

An Attentional Framework for 3D Object Discovery

Germán Martín García and Simone Frintrop Cognitive Vision Group Institute of Computer Science III University of Bonn, Germany

Saliency Computation

Attention vs Saliency

- Why visual attention is more than saliency computation:
- Attention is a process that operates over time
 - Look at one region after the other
 - "explore" a scene by eye movements (saccades)

examine the painting freely

assess the ages of the characters

• The gaze is triggered by bottom-up (saliency) AND top-down cues

Simone Frintrop

[Yarbus 1967; Images: Sasha Archibald, after Ilya Repin, An Unexpected Visitor, 1884)]

Visual attention

- Tasks to be solved by visual attention systems:
 - Where to direct the attention at (saliency + top-down cues)
 - When to switch
 - How to prevent returning to already visited locations

Visual attention

- Tasks to be solved b Inhibition of return (IOR) [Posner 1984]
 - Where to direct the a •
 - When to switch
 - How to prevent return

- suppression of processing of locations and objects that had recently been the focus of attention
- encourages orienting toward novelty
 - happens in spatial coordinates and not in retinotopic coordinates

Inhibition of Return

- Many systems simply compute the saliency map and ignore IOR
- Inhibition of return in computational attention systems:

- If realized, usually by setting values to zero in saliency map.
- In temporal sequences, if camera positions and/or objects change location, this is not sufficient!
- It is necessary to remember which regions/objects have already been attended not in image but in spatial coordinates

3D Object Discovery

- We propose an architecture for object discovery that operates in 3D (on RGB-D data)
- Object information is accumulated over time and 3D object models are built based on information from current and previous time steps
- 3D voxels are ,tagged' by *inhibition of return flags* that indicate if a region was recently attended

Simone Frintrop

3D Object Discovery

[G. Martín-García & S. Frintrop, Proc. of the annual meeting of Cognitive Sciences (CogSci), 2013 (to appear)] [G. Martín-García & S. Frintrop, German Journal of Artificial Intelligence, 2013 (to appear)]

What are proto-objects?

The triadic architecture of Rensink (2000):

Proto-objects:

- Proto-objects are object hypotheses built from simple features
- Volatile structures with limited coherence in space and time
- (Collections of) protoobjects are the target of attention ("the focused attention system acts as a hand to grab protoobjects")

Simone Frintrop

R. A. Rensink, The Dynamic Representation of Scenes, Visual Cognition (7), 2000

Saliency Detection

For saliency computation, use information-theoretic saliency: Represent center and surround regions by probability distributions Otherwise structure similar to Itti/Koch [Itti et al, PAMI 1998] (image pyramids, feature channels, conspicuity maps, saliency map)

Simone Frintrop

BITS: [Klein/Frintrop, ICCV 2011] iNVT: [Itti et al., PAMI 1998] ST: [Walther/Koch, 2006] AC10: [Achanta/Süsstrunk, 2010] HZ08: [Hou/Zhang, 2008] AIM: [Bruce/Tsotsos, 2009]

Saliency performance on MSRA Salient Object Database

Simone Frintrop

Simone Frintrop

From saliency to proto-objects

We have now a saliency map:

To obtain proto-objects, we

follow the two-stage processing strategy of the HVS:

- Pre-attentive: parallel processing to find region of interest
- Attentive: serial processing, one region of interest at the time processing becomes ,selective'.

From saliency to proto-objects

Frame t

Generate proto objects:

Pre-attentive (parallel) stage:

- 1. compute the saliency map
- 2. threshold the saliency map
- 3. find connected components (discard too big and too small objects)
- 4. rank by average saliency
- 5. Inhibit already attended regions

Attentive stage:

- 1. Pick one salient blob & fit a rectangle around
- 2. Refine shape of blob with GrabCut segmentation [Rother 2004] (OpenCV implementation) saliency values serve to initialize pixel likelihoods

IOR information from frames 1 to t-1

Proto-Objects

- Now, we have a segmented proto-object for the currently attended region
- Examples:
 Image: Im

Original image

Saliency map

Object hypotheses

[G. Martín-García & S. Frintrop, Proc. of the annual meeting of Cognitive Sciences (CogSci), 2013 (to appear)] [G. Martín-García & S. Frintrop, German Journal of Artificial Intelligence, 2013 (to appear)]

Inhibition of Return in 3D

- Use knowledge from 3D map to improve object detection & segmentation
- raycast the object labels & inhibition flags to the current viewpoint
- constrain the segmentation step to not label pixels as foreground that belong to other objects
- Use inhibition flags to prevent selecting already attended blobs

Results: Table top sequence

Ground truth

Detected Objects

Simone Frintrop

Results: Table top sequence

Ground truth

Detected Objects

Simone Frintrop

[G. Martín-García & S. Frintrop, Proc. of the annual meeting of Cognitive Sciences (CogSci), 2013 (to appear)] [G. Martín-García & S. Frintrop, German Journal of Artificial Intelligence, 2013 (to appear)]

Results: Table top sequence

Object	Precision	Recall	
Juice	97	31	
Bowl	92	56	
Cereals	98	61	
Apple	98	45	
Coffee 1	90	47	
Coffee 2	96	49	

Results: Coffee machine sequence

Ground truth

Detected Objects

Results: Coffee machine sequence

Ground truth

Detected Objects

Results: Coffee machine sequence

Object	Precision	Recall	
Note	69	43	
Y. cup	90	40	
W. cup	93	40	
Box	99	30	
Paper	99	40	
Sugar	62	61	
Cup	90	36	
Water	99	37	
Milk	98	39	

3D Object Discovery

[G. Martín-García & S. Frintrop, Proc. of the annual meeting of Cognitive Sciences (CogSci), 2013 (to appear)] [G. Martín-García & S. Frintrop, German Journal of Artificial Intelligence, 2013 (to appear)]