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ABSTRACT

We apply a biologically-motivated algorithm that selects visually-salient regions of interest in video streams
to multiply-foveated video compression. Regions of high encoding priority are selected based on nonlinear
integration of low-level visual cues, mimicking processing in primate occipital and posterior parietal cortex.
A dynamic foveation filter then blurs (foveates) every frame, increasingly with distance from high-priority
regions. Two variants of the model (one with continuously-variable blur proportional to saliency at ev-
ery pixel, and the other with blur proportional to distance from three independent foveation centers) are
validated against eye fixations from 4-6 human observers on 50 video clips (synthetic stimuli, video games,
outdoors day and night home video, television newscast, sports, talk-shows, etc). Significant overlap is found
between human and algorithmic foveations on every clip with one variant, and on 48 out of 50 clips with the
other. Substantial compressed file size reductions by a factor 0.5 on average are obtained for foveated com-
pared to unfoveated clips. These results suggest a general-purpose usefulness of the algorithm in improving
compression ratios of unconstrained video.
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1. INTRODUCTION

An increasingly popular approach to reduce the size of compressed video streams consists of selecting a small
number of interesting regions in each frame, and to encode these regions in priority. This spatial prioritization
scheme relies on the highly non-uniform distribution of photoreceptors on the human retina, by which only a
small region of 2−5◦ of visual angle (the fovea) around the center of gaze is captured at high-resolution, with
logarithmic resolution fall-off with eccentricity.1 Thus, the rationale is that it may not be necessary nor
useful to encode each video frame with uniform quality, since human observers watching the compressed clips
will crisply perceive only a very small fraction of each frame, dependent upon their current point of fixation.
In a simple approach (used here), priority encoding of a small number of image regions may decrease overall
compressed file size, by tolerating additional degradation in exchange for increased compression outside the
priority regions. In more sophisticated approaches, priority encoding may be used to temporally sequence
the delivery of contents (deliver priority regions first), or to continuously scale video quality depending on
available transmission bandwidth (so that priority regions occupy the core of a compressed stream, while
additional details outside the priority regions are transmitted only as additional bandwidth is available2–4).

The selection of priority regions remains an open problem. Recently, key advances have been achieved
in at least two contexts: First, real-time interactive gaze-contingent foveation for video transmission over a
bandwidth-limited communication channel, and, second, priority encoding for general-purpose non-interactive
video compression. Gaze-contingent video transmission typically uses an eye-tracking device to record eye
fixations from a human observer on the receiving end, and applies in real-time a foveation filter to the
video contents at the source.5–11 Thus, most of the communication bandwidth is allocated to high-fidelity
transmission of a small spatial region around the viewer’s current point of eye fixation, while peripheral
image regions are highly degraded and transmitted over little remaining bandwidth. This approach is par-
ticularly effective, with observers often not noticing any degradation of the signal if that degradation is well
matched to their visual system and viewing conditions. Furthermore, even in the absence of an eye-tracking
device, this interactive approach has demonstrated usefulness, for example when there exists a set of fixed
priority regions, or when the observer explicitly selects priority regions using a pointing device.12 Further,



analysis of the observer’s patterns of eye movements may allow more sophisticated interactions than simple
foveation (e.g., zooming-in and other computer interface controls13). However, extending this approach to
general-purpose non-interactive video compression presents severe limitations.

In the context of general-purpose video compression, indeed, it is assumed that a single compressed
video stream will be viewed by many observers, at variable viewing distances, and in the absence of any
eye tracking or user interaction. In this context, very high inter-observer variability precludes recording
a single eye movement scanpath from a given observer, and using it to determine priority regions in the
video clip of interest. Recording from several observers and using the union of their eye fixations partially
overcomes this limitation,14 but at a prohibitive cost: An eye-tracking setup, population of human subjects,
and time-consuming recording are required for every new clip to be compressed.

Algorithmic methods, requiring no human testing, have the potential of making the process practical
and cost-effective.15,16 Computer vision algorithms have thus been proposed to automatically select re-
gions of high encoding priority. Of particular interest here, several techniques rely on known properties of
the human visual system to computationally define perceptually important image regions (e.g., based on
object size, contrast, shape, color, motion, or novelty17–19). This type of approach has been particularly
successful, and those properties which are well-defined (e.g., contrast sensitivity function, importance of
motion, temporal masking effects) have already been widely implemented by modern video and still-image
codecs.20,21 A limitation of these approaches, however, is that the remaining properties of human vision
are difficult to implement in a computational model (e.g., evaluating object size and shape requires that
first object segmentation be solved in a general manner). An important contribution of the present study
is to propose a computational model that mimics the well-known response characteristics of low-level visual
processing neurons in the primate brain, rather than attempting to implement less well-defined, higher-level
visual properties of objects and scenes. In addition, many of the existing computational algorithms have
typically been developed for specific video content (e.g., giving preference to skin color or facial features,
under the assumption that human faces should always be present and given high priority22,4), and thus are
often not universally applicable. Instead, our model makes no assumption on video contents, but is strongly
committed to the type of neuronal response properties that have been documented in early visual processing
areas of monkeys and humans. Finally, computational algorithms have thus far typically been demonstrated
on a small set of video clips, and often lack ground-truth validation. Another important aspect of our study
is hence to validate our model against eye movements of human observers.

In the following sections, we start by describing our neurobiological model of human visual attention,
which automatically selects regions of high saliency (conspicuity) in an unconstrained variety of video inputs,
without requiring any per-clip tuning. We then validate the algorithm, for two settings of its parameters,
on a heterogeneous collection of 50 video clips, including synthetic stimuli, outdoors daytime and nighttime
scenes, video games, television commercials, newscast, sports, music video, and other content. Using eye
movement recordings from eight human subjects watching the unfoveated clips (each clip viewed by at least
four subjects), we show that subjects preferentially fixate locations which the model also determines to be of
high priority, in a highly significant manner. We finally compute the additional compression ratios obtained
on the 50 clips using the foveation centers determined by our model, demonstrating the usefulness of our
approach to the fully automatic determination of priority regions in unconstrained video clips.

2. ATTENTION MODEL AND FOVEATION

The model computes a topographic saliency map (Fig. 1), which indicates how conspicuous every location
in the input image is. Retinal input is processed in parallel by a number of multiscale low-level feature maps,
which detect local spatial discontinuities using simulated center-surround neurons.23,24 Twelve neuronal
features are implemented, sensitive to color contrast (red/green and blue/yellow, separately), temporal flicker
(onset and offset of light intensity, combined), intensity contrast (light-on-dark and dark-on-light, combined),
four orientations (0◦, 45◦, 90◦, 135◦), and four oriented motion energies (up, down, left, right).25,26 Center
and surround scales are obtained using dyadic pyramids with 9 levels (from level 0, the original image, to
level 8, reduced by a factor 256 horizontally and vertically). Center-surround differences are then computed
as pointwise differences across pyramid levels, for combinations of three center scales (c = {2, 3, 4}) and
two center-surround scale differences (δ = {3, 4}); thus, six feature maps are computed for each of the 12



Figure 1. Overview of the model. Inputs are decomposed into multiscale analysis channels sensitive to
low-level visual features (two color contrasts, temporal flicker, intensity contrast, four orientations, and four
directional motion energies). After non-linear competition for salience, all channels are combined into a
saliency map. This map either directly modulates encoding priority (higher priority for more salient pixels),
or guides several virtual foveas towards the most salient locations (highest priority given to fovea centers).

features, yielding a total of 72 feature maps. Each feature map is endowed with internal dynamics that
operate a strong spatial within-feature and within-scale competition for activity, followed by within-feature,
across-scale competition.27 Resultingly, initially possibly very noisy feature maps are reduced to sparse
representations of only those locations which strongly stand out from their surroundings. All feature maps
are then summed27 into the unique scalar saliency map that guides attention (Fig. 1).

The basic operation of the algorithm is as follows in the context of video compression: a dynamic
saliency map is computed as described above, over the entire duration of each video clip. In one variant
of the algorithm, a snapshot of the saliency map at each frame directly determines the priority to be given
to every spatial location in the frame, after temporal smoothing and normalization by a squashing function
(Fig. 2.a). Alternatively, a small number of discrete virtual foveas endowed with mass/spring/friction
dynamics attempt to track a collection of most salient objects, using proximity as well as feature similarity
to establish correspondence,28 over extended time periods, between salient locations and fovea centers.
Interestingly, feature similarity between a salient location on a new frame and a fovea from the previous
frame is based on the same multiscale low-level features that contribute to the saliency map: thus, at any
location, a 72-component feature vector is constructed by reading out (with bilinear interpolation) values
from the 72 feature maps at that location (note that those values depend on neighborhoods of sizes 4 × 4
to 256 × 256 pixels, depending on the spatial scale of the corresponding feature maps). Correspondence
between the n most salient locations on a given frame and the positions of p foveas from the previous frame
is then established through an exhaustive scoring of all n×p possible pairings between a new salient location
i ∈ {1..n} and an old foveation center j ∈ {1..p} (typically, p is fixed and n = p + 4 to ensure robustness
against varying saliency ordering from frame to frame).

The correspondence score combines four criteria: 1) Euclidean spatial distance between the locations of
i and j; 2) Euclidean distance between feature vectors extracted at the locations of i and j; 3) a penalty
term |i − j| that discourages permuting previous pairings by encouraging a fixed ordered pairing; and 4) a
tracking priority that increases with salience, enforcing strong tracking of only very salient objects, while
foveas may easily disengage from less salient objects. Combined, these criteria tend to assign the most salient
object to the first fovea, the second most salient object to the second fovea, etc. unless feature similarity is
strong enough to warrant a different ordering (e.g., when a tracked object switches from being the second
most salient in one frame to the fourth most salient in the next frame). Video compression priority at every
location is then inversely related to the distance to the closest fovea center (Fig. 2.b), as computed using



Figure 2. Examples of predicted priority maps, for two settings of our model: (a) Maxnorm feature
normalization, continuous priority map (0 virtual foveas), foveation pyramid depth 4; (b) Fancynorm, 3
foveas, depth 6. Top-left: original frame; top-right: foveated frame (with fovea centers marked by yellow
squares when using discrete foveas); bottom-left: saliency map (brighter for higher salience); bottom-
right: priority map (darker for higher priority).

a 3/4 chamfer distance transform.29 For further implementation details, we refer the reader to the source
code of the algorithm, freely available online upon request.30

It is important to note that the dynamics of the virtual foveas do not attempt to emulate human saccadic
(rapid ballistic) eye movements,31 as those rapid and often jerky motions would create highly visible artifacts
in the compressed streams. Rather, the virtual foveas attempt to track salient objects in a smooth and
damped manner, so that the foveation filter does not change too abruptly from frame to frame. It is also
important to note that perfect tracking of a given set of objects is often not desirable for video compression
purposes, which is why we have not used stronger object trackers like particle filters32; indeed, for efficient
foveated video compression, it is very important to rapidly focus onto new salient objects, even though that
often means losing track of some current object. Thus, the strategy implemented by our correspondence
and tracking algorithm is a compromise between reliably tracking the few most salient objects, and cycling
through a larger number of less salient objects. This maximizes coverage of less salient objects over long
time periods, through time-sharing among a small number of virtual foveas. Finally, one key aspect of our
approach is that is makes absolutely no direct assumption about the type of video streams to be processed or
their contents (e.g., presence of human faces). Instead, our low-level features maps are computed according
to electrophysiological evidence for certain types of neural feature detectors and spatial interactions in the
primate retina, lateral geniculate nucleus of the thalamus, primary visual cortex, and posterior parietal
cortex.26 Similarly, our foveation technique relies on spatial and feature-space distances rather than, for
example, pre-defined object templates.

To evaluate the algorithm, we here simply use it as a front-end, applied before standard video compression
algorithms (both MPEG-1 and MPEG-4 (DivX) encoding were tested): a spatially-variable blur is applied
to the input frames, that is inversely related to the model-computed priority (lower-priority regions are more
strongly blurred). Although this is not optimal in terms of expected file size gains, it has the advantage
of producing compressed streams that are compatible with existing decoders, and to render the spatial
prioritization computed by the algorithm obvious upon visual inspection. This method should be regarded
as a worst-case scenario for two reasons. First, as the foveas move from frame to frame, the appearance
of static objects far from the foveas will change, requiring continuous re-encoding of those changes while
no re-encoding is necessary in the absence of foveation. Second, even when the foveas remain static for



Video grabbing:
From interlaced NTSC video composite sources, 640×480, 29.97 fps, YV12 uncompressed. Resulting
video streams converted to series of PPM frames.

MPEG-1 encoding (mpeg encode):
PATTERN IBBPBBPBBPBBPBB
BASE FILE FORMAT PPM
GOP SIZE 30
SLICES PER FRAME 1
PIXEL HALF
RANGE 10
PSEARCH ALG LOGARITHMIC
BSEARCH ALG CROSS2
IQSCALE 8
PQSCALE 10
BQSCALE 25
FORCE ENCODE LAST FRAME 1
REFERENCE FRAME ORIGINAL

MPEG-4 (DivX) encoding (mencoder):
a) convert frames to lossless JPEG
b) mencoder -noskip # do not drop frames

-ovc lavc # use libavcodec codecs
-lavcopts vcodec=mpeg4:vqscale=10 # DivX, constant quality
-mf on:type=jpeg:fps=30 # series-of-frames input
"frame*.jpg" # input frames
-o movie.avi # output video

Figure 3. Video grabbing and encoding

some time, peripheral moving objects will receive variable amounts of blur, depending on their distance
to the closest fovea, hence defeating any motion compensation scheme in the encoder, and also requiring
continuous re-encoding of their changing appearance. Specific video codecs have been proposed that address
these problems inherent to any foveated video compression technique (e.g., encode high-priority regions first,
then lower-priority regions, in a continuously-variable-bitrate encoding scheme4). To simplify the visual
evaluation of our algorithm and to evaluate whether our technique might prove useful even with standard
codecs, however, we here use standard MPEG-1 and MPEG-4 encoding and simple spatially-variable blur
of the video stream prior to compression. Any file size gain obtained despite these limitations would hence
represent the promise that even better size gains should be obtained with a video codec that would truly
use the model’s priority maps to prioritize encoding.

The encoder settings used in our study are shown in Fig. 3. For MPEG-1, we simply used the default
settings of the mpeg encode program.33 For MPEG-4, the default settings of the mencoder program34 are
for constant-bitrate, variable-quality encoding, which is not appropriate for comparison between foveated
and unfoveated clips (since the encoder would vary compression quality such as to produce a stream with
approximately same filesize in both cases). Thus, we used constant-quality, variable-bitrate and otherwise
default settings for this encoder. We used a medium MPEG-4 quality setting, to approximately match the
MPEG-1 filesizes on the unfoveated clips.

3. HUMAN EYE TRACKING

To validate our approach, we compared the computed locations of high priority from our algorithm to the
gaze locations from eight human observers watching the unfoveated clips.

Subjects were näıve to the purpose of the experiment and were USC students and staff (three females,
five males, mixed ethnicities, ages 23-32, normal corrected or uncorrected vision). They were instructed to
watch the video clips, and to attempt to follow the main actors and actions, as they would be later asked
some general questions about what they had watched. It was emphasized that the questions would not
pertain to small details (e.g., specific small objects or text messages), but would instead help us evaluate



their general understanding of the contents of the clips. Thus our goal was to bias subjects towards regions
of high cognitive interest in the video clips, as these would be the ones that should be encoded in priority.
Whether these regions could be somewhat predictable by a simple bottom-up analysis of the image is a
central question in this study: while instructions emphasized high-level concepts (actors and actions), our
algorithm computes low-level properties of patches of pixels, and has no notion of object, actor, or action.
While a dominant view on static scene understanding is that bottom-up saliency may only contribute to eye
movements within the first half second when viewing a scene, with cognitive models of the world dominating
the distribution of eye movements in a top-down manner afterwards,35,36 here we test whether bottom-up
analysis may have a more sustained influence on the selection of what could be the main actors and actions
in dynamic scenes. The procedure was approved by USC’s Internal Review Board, and informed consent
was obtained from all subjects. A set of calibration points and clips not part of the experiment were shown
to familiarize the subjects with the displays.

Stimuli were presented on a 22” computer monitor (LaCie Corp; 640× 480, 60.27 Hz double-scan, mean
screen luminance 30 cd/m2, room 4 cd/m2). Subjects were seated on an adjustable chair at a viewing distance
of 80 cm (52.5◦× 40.5◦ usable field-of-view) and rested on a chin-rest. A 9-point eye-tracker calibration was
performed every five clips. Each calibration point consisted of fixating first a central cross, then a blinking
dot at a random point on a 3×3 matrix. The experiment was self-paced and subjects could stretch before any
9-point calibration. Subjects fixated a central cross, pressed a key to start, at which point the eye-tracker was
triggered, the cross blinked for 1206 ms, and the clip started. Stimuli were presented on a Linux computer,
under SCHED FIFO scheduling (process would keep 100% of the CPU as long as needed37). Each unfoveated
clip (MPEG-1 encoded) was entirely pre-loaded into memory. Frame displays were hardware-locked to the
vertical retrace of the monitor (one movie frame was shown for two screen retraces, yielding a playback rate
of 30.13 fps). Microsecond-accurate37 timestamps were stored in memory as each frame was presented, and
later saved to disk to check for dropped frames. No frame drop ever occurred and all timestamps were spaced
by 33185± 2 µs.

Eye position was tracked using a 240 Hz infrared-video-based eye-tracker (ISCAN, Inc). Point of regard
(POR) was estimated from comparative tracking of both the center of the pupil and the specular reflection
of the infrared light source on the cornea. This technique renders POR measurements immune to small
head translations (tested up to ±10 mm in our laboratory). Thus, no stricter restraint than a chin-rest was
necessary, which is important as head restraint has been shown to alter eye movements.38 All analysis was
performed off-line. Linearity of the POR-to-stimulus coordinate mapping was excellent, as previously tested
using a 7× 5 calibration matrix, justifying the use of a 3× 3 matrix here. The eye-tracker calibration traces
were filtered for blinks, then automatically segmented into two fixation periods (the central cross, then the
flashing point), or discarded if that segmentation failed a number of quality control criteria. An affine POR-
to-stimulus transform was computed in the least-square sense, outlier calibration points were eliminated, and
the affine transform was recomputed. If fewer than 6 points remained after outlier elimination, recordings
were discarded until the next calibration. A thin-plate-spline nonlinear warping algorithm was then applied to
account for any small residual nonlinearity.39 Data was discarded until the next calibration if residual errors
greater than 20 pixels on any calibration point or 10 pixels overall remained. Eye traces for the five video clips
following a calibration were remapped to screen coordinates, or discarded if they failed some quality control
criteria (excessive eye-blinks, loss of tracking due to motion or excessive wetting of the eye, loss of corneal
reflection due to excessive squinting). Calibrated eye traces were visually inspected when superimposed with
the corresponding video clips, but none was discarded based upon that subjective inspection. Although we
had no ground truth to further evaluate the accuracy of the recordings and calibrations, overall the quality
of the recordings seemed remarkable with this eye-tracker (e.g., subjects tracking the 10-pixel-wide head of
a person running at a distance, in clip beverly08).

Fifty video clips were selected from a database of 85, with as only selection criterion to maximize diversity.
All clips had been digitized from analog interlaced NTSC video sources (Fig. 3) using a consumer-grade
framegrabber (WinTV Go, Hauppage, Inc.) and no attempt was made at de-interlacing or color-correcting
them. The clips can be viewed online40 and included: beverly: daytime outdoors scenes filmed at a park
in Beverly Hills; gamecube: various video games (first-person, racing, etc); monica: outdoors day/night
scenes at the Santa Monica Promenade; saccadetest: a synthetic disk drifting on a textured background;



Maxnorm, 0 fov, depth 4 Fancynorm, 3 fov, depth 6
Clip frames subj %avg at eye mpg1 divx %avg at eye mpg1 divx

beverly01 490 5 52.3±18.5 (p <0.005) 36.4 28.0 41.4±13.2 (p <0.0005) 38.1 30.9
beverly03 481 5 42.9± 9.5 (p <0.00025) 37.6 30.7 21.5± 4.1 (p <0.00005) 33.9 29.1
beverly05 546 4 40.3± 8.7 (p <0.0005) 51.3 42.1 43.5± 9.3 (p <0.001) 48.6 38.5
beverly06 521 4 39.0± 9.9 (p <0.001) 40.1 29.2 23.9±11.0 (p <0.0005) 44.3 33.4
beverly07 357 4 48.5±11.8 (p <0.005) 25.7 17.0 31.2± 3.9 (p <0.00005) 32.3 25.9
beverly08 237 5 67.7± 5.6 (p <0.00025) 25.5 15.6 36.6±15.5 (p <0.0005) 34.2 26.5
gamecube02 1819 6 55.1± 5.0 (p <0.00005) 73.0 66.3 42.5± 4.7 (p <0.00005) 65.4 65.0
gamecube04 2083 4 50.5± 1.4 (p <0.00005) 77.7 68.1 27.9± 9.6 (p <0.0005) 73.0 66.3
gamecube05 213 6 37.3± 7.3 (p <0.00005) 82.2 70.9 15.1± 5.8 (p <0.00005) 88.7 87.1
gamecube06 2440 6 35.7± 7.8 (p <0.00005) 58.9 54.2 36.4± 6.6 (p <0.00005) 52.8 43.5
gamecube13 898 5 72.9± 3.0 (p <0.00005) 54.6 45.5 52.3± 8.8 (p <0.00025) 50.8 42.5
gamecube16 2814 4 81.0± 7.5 (p <0.01) 57.2 47.1 38.8± 7.9 (p <0.0005) 53.6 43.2
gamecube17 2114 5 44.6± 8.3 (p <0.00025) 82.5 70.2 31.2±11.0 (p <0.00025) 83.2 70.5
gamecube18 1999 5 52.8± 4.0 (p <0.00005) 74.4 65.2 29.1± 8.5 (p <0.00005) 74.1 67.4
gamecube23 1429 4 28.6± 9.9 (p <0.0005) 59.6 54.0 30.1±14.5 (p <0.005) 58.4 52.8
monica03 1526 5 53.3±13.8 (p <0.001) 51.2 41.2 40.3± 3.3 (p <0.00005) 46.1 37.4
monica04 640 5 47.0± 6.8 (p <0.00005) 47.6 38.4 23.2± 6.3 (p <0.00005) 43.8 36.7
monica05 611 4 60.8± 6.8 (p <0.001) 43.4 33.9 58.5± 6.3 (p <0.0005) 40.7 32.1
monica06 164 4 23.8± 6.5 (p <0.00025) 47.6 39.6 41.7±12.3 (p <0.005) 43.0 34.6
saccadetest 516 5 29.2±10.3 (p <0.00025) 24.8 64.0 14.4±10.8 (p <0.00005) 34.4 95.5
standard01 254 4 58.0± 6.5 (p <0.0005) 49.9 45.4 70.1±19.3 (p <0.05) 38.5 34.7
standard02 515 5 51.0± 4.4 (p <0.00005) 49.5 40.3 52.4±11.0 (p <0.0005) 42.0 34.2
standard03 309 4 72.8±10.5 (p <0.01) 52.3 41.6 78.8± 9.5 (p <0.025) 46.5 38.6
standard04 612 5 81.3± 6.1 (p <0.005) 47.7 37.0 77.0± 3.4 (p <0.00025) 40.6 30.3
standard05 483 5 52.2± 1.4 (p <0.00005) 52.7 44.5 53.6± 8.1 (p <0.00025) 43.3 38.0
standard06 434 5 63.3± 2.9 (p <0.00005) 52.0 44.0 67.1±14.3 (p <0.005) 40.9 34.4
standard07 177 4 43.2± 4.9 (p <0.00025) 43.0 32.9 42.8± 9.8 (p <0.001) 39.3 31.5
tv-action01 567 4 39.0± 1.5 (p <0.00005) 47.0 32.1 20.0± 4.3 (p <0.00005) 42.4 27.9
tv-ads01 1077 4 79.4± 5.4 (p <0.005) 59.2 52.8 52.4±10.5 (p <0.005) 65.2 62.8
tv-ads02 387 4 60.3± 9.3 (p <0.005) 52.4 41.7 48.4± 5.4 (p <0.00025) 57.0 47.6
tv-ads03 841 5 64.9±14.3 (p <0.005) 48.8 39.7 44.2±15.6 (p <0.001) 46.3 37.1
tv-ads04 313 5 43.9± 3.3 (p <0.00005) 56.1 50.8 44.0± 9.6 (p <0.00025) 53.8 46.0
tv-announce01 434 4 78.0± 2.2 (p <0.00025) 60.6 52.4 51.2±10.6 (p <0.005) 59.0 51.8
tv-music01 1022 5 59.9± 3.9 (p <0.00005) 51.6 42.2 51.0± 5.6 (p <0.00005) 45.8 36.4
tv-news01 918 5 59.5± 3.9 (p <0.00005) 46.9 32.7 70.3± 5.2 (p <0.00025) 51.3 39.0
tv-news02 1058 6 60.0± 2.5 (p <0.00005) 57.5 58.6 67.5±14.2 (p <0.005) 62.2 69.8
tv-news03 1444 5 71.8± 1.9 (p <0.00005) 53.7 50.7 67.0± 9.1 (p <0.001) 62.8 74.8
tv-news04 491 5 33.5± 9.5 (p <0.00005) 52.1 53.0 31.4± 8.0 (p <0.00005) 55.7 56.0
tv-news05 1341 5 60.7± 4.3 (p <0.00005) 65.3 64.0 46.1± 5.6 (p <0.00005) 70.1 73.1
tv-news06 1643 5 72.9± 7.0 (p <0.0005) 56.2 51.2 78.9±11.1 (p <0.01) 62.4 68.2
tv-news09 1176 4 69.3± 6.4 (p <0.005) 53.4 48.7 87.8±16.8 (p <0.15) 59.2 60.1
tv-sports01 579 5 67.1± 6.1 (p <0.00025) 46.0 38.3 51.4±10.8 (p <0.0005) 43.8 38.9
tv-sports02 444 4 72.0± 9.7 (p <0.01) 53.4 49.7 56.5±11.5 (p <0.005) 54.0 51.9
tv-sports03 1460 5 52.7± 5.6 (p <0.00005) 46.7 36.4 50.3± 7.7 (p <0.00025) 43.5 34.2
tv-sports04 982 4 79.4± 5.2 (p <0.005) 43.3 34.2 56.3± 4.8 (p <0.00025) 43.9 36.2
tv-sports05 1386 6 55.0± 6.1 (p <0.00005) 50.5 38.4 41.4± 3.0 (p <0.00005) 45.6 34.3
tv-talk01 1651 4 37.7± 3.5 (p <0.00005) 65.7 62.1 42.8±13.2 (p <0.005) 61.3 64.0
tv-talk03 783 5 56.4± 4.2 (p <0.00005) 44.8 36.1 43.3± 5.7 (p <0.00005) 43.7 36.6
tv-talk04 1258 5 51.8± 4.2 (p <0.00005) 36.8 25.6 55.5±10.9 (p <0.0005) 42.7 34.8
tv-talk05 552 4 64.9± 1.3 (p <0.00005) 38.1 28.0 70.2± 9.7 (p <0.005) 41.9 34.4

SUMMARY 46489 4.7 55.1± 7.3 51.7 44.5 46.5± 9.7 50.9 46.3

Table 1. Agreement between human eye movements and model priority maps, for two algorithm variants
(Fig. 2). nsubj: four to six human subjects viewed each clip. %avg at eye: compounded ratios between
model-suggested blur at human eye fixations and average blur over entire frame. mpg1, divx: ratio (%) of
compressed sizes for foveated versus unfoveated clips, using MPEG-1 and DivX encoding.

standard: daylight scenes filmed at a crowded open-air rooftop bar; tv-action: an action scene from
a television movie; tv-ads: television advertisements; tv-announce: a television program’s announce;
tv-music: a music video interleaved with some football scenes; tv-news: various television newscasts;
tv-sports: televised basketball and football games; tv-talk: television talk-shows and interviews.



All clips and the algorithmic multi-foveation results and human eye movements may be examined online.40

Clips had between 164 and 2814 frames (5.5 s to 93.9 s). Subjects viewed each clip at most once, to ensure
that they were näıve to its contents. Five subjects viewed all clips and three only viewed a few; after our
quality control criteria were applied, calibrated eye movement data was available for four to six subjects on
each clip (Table 1).

To interpret our results, it is useful to note that (not unexpectedly) the average recommended blur (over
the extent of each frame, then over all frames) closely matched a compound measure of local blur over
a random scanpath, and also closely matched a compound measure of blur over a human scanpath if the
priority map was randomly scrambled (not shown). Thus, in the %avg at eye columns of Table 1, a value
of 100% or more would indicate that humans did not look at regions of high model priority (low suggested
blur) more than a random scanpath (or, equivalently, that a randomly scrambled priority map would predict
human fixations as well as the model’s priority map). Conversely, a value of 0% would indicate that humans
always gazed exactly at regions of maximum priority (no suggested blur). Remarkably, for all but two
clips, we found a highly significant agreement between model priority and human fixations. Agreement was
independently evaluated for each clip using a one-tailed t-test for the null hypothesis that the %avg at
eye figures could have been drawn from a distribution with mean 100% (i.e., human scanpaths correlated
with model priority no better than random scanpaths). When using Maxnorm feature normalization and
continuously-variable blur, the hypothesis was rejected for every clip, with p < 0.01 or better. When using
Fancy normalization and three circular foveas, the hypothesis was also rejected with p < 0.01 or better for
48 of the 50 clips. Figs. 4 shows sample frames.

4. DISCUSSION

As previously mentioned, simply blurring the frames before compression is a worst-case scenario in terms of
expected size gains. However, it is a useful exercise because of its compatibility with all existing video codecs.
Further, our main focus in this study is not a specific video compression technique, but the evaluation of our
biological model of attention to compute priority maps. In this respect, the simple blur applied here was
useful to visualize and evaluate our priority maps.

With both MPEG-1 and constant-quality MPEG-4 encoding, substantial size reductions were achieved
on every clip by foveation. In Table 1, foveated clip size was approximately half of the unfoveated size,
on average with our 50 test clips. Smallest size gains were obtained for the simplest clips, where only one
small object moved on a static background (e.g., saccadetest, gamecube05). There was no evidence for any
systematic covariation of size gains between the two variants of the algorithm. Typically, using a continuous
priority map yielded higher compression when a small number of objects moved on a static background
(e.g., saccadetest, beverly07, beverly08). Indeed, the amount of blur applied to the background would
remain fairly unchanged in this case, but would vary greatly when discrete foveas focused on the moving
objects (but see below, for the more complex scenario where additional objects enter and leave the field of
view). When significant full-field motion was present, however, three discrete foveas often performed better
(e.g., panning camera motion in some standard clips). This can easily be understood by the fact that three
discrete foveas will select at most three salient locations in the scene, while the continuous priority map may
select many more, to varying degrees. Under conditions of complex full-field motion that defeats motion
compensation in the encoder (e.g., pan, zoom), many salient locations were encoded crisply on each frame
when in continuous mode (increasing file size), compared to only three when using discrete foveas (yielding
smaller file size). Obviously, the better performance of the discrete foveation scheme with these clips came
at the cost of of degrading possibly salient locations beyond the top three. A possible future extension of
our algorithm thus consists of allowing the number of discrete foveas to vary from frame to frame.

An interesting feature of the results in Table 1 was that both variants of the algorithm performed
equally well in terms of average additional compression ratios, yet one used a blur pyramid of depth 4 (and
continuous blur) while the other used stronger depth 6 (and three foveas). For general application when it is
unknown whether only small objects or the full field of view will substantially move, the variant with depth
4 yields overall more visually pleasant results. Indeed, the variant with depth 6 yields blurs that are often
too strong for small details or fine text to remain distinguishable, and that most of the time are obvious to
the observer. The variant with depth 4 and continuous blur is more subtle, and prioritizes a variable number



Figure 4. Examples of model-predicted priority maps, for the first (left column) and second (right column)
variants of the model. Current eye position of one human observer watching the original unfoveated clip is
shown (arrow) for comparison.

of locations to varying degrees in each frame. If fineprint text often is somewhat degraded with this variant,
it is rare that an object of potential interest is so degraded as to become unrecognizable or unreadable. In
contrast, any object far for the three discrete foveation centers will always be strongly degraded. Hence,
our results argue somewhat against the traditional foveation paradigm and the binary selection of a small
number of regions of interest.12,4 Instead, we suggest that a continuous measure of interest for every pixel
in the frame is a more efficient strategy, since depth 4 in that case yielded on average same compression



gains but substantially less-visible artifacts than depth 6 with the traditional approach.

When using three discrete foveas, sometimes the motion of the foveas induced so much change in tex-
tured backgrounds that any size gain due to foveation was offset by the need to continuously re-encode the
background (e.g., saccadetest and some gamecube clips). This was more pronounced with DivX encoding
(as the default settings were to encode a keyframe only every 250 frames) than with MPEG-1 (where one
intra-coded frame, compressed by itself and without reference to any other frame, was produced every 15
frames). Indeed, intra-coded frames would typically benefit from the reduction of texture complexity induced
by foveation; in contrast, predictively-coded frames could suffer if large differences existed between current
foveation mask and the foveation mask used for the last intra-coded frame, as these difference would defeat
the prediction mechanism of the encoder. This is a clear limitation of the fairly simplistic blurring technique
used here to visualize the predictions of the model. When using continuous blur, sometimes a similar problem
existed, due to the fact that, inherently, the salience of an object depends on every other object in the scene.
For example, consider a simple frame containing two equiluminant disks, one red and one blue, on a uniform
black background. Both disks would be equally salient according to our model. Yet, the appearance of three
additional red disks anywhere in the frame would reduce the salience of all red disks and increase that of
the single blue disk (a so-called “pop-out” effect27,26). Similarly, in our more complex clips, the salience
of a static object typically varied as other salient objects entered or left the field of view, even at distant
locations in the image. With our simple testbed where blur was directly related to salience, this required
re-encoding static objects to reflect changes in their appearance with varying blur. A fairly simple solution
to this problem could be to take the maximum, at each frame, between previous and current priority maps,
in regions where no significant change is detected. Thus, once a static object has been encoded crisply, it
would remain crisp as long as it remains static (at very little cost in the compressed stream, since current
appearance would be accurately predicted by previous frames). However, it may be more useful to instead
replace our blurring scheme used for testing by a more sophisticated prioritization scheme and dedicated
video codec, for example in the context of continuously-rate-scalable encoding.4 These limitations in the
applicability of blur-based foveation to video compression may be reduced by the use of a bi-resolutional
foveation blur instead of a continuously-variable blur.11

Overall, we found surprisingly strong agreement between our model’s predictions and the scanpaths
recorded from human observers. It is important to note that our measure of agreement required that
humans fixated a given location at the same time as the model did, in order for this fixation to increase
the measure of agreement between humans and model. This is a severe requirement, and visual inspection
of the foveated clips suggests an even better agreement if such coincidence requirement was to be relaxed:
indeed, often, given two objects present in the clip for an extended time, the model would foveate on the
first object then the second, while a given human sometimes foveated the second and then the first. This
resulted in high blur measures at both human fixations, while actually model and humans essentially were
both interested in the same two objects. Our use of multiple foveas certainly reduced this trend, but did not
entirely eliminate it.

Another difference which lowered the agreement between humans and model was that humans often
fixated small details (e.g., fineprint text in the tv-news clips) which were not salient according to the
model but were highly interesting and relevent to the human observers. This is perfectly reasonable, as we
cannot expect human observers to only be drawn to salient image locations; instead, top-down influences
(e.g., knowing that the anchor, although fairly bottom-up salient, will just speak, with a low probability of
making interesting faces, and deciding that the text, although far less salient, might be more interesting)
play a critical role in the spatiotemporal deployment of visual attention (in particular since our clips had no
soundtrack).41,26 Given this, it is remarkable that such good agreement was obtained for our wide variety
of video clips. Our results indicate that throughout each video clip, bottom-up (image-based) influences
remained very strong. This contrasts with a more commonly agreed view in which bottom-up attentional
guidance is believed to be active only for a short period after the presentation of a new (static) scene, with
top-down guidance taking over afterwards.36 With rapidly changing video stimuli, our results reinforce the
idea of a continual contribution of bottom-up cues to the guidance of attention. Thus, although our model
is bottom-up and ignorant of what the main actors and actions in a video clip may be, its applicability to
the analysis of extended video segments is well supported by our data.



One last difference between humans and model was the often predictive nature of human gaze shifts,
while our model only follows salient objects. In several gamecube clips, indeed, humans focused on the empty
path before a fast-running hero, probably to ensure that it was clear. This is a clear limitation of our model,
which may be solved using more sophisticated trackers for our virtual foveas, with predictive capabilities.
Note, however, that since usually the path was empty and often featureless, its representation in the foveated
clips was not much degraded.

Overall, our study demonstrates that our biological model of bottom-up attention highly significantly cor-
relates with human eye movements on unconstrained video inputs. Importantly, this was observed although
the model contains nothing in its design or implementation that specializes it to any specific video content
or pre-defined objects of interest. Both with MPEG-1 and MPEG-4 encoding, substantial compressed file
size reductions were achieved by foveation. Our study thus argues that our model is applicable to automatic
spatiotemporal prioritization of arbitrary video contents for compression.
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