problems across a vector
	9.4.2 Synthesizing vectors by loop unrolling
	9.4.3 Measuring and tweaking performance

	Part 4 Systems
	Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration
	10.1 BladeCenter QS21 Characteristics
	10.2 Installing the Operating System
	10.2.1 Important Considerations
	10.2.2 Managing and accessing the Blade server
	10.2.3 Installing through Network Storage
	10.2.4 Example for installing through network storage

	10.3 Installing SDK3.0 on BladeCenter QS21
	10.3.1 Pre-installation steps
	10.3.2 Installation Steps
	10.3.3 Post-Installation Steps

	10.4 Firmware considerations
	10.4.1 Updating firmware for the BladeCenter QS21

	10.5 Options for managing multiple blades
	10.5.1 Distributed Image Management
	10.5.2 Extreme Cluster Administration Toolkit

	10.6 Method for installing a minimized distribution
	10.6.1 During installation
	10.6.2 Post-installation package removal
	10.6.3 Shutting off services

	Part 5 Appendixes
	Appendix A. SDK 3.0 Topic Index
	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Additional material content
	DaCS programming example
	DaCS synthetic example

	Task parallelism and PPE programming examples
	Simple PPU vector/SIMD code
	Running a single SPE
	Running multiple SPEs concurrently

	Data transfer examples
	Direct SPE access ‘get’ example
	SPU initiated basic DMA between LS and main storage
	SPU initiated DMA list transfers between LS and main storage
	PPU initiated DMA transfers between LS and main storage
	Direct PPE access to LS of some SPE
	Multistage pipeline using LS to LS DMA transfer
	SPU software managed cache
	Double buffering
	Huge pages

	Inter-processor communication examples
	Simple mailbox
	Simple signals
	PPE event handler

	SPU programming examples
	SPE loop unrolling
	SPE SOA loop unrolling
	SPE scalar to vector conversion using insert and extract intrinsics
	SPE scalar to vector conversion using unions

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

