
iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Vision Toolkit Overview

• Components:
• Basic image processing and vision
• Attention-related neural components
• Object recognition-related neural components
• Scene gist/layout-related neural components
• Basic knowledge base / ontology
• Hardware interfacing
• Beowulf message passing
• Applications

• Implementation:
• C++, somewhat Linux-specific
• Additional perl/matlab/shell scripts for batch processing
• Uniprocessor as well as Beowulf

iLab C++ Neuromorphic Toolkit

Basic functionality

Find the most interesting location in the image (next slide)

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

The model’s prediction

Here is what our model of bottom-up, saliency-based attention found
(next slide)

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

The basic architecture

• The diagram on the next slide is an overview of this computational
neuroscience model

• Suggested readings: see http://iLab.usc.edu/publications/
• Start with Itti & Koch, Nature Reviews Neuroscience, 2001, for an overview
• Then see Itti, Koch and Niebur, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 1998, for the core algorithm
• Then see Itti & Koch, Vision Research, 2000 and Itti & Koch, Journal of

Electronic Imaging, 2001, for more advanced competition for salience
• See papers by Vidhya Navalpakkam for more on scene understanding
• See papers by Nathan Mundhenk for more on contour integration
• See papers by Nitin Dhavale for more on eye movements
• See papers by Chris Ackerman for more on gist
• Etc…

iLab C++ Neuromorphic Toolkit
Itti & Koch, Nature Reviews Neurosci 2001

iLab C++ Neuromorphic Toolkit

Architecture

iLab C++ Neuromorphic Toolkit

See here (URL at top) for examples of
Processing movies

iLab C++ Neuromorphic Toolkit

See here for examples of
Processing movies

iLab C++ Neuromorphic Toolkit

See here for an interactive demo

iLab C++ Neuromorphic Toolkit

The big
picture…

iLab C++ Neuromorphic Toolkit

http://iLab.usc.edu/bu/

iLab C++ Neuromorphic Toolkit

Eye/head
Movement
generation

iLab C++ Neuromorphic Toolkit

How does task influence attention?

?

Low level features:
Oriented edges, Color opponencies,
Intensity contrast, motion energy,
Stereo disparity etc.

Gist:
Outdoor

beach scene

Layout:
1. Grass
2. Sand
3. Sea
4. Sky

Bottom-up salience
of locations

Visual scene

Attention

?
Top down task-relevance

of locations

?

Task specification
“look for humans”

iLab C++ Neuromorphic Toolkit

Towards modeling the influence of task on relevance

Long Term
Memory

Task specification
“look for humans”

Top down task-relevance
of locations

Gist:
Outdoor

beach scene

Layout:
1. Grass
2. Sand
3. Sea
4. Sky

?

Visual scene

?

Knowledge of
task-relevant entities

and their spatial relations

Working Memory
(Frontal cortex)

Torralba et al, JOSA-A 2003

iLab C++ Neuromorphic Toolkit

Agent (relay information)

Task specification
“look for legs”

Long Term
Memory

(Ontology)

Working Memory
•Creates, maintains task graph
•Computes relevance of fixation
•Predicts location of other
relevant entities

Low level features

Gist:
Outdoor

Sports scene

Layout:
1. Sky

2. Trees
3. track

Saliency map

Task Relevance Map

Attention Guidance Map

Localized object recognition
“head”

Visual Scene

“head is relevant”
“look down to find legs”

Update relevance

Inhibition of return

iLab C++ Neuromorphic Toolkit

Agent (relay information)

Task specification
“look for legs”

Long Term
Memory

(Ontology)

Working Memory
•Creates, maintains task graph
•Computes relevance of fixation
•Predicts location of other
relevant entities

Low level features

Gist:
Outdoor

Sports scene

Layout:
1. Sky

2. Trees
3. track

Saliency map

Task Relevance Map

Attention Guidance Map

Localized object recognition
“legs”

Visual Scene

“target found”Inhibition of return

Update relevance

Not implemented

Implemented

iLab C++ Neuromorphic Toolkit

Object
recognition

iLab C++ Neuromorphic Toolkit

Top-down biasing to guide attention towards
Known objects

Unbiased Biased for coke cans

iLab C++ Neuromorphic Toolkit

Real-time processing
On Beowulf clusters

http://iLab.usc.edu/beo/

iLab C++ Neuromorphic Toolkit

Beowulf + robot =
“Beobot”

iLab C++ Neuromorphic Toolkit

http://iLab.usc.edu/beobots/

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Vision Toolkit Overview

• Components:
• Basic image processing and vision
• Attention-related neural components
• Object recognition-related neural components
• Scene gist/layout-related neural components
• Basic knowledge base / ontology
• Hardware interfacing
• Beowulf message passing
• Applications

• Implementation:
• C++, somewhat Linux-specific
• Additional perl/matlab/shell scripts for batch processing
• Uniprocessor as well as Beowulf

iLab C++ Neuromorphic Toolkit

Root: Image class

• Template class
• e.g., Image<byte>, Image<PixRGB<float>>, Image<Neuron>

• Implemented using copy-on-write/ref-counting
• Makes copying a light operation

• Many associated methods
• Shape ops
• Color ops
• Mono only
• Math ops
• I/O
• Filter ops
• Transforms

iLab C++ Neuromorphic Toolkit

C++ Templates

• The old way: ByteImage, FloatImage, ColorImage, etc. yields lots of
duplicated code that achieves essentially the same operations.

• The C++ way: write your algorithm only once, and make it operate on an
unknown data type T. The compiler will then generate machine code
corresponding to your algorithm and various data types for T, such as,
T=byte, T=float, T=MyClass, etc

template <class T> class Image {
public:

Image();
T getPixelValue(const int x, const int y) const;
void setPixelValue(const T& value, const int x, const int y);

private:
T* data;

};

int main(const int argc, const char **argv) {
Image<float> myImage; myImage.setPixelValue(1.23F, 10, 10);
return 0;

}

See Image.H

iLab C++ Neuromorphic Toolkit

Operator overloads

• C++ allows you to define operators such as +, -, *, etc for your various
classes.

• Example:

Image<byte> img1, img2;

img1 += 3; // calls Image<T>::operator+=(const T& value)

img1 = img1*2 + img2/3; // calls operator*(const T& value),
// operator/(const T& value),
// and operator+(const Image<T>& im)

See Pixels.H, Image.H

iLab C++ Neuromorphic Toolkit

Automatic type promotions

• Using type traits to determine at compile time whether the result of
an arithmetic operation will fit in the same type as the operands.

• Extends the canonical C++ promotions to non-canonical types.

• Examples:

Image<byte> im;

im + im is an Image<int>
im * 2.0F is an Image<float>
im * 2.0 is an Image<double>

See Promotions.H,
Pixels.H, Image.H

iLab C++ Neuromorphic Toolkit

Automatic type demotion with clamping

• Assignment from a strong type into a weak type will ensure that no
overflow occurs.

• Example:

Image<byte> im1, im2; Image<float> im3;

im1 = im3; // will clamp values of im3 to 0..255 range and convert

im2 = im1 * 2.0; // will create an Image<double> containing the
// result of im1 * 2.0, then clamp this image to
// 0..255 pixel range, then assign to im2.

iLab C++ Neuromorphic Toolkit

Copy-on-write / ref counting

• The standard way:

Image object contains an array of pixels:

Problem: copy is expensive, need to copy the whole array.

int width, height;

T* data;

Image<T> object

iLab C++ Neuromorphic Toolkit

Copy-on-write / ref counting

In particular, this makes it very expensive to return Image objects
from functions, hence essentially forbidding the natural syntax:

Image<float> source;
Image<float> result = filter(source); With a function:

Image<float> filter(const Image<float>& source) {
Image<float> res;
// fill-up pixel values of res, processing values from source
return res;

}

Indeed what happens here is:
1) Inside filter(), allocate a new image res to hold the result
2) In the ‘return’ statement, copy that local image to some temporary
3) In the ‘=‘ statement, copy that temporary to Image ‘result’

iLab C++ Neuromorphic Toolkit

Copy-on-write / ref counting

• The smart way: only keep a pointer to the actual pixel data in each
Image object. When making copies of the Image object, keep track
of how many are pointing to the same pixel data. When the last
Image object is destroyed, free the pixel data. If the user attempts
to modify the contents of one of the images that point to the same
data, first make a copy of the data.

Image<byte> img1, img2, img3; img2 = img1; img3 = img1;

int width, height;

byte* dataptr;

img1

int width, height;

byte* dataptr;

img3

int width, height;

byte* dataptr;

img2

Pixel data

See ArrayData.H, Image.H

iLab C++ Neuromorphic Toolkit

Free functions rather than methods

• Given the copy-on-write mechanism, it is now very cheap to return Image
objects. Thus, the more natural ‘free function’ syntax may be used for most
image processing functions, instead of the ‘class method’ syntax.

• Example: let’s say I want to pass an image through 3 successive filters,
filter1(), filter2() and filter3():

Class method syntax: the filterX() are methods of class Image
const Image<float> source;
Image<float> result1, result2;
result1.filter1(source);
result2.filter2(result1);
result1.filter3(result2);
result2.freeMem();

Free function syntax: the filterX() are functions not attached to a class
const Image<float> source;
Image<float> result = filter3(filter2(filter1(source)));

See Image_*.H

iLab C++ Neuromorphic Toolkit

Iterators

• Accessing data via pointers is error-prone, use iterators instead.
Our classes that hold some data that can be iterated on provide
iterator support very similar to that of the STL classes.

• Example:

Image<byte> img;

Image<byte>::iterator itr = img.beginw(), stop = img.endw();
while (itr != stop) { *itr++ = 0; }

See Image.H

iLab C++ Neuromorphic Toolkit

Shared pointers

• When objects communicate with lots of other objects, it is often
difficult to know who will run out of scope first. When new memory
is allocated for an object that will be passed around and used by
several objects, we would like an automatic way of freeing the
memory when everybody is done with it.

• Hence the class SharedPtr<T> which behaves like a pointer, except
that when the last SharedPtr to an object runs out of scope, it will
destroy/free the memory for that object.

• Example:
In obj1: SharedPtr<Message> mymsg(new Message());
In obj2: SharedPtr<Message> mymsg2(mymsg);

mymsg2->function();

Message will be destroyed only when its SharedPtr’s have run out of
scope in both obj1 and obj2.

See SharedPtr.H

iLab C++ Neuromorphic Toolkit

Elementary core classes

• Dims: for 2D (width, height) dimensions Dims.H
• Point2D: An (i, j) 2D point Point2D.H
• Point2DT: A Point2D plus a time Point2DT.H
• PixRGB<T>: a (red, green, blue) triplet Pixels.H
• BitObject: object defined by connected pixels BitObject.H
• Timer: to count time with arbitrary accuracy Timer.H
• CpuTimer: to measure time and CPU load CpuTimer.H
• Range: specifies a numeric range of values Range.H
• LevelSpec: specifies scales for feature/saliency map LevelSpec.H
• Rectangle: a rectangle Rectangle.H
• SharedPtr<T>: a shared pointer SharedPtr.H
• VisualEvent
• VisualObject
• VisualFeature
• …

iLab C++ Neuromorphic Toolkit

Core definitions

• Promotions.H: the automatic type promotion rules
• atomic.H: atomic (one-CPU-instruction) operations
• Saliency.H: a few generic helper functions like MAX, MIN, etc and

basic type definitions like byte, int32, uint64, etc
• colorDefs.H: various default color definitions
• Log.H: comprehensive logging facility
• StringConversions.H: convert various datatypes to/from string
• TypeTraits.H: compile-time information about types
• …

iLab C++ Neuromorphic Toolkit

Logs

• Provide a unified, convenient mechanism for text message output.
• 4 levels: LDEBUG, LINFO, LERROR, LFATAL
• printf()-like syntax
• Automatically adds class/function name, system error messages (use prefix

‘P’), a user id (use prefix ‘ID’), a line number (compile-time option)
• Can print to stderr or syslog

The hard way:
fprintf(stderr, “In myFunction(), could not open file ‘%s’ (error: %s)\n”,

filename, strerror(errno));
>>>> In myFunction(), could not open file `test’ (error: file not found)

The easy way:
PLERROR(“Could not open file ‘%s’ ”, filename);
>>>> MyClass::myFunction: Could not open file ‘test’ (file not found)

See log.H

iLab C++ Neuromorphic Toolkit

Helper classes

• Raster: to read/write/display Images in various formats

• V4Lgrabber: to grab images from video source (PCI/USB)

• IEEE1394grabber: idem for FireWire cameras

• XWindow: to display image collections & interact

• VCC4: to control pan/tilt/zoom camera

• SSC: to control pan/tilt on beobot camera

• Etc…

iLab C++ Neuromorphic Toolkit

ImageSets, a.k.a. Image Pyramids

• Collection of images

• Dyadic image reduction from one
level to next

• Various filters applied before
reduction

See ImageSet.H, PyrBuilder.H,
Pyramid_Ops.H, etc

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

Channels

• Implement a pyramid or collection of pyramids plus some I/O
functions and additional processing

• Various derived instances can be identified by name

• SingleChannel: contains one pyramid
• ComplexChannel: contains a collection of SingleChannels

iLab C++ Neuromorphic Toolkit

Itti & Koch,
Vision Research 2000

SingleChannel

ComplexChannel

iLab C++ Neuromorphic Toolkit

Single Channels

iLab C++ Neuromorphic Toolkit

Complex channels

iLab C++ Neuromorphic Toolkit

VisualCortex

• Run-time configurable collection of channels, plus additional I/O and access
methods

iLab C++ Neuromorphic Toolkit

Brain

VisualCortex plugged-in
at run-time

iLab C++ Neuromorphic Toolkit

Brain: basic operation

In Brain::input(), called for every new input image
• Get an input image
• Process it through VisualCortex, get saliency map input

In Brain::evolve(), called every 0.1ms of simulated time
• Feed saliency map
• Let saliency map evolve
• Let task-relevance map evolve
• Combine saliency map and task-relevance map outputs to feed attention-

guidance map
• Let attention-guidance map evolve
• Feed output of attention-guidance map to winner-take-all
• Get winner-take all output, if any
• Feed that to saccade controller
• Also feed it to shape estimator
• Activate inhibition of return
• …

iLab C++ Neuromorphic Toolkit

SaccadeController

iLab C++ Neuromorphic Toolkit

Beowulf

• Multi-threaded class

• Handles transparent passing of TCPmessages
• TCPmessages are run-time collections of objects

• TCPmessages implemented using COW

• Uses TCP communications for distant nodes

• Uses shared memory for local nodes

iLab C++ Neuromorphic Toolkit

Beobot

iLab C++ Neuromorphic Toolkit

FrameGrabber, etc, etc

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Toolkit

