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Overview 

¨  Motivating ideas: A summary 
¨  Information theoretic approaches 

¤ Some of my work (AIM) 

¨  Coding based approaches 
¨  Graph-based strategies 
¨  Bayesian approaches 
¨  Summary and Discussion 



Some basic background 

¨  Entropy 

¨  Joint entropy 

¨  Conditional entropy 

¨  Mutual information 

¨  Can all be expressed in terms of KL-divergence 



Some basic background 

¨  Other important ideas 
¤ Suspicious Coincidences (Barlow) 

n One goal of the brain is detecting associations 
n Find suspicious coincidences, and anticipate them 

¤ Coding theory 
n Rate/Distortion 
n Data compression 
n Redundancy 

¤ Bayes’ Theorem 



Computer Vision Classics 

¨  Jagersand (ICCV 1995) ¨  KL-divergence across 
scale space 
representation 

¨  Peaks provide a sense 
of scale of interest 



Computer Vision Classics 

¨  Kadir and Brady 
(IJCV 2001) 

¨  Again appealing to 
peaks in scale space 
subject to local entropy 

¨  Some extra steps (region 
clustering, etc…) 

¨  Area has been further 
explored in detail by 
interest point/descriptor 
research community 



Saliency 



Visual content and expectation 



Visual content and expectation 



Visual content and expectation 



Visual content and expectation 



Information Theoretic Saliency 



A note on “categorization” 

¨  Information 
theory, coding, 
Bayesian 
inference, 
Graphical models 
aren’t easily 
separated 

¨  Grouped 
thematically, but 
several may be 
present within any 
single model 

Source: Unknown 



AIM (Attention by Information Maximization) 

¨  Appeals to role of coding, and information theory 
¨  Key points: 

¤  Independent (sparse) coding 
¤ Want to quantify likelihood of observing local patch/

region of image  

¨  Likelihood related to self-information via –log(p(x)) 



Computational Constraints 

¨    
¨  Problem of dimensionality: 

More general problem 
¨  Seek a representation that makes the computation  

of           tractable 
¨  Content is not random but highly structured and 

exists in a lower dimensional manifold 
¨  Solution: Take advantage of structure in the data - 

Sparse representation as one approach 
¨  Information appeals to Shannon self-information 
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Computational Constraints 

  

¨  Ideally                  should be independent variables 
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The Model (AIM) 

(Bruce and Tsotsos, NIPS 2005, JoV 2009) 



Quantifying Performance 

¨  There now exist a number of datasets, benchmarks, 
performance metrics, etc. 
¨  Benchmarking will be discussed later J 

¨  Different data sets, methodology and parameters 
¨  Seems to hold up well in benchmarks, despite 

remaining largely untouched for 8 years… 



Prediction of fixation patterns 



Behavioral phenomena 

(Bruce and Tsotsos, 2009, 
 Bruce and Tsotsos 2011) 



Spatiotemporal Cells 



Examples 



Many facets of AIM 

¨  Role of feature representation (performance and 
neuroscience) 

JoV 2009, CRV 2011, Front. Comp. Neurosci. 2011 
¨  Role of context in defining algorithm output 
ICIP 2009, ICPR 2004 
¨  Recurrence/hierarchical processing 
(CRV 2012, ICIAR 2012, CVPR Workshop Biol. 
Consistent Vision, 2011) 



Incremental Coding Length 

¨  Hou and Zhang (NIPS 2008) 
¤ Measure entropy gain of each feature 
¤ Maximize entropy across sample features 
¤ Select features with large coding length increment 



Incremental Coding Length 

¨  Activity ratio pi for ith feature: 

 with 
 
¨  Most efficient strategy is to make equal use of all 

features – i.e. maximize H(p) 

¨  New excitation of feature i: 
  



Incremental Coding Length 

¨  Changes entropy of feature activities: 

¨  Which boils down to: 



Incremental Coding Length 

¨  Salient feature set: 

 i.e. Do subsequent activations of feature i 
 increase entropy of the system? 

¨  Allows redistribution of energy among salient 
features: 



Incremental Coding Length 

 

 
Finally, salience may be computed, with M=[m1,m2,…,mn] 



Incremental Coding Length 

 

¨  Spatiotemporal data 



Incremental Coding Length 



Conditional Entropy 

¨  Li, Zhou, Yan and Yang (ACCV 2009) 
¤ Saliency based on conditional entropy 
¤ Minimum uncertainty of local region given surround  
¤ Conditional entropy given by coding length (assuming 

lossy distortion) modeled as multivariate Gaussian data 
¤ Segmentation to detect proto-objects 
¤ Extended by Yan et al. to multi-resolution 



Conditional Entropy 



Probability/Clutter 

¨  Rosenholtz (Vis. Res. 1999, JoV 2007, ACM TAP 
2011) 
¤ Distribution of features determined (e.g. in color-space) 
¤ Mean and covariance of distractors computed 
¤ Target saliency given by Mahalanobis distance given 

target, and mean/covariance of distractor distribution 
¤ Later versions also account for role of “clutter” 



Rarity Based Saliency 

¨  Mancas (2007) 
¤ Considers rarity of features (both local and global, 

including subject to self-information) 
¤ Multi-scale approach reminiscent of Itti et al. 
¤ Also consider many applications 

¨  Mancas (2012) (RARE) 
¤ Normalization/Whitening across color inputs and across 

scale, weighted combination/fusion 



RARE 2012 



Self-resemblance 

¨  Seo and Milanfar (Journal of Vision, 2009) 
¤ Local structure represented by matrix of local descriptors 

(steering kernels robust to noise/image distortions) 
¤ Matrix cosine similarity forms a metric for resemblance at 

pixel to surround 
¤ Amounts to an estimate of likelihood of local feature 

matrix given feature matrix of pixels in surround 



Self-resemblance 



Site-Entropy Rate 

¨  Wang et al. CVPR 2011 (following Wang et al. 
CVPR 2010)  



Site-Entropy Rate 

¨  Wang et al. CVPR 2011 (following Wang et al. 
CVPR 2010)  

¨  Average total information transmitted from location 
I to other nearby locations 

- Stationary distribution term 
(frequency with which random 
walker visits node i / frequency with 
which node i communicates with 
other nodes) 



Site-Entropy Rate 

¨  Random walks: See also Achanta et al. 2009 



Information Gain 

¨  Najemnik and Geisler ¨  The “ideal observer” 
¤ Subject to simulated 

constraints/uncertainty on 
perception 

¤ Wish to maximize the 
information gain, or 
minimize uncertainty with 
respect to defined target 
location in making a 
saccade 



Information Gain 

¨  Najemnik and Geisler (Nature 2005) 



Information Gain 

¨  Butko and Movellan, ICDL 2008, IEEE TAMD 2010 



Discriminant / Decision Theoretic Saliency 

¨  Spatial definition for “c” 



Decision Theoretic Saliency 

¨  Diagrams images 



Discriminant / Decision Theoretic Saliency 

¨  Derived explicitly from a minimum Bayes error 
definition 

¨  “c” applicable to centre/surround, but also other 
classes (e.g. face vs. null hypothesis) 

¨  Specific mathematical relationship can be shown to: 
¤ Suspicious coincidences, decision theory, neural 

computation/complex cells/circuitry, tracking 

¨  See: Han and Vasconcelos Vis. Res. 2010, Mahadevan and Vasconcelos, 
TPAMI 2010, Gao et al. IEEE TPAMI 2009, Gao and Vasconcelos Neur. 
Comp 2009, Gao, Mahadevan and Vasconcelos, 2007, Gao and 
Vasconcelos ICCV 2007, Gao, Mahadevan and Vasconcelos NIPS 2007 



Suspicious coincidences 

¨  See also: Choe and Sarma AAAI 2006 
(On relation between orientation filter responses 
and natural image statistics) 



Bayesian Approaches 



Probabilistic and Bayesian models 

¨  Torralba, Oliva, Castelhano and Henderson, Psych. Rev. 2006 



Probabilistic and Bayesian models 

¨  This builds on several prior efforts, followed by 
some additional targeted efforts: 
¤ Context/Contextual priors: 

n Hidalgo-Sotelo, Oliva and Torralba, CVPR 2005 
n Torralba, NIPS 2001 
n and others… 

¤ Top-down control: 
n Oliva, Torralba, Castelhano and Henderson, ICIP 2003 
n Ehinger, Hidalgo-Sotelo, Torralba, Oliva, 2009 
n Oliva and Torralba, TICS 2007 



Probabilistic and Bayesian models 

¨  Zhang et al., J. of Vision, 2008 
 

¨  SUN 



Probabilistic and Bayesian models 

¨  Zhang et al. Proc. Cog. Sci. Soc. 2009,  
¤ SUNDAy, Dynamic analysis of scenes 

¨  Kanan et al. 2009, Visual Cognition 
¤ Top down saliency 

¨  Barrington et al. J. of Vision, 2008 
¤ NIMBLE: Saccade based visual memory  

¨  Static model of natural image statistics, modeled as 
GGD lends itself to a very fast computational 
framework 



Probabilistic and Bayesian models 

¨  Itti and Baldi, NIPS 2006, Vis. Res. 2009, Neural Netw, 2010 

¨    



. . . 

P(M)	



M
MTV CNN FOX BBC      . . .    
Snow 

prior 

Bayesian Surprise 

¨  Family M of observer-dependent models 
or hypotheses about the world 

¨ Observer beliefs: 
 
 



. . . 

P(M)	



M
MTV CNN FOX BBC      . . .    
Snow 

prior 

Bayesian Surprise 

¨ Bayesian foundation of probability: data is 
what changes a prior into a posterior: 



. . . 

P(M)	
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Bayesian Surprise 
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Surprise	



. . .	



M	


MTV CNN FOX BBC      . . .    Snow 

Surprise = 	



P(M),	


P(M|D)	



Bayesian Surprise 



After a moment... 

¨  Beliefs stabilize, prior and 
posterior become 
identical,


¨  and additional snow 
frames carry no surprise.


. . .	



MTV CNN FOX BBC      . . .    Snow 

P(M),	


P(M|D)	





Unit of surprise 

 
¨  Shannon: 

¤ 1 bit observed when outcome has probability 0.5 
¤ E.g., toss a fair coin and observe “heads” 
 

¨  Surprise: 
¤ 1 wow experienced when belief in M changes by factor 2 
¤ E.g., from 20% belief that a coin is fair to 40% 



Computing surprise 

¨  Discrete Case (Binomial/Dirichlet) 

p =observed frequency over N binary data samples  
a1 /(a1+b1) = expected frequency (Dirichlet) 

¨  Continuous Case (Gaussian, unknown mean and 
variance) 



Itti et al., 
IEEE Trans. PAMI 1998; 
Vision Res. 2000; 
Nature Reviews 
      Neurosci. 2001; 
IEEE Trans. IP 2004; 
Visual Cogn 2005 



P(M)	



M	


Low                Mid               High 

Amount of green 



M	


Low                Mid               High 

Amount of green 
P(M)	



M	


Low                Mid               High 

Amount of horizontal 



M	


Low                Mid               High 

Amount of green 

M	


Low                Mid               High 

Amount of horizontal 
P(M)	



M	


Low                Mid               High 

Amount of 
upward motion 



M	


Low                Mid               High 

Amount of green 

M	


Low                Mid               High 

Amount of horizontal 

M	


Low                Mid               High 

Amount of 
upward motion 

P(M|	


D)	





Probabilistic and Bayesian models 

¨  Itti and Baldi, NIPS 2006, Vis. Res. 2009, Neural Netw, 2010 

¨    



Graphical Models 



Graph Based techniques 

¨  Harel 2006 
¤ Scale-space pyramid from intensity, color, orientation 
¤ Fully connected graph over all grid locations 
¤ Graph weights proportional to similarity of feature 

values, and spatial distance 



Graph Based techniques 

¨  Harel, NIPS 2006 
¤ Treated as Markov chain that reflects expected time 

spent by a random walker (walking forever) 
¤ Weights of outbound edges normalized to 1 with 

equivalence relation defined between nodes/states 
and edges/transition probabilities 

¤ Saliency corresponds to equilibrium distribution 



Graph Based techniques 



Graph Based techniques 

¨  Pang ICME 2008 
¤ Stochastic model based on signal detection theory 
¤ Dynamic Bayes net with 4 layers 

n  Layer 1: Itti-like saliency determination 
n  Layer 2: Gaussian state-space model (stochastic saliency map) 
n  Layer 3: Overt shifts determined by HMM 
n  Layer 4: Density map predicts positions 



Graph Based techniques 

¨  Avraham and Lindenbaum (PAMI 2010) 

Labels are binary random variables: 



E-Saliency 

¨  Dependency on parent nodes for label 

¨  Marginalization considering most likely assignments: 



E-saliency 



Probabilistic and Bayesian models 

¨  Rao, NeuroReport 2005 

¨  Bayesian, Integrate and Fire model 
¨  Heavily inspired by biology, brain imaging 
¨  See also Rao and Ballard, Nat. Neurosci. 1999 



Probabilistic and Bayesian models 

¨  Chikkerur et al., Vis. Res. 2010, MIT Ph.D. Thesis 



Graph Based techniques 

¨  Strongly inspired by biology 



Learning/Object detection Methods 

¨  See also: 
¤ What is an object? (Alexe et al. 2010) 
¤ Deselaers et al. (ECCV 2010) 
¤ Carreira and Sminchisescu (CVPR 2010) 
¤ Gu et al. (CVPR 2009) 
¤ van de Sande et al. (ICCV 2011) 
¤ and many more… 



Some take home points 



Take home points… 

¨  Much overlap in fundamental ideas that inspire 
techniques in this domain 

¨  This isn’t surprising (these are all fundamental 
principles in many efforts – not just saliency)  

¨  Reveals that the details are important (think of the 
tree) 

¨  There are several benchmarks (which are 
important), but consider also application 

¨  Saliency is very useful – but won’t solve everything 


