

SPU Assembly Language Specification

Version 1.5

���

CBEA JSRE Series
Cell Broadband Engine Architecture
Joint Software Reference Environment
Series

March 8, 2007

���®

© Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated, Toshiba
Corporation 2003, 2004, 2005, 2006, 2007

All Rights Reserved
Printed in the United States of America March 2007

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.

IBM PowerPC
IBM Logo
ibm.com

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury or catastrophic property damage. The information contained in this document does
not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or
implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this
document was obtained in specific environments, and is presented as an illustration. The results obtained in other
operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com

The IBM semiconductor solutions home page can be found at ibm.com/chips

March 8, 2007

 ���

 SPU Assembly Language Specification, Version 1.5

Table of Contents

List of Tables iv

About This Document v
Audience v
Version History v
Related Documentation vi
Bit Notation and Typographic Conventions Used in This Document vii

1. Introduction 1
2. Instruction Set and Instruction Syntax 3

2.1. Notation and Conventions 3
2.2. Instruction Set 3
2.3. Aliases 20
2.4. Channel Mnemonics 21
2.5. Immediate Values 22
2.6. Errors and Warnings 22

iv Table of Contents ���

SPU Assembly Language Specification, Version 1.5

List of Tables
Table 2-1: Notations and Conventions 3
Table 2-2: SPU Assembler Instructions 4
Table 2-3: Register and Instruction Aliases 20
Table 2-4: SPU Channels 21
Table 2-5: MFC Channels 21
Table 2-6: Valid Immediate Values 22

 ���

About This Document

This document describes the Synergistic Processor Unit (SPU) assembly-language syntax for a processor
compliant with the Cell Broadband Engine™ Architecture (CBEA).

Audience
The document is intended for system and application programmers who desire to write assembly language
programs for the SPU.

Version History
This section describes significant changes made to each version of this document.

Version Number & Date Changes

v. 1.5
March 8, 2007

Added several new double precision floating-point instructions
(TWG_RFC00071-0).
Corrected document version numbers for related documentation
(TWG_RGC00093-0).

v. 1.4
October 11, 2006

Changed several operands from rt to rc in the SPU Assembler
Instructions table (TWG_RFC00049-0: CORRECTION NOTICE), and
jsre-tool messages 00468 and 00488).
The description of the wrch instruction in the SPU Assembler
Instructions table was corrected.
Applied changes made in TWG_RFC00061-1 and TWG_RFC00062-
0.

v. 1.3
October 20, 2005

Changed “Broadband Processor Architecture” to “Cell Broadband
Engine Architecture”, and changed “BPA” to “CBEA”
(TWG_RFC00037-0: CORRECTION NOTICE).
Deleted several references to BE revisions DD1.0 and DD2.0
(TWG_RFC00040-0: CORRECTION NOTICE).

v. 1.2
July 13, 2005

Deleted several sections in the “About This Document” chapter
(TWG_RFC00032-0: CORRECTION NOTICE).
Corrected several documentation errors; for example, in several
descriptions in the SPU Assembler Instructions table, the phrase
“halfword element rt” was changed to “halfword element 1 of register
rt” (TWG_RFC00033-0: CORRECTION NOTICE).

v. 1.1
June 10, 2005

Changed “Broadband Engine” or “BE” to “a processor compliant with
the Broadband Processor Architecture” or “a processor compliant
with BPA”; and changed Synergistic Processing Unit to Synergistic
Processor Unit. Defined a PPU as a PowerPC Processor Unit on first
major instance. Corrected several book references and changed the
copyright page so that trademark owners were specified. (All changes
per TWG_RFC00031-0: CORRECTION NOTICE.)
Made miscellaneous changes to the “About This Document” section.

v. 0.9 - 1.0 Not applicable. Version numbers were changed so that JSRE version
numbers are in synchrony with those used by IBM in its public
release.

 SPU Assembly Language Specification, Version 1.5

vi About This Document ���

Version Number & Date Changes

v. 0.8
May 12, 2005

Changed PU to PPU; changed “PU-to-SPU” (mailboxes) and “SPU-
to-PU” to “inbound” and “outbound” respectively (TWG_RFC00028-1:
CORRECTION NOTICE).
Updated channel names to coincide with BPA channel names
(TWG_RFC00029-1).

v. 0.7
July 16, 2004

Removed all branch aliases from table of instruction aliases
(TWG_RFC00009-0).
Added an additional SPU instruction, orx (TWG_RFC00010-0).
Added mnemonics for channels that support reading the event mask
and tag mask (TWG_RFC00011-0).
Removed operands from hbrp instruction and provided a new
description of this instruction. Also removed it from a table in section
“2.6. Errors and Warnings” (TWG_RFC00012-0).
Made miscellaneous editorial changes.

v. 0.6
March 12, 2004

Made miscellaneous editorial changes.

v. 0.5
February 25, 2004

Changed formatting of document so that it reflects the typographic
conventions described on page vii. Made minimal editorial changes.

v. 0.4
January 20, 2004

Changed document to new format, including front matter. Made
miscellaneous editorial changes.

v. 0.3
August 31, 2003

Corrected PC-relative addressing style.
Added low and high halfword address syntax.
Added stopd instruction.

v. 0.2
May 13, 2003

Added isolation control channel.
Replaced aci, asc, sbi, and ssb instructions with addx, cg, cgx,
sfx, bg, and bgx.

v. 0.1
March 7, 2003

Initial release of this document.

Related Documentation
The following table provides a list of references and supporting materials for this document:

Document Title Version Date

PowerPC User Instruction Set Architecture, Book I 2.02 January 28, 2005
PowerPC Virtual Environment Architecture, Book II 2.02 January 28, 2005
PowerPC Operating Environment Architecture, Book III 2.02 January 28, 2005
PowerPC Microprocessor Family: The Programming
Environments for 32-Bit Microprocessors (G522-0290-01)

1.0 February 21, 2000

Cell Broadband Engine Architecture 1.01 October 2006
Synergistic Processor Unit Instruction Set Architecture 1.11 October 2006

SPU Assembly Language Specification, Version 1.5

 ��� About This Doument vii

Bit Notation and Typographic Conventions Used in This Document

Bit Notation

Standard bit notation is used throughout this document. Bits and bytes are numbered in ascending order from
left to right. Thus, for a 4-byte word, bit 0 is the most significant bit and bit 31 is the least significant bit, as
shown in the following figure:

M
S

B

LS
B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MSB = Most significant bit

LSB = Least significant bit

Notation for bit encoding is as follows:

• Hexadecimal values are preceded by 0x. For example: 0x0A00.

• Binary values in sentences appear in single quotation marks. For example: ‘1010’.

Other Typographic Conventions

In addition to bit notation, the following typographic conventions are used throughout this document:

Convention Meaning

courier Indicates programming code, processing instructions, register names,
data types, events, file names, and other literals. Also indicates function
and macro names. This convention is only used where it facilitates
comprehension, especially in narrative descriptions.

courier +
italics

Indicates arguments, parameters and variables, including variables of
type const. This convention is only used where it facilitates
comprehension, especially in narrative descriptions.

italics (without
courier)

Indicates emphasis. Except when hyperlinked, book references are in
italics. When a term is first defined, it is often in italics.

blue Indicates a hyperlink (color printers or online only).

 SPU Assembly Language Specification, Version 1.5

viii About This Document ���

SPU Assembly Language Specification, Version 1.5

 ���

1. Introduction

This specification describes SPU assembly-language syntax and machine-dependent features for the GNU
assembler (as). Although this specification focuses on the GNU assembler, this document might also serve as
an example specification for other SPU assemblers.

 SPU Assembly Language Specification, Version 1.5

2 Introduction ���

SPU Assembly Language Specification, Version 1.5

 ���

2. Instruction Set and Instruction Syntax

2.1. Notation and Conventions
In this specification, lower case is used for all instructions, register aliases, and channels names; however,
these tokens may also be expressed in upper or mixed case. Table 2-1 describes notations used in this
specification.

Table 2-1: Notations and Conventions

Notation/Convention Meaning

ch Channel number. Channels are specified as either $ch followed by a
channel number (for example, $ch3) or a specific channel mnemonic.
See section “2.4. Channel Mnemonics” for a complete list of channel
mnemonics.

ra, rb, rc Source register. Registers are specified as a dollar symbol ($) followed by
a register number from 0 to127. For example, $38 refers to register 38.
See Table 2-3 for additional register aliases.

rt Target register. Registers are specified as a dollar symbol ($) followed by
a register number from 0 to127. For example, $38 refers to register 38.
See Table 2-3 for additional register aliases.

s3, s6 3-bit or 6-bit signed value, respectively. Encoded as a 7-bit signed
immediate in which only a subset of the bits is used.

s7 7-bit sign-extended value.
s10 10-bit sign-extended value.
s11 11-bit sign-extended value.
s14 14-bit sign-extended value.
s16 16-bit sign-extended value.
s18 Relative address computations.
scale7 7-bit scale exponent. Values range from 0 to 127.
spr Special purpose register.
u3, u5, u6 3-bit, 5-bit, or 6-bit unsigned value, respectively. Encoded as a 7-bit

unsigned immediate in which only a subset of the bits is used.
u7 Unsigned 7-bit value.
u14 Unsigned 14-bit value.
u16 Unsigned 16-bit value.
u18 Unsigned 18-bit value.

2.2. Instruction Set
This section provides an overview of the SPU instruction set and its syntax, including:

• Supported instructions and their syntax

• Supported data types

• Supported ranges for instruction parameters

For details about the specific machine instructions, see the Synergistic Processor Unit Instruction Set
Architecture specification.

 SPU Assembly Language Specification, Version 1.5

4 Instruction Set and Instruction Syntax ���

Table 2-2: SPU Assembler Instructions

Instruction/Usage Description

a rt, ra, rb Add word. Each word element of register ra is added to the corresponding
word element of register rb, and the results are placed in the corresponding
word elements of register rt.

absdb rt, ra, rb Absolute difference of bytes. Each byte element of register ra is subtracted
from the corresponding byte element of register rb. The absolute values of the
results are placed in the corresponding elements of register rt.

addx rt, ra, rb Add word extended. Each word element of register ra, the corresponding
word element of register rb, and the least significant bit of the corresponding
word element of register rt are added, and the results are placed in the
corresponding word elements of register rt.

ah rt, ra, rb Add halfword. Each halfword element of register ra is added to the
corresponding halfword element of register rb, and the results are placed in
the corresponding halfword elements of register rt.

ahi rt, ra, s10 Add halfword immediate. The sign-extended immediate value s10 is added to
each halfword element of register ra, and the results are placed in the
corresponding halfword elements of register rt.

ai rt, ra, s10 Add word immediate. The sign-extended immediate value s10 is added to
each word elements of register ra, and the results are placed in the
corresponding word elements of register rt.

and rt, ra, rb And. The value of register ra is logically ANDed with register rb, and the
result is placed in register rt.

andbi rt, ra, s10 And byte immediate. The 8 least significant bits of s10 are logically ANDed
with each byte element of register ra, and the results are placed in the
corresponding elements of register rt.

andc rt, ra, rb And with complement. The value of register ra is logically ANDed with the
complement of register rb, and the result is placed in register rt.

andhi rt, ra, s10 And halfword immediate. The sign-extended immediate value s10 is logically
ANDed with each halfword element of register ra, and the results are placed
in the corresponding elements of register rt.

andi rt, ra, s10 And word immediate. The sign-extended immediate value s10 is logically
ANDed with each word element of register ra, and the results are placed in
the corresponding elements of register rt.

avgb rt, ra, rb Average bytes. The corresponding byte elements of registers ra and rb are
averaged ((a+b+1) >> 1), and the results are placed in the corresponding
byte elements of register rt.

bg rt, ra, rb Borrow generate word. Each unsigned word element of register ra is
compared to the corresponding unsigned word element of rb. If the value of
ra is greater than that of rb, a 0 is placed in the corresponding element of rt;
otherwise, a 1 is placed there.

bgx rt, ra, rb Borrow generate word extended. Each word element of register ra is
subtracted from the corresponding word element of register rb. An additional
1 is subtracted from the result if the least significant bit of word element rt is
0. If the result is less than 0, a 0 is placed in the corresponding element of
register rt; otherwise, a 1 is placed there.

bi ra Branch indirect. Execution proceeds with the instruction at the address
specified by word element 0 of register ra. The 2 least significant bits of the
address are ignored.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 5

Instruction/Usage Description

bid ra Branch indirect, disable. Execution proceeds with the instruction at the
address specified by word element 0 of register ra, and interrupts are
disabled. The 2 least significant bits of this address are ignored.

bie ra Branch indirect, enable. Execution proceeds with the instruction at the address
specified by word element 0 of register ra, and interrupts are enabled. The 2
least significant bits of the address are ignored.

bihnz rc, ra Branch indirect if not zero halfword. If halfword element 1 of register rc is 0,
execution proceeds with the next sequential instruction; otherwise, execution
proceeds at the address in word element 0 of register ra. The 2 least
significant bits of this address are ignored.

bihnzd rc, ra Branch indirect if not zero halfword, disable. If halfword element 1 of register
rc is 0, execution proceeds with the next sequential instruction; otherwise, the
branch is taken, and execution proceeds at the address in word element 0 of
register ra. The 2 least significant bits of this address are ignored. If the
branch is taken, interrupts are disabled; otherwise, the interrupt enable state
remains unchanged.

bihnze rc, ra Branch indirect if not zero halfword, enable. If halfword element 1 of register
rc is 0, execution proceeds with the next sequential instruction; otherwise, the
branch is taken, and execution proceeds at the address in word element 0 of
register ra. The 2 least significant bits of this address are ignored. If the
branch is taken, interrupts are enabled; otherwise, the interrupt enable state
remains unchanged.

bihz rc, ra Branch indirect if zero halfword. If halfword element 1 of register rc is 0,
execution proceeds at the address in word element 0 of register ra. The 2
least significant bits of this address are ignored. Otherwise, the element rc is
nonzero, and execution proceeds with the next sequential instruction.

bihzd rc, ra Branch indirect if zero halfword, disable. If halfword element 1 of register rc is
0, the branch is taken, and execution proceeds at the address in word element
0 of register ra. The 2 least significant bits of this address are ignored.
Otherwise, execution proceeds with the next sequential instruction. If the
branch is taken, interrupts are disabled; otherwise, the interrupt enable state
remains unchanged.

bihze rc, ra Branch indirect if zero halfword, enable. If halfword element 1 of register rc is
0, the branch is taken, and execution proceeds at the address in word element
0 of register ra. The 2 least significant bits of this address are ignored.
Otherwise, the element rc is nonzero, and execution proceeds with the next
sequential instruction. If the branch is taken, interrupts are enabled; otherwise,
the interrupt enable state remains unchanged.

binz rc, ra Branch indirect if not zero word. If word element 0 of register rc is 0,
execution proceeds with the next sequential instruction; otherwise, execution
proceeds at the address in word element 0 of register ra. The 2 least
significant bits of this address are ignored.

binzd rc, ra Branch indirect if not zero word, disable. If word element 0 of register rc is 0,
execution proceeds with the next sequential instruction; otherwise, the branch
is taken, and execution proceeds at the address in word element 0 of register
ra. The 2 least significant bits of this address are ignored. If the branch is
taken, interrupts are disabled; otherwise, the interrupt enable state remains
unchanged.

binze rc, ra Branch indirect if not zero word, enable. If word element 0 of register rc is 0,
execution proceeds with the next sequential instruction; otherwise, the branch
is taken, and execution proceeds at the address in word element 0 of register
ra. The 2 least significant bits of this address are ignored. If the branch is
taken, interrupts are enabled; otherwise, the interrupt enable state remains
unchanged.

 SPU Assembly Language Specification, Version 1.5

6 Instruction Set and Instruction Syntax ���

Instruction/Usage Description

bisl rt, ra Branch indirect and set link. The effective address of the next instruction is
taken from word element 0 of register ra. The 2 least significant bits of this
address are ignored. The address of the instruction following this instruction is
placed into word element 0 of register rt, and all other word elements of rt
are assigned a value of zero.

bisld rt, ra Branch indirect and set link, disable. The effective address of the next
instruction is taken from word element 0 of register ra. The 2 least significant
bits of this address are ignored. The address of the instruction following this
instruction is placed into word element 0 of register rt, and all other word
elements of rt are assigned a value of zero. Interrupts are also disabled.

bisle rt, ra Branch indirect and set link, enable. The effective address of the next
instruction is taken from word element 0 of register ra. The 2 least significant
bits of this address are ignored. The address of the instruction following this
instruction is placed into word element 0 of register rt, and all other word
elements of rt are assigned a value of zero. Interrupts are also enabled.

bisled rt, ra Branch indirect and set link on external data. The address of the instruction
following this instruction is placed in word element 0 of register rt, and all
other elements of register rt are assigned a value of zero. If the count of
channel 0 is nonzero, execution continues at the effective address in word
element 0 of register ra. The 2 least significant bits of this address are
ignored. If the count of channel 0 is zero, execution continues with the next
sequential instruction.

bisledd rt, ra Branch indirect and set link on external data, disable. The address of the
instruction following this instruction is placed in word element 0 of register rt,
and all other elements of register rt are assigned a value of zero. If the count
of channel 0 is nonzero, the branch is taken, and execution continues at the
effective address in word element 0 of register ra. The 2 least significant bits
of this address are ignored. If the count of channel 0 is zero, execution
continues with the next sequential instruction. If the branch is taken, interrupts
are disabled; otherwise, the interrupt enable state remains unchanged.

bislede rt, ra Branch indirect and set link on external data, enable. The address of the
instruction following this instruction is placed in word element 0 of register rt,
and all other elements of register rt are assigned a value of zero. If the count
of channel 0 is nonzero, the branch is taken, and execution continues at the
effective address in word element 0 of register ra. The 2 least significant bits
of this address are ignored. If the count of channel 0 is zero, execution
continues with the next sequential instruction. If the branch is taken, interrupts
are enabled; otherwise, the interrupt enable state remains unchanged.

biz rc, ra Branch indirect if zero word. If word element 0 of register rc is zero, execution
proceeds at the effective address in word element 0 of register ra. The 2 least
significant bits of this address are ignored. If word element 0 of rc is nonzero,
execution proceeds with the next sequential instruction.

bizd rc, ra Branch indirect if zero word, disable. If word element 0 of register rc is zero,
the branch is taken, and execution proceeds at the effective address in word
element 0 of register ra. The 2 least significant bits of this address are
ignored. If word element 0 of rc is nonzero, execution proceeds with the next
sequential instruction. If the branch is taken, interrupts are disabled; otherwise,
the interrupt enable state remains unchanged.

bize rc, ra Branch indirect if zero word, enable. If word element 0 of register rc is zero,
the branch is taken, and execution proceeds at the effective address in word
element 0 of register ra. The 2 least significant bits of this address are
ignored. If word element 0 of rc is nonzero, execution proceeds with the next
sequential instruction. If the branch is taken, interrupts are enabled; otherwise,
the interrupt enable state remains unchanged.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 7

Instruction/Usage Description

br s18 Branch relative. Execution proceeds with the instruction addressed by the sum
of the current instruction address and the sign-extended value of s18. The 2
least significant bits of s18 are ignored.

bra s18 Branch absolute. Execution proceeds with the instruction addressed by the
sign-extended value of s18. The 2 least significant bits of s18 are ignored.

brasl rt, s18 Branch absolute and set link. Execution proceeds with the instruction
addressed by the sign-extended value of s18. The 2 least significant bits of
s18 are ignored. The instruction following the current instruction is placed in
word element 0 of register rt, and all other elements of rt are assigned a
value of zero.

brhnz rc, s18 Branch if not zero halfword. If the halfword element 1 of register rc is nonzero,
execution proceeds with the instruction addressed by the sum of the current
instruction address and the sign-extended value of s18. The 2 least significant
bits of s18 are ignored. If halfword element 1 of rc is zero, execution
proceeds with the next sequential instruction.

brhz rc, s18 Branch if zero halfword. If the halfword element 1 of register rc is zero,
execution proceeds with the instruction addressed by the sum of the current
instruction address and the sign-extended value of s18. The 2 least significant
bits of s18 are ignored. If the halfword element 1 of register rc is nonzero,
execution proceeds with the next sequential instruction.

brnz rc, s18 Branch if not zero word. If the word element 0 of register rc is nonzero,
execution proceeds with the instruction addressed by the sum of the current
instruction address and the sign-extended value of s18. The 2 least significant
bits of s18 are ignored. If word element 0 of register rc is zero, execution
proceeds with the next sequential instruction.

brsl rt, s18 Branch relative and set link. Execution proceeds with the instruction addressed
by the sum of the current instruction address and the sign-extended value of
s18. The 2 least significant bits of s18 are ignored. The instruction following
the current instruction is placed in word element 0 of register rt, and all other
elements of rt are assigned a value of zero.

brz rc, s18 Branch if zero word. If the word element 0 of register rc is zero, execution
proceeds with the instruction addressed by the sum of the current instruction
address and the sign-extended value of s18. The 2 least significant bit of s18
are ignored. If word element 0 of register rc is nonzero, execution proceeds
with the following instruction.

cbd rt, u7(ra) Generate controls for byte insertion (d-form). A control mask is generated that
can be used by the shufb instruction to insert a byte at the effective address
computed by the sum of register ra and the unsigned value u7. The control
mask is placed in register rt.

cbx rt, ra, rb Generate controls for byte insertion (x-form). A control mask is generated that
can be used by the shufb instruction to insert a byte at the effective address
computed by the sum of registers ra and rb. The control mask is placed in
register rt.

cdd rt, u7(ra) Generate controls for doubleword insertion (d-form). A control mask is
generated that can be used by the shufb instruction to insert a doubleword at
the effective address computed by the sum of register ra and unsigned value
u7. The control mask is placed in register rt.

cdx rt, ra, rb Generate controls for doubleword insertion (x-form). A control mask is
generated that can be used by the shufb instruction to insert a doubleword at
the effective address computed by the sum of registers ra and rb. The control
mask is placed in register rt.

 SPU Assembly Language Specification, Version 1.5

8 Instruction Set and Instruction Syntax ���

Instruction/Usage Description

ceq rt, ra, rb Compare equal word. Each word element of register ra is compared with the
corresponding word element of register rb. If the two elements are equal, all
ones are placed in the corresponding word element of register rt. Otherwise,
the two elements are not equal, and zero is placed in the corresponding word
element of register rt.

ceqb rt, ra, rb Compare equal byte. Each byte element of register ra is compared with the
corresponding byte element of register rb. If the two elements are equal, all
ones are placed in the corresponding byte element of register rt. Otherwise,
the elements are not equal, and zero is placed in the corresponding byte
element of register rt.

ceqbi rt, ra, s10 Compare equal byte immediate. Each byte element of register ra is compared
with the 8 least significant bits of s10. If the two values are equal, all ones are
placed in the corresponding byte element of register rt. Otherwise, the values
are not equal, and zero is placed in the corresponding byte element of register
rt.

ceqh rt, ra, rb Compare equal halfword. Each halfword element of register ra is compared
with the corresponding halfword element of register rb. If the two elements are
equal, all ones are placed in the corresponding halfword element of register
rt. Otherwise, the elements are not equal, and zero is placed in the
corresponding halfword element of register rt.

ceqhi rt, ra, s10 Compare equal halfword immediate. Each halfword element of register ra is
compared with the 16-bit sign-extended value s10. If the two values are equal,
all ones are placed in the corresponding halfword element of register rt.
Otherwise, the values are not equal, and zero is placed in the corresponding
halfword element of register rt.

ceqi rt, ra, s10 Compare equal word immediate. Each word element of register ra is
compared with the 32-bit sign-extended value s10. If the two values are equal,
all ones are placed in the corresponding word element of register rt.
Otherwise, the values are not equal, and zero is placed in the corresponding
word element of register rt.

cflts rt, ra, scale7 Convert floating to signed integer. Each floating-point element of register ra is
multiplied by 2scale7, converted to a signed 32-bit integer, and placed in the
corresponding word element of register rt. Values outside of the range from
-231 to 231-1 are clamped (saturated to the nearest bound).

cfltu rt, ra, scale7 Convert floating to unsigned integer. Each floating-point element of register ra
is multiplied by 2scale7, converted to an unsigned 32-bit integer, and placed in
the corresponding word elements of register rt. Values outside of the range
from 0 to 232-1 are clamped (saturated to the nearest bound).

cg rt, ra, rb Carry generate word. Each word element of register ra is added to the
corresponding word element of register rb. The carry out is placed in the least
significant bit of the corresponding word element of register rt, and 0 is
placed in the remaining bits of rt.

cgt rt, ra, rb Compare greater than word. Each word element of register ra is compared
with the corresponding word element of register rb. If the word in ra is greater
than the corresponding word in rb, all ones are placed in the corresponding
word element of register rt. Otherwise, the word in ra is less than or equal to
the corresponding word in rb, and zeros are placed in the corresponding word
element of register rt.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 9

Instruction/Usage Description

cgtb rt, ra, rb Compare greater than byte. Each byte element of register ra is compared with
the corresponding byte element of register rb. If the byte in ra is greater than
the corresponding byte in rb, all ones are placed in the corresponding byte
element of register rt. Otherwise, the byte in ra is less than or equal to the
corresponding byte in rb, and zeros are placed in the corresponding byte
element of register rt.

cgtbi rt, ra, s10 Compare greater than byte immediate. Each byte element of register ra is
compared with the 8 least significant bits of s10. If the byte in ra is greater
than the corresponding byte in s10, all ones are placed in the corresponding
byte element of register rt. Otherwise, the byte in ra is less than or equal to
the corresponding byte in s10, and zeros are placed in the corresponding byte
element of register rt.

cgth rt, ra, rb Compare greater than halfword. Each halfword element of register ra is
compared with the corresponding halfword element of register rb. If the
halfword in ra is greater than the corresponding halfword in rb, all ones are
placed in the corresponding halfword element of register rt. Otherwise, the
halfword in ra is less than or equal to the corresponding halfword in rb, and
zeros are placed in the corresponding halfword element of register rt.

cgthi rt, ra, s10 Compare greater than halfword immediate. Each halfword element of register
ra is compared with the 16-bit sign-extended value s10. If the halfword in ra
is greater than s10, all ones are placed in the corresponding halfword element
of register rt. Otherwise, the halfword in ra is less than or equal to s10, and
zeros are placed in the corresponding halfword element of register rt.

cgti rt, ra, s10 Compare greater than word immediate. Each word element of register ra is
compared with the 32-bit sign-extended value s10. If the word in ra is greater
than s10, all ones are placed in the corresponding word element of register
rt. Otherwise, the word in ra is less than or equal to s10, and zeros are
placed in the corresponding word element of register rt.

cgx rt, ra, rb Carry generate word extended. For each word element in registers ra and rb,
a carry out is generated by summing the element of register ra, the
corresponding element of rb, and the least significant bit of rt. The carry out
is placed in the least significant bit of the corresponding word element of rt,
and zeros are placed in the remaining bits.

chd rt, u7(ra) Generate controls for halfword insertion (d-form). A control mask is generated
that can be used by the shufb instruction to insert a halfword at the effective
address computed by the sum of register ra and the unsigned value u7. The
control mask is placed in register rt.

chx rt, ra, rb Generate controls for halfword insertion (x-form). A control mask is generated
that can be used by the shufb instruction to insert a halfword at the effective
address computed by the sum of registers ra and rb. The control mask is
placed in register rt.

clgt rt, ra, rb Compare logical greater than word. Each word element of register ra is
logically compared with the corresponding word element of register rb. If the
word in ra is greater than the corresponding word in rb, all ones are placed in
the corresponding word element of register rt. Otherwise, the word in ra is
less than or equal to the corresponding word in rb, and zeros are placed in
the corresponding word element of register rt.

 SPU Assembly Language Specification, Version 1.5

10 Instruction Set and Instruction Syntax ���

Instruction/Usage Description

clgtb rt, ra, rb Compare logical greater than byte. Each byte element of register ra is
logically compared with the corresponding byte element of register rb. If the
byte in ra is greater than the corresponding byte in rb, all ones are placed in
the corresponding byte element of register rt. Otherwise, the byte in ra is
less than or equal to the corresponding byte in rb, and zeros are placed in the
corresponding byte element of register rt.

clgtbi rt, ra, s10 Compare logical greater than byte immediate. Each byte element of register
ra is logically compared with the 8 least significant bits of s10. If the byte in
ra is greater than the value in s10, all ones are placed in the corresponding
byte element of register rt. Otherwise, the byte in ra is less than or equal to
the byte in s10, and zeros are placed in the corresponding byte element of
register rt.

clgth rt, ra, rb Compare logical greater than halfword. Each halfword element of register ra is
logically compared with the corresponding halfword element of register rb. If
the halfword in ra is greater than the corresponding halfword in rb, all ones
are placed in the corresponding halfword element of register rt. Otherwise,
the halfword in ra is less than or equal to the corresponding halfword in rb,
and zeros are placed in the corresponding halfword element of register rt.

clgthi rt, ra, s10 Compare logical greater than halfword immediate. Each halfword element of
register ra is logically compared with the 16-bit sign-extended value s10. If
the halfword in ra is greater than the value in s10, all ones are placed in the
corresponding halfword element of register rt. Otherwise, the halfword in ra
is less than or equal to the value in s10, and zeros are placed in the
corresponding halfword element of register rt.

clgti rt, ra, s10 Compare logical greater than word immediate. Each word element of register
ra is logically compared with the 32-bit sign-extended value s10. If the word in
ra is greater than the value in s10, all ones are placed in the corresponding
word element of register rt. Otherwise, the word element in ra is less than or
equal to the value in s10, and zeros are placed in the corresponding word
element of register rt.

clz rt, ra Count leading zeros. The number of zeros to the left of the first 1 in each word
element of register ra is counted, and the resulting count is placed in the
corresponding element of register rt.

cntb rt, ra Count ones in bytes. The number of ones in each byte element of register ra
is counted, and the resulting count is placed in the corresponding element of
register rt.

csflt rt, ra, scale7 Convert signed integer to floating. Each signed word element of register ra is
converted to floating-point, multiplied by 2-scale7, and placed in the
corresponding floating-point elements of register rt.

cuflt rt, ra, scale7 Convert unsigned integer to floating. Each unsigned word element of register
ra is converted to floating-point, multiplied by 2-scale7, and placed in the
corresponding floating point elements of register rt.

cwd rt, u7(ra) Generate controls for word insertion (d-form). A control mask is generated that
can be used by the shufb instruction to insert a word at the effective address
computed by the sum of register ra and the unsigned value u7. The control
mask is placed in register rt.

cwx rt, ra, rb Generate controls for word insertion (x-form). A control mask is generated that
can be used by the shufb instruction to insert a word at the effective address
computed by the sum of registers ra and rb. The control mask is placed in
register rt.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 11

Instruction/Usage Description

dfa rt, ra, rb Double floating add. Each double floating-point element of register ra is added
to the corresponding double floating-point element of register rb, and the
results are placed in the corresponding elements of register rt.

dfceq rt, ra, rb Double floating compare equal. Each double floating-point element of register
ra is compared with the corresponding double floating-point element of
register rb. If the two elements are equal, all ones are placed in the
corresponding double-word element of register rt. Otherwise, if they are not
equal, zeros are placed in the corresponding double-word element of register
rt.

dfcgt rt, ra, rb Double floating compare greater than. Each double floating-point element of
register ra is compared with the corresponding double floating-point element
of register rb. If the element in ra is greater than the corresponding element
of register rb, all ones are placed in the corresponding double-word element
of register rt. Otherwise, if the element in ra is less than or equal to the
corresponding element in rb, zeros are placed in the corresponding double-
word element of register rt.

dfcmeq rt, ra, rb Double floating compare magnitude equal. The absolute value of each double
floating-point element of register ra is compared with the absolute value of the
corresponding double floating-point element of register rb. If the two elements
are equal, all ones are placed in the corresponding double-word element of
register rt. Otherwise, if they are not equal, zeros are placed in the
corresponding double-word element of register rt.

dfcmgt rt, ra, rb Double floating compare magnitude greater than. The absolute value of each
double floating-point element of register ra is compared with the absolute
value of the corresponding double floating-point element of register rb. If the
element in ra is greater than the corresponding element of register rb, all
ones are placed in the corresponding double-word element of register rt.
Otherwise, if the element in ra is less than or equal to the corresponding
element in rb, zeros are placed in the corresponding double-word element of
register rt.

dfm rt, ra, rb Double floating multiply. Each double floating-point element of register ra is
multiplied by the corresponding double floating-point element of register rb,
and the results are placed in the corresponding elements of register rt.

dfma rt, ra, rb Double floating multiply and add. Each double floating-point element of
register ra is multiplied by the corresponding double floating-point element of
register rb, and the corresponding double floating-point element of register rt
is then added to the product. The results are placed in the corresponding
elements of register rt.

dfms rt, ra, rb Double floating multiply and subtract. Each double floating-point element of
register ra is multiplied by the corresponding double floating-point element of
register rb, and the corresponding double floating-point element of register rt
is subtracted from the product. The results are placed in the corresponding
elements of register rt.

dfnma rt, ra, rb Double floating negative multiply and add. Each double floating-point element
of register ra is multiplied by the corresponding double floating-point element
of register rb, and the corresponding double floating-point element of register
rt is added to the product. Each result is negated and placed in the
corresponding element of register rt.

dfnms rt, ra, rb Double floating negative multiply and subtract. Each double floating-point
element of register ra is multiplied by the corresponding double floating-point
element of register rb, and the product is subtracted from the corresponding
double floating-point element of register rt. The results are placed in
corresponding elements of register rt.

 SPU Assembly Language Specification, Version 1.5

12 Instruction Set and Instruction Syntax ���

Instruction/Usage Description

dfs rt, ra, rb Double floating subtract. Each double floating-point element of register rb is
subtracted from the corresponding double floating-point element of register ra,
and the results are placed in the corresponding elements of register rt.

dftsv rt, ra, u7 Double floating test special value. Each double floating-point element of
register ra is tested for the special values as specified by the immediate value
u7. If one of the specified tests is true, all ones are placed in the
corresponding double-word element of register rt. Otherwise, if none of the
tests are true, zeros are placed in the corresponding double-word element of
register rt.

dsync Synchronize data. All pending store operations to local storage memory are
completed before the processor proceeds to the next instruction.

eqv rt, ra, rb Equivalent. The value in register ra is logically exclusive ORed with the value
in register rb, and the complement of the result is placed in register rt.

fa rt, ra, rb Floating add. Each floating-point element of register ra is added to the
corresponding floating-point element of register rb, and the results are placed
in the corresponding elements of register rt.

fceq rt, ra, rb Floating compare equal. Each floating-point element of register ra is
compared with the corresponding floating-point element of register rb. If the
two elements are equal, all ones are placed in the corresponding word element
of register rt. Otherwise, they are not equal, and zeros are placed in the
corresponding word element of register rt.

fcgt rt, ra, rb Floating compare greater than. Each floating-point element of register ra is
compared with the corresponding floating-point element of register rb. If the
element in ra is greater than the corresponding element in rb, all ones are
placed in the corresponding word element of register rt. Otherwise, the
element in ra is less than or equal to the corresponding element in rb, and
zeros are placed in the corresponding word element of register rt.

fcmeq rt, ra, rb Floating compare magnitude equal. The absolute value of each floating-point
element of register ra is compared with the absolute value of the
corresponding floating-point element of register rb. If the elements are equal,
all ones are placed in the corresponding word element of register rt.
Otherwise, they are not equal, and zeros are placed in the corresponding word
elements of register rt.

fcmgt rt, ra, rb Floating compare magnitude greater than. The absolute value of each floating-
point element of register ra is compared with the absolute value of the
corresponding floating-point element of register rb. If the value in ra is greater
than the corresponding value in rb, all ones are placed in the corresponding
word element of register rt. Otherwise, the value for ra is less than or equal
to the corresponding value for rb, and zeros are placed in the corresponding
word element of register rt.

fesd rt, ra Floating extend single to double. Each even single precision floating-point
element of register ra is converted to double precision and then placed in the
corresponding element of register rt.

fi rt, ra, rb Floating interpolate. Each floating-point element of register ra is interpolated
to produce a more accurate estimate, using the base and step contained in the
corresponding element of register rb, where rb is in the output format of a
frest or frsqest instruction. The interpolated result is placed in the
corresponding element of register rt.

fm rt, ra, rb Floating multiply. Each floating-point element of register ra is multiplied by the
corresponding floating-point element of register rb, and the products are
placed in the corresponding elements of register rt.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 13

Instruction/Usage Description

fma rt, ra, rb, rc Floating multiply and add. Each floating-point element of register ra is
multiplied by the corresponding floating-point element of register rb, and the
corresponding floating-point element of register rc is then added to the
product. The results are placed in corresponding elements of register rt.

fms rt, ra, rb, rc Floating multiply and subtract. Each floating-point element of register ra is
multiplied by the corresponding floating-point element of register rb, and the
corresponding floating-point element of register rc is subtracted from the
product. The results are placed in the corresponding elements of register rt.

fnms rt, ra, rb, rc Floating negative multiply and subtract. Each floating-point element of register
ra is multiplied by the corresponding floating-point element of register rb, and
the product is subtracted from the corresponding floating-point element of
register rc. The results are placed in the corresponding elements of register
rt.

frds rt, ra Floating round double to single. Each double floating-point element of register
ra is rounded to single precision and placed in the corresponding even
element of register rt. At the same time, a zero is placed in the corresponding
odd element of rt.

frest rt, ra Floating reciprocal estimate. A base and step is computed for estimating the
reciprocal of each floating-point element of register ra, and the result is placed
in the corresponding element of register rt. The result returned by this
instruction is intended as an operand to the fi instruction.

frsqest rt, ra Floating reciprocal square root estimate. A base and step is computed for
estimating the reciprocal of the square root for each floating-point element of
register ra, and the result is placed in the corresponding element of register
rt. The result returned by this instruction is intended as an operand to the fi
instruction.

fs rt, ra, rb Floating subtract. Each floating-point element of register rb is subtracted from
the corresponding floating-point element of register ra, and the results are
placed in the corresponding elements of register rt.

fscrrd rt Floating-point status control register read. The contents of the Floating-Point
Status and Control Register (FPSCR) are read and placed in register rt.

fscrwr ra
fscrwr rc, ra

Floating-point status control register write. The 128-bit register ra is written
into the Floating-Point Status and Control Register (FPSCR). Register rc is a
false target and no value is ever written to it. If register rc is not specified,
register 0 is used as the false target.

fsm rt, ra Form select mask for words. The 4 least significant bits of word element 0 of
register ra are used to create a mask by replicating each bit 32 times. The
128-bit result is returned in register rt.

fsmb rt, ra Form select mask for bytes. The 16 least significant bits of word element 0 of
register ra are used to create a mask by replicating each bit 8 times. The
128-bit result is returned in register rt.

fsmbi rt, u16 Form select mask for byte immediate. The 16 bits of u16 are used to create a
mask by replicating each bit 8 times. The 128-bit result is returned in register
rt.

fsmh rt, ra Form select mask for halfwords. The 8 least significant bits of word element 0
of register ra are used to create a mask by replicating each bit 16 times. The
128-bit result is returned in register rt.

gb rt, ra Gather bits from words. A 4-bit value is formed by concatenating the least
significant bit of each word element of register ra. The 4-bit value is then
placed in the least significant bits of word element 0 of register rt, and zeros
are placed in the remaining bits.

 SPU Assembly Language Specification, Version 1.5

14 Instruction Set and Instruction Syntax ���

Instruction/Usage Description

gbb rt, ra Gather bits from bytes. A 16-bit value is formed by concatenating the least
significant bit of each byte element of register ra. The 16-bit value is then
placed in the least significant bits of word element 0 of register rt, and zeros
are placed in the remaining bits.

gbh rt, ra Gather bits from halfwords. An 8-bit value is formed by concatenating the least
significant bit of each halfword element of register ra. The 8-bit value is then
placed in the least significant bits of word element 0 of register rt, and zeros
are placed in the remaining bits.

hbr s11, ra Hint for branch (r-form). An instruction prefetch is allowed to occur at the
branch target address contained in word element 0 of register ra, for the
branch instruction that is addressed by the sum of the address of this
instruction and the sign-extended value s11. The 2 least significant bits of s11
are ignored.

hbra s11, s18 Hint for branch (a-form). An instruction prefetch is allowed to occur at the
branch target address specified by the sign-extended value s18, for the
branch instruction addressed by the sum of the address of this instruction and
the sign-extended value s11. The 2 least significant bits of s11 and s18 are
ignored.

hbrp Hint for branch, prefetch (r-form). A slot in the fetch unit is reserved for an
in-line prefetch. This instruction translates to an hbr instruction that has the P
feature bit set. The field in the hbr instruction that contains the offset to the
branch instruction is set to zero.

hbrr s11, s18 Hint for branch relative. An instruction prefetch is allowed to occur at the
branch target that is addressed by the sum of the address of this instruction
and the sign-extended value s18, for the branch instruction that is addressed
by the sum of the address of this instruction and the sign-extended value s11.
The 2 least significant bits of s18 and s11 are ignored.

heq ra, rb
heq rt, ra, rb

Halt if equal. If word element 0 of registers ra and rb are equal, the processor
is halted. Register rt is a false target and is never written to. If register rt is
not specified, register 0 is used as the false target.

heqi ra, s10
heqi rt, ra, s10

Halt if equal immediate. If word element 0 of register ra equals the
sign-extended value of s10, the processor is halted. Register rt is a false
target, and no value is ever written to it. If register rt is not specified, register
0 is used as the false target.

hgt ra, rb
hgt rt, ra, rb

Halt if greater than. If signed word element 0 of register ra is greater than
word element 0 of register rb, the processor is halted. Register rt is a false
target, and no value is ever written to it. If register rt is not specified, register
0 is used as the false target.

hgti ra, s10
hgti rt, ra, s10

Halt if greater than immediate. If signed word element 0 of register ra is
greater than the sign-extended value s10, the processor is halted. Register rt
is a false target, and no value is ever written to it. If register rt is not specified,
register 0 is used as the false target.

hlgt ra, rb
hlgt rt, ra, rb

Halt if logically greater than. If unsigned word element 0 of register ra is
greater than unsigned word element 0 of register rb, the processor is halted.
Register rt is a false target, and no value is ever written to it. If register rt is
not specified, register 0 is used as the false target.

hlgti ra, s10
hlgti rt, ra, s10

Halt if logically greater than immediate. If unsigned word element 0 of register
ra is logically greater than the sign-extended value s10, the processor is
halted. Register rt is a false target, and no value is ever written to it. If
register rt is not specified, register 0 is used as the false target.

il rt, s16 Immediate load word. The sign-extended value s16 is loaded into each of the
word elements of rt.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 15

Instruction/Usage Description

ila rt, u18 Immediate load address. The unsigned value u18 is loaded into each of the
word elements of rt.

ilh rt, u16 Immediate load halfword. The value u16 is loaded into each of the 8 halfword
elements of rt.

ilhu rt, u16 Immediate load halfword upper. The value u16 is loaded into the 16 most
significant bits of each of the 4 word elements of rt.

iohl rt, u16 Immediate OR halfword lower. Immediate OR the value u16 with each of the
word elements of rt.

iretd
iretd ra

Interrupt return, disable. Execution proceeds with the instruction addressed by
machine state save/restore register 0 (SRR0). Interrupts are disabled. Register
ra is a false source, and its contents are ignored. If ra is not specified,
register 0 is used as a false source.

irete
irete ra

Interrupt return, enable. Execution proceeds with the instruction addressed by
machine state save/restore register 0 (SRR0). Interrupts are enabled. Register
ra is a false source, and its contents are ignored. If ra is not specified,
register 0 is used as a false source.

iret
iret ra

Interrupt return. Execution proceeds with the instruction addressed by machine
state save/restore register 0 (SRR0). Register ra is a false source, and its
contents are ignored. If ra is not specified, register 0 is used as a false
source.

lnop Nop operation (load). A no-operation is performed on the load pipeline.
lqa rt, s18 Load quadword (a-form). A quadword is loaded into register rt from the

effective address specified by the sign-extended value s18. The 2 least
significant bits of s18 are ignored.

lqd rt, s14(ra) Load quadword (d-form). A quadword is loaded into register rt from the
effective address computed by the sum of register ra and the sign-extended
value s14. The 4 least significant bits of s14 are ignored.

lqr rt, s18 Load quadword instruction relative (a-form). A quadword is loaded into register
rt from the effective address specified by the sum of the current instruction
address and s18. The 2 least significant bits of s18 are ignored.

lqx rt, ra, rb Load quadword (x-form). A quadword is loaded into register rt from the
effective address computed by the sum of registers ra and rb.

mfspr rt, spr Move from special purpose register. The contents of the specified special
purpose register spr are moved to the word element 0 of register rt.

mpy rt, ra, rb Multiply. The signed 16 least significant bits of the corresponding word
elements of registers ra and rb are multiplied, and the 32-bit products are
placed in the corresponding word elements of register rt.

mpya rt, ra, rb, rc Multiply and add. The signed 16 least significant bits of the corresponding
word elements of registers ra and rb are multiplied, and the 32-bit products
are then added to the corresponding word elements of register rc. The results
are placed in the corresponding elements of register rt.

mpyh rt, ra, rb Multiply high. The most significant 16 bits of the word elements of register ra
are multiplied by the 16 least significant bits of the corresponding elements of
register rb. The 32-bit products are then shifted left by 16 bits and placed in
the corresponding word elements of register rt.

mpyhh rt, ra, rb Multiply high high. The signed 16 most significant bits of the word elements of
registers ra and rb are multiplied, and the 32-bit products are placed in the
corresponding word elements of register rt.

 SPU Assembly Language Specification, Version 1.5

16 Instruction Set and Instruction Syntax ���

Instruction/Usage Description

mpyhha rt, ra, rb Multiply high high and add. The signed 16 most significant bits of the word
elements of registers ra and rb are multiplied. The 32-bit products are then
added to the corresponding word elements of register rt, and the sums are
placed in register rt.

mpyhhau rt, ra, rb Multiply high high unsigned and add. The unsigned 16 most significant bits of
the word elements of registers ra and rb are multiplied, and the 32-bit
products are then added to the corresponding word elements of register rt,
and the sums are placed in register rt.

mpyhhu rt, ra, rb Multiply high high unsigned. The unsigned 16 most significant bits of the word
elements of registers ra and rb are multiplied, and the 32-bit products are
then placed in the corresponding word elements of register rt.

mpyi rt, ra, s10 Multiply immediate. The 16 least significant bits of each of the word elements
of register ra are multiplied by the sign-extended value s10. The 32-bit
products are then placed in the corresponding word elements of register rt.

mpys rt, ra, rb Multiply and shift right. The most significant 16 bits of corresponding word
elements of registers ra and rb are multiplied, and the 16 most significant bits
of the 32-bit products are placed in the least significant bits of the
corresponding word elements of register rt.

mpyu rt, ra, rb Multiply unsigned. The unsigned 16 least significant bits of the corresponding
word elements of registers ra and rb are multiplied, and the 32-bit products
are placed in the corresponding word elements of register rt.

mpyui rt, ra, s10 Multiply unsigned immediate. The 16 least significant bits of each of the word
elements of register ra is multiplied by the sign-extended value s10. Both
operands are treated as unsigned. The 32-bit products are placed in the
corresponding word elements of register rt.

mtspr spr, ra Move to special purpose register. The contents of word element 0 of register
ra are moved to the special purpose register spr.

nand rt, ra, rb Nand. The value of register ra is logically ANDed with register rb, and the
complement of the result is placed in register rt.

nop
nop rt

Nop operation (execute). A no-operation is performed on the execute pipeline.
Register rt is a false target, and no value is ever written to it. If register rt is
not specified, register 0 is used as the false target.

nor rt, ra, rb Nor. The value of register ra is logically ORed with register rb, and the
complement of the result is placed in register rt.

or rt, ra, rb Or. The value of register ra is logically ORed with register rb, and the result is
placed in register rt.

orbi rt, ra, s10 Or byte immediate. The 8 least significant bits of s10 are logically ORed with
each byte element of register ra, and the results are placed in the
corresponding elements of register rt.

orc rt, ra, rb Or with complement. The value of register ra is logically ORed with the
complement of register rb, and the result is placed in register rt.

orhi rt, ra, s10 Or halfword immediate. The sign-extended value s10 is logically ORed with
each halfword element of register ra, and the results are placed in the
corresponding elements of register rt.

ori rt, ra, s10 Or word immediate. The sign-extended value s10 is logically ORed with each
word element of register ra, and the results are placed in the corresponding
elements of register rt.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 17

Instruction/Usage Description

orx rt, ra Or word across. The four word elements of register ra are logically ORed, and
the result is placed in word element 0 of register rt. Word elements 1, 2, and
3 of register rt are assigned a value of zero.

rchcnt rt, ch Read channel count. The channel count of the channel ch is read, and the
count placed in register rt.

rdch rt, ch Read channel. The contents of the channel ch are read, and the contents
placed in register rt.

rot rt, ra, rb Rotate word. The contents of each word element of register ra are rotated left
according to the corresponding word element of register rb. The results are
placed in the corresponding word elements of register rt.

roth rt, ra, rb Rotate halfword. The contents of each halfword element of register ra are
rotated left according to the corresponding halfword element of register rb.
The results are placed in the corresponding halfword elements of register rt.

rothi rt, ra, s7 Rotate halfword immediate. The contents of each halfword element of register
ra are rotated left according to the 4 least significant bits of s7. The results
are placed in the corresponding halfword elements of register rt.

rothm rt, ra, rb Rotate and mask halfword. The contents of each halfword element of register
ra are right shifted according to the two’s complement of the 5 least significant
bits of the corresponding halfword element of register rb. The results are
placed in the corresponding halfword elements of register rt.

rothmi rt, ra, s6 Rotate and mask halfword immediate. The contents of each halfword element
of register ra are right shifted according to the two’s complement of the signed
value s6. The results are placed in the corresponding halfword elements of
register rt.

roti rt, ra, s7 Rotate word immediate. The contents of each word element of register ra are
rotated left according to the signed value s7. The results are placed in the
corresponding word elements of register rt.

rotm rt, ra, rb Rotate and mask word. The contents of each word element of register ra are
right-shifted according to the two’s complement of the 6 least significant bits of
the corresponding word element of register rb. The results are placed in the
corresponding word elements of register rt.

rotma rt, ra, rb Rotate and mask algebraic word. The contents of each word element of
register ra are right-shifted according to the two’s complement of the 6 least
significant bits of the corresponding word element of register rb. Copies of the
sign bit are shifted in from the left. The results are placed in the corresponding
word elements of register rt.

rotmah rt, ra, rb Rotate and mask algebraic halfword. The contents of each halfword element of
register ra are right-shifted according to the two’s complement of the 5 least
significant bits of the corresponding halfword element of register rb. Copies of
the sign bit are shifted in from the left. The results are placed in the
corresponding halfword element of register rt.

rotmahi rt, ra, s6 Rotate and mask algebraic halfword immediate. The contents of each halfword
element of register ra are right-shifted according to the signed value s6.
Copies of the sign bit are shifted in from the left. The results are placed in the
corresponding halfword elements of register rt.

rotmai rt, ra, s7 Rotate and mask algebraic word immediate. The contents of each word
element of register ra are right-shifted according to the two’s complement of
the signed value s7. Copies of the sign bit are shifted in from the left. The
results are placed in the corresponding word elements of register rt.

 SPU Assembly Language Specification, Version 1.5

18 Instruction Set and Instruction Syntax ���

Instruction/Usage Description

rotmi rt, ra, s7 Rotate and mask word immediate. The contents of each word element of
register ra are right-shifted according to the two’s complement of the signed
value s7. The results are placed in the corresponding word elements of
register rt.

rotqbi rt, ra, rb Rotate quadword by bits. The contents of register ra are rotated left by the
number of bits specified by the 3 least significant bits of word element 0 of
register rb. The result is placed in register rt.

rotqbii rt, ra, u3 Rotate quadword by bits immediate. The contents of register ra are rotated
left by the number of bits according to the value u3. The result is placed in
register rt.

rotqby rt, ra, rb Rotate quadword by bytes. The contents of register ra are rotated left by the
number of bytes specified by the 4 least significant bits of word element 0 of
register rb. The result is placed in register rt.

rotqbybi rt, ra, rb Rotate quadword by bytes from bit shift count. The contents of register ra are
rotated left by the number of bytes specified by bits 24-28 of word element 0 of
register rb. The result is placed in register rt.

rotqbyi rt, ra, s7 Rotate quadword by bytes immediate. The contents of register ra are rotated
left by the number of bytes according to the signed value s7. The result is
placed in register rt.

rotqmbi rt, ra, rb Rotate and mask quadword by bits. The contents of register ra are shifted
right by the number of bits specified by the two’s complement of the 3 least
significant bits of word element 0 of register rb. The result is placed in register
rt.

rotqmbii rt, ra, s3 Rotate and mask quadword by bits immediate. The contents of register ra are
shifted right by the number of bits specified by the two’s complement of the
signed value s3. The result is placed in register rt.

rotqmby rt, ra, rb Rotate and mask quadword by bytes. The contents of register ra are shifted
right by the number of bytes specified by the two’s complement of the 5 least
significant bits of word element 0 of register rb. The result is placed in register
rt.

rotqmbybi rt, ra, rb Rotate and mask quadword by bytes from bit shift count. The contents of
register ra are shifted right by the number of bytes specified by the two’s
complement of bits 25-28 of word element 0 of register rb. The result is
placed in register rt.

rotqmbyi rt, ra, s6 Rotate and mask quadword by bytes immediate. The contents of register ra
are shifted right by the number of bytes specified by the two’s complement of
the signed value s6. The result is placed in register rt.

selb rt, ra, rb, rc Select bits. Each bit of register rc whose value is 0 selects the corresponding
bit from register ra. A bit whose value is 1 selects the corresponding bit from
register rb. The quadword result is placed in register rt.

sf rt, ra, rb Subtract from word. Each word element of register ra is subtracted from the
corresponding word element of register rb, and the results are placed in the
corresponding word elements of register rt.

sfh rt, ra, rb Subtract from halfword. Each halfword element of register ra is subtracted
from the corresponding halfword element of register rb, and the results are
placed in the corresponding word elements of register rt.

sfhi rt, ra, s10 Subtract from halfword immediate. Each halfword element of register ra is
subtracted from the sign-extended value s10, and the results are placed in the
corresponding halfword elements of register rt.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 19

Instruction/Usage Description

sfi rt, ra, s10 Subtract from word immediate. Each word element of register ra is subtracted
from the sign-extended value s10, and the results are placed in the
corresponding word elements of register rt.

sfx rt, ra, rb Subtract from word extended. Each word element of register ra is subtracted
from the corresponding word element of register rb. An additional 1 is
subtracted from the result if the least significant bit of word element rt is 0.
The results are placed in the corresponding word elements of register rt.

shl rt, ra, rb Shift left word. The contents of each word element of register ra are shifted
left according to the 6 least significant bits of the corresponding word element
of register rb. The results are placed in the corresponding word elements of
register rt.

shlh rt, ra, rb Shift left halfword. The contents of each halfword element of register ra are
shifted left according to the 5 least significant bits of the corresponding
halfword element of register rb. The results are placed in the corresponding
halfword elements of register rt.

shlhi rt, ra, u5 Shift left halfword immediate. The contents of each halfword element of
register ra are shifted left according to unsigned value u5. The results are
placed in the corresponding halfword elements of register rt.

shli rt, ra, u6 Shift left word immediate. The contents of each word element of register ra
are shifted left according to the unsigned value u6. The results are placed in
the corresponding word element of register rt.

shlqbi rt, ra, rb Shift left quadword by bits. The contents of register ra are shifted left by the
number of bits specified by the 3 least significant bits of word element 0 of
register rb. The result is placed in register rt.

shlqbii rt, ra, u3 Shift left quadword by bits immediate. The contents of register ra are shifted
left by the number of bits specified by the unsigned value u3. The result is
placed in register rt.

shlqby rt, ra, rb Shift left quadword by bytes. The contents of register ra are shifted left by the
number of bytes specified by the 5 least significant bits of word element 0 of
register rb. The result is placed in register rt.

shlqbybi rt, ra, rb Shift left quadword by bytes from bit shift count. The contents of register ra
are shifted left by the number of bytes specified by bits 24 to 28 of word
element 0 of register rb. The result is placed in register rt.

shlqbyi rt, ra, u5 Shift left quadword by bytes immediate. The contents of register ra are shifted
left by the number of bytes specified by the unsigned value u5. The result is
placed in register rt.

shufb rt, ra, rb, rc Shuffle bytes. Each byte of register rc is used to select a byte from either
register ra or register rb or a constant (0, 0x80, or 0xFF). The results are
placed in the corresponding bytes of register rt.

stop u14 Stop and signal. Execution is stopped, the current address is written to the
SPU NPC register, the value u14 is written to the SPU status register, and an
interrupt is sent to the PowerPC® Processor Unit (PPU).

stopd ra, rb, rc Stop and signal with dependencies. Execution is stopped after register
dependencies are met. This involves writing the current address to the SPU
NPC register, writing the value 0x3FFF to the SPU status register, and
interrupting the PPU.

stqa rc, s18 Store quadword (a-form). The quadword in register rc is stored at the effective
address specified by the sign-extended value s18. The 2 least significant bits
of s18 are ignored.

 SPU Assembly Language Specification, Version 1.5

20 Instruction Set and Instruction Syntax ���

Instruction/Usage Description

stqd rc, s14(ra) Store quadword (d-form). The quadword in register rc is stored at the effective
address computed by the sum of register ra and the sign-extended value s14.
The 4 least significant bits of s14 are ignored.

stqr rc, s18 Store quadword instruction relative (a-form). The quadword in register rc is
stored at the effective address specified by the sum of the current instruction
address and s18. The 2 least significant bits of s18 are ignored.

stqx rc, ra, rb Store quadword (x-form). The quadword in register rc is stored at the effective
address computed by the sum of registers ra and rb.

sumb rt, ra, rb Sum bytes into halfword. The 4 bytes of each word element of register ra are
summed and placed in the corresponding odd halfword elements of register
rt, and the 4 bytes of each word element of register rb are summed and
placed in the corresponding even halfword elements of register rt.

sync Synchronize. The processor waits until all pending store instructions have
been completed before it fetches the next sequential instruction.

syncc Synchronize channel. The processor waits until the channel is ready and all
pending store instructions have been completed before it fetches the next
sequential instruction.

wrch ch, ra Write channel. The contents of register ra are written to the channel ch.
xor rt, ra, rb Xor. The value of register ra is logically exclusive ORed with register rb and

the result is placed in register rt.
xorbi rt, ra, s10 Exclusive or byte immediate. The 8 least significant bits of s10 are logically

exclusive ORed with each byte element of register ra, and the results are
placed in the corresponding elements of register rt.

xorhi rt, ra, s10 Exclusive or halfword immediate. The sign-extended 16 least significant bits of
s10 are logically exclusive ORed with each halfword element of register ra,
and the results are placed in the corresponding elements of register rt.

xori rt, ra, s10 Exclusive or word immediate. The sign-extended value of s10 is logically
exclusive ORed with each word element of register ra, and the results are
placed in the corresponding elements of register rt.

xsbh rt, ra Extend sign byte to halfword. The least significant 8 bits of each halfword
element of register ra are sign extended to 16-bits and placed in the
corresponding halfword element of register rt.

xshw rt, ra Extend sign halfword to word. The least significant 16 bits of each word
element in register ra are sign extended to 32-bits and placed in the
corresponding word element of register rt.

xswd rt, ra Extend sign word to doubleword. The least significant 32 bits of each
doubleword element in register ra are sign extended to 64-bits and placed in
the corresponding doubleword element of register rt.

2.3. Aliases
For the programmer’s convenience, the assembler supports the register and instruction aliases shown in
Table 2-3.

Table 2-3: Register and Instruction Aliases

Alias Is Equivalent To Description

$LR $0 Return address / link register.
$SP $1 Stack pointer.
lr rt, ra ori rt, ra, 0 Load register rt with the register ra.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 21

2.4. Channel Mnemonics
Table 2-4 and Table 2-5 specify the supported channel mnemonics. The assembler provides generic channel
mnemonics of the form $ch# for all possible channels 0-127, where # indicates the channel number. For
example, $ch0 is the event status read channel.

All SPU channel mnemonics must be supported. In contrast, only target systems that support the MFC must
support the MFC channel mnemonics.

Table 2-4: SPU Channels

Channel
Number Equivalent Mnemonic Description

0 - 127 $ch0 - $ch127 Generic channel mnemonics
0 $SPU_RdEventStat Read event status with mask applied
1 $SPU_WrEventMask Write event mask
2 $SPU_WrEventAck Write end of event processing
3 $SPU_RdSigNotify1 Signal notification 1
4 $SPU_RdSigNotify2 Signal notification 2
7 $SPU_WrDec Write decrementer count
8 $SPU_RdDec Read decrementer count
11 $SPU_RdEventMask Read event mask
13 $SPU_RdMachStat Read SPU run status
14 $SPU_WrSRR0 Write SPU machine state save/restore register 0 (SRR0)
15 $SPU_RdSRR0 Read SPU machine state save/restore register 0 (SRR0)
28 $SPU_WrOutMbox Write outbound mailbox contents
29 $SPU_RdInMbox Read inbound mailbox contents
30 $SPU_WrOutIntrMbox Write outbound interrupt mailbox contents (interrupting

PPU)

Table 2-5: MFC Channels

Channel
Number Equivalent Mnemonic Description

9 $MFC_WrMSSyncReq Write multisource synchronization request
12 $MFC_RdTagMask Read tag mask
16 $MFC_LSA Write local memory address command parameter
17 $MFC_EAH Write high order DMA effective address command parameter
18 $MFC_EAL Write low order DMA effective address command parameter
19 $MFC_Size Write DMA transfer size command parameter
20 $MFC_TagID Write tag identifier command parameter
21 $MFC_Cmd Write and enqueue DMA command with associated class ID
22 $MFC_WrTagMask Write tag mask
23 $MFC_WrTagUpdate Write request for conditional or unconditional tag status

update
24 $MFC_RdTagStat Read tag status with mask applied
25 $MFC_RdListStallStat Read DMA list stall-and-notify status
26 $MFC_WrListStallAck Write DMA list stall-and-notify acknowledge
27 $MFC_RdAtomicStat Read completion status of last completed immediate MFC

atomic update command (see the Synergistic Processor Unit

 SPU Assembly Language Specification, Version 1.5

22 Instruction Set and Instruction Syntax ���

Channel
Number Equivalent Mnemonic Description

Channels section of Cell Broadband Engine™ Architecture.)

2.5. Immediate Values
Many instructions accept signed or unsigned immediate values of various lengths. These values can be
encoded in the following ways:

• An immediate constant value or expression. For example, the instruction “ai $3, $3, -32” subtracts
32 from each of the word elements of register 3.

• A PC relative address. The current program counter is expressed by a dot (.) symbol. For example,
the instruction “br .-4” branches to the instruction immediately prior to this instruction.

• A symbolic label address. These addresses are resolved during link edit, during which the appropriate
instruction value is encoded in the symbol’s place. For example, relative addressing instructions are
encoded with a relative address. Absolute address instructions are encoded with the address of the
label or symbol. Halfword addresses are specified using the @h or @l to specify the high and lower
halfwords, respectively. For example, the following instruction sequence loads the 32-bit address of
variable into register 3:

ilhu $3, variable@h # load high halfword address of variable
iohl $3, variable@l # logically OR low halfword address of variable

2.6. Errors and Warnings
To assist in early identification of coding errors, the assembler will issue a warning or error whenever an
immediate value is outside of the range expected by the respective instruction. For some instructions, it is
inappropriate to issue a warning or an error for out-of-range values. Table 2-6 shows valid ranges for
immediate operands, in addition to any special variances to the valid range of values.

Table 2-6: Valid Immediate Values

Immediate
Value

Minimum
Value

Maximum
Value Special Variances

s3 -4 3 No limits will be placed on the rotqmbii
instruction. The 7 least significant bits of the
specified immediate value will be encoded in the
instruction.

s6 -32 31 Warnings may optionally be issued for values
outside the range [-31, 0] for the rothmi,
rotmahi, and rotqmbyi instructions.

s7 -64 63 No limits will be placed on the rothi, roti, and
rotqbyi instructions. The 7 least significant bits
of the specified immediate value will be encoded
in the instructions.
Warnings may optionally be issued for values
outside the range [-63, 0] for the rotmai and
rotmi instructions.

s10 -512 511 Warnings may optionally be issued for values
outside the range [-128, 255] for the andbi,
ceqbi, cgtbi, clgtbi, orbi, and xorbi
instructions.

s11 -1024 1023 Warnings may optionally be issued for values
whose least 2 significant bits are nonzero, for the
hbr, hbra, and hbrr instructions.

SPU Assembly Language Specification, Version 1.5

 ��� Instruction Set and Instruction Syntax 23

Immediate
Value

Minimum
Value

Maximum
Value Special Variances

s14 -8192 8191 Warnings may optionally be issued for values
whose least 4 significant bits are nonzero, for the
lqd and stqd instructions.

s16 -32768 32767
s18 -131072 131071 Warnings may optionally be issued for values

whose least 2 significant bits are nonzero, for the
br, bra, brasl, brhnz, brhz, brnz, brsl, brz,
hbra, hbrr, lqa, lqr, stqa, and stqr
instructions.

scale7 0 127
u3 0 7 No limits will be placed on the rotqbii

instruction. The 7 least significant bits of the
specified immediate value will be encoded in the
instructions.

u5 0 31
u6 0 63
u7 0 127 No limits will be placed on the cbd, cdd, chd, and

cwd instructions. The assembler will quietly
encode the least significant bits of the immediate
value as the u7 parameter.

u14 0 16383
u16 0 65535 For instructions in which no leading bits are

appended, the minimum value will be extended to
-32768. This includes the fsmbi, ilh, ilhu, and
iohl instructions.

u18 0 262143

 SPU Assembly Language Specification, Version 1.5

24 Instruction Set and Instruction Syntax ���

End of Document

SPU Assembly Language Specification, Version 1.5

	About This Document
	Audience
	Version History
	Related Documentation
	Bit Notation and Typographic Conventions Used in This Document

	Bit Notation
	Other Typographic Conventions
	1. Introduction
	
	2. Instruction Set and Instruction Syntax
	2.1. Notation and Conventions
	2.2. Instruction Set
	2.3. Aliases
	2.4. Channel Mnemonics
	2.5. Immediate Values
	2.6. Errors and Warnings

