CVPR 2013 TUTORIAL:
A CRASH COURSE ON VISUAL SALIENCY MODELING:
BEHAVIORAL FINDINGS AND COMPUTATIONAL MODELS

SALIENCY: INFORMATION THEORETIC,
BAYESIAN, AND GRAPHICAL MODELS

Neil Bruce Contact Information:

Department of Computer bruce@cs.umanitoba.ca

University of Manitoba :
Winnipeg, MB, Canada WWwWw.cs.umanitoba.ca/~bruce

® NSERC
UNIVERSITY CRSNG
ot MANITOBA




Overview

Motivating ideas: A summary

Information theoretic approaches
Some of my work (AIM)

Coding based approaches
Graph-based strategies
Bayesian approaches

Summary and Discussion



Some basic background

-1 Entropy

H(X) =Ex[I(z)] = =) p(z)log p().

reX

71 Joint entropy

H(X)Y) =Exy|— logp(z,y)] ——Zp”ryl plx,y)

. 7.y

-1 Conditional entropy

H(X|Y)=Ey[H(X|y)] = =) p(y) Y _ plaly)logp(z|y) = - ) p(z,y)log

yeY zeX T,y

1 Mutual information

p(z,y)
I(X;Y) =Exy[SI(z, y]—zp By o8y p()

1 Can all be expressed in terms of KL-divergence




Some basic background

Other important ideas

Suspicious Coincidences (Barlow)
One goal of the brain is detecting associations
Find suspicious coincidences, and anticipate them
Coding theory
Rate /Distortion
Data compression
Redundancy
Bayes’ Theorem
P(B|A)P(A)_
P(B)

P(A|B) =



Computer Vision Classics
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Computer Vision Classics

-1 Kadir and Brady
(1JCV 2001)

1 Again appealing to
peaks in scale space
subject to local entropy

1 Some extra steps (region
clustering, etc...)

71 Area has been further
explored in detail by
interest point/descriptor
research community
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Visual content and expectation
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- Information Theoretic Saliency



A note on “categorization”

7 Information
theory, coding,
Bayesian
inference,
Graphical models
aren’t easily
separated

1 Grouped
thematically, but
several may be
present within any
single model

Source: Unknown



AIM (Attention by Information Maximization)

Appeals to role of coding, and information theory

Key points:
Independent (sparse) coding
Want to quantify likelihood of observing local patch/

region of image

Likelihood related to self-information via —log(p(x))



Computational Constraints

p(X — Xl,xz,...,xn) X1 [X2 |X3 [Xs |Xs
Xe | Xy [Xg |X9 [Xip
Problem of dimensionality: Xe1 X0 [ X3 [ X1a] Xos
X16 | X17|X 18| X19| X209
More general problem o [z oo X s

Seek a representation that makes the computation
of p(X) tractable

Content is not random but highly structured and
exists in a lower dimensional manifold

Solution: Take advantage of structure in the data -
Sparse representation as one approach

Information appeals to Shannon self-information



Computational Constraints

p(x19x2>"°9xn) = Hp(xz‘)?

0 Ideally X;,X,,...,X, should be independent variables
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The Model (AIM)
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Quantifying Performance

There now exist a number of datasets, benchmarks,
performance metrics, etc.

Benchmarking will be discussed later ©
Different data sets, methodology and parameters

Seems to hold up well in benchmarks, despite
remaining largely untouched for 8 years...



Prediction of fixation patterns

Original AlM Experimental  Modulated
Image

Saliency Dens|ty Image
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Behavioral phenomena
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Spatiotemporal Cells
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Examples




Many facets of AIM

Role of feature representation (performance and
neuroscience)

JoV 2009, CRV 2011, Front. Comp. Neurosci. 2011
Role of context in defining algorithm output
ICIP 2009, ICPR 2004

Recurrence /hierarchical processing

(CRV 2012, ICIAR 2012, CVPR Workshop Biol.
Consistent Vision, 2011)



Incremental Coding Length

Hou and Zhang (NIPS 2008)

Measure entropy gain of each feature
Maximize entropy across sample features

Select features with large coding length increment




Incremental Coding Length

ok
Activity ratio p, for i feature: p, = 2k | Wix” |

ZZZL | wix" |

with
X =[xt x% ..., xF ]

Most efficient strategy is to make equal use of all
features — i.e. maximize H(p)

Pj + € .

° ° o A ) =1

New excitation of feature i: p; = { 113';.5 ] ,
112 JF1



Incremental Coding Length

1 Changes entropy of feature activities:

OH(p) _ dp; log p; J Zj;éi pj logp;

Opi Ipi Ip;
- Which boils down to:
OH (p)

ICL(p;) = e —H (p) — pi — log p; — pilogp;




Incremental Coding Length

Salient feature set:

S = {i [ICL(p;) > 0}
i.e. Do subsequent activations of feature i
increase entropy of the system?

Allows redistribution of energy among salient
features:




Incremental Coding Length

Feature distribution Incremental Coding Length

Saliency map

Finally, salience may be computed, with M=[m,,m,,...,m ]

m; = E d;w;x*
€S



Incremental Coding Length
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11 Spatiotemporal data
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Incremental Coding Length

Dynamic Visual Attention

| S T

~w

. At time ¢, calculate feature ICL based on pt

Given current eye fixation, generate a saliency map with foveal bias.
By a saccade, move eye to the global maximum of the saliency map.

Sample top N “informative” (largest ICL) features in fixation neighborhood. (In our ex-
periment, N = 10)

Calculate p?, update p**!, and go to Step. 1.

4 26 91 219 279 N
1 48 76 98 294 N
2 11 30 105 137 N




Conditional Entropy

Li, Zhou, Yan and Yang (ACCV 2009)
Saliency based on conditional entropy
Minimum uncertainty of local region given surround

Conditional entropy given by coding length (assuming
lossy distortion) modeled as multivariate Gaussian data

Segmentation to detect proto-objects

Extended by Yan et al. to multi-resolution



Conditional Entropy

Solution via L1 Norms Solution via L2 Norms

j | Ll
1y I‘(’ \d"\l W I8 ',k.l".'l)'l‘- / \"l

Algorithm1 (Incremental Sparse Saliency)

3.end

|.Input : given image [

2. for each patch ¢ of the image I, calculate x = F'c
and take patches from its surroundings to form S
e solve the optimization problem
min A|w|); + 3|z — Sw|
e given the sparse solution w, calculate the patch
saliency Sa(c) by Sa(c) = |
the saliency by pixels

2
2

w||op, and accumulate

4.0utput : the saliency map of 1




Probability /Clutter

Rosenholtz (Vis. Res. 1999, JoV 2007, ACM TAP
2011)

Distribution of features determined (e.g. in color-space)
Mean and covariance of distractors computed

Target saliency given by Mahalanobis distance given
target, and mean/covariance of distractor distribution

Later versions also account for role of “clutter”



Rarity Based Saliency

Mancas (2007)

Considers rarity of features (both local and global,
including subject to self-information)

Multi-scale approach reminiscent of Itti et al.

Also consider many applications

Mancas (2012) (RARE)

Normalization /Whitening across color inputs and across
scale, weighted combination /fusion

.f" l 5 R
Attention( ;) = — I(tu:,l — Z n; )
) - ‘xb*u"|.'—l -."



RARE 2012

Input Image

rction

rithm

Step 1:
Features Extraction

Step 2:
Multi-scale Rarity

Step 3:
Intra and Inter-channel Fusion

Output Saliency Map



Self-resemblance

Seo and Milanfar (Journal of Vision, 2009)

Local structure represented by matrix of local descriptors
(steering kernels robust to noise /image distortions)

Matrix cosine similarity forms a metric for resemblance at
pixel to surround

Amounts to an estimate of likelihood of local feature
matrix given feature matrix of pixels in surround

: e T — N
\/detC eXp{(Xl x;)" Ci(x Xz)}. C, € R

K(x; — x;) 7 57,2

1

Si = =x —1+p(F.,F
> exp (—52)




Self-resemblance

Image

_Local Steering Kernels Self-Resemblance

BEEGES

Saliency Map

Space-Time Local
Steering Kernels
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Space-Time
Saliency Map



Site-Entropy Rate

7 Wang et al. CVPR 2011 (following Wang et al.
CVPR 2010)

l { Image
Sparse coding filter functions | Fixation Q= le—————— Shift to fixation Qui_ _ _ _ _ -
v
Reference Sensory Responses | Foveal image | Visual working memory
N 2 _ filter response maps
| Sparse coding filter functions I 'y
Foveal filter response maps Update
[ > ,@ < memory

[ Updated filter response maps

a -\
» - )&

| Residual filter response maps |
SERY,

| Residual Perceptual Information Information maximization Select fixation Q- |— —




Site-Entropy Rate

Woang et al. CVPR 2011 (following Wang et al.
CVPR 2010)

Average total information transmitted from location
| to other nearby locations

Si=) SERpi=—) (Tki ) _ Prijlog Prij)
k k J
704 - Stationary distribution term
(frequency with which random
walker visits node i / frequency with
which node i communicates with
other nodes)



Site-Entropy Rate

“
Seg Saliency map
g % .
R = : Random
= :
=%
> 8 : Random
P ' SER
Walk !
Sparse bases Feature maps I*’ully-(,onnected graphs SER maps

1 Random walks: See also Achanta et al. 2009



15 deg

Information Gain

7 Najemnik and Geisler
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1 The “ideal observer”

Subject to simulated
constraints /uncertainty on
perception

Wish to maximize the
information gain, or
minimize uncertainty with
respect to defined target
location in making a
saccade



Information Gain
-

7 Najemnik and Geisler (Nature 2005)

d

Ideal Searcher

Responses from possible target locations
Update posterior probabilities
If maximum exceeds criterion then STOP

’

Move eyes to maximize new information

prior (i)exp (d,.’ ‘W, )
p,- — n
zprior(j)exp(dszj)

j=1




Information Gain

-1 Butko and Movellan, ICDL 2008, IEEE TAMD 2010
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Discriminant / Decision Theoretic Saliency

0 Spatial definition for “c”
SU) = L(X;Y)

PX(I),Y(I)(xaC)
= E PX().y( (X,C)log dx.
e / el px() (x)pyu(c)

[ P(xly = 1)




Decision Theoretic Saliency
=

-1 Diagrams images
Px(x;a,B) = p ex _(m)ﬁ
XEHGP) =3ara/p) P \a
ZPY KL[Pxy (x[c)||Px(x)], .

KL[P)((\” ap, ﬂ]) ”PX(Y'aZJﬂZ)]

— 1oe [ Proel(1/B>) a\*T((B,+1)/B) _ 1
= (ﬂzalr(l/ﬁl)) * (a2) r(1/B) B

Feature maps Feature saliency
maps

&
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Saliency map

| Featur e decomposition |




Discriminant / Decision Theoretic Saliency

Derived explicitly from a minimum Bayes error
definition

“c” applicable to centre /surround, but also other
classes (e.g. face vs. null hypothesis)

Specific mathematical relationship can be shown to:

Suspicious coincidences, decision theory, neural
computation/complex cells/circuitry, tracking

See: Han and Vasconcelos Vis. Res. 201 0, Mahadevan and Vasconcelos,
TPAMI 2010, Gao et al. IEEE TPAMI 2009, Gao and Vasconcelos Neur.
Comp 2009, Gao, Mahadevan and Vasconcelos, 2007, Gao and
Vasconcelos ICCV 2007, Gao, Mahadevan and Vasconcelos NIPS 2007



Suspicious coincidences

1 See also: Choe and Sarma AAAI 2006
(On relation between orientation filter responses
and natural image statistics)

N(E;0,0%)
E _ r Y9 Y h
omeme 1) = 5 N 30,07

(b) Orlenatlon
Energy

S T mavhing T R
' . | : P R
S ;‘ L ) ~ i
(d) Global (e) Global

/i
OED 85% (f) Local OED (g) Local 85%



- Bayesian Approaches



Probabilistic and Bayesian models

o
o Torralba, Oliva, Castelhano and Henderson, Psych. Rev. 2006

Bottom-up
saliency map

Saliency
computation

Scene-modulated
saliency map

Scene
priors

A
]
\ Po@dzdz Task:
LD i looking for Contextual
o i, modltn

p(0 =1, X|L, G)

_ p(L—IG)p(uo =1,X, Gp(X|0 =1, G)p(0 = 1|G)



Probabilistic and Bayesian models

This builds on several prior efforts, followed by
some additional targeted efforts:

Context/Contextual priors:
Hidalgo-Sotelo, Oliva and Torralba, CVPR 2005
Torralba, NIPS 2001

and others...

Top-down control:
Oliva, Torralba, Castelhano and Henderson, ICIP 2003
Ehinger, Hidalgo-Sotelo, Torralba, Oliva, 2009
Oliva and Torralba, TICS 2007



Probabilistic and Bayesian models

-1 Zhang et al., J. of Vision, 2008

7 SUN s.=p(C=1|F=f.,L=1I)

_p(F=f,L=1|C=DpC=1)
pF=f.,L=1I)

logs. = —logp(F f)+10gp(F f.1C= 1)+logp(C 1|L—l)

Self-information: Log likelihood: Location prior:
Bottom-up saliency Top-down knowledge Top-down knowledge
of appearance of target's location




Probabilistic and Bayesian models

Zhang et al. Proc. Cog. Sci. Soc. 2009,
SUNDAY, Dynamic analysis of scenes

Kanan et al. 2009, Visual Cognition
Top down saliency

Barrington et al. J. of Vision, 2008

NIMBLE: Saccade based visual memory

Static model of natural image statistics, modeled as
GGD lends itself to a very fast computational
framework



Probabilistic and Bayesian models

o
o Itti and Baldi, NIPS 2006, Vis. Res. 2009, Neural Netw, 2010

Raw Center-Surround Flicker map #5 of 6
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Combined temporal & spatial
> surprise output




Bayesian Surprise

P(M) prior

MTV CNN FOX BBC
Snow M

Family M of observer-dependent models
or hypotheses about the world

Observer beliefs: {P(M)},,cq,



Bayesian Surprise

Bayesian foundation of probability: data is

P(M) prior
-
MTV CNN FOX BBC
Snow M
P(DIM
o | Dy = 2L by

P(D)



Bayesian Surprise

P(M) prior

MTV CNN FOX BBC
Snow M

P(MD) posterior

MTV CNN FOX BBC
Snow M




Bayesian Surprise

P(M)

P(MD)

MTV CNN FOX BBC C
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posterior
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Bayesian Surprise

Surprise = d[P(M | D)aP(M)]weM

Surprwe
P(), / .
P@MID) i
MTV CNN FOXBBC ... Snow

M



After a moment...

- Beliefs stabilize, prior and Hearhm

Hoarivses |

posterior become e el
iIdentical, :

- and additional snow
frames carry no surprise.

P(MN),
P(MD)

_-_—_—_—
MTV CNN FOX BBC ... Snow




Unit of surprise

Shannon: [(D)=-log P(D)

1 bit observed when outcome has probability 0.5

. o 11 ””
E.g., toss a fair coin and observe heads

P(M | D)
Surprise: S(M) =log P(M)

1 wow experienced when belief in M changes by factor 2
E.g., from 20% belief that a coin is fair to 40%



Computing surprise

Discrete Case (Binomial /Dirichlet)

a,

S(D,M)= N xKL| p,

a1+b1_

p —observed frequency over N binary data samples
al /(al+b1) = expected frequency (Dirichlet)

2 - 2
S(D,M) = N +0—2+logﬁufl2 —‘P(%}+ (m—zlh)
S

2K, s 20
Continuous Case (Gaussian, unknown mean and
variance)




Itti et al,,

IEEE Trans. PAMI 1998;

Vision Res. 2000;

Nature Reviews
Neurosci. 2001;

IEEE Trans. IP 2004;

Visual Cogn 2005
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Probabilistic and Bayesian models

o
o Itti and Baldi, NIPS 2006, Vis. Res. 2009, Neural Netw, 2010

Raw Center-Surround Flicker map #5 of 6

Pool over
neighborhood
/Local data
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Combined temporal & spatial
> surprise output




- Graphical Models



Graph Based techniques

Harel 2006

Scale-space pyramid from intensity, color, orientation
Fully connected graph over all grid locations

Graph weights proportional to similarity of feature
values, and spatial distance
M(i,j7) '
M(p.q)

d((i,5)||(p, q)) = |log

L

wq((2,7), (P, q)) d((,7)||(p,q)) - F(i — p,j — q). Where

2 2
F(a,b) = exp (—a '2:2b ) :




Graph Based techniques

Harel, NIPS 2006

Treated as Markov chain that reflects expected time
spent by a random walker (walking forever)

Weights of outbound edges normalized to 1 with
equivalence relation defined between nodes/states
and edges/transition probabilities

Saliency corresponds to equilibrium distribution



Graph Based techniques

(a) Sample Picture With Fixation

(-

™, e
(b) Graph-Based Saliency Map

ROC area=0.74

ROC area=0.57




Graph Based techniques

Pang ICME 2008
Stochastic model based on signal detection theory

Dynamic Bayes net with 4 layers
Layer 1: Itti-like saliency determination
Layer 2: Gaussian state-space model (stochastic saliency map)

Layer 3: Overt shifts determined by HMM

Layer 4: Density map predicts positions



Graph Based techniques
o
1 Avraham and Lindenbaum (PAMI 2010)

The Esaliency Algorithm

1) Select candidates using some segmentation process.

2) Use the preference for a small number of expected targets (and possibly other preferences) to set the initial (prior)
probability for each candidate to be a target.

) Measure visual similarity between every two candidates and infer the correlations between the corresponding labels.

) Represent the label dependencies using a Bayesian network.

) Find the N most likely joint assignments.

) Deduce the saliency of each candidate by marginalization.

3
4
5
6

p(li, 1)
= 5 5 s i

Labels are binary random variables:

pli =10 =1) = (dij)\/us(l — i1 — 1) +
p(l,=0,l1=0) = 1—/.Li—/.l,j+p(li=1,lj=1).



E-Saliency

Dependency on parent nodes for label

p(l) = p(l;) H P(li|lpar(z‘.))

i=1,...,nii#r
Marginalization considering most likely assignments:
p()
N
ijlp(lJ)

p'(l) =

The saliencies are then:
N

pr(c:) =Y p'(l7) -1

j=1



E-saliency




Probabilistic and Bayesian models

7 Rao, NeuroRepor’r 2005

Locations (L) Features (F) (b) Location coding neurons Feature coding neurons

-1 Bayesian, Integrate and Fire model
11 Heavily inspired by biology, brain imaging

1 See also Rao and Ballard, Nat. Neurosci. 1999



Probabilistic and Bayesian models

o
01 Chikkerur et al., Vis. Res. 2010, MIT Ph.D. Thesis

Lo

© &)
5 ¢

b

19,0:0;0.



Graph Based techniques

-
11 Strongly inspired by biology

@ PFC
F! IT
LIP
\ (FEF)
V4
N B chatial attention 3
B reature attention
B Feed forward VIN2
B Saliency




Learning /Object detection Method:s

See also:
What is an object? (Alexe et al. 2010)
Deselaers et al. (ECCV 2010)
Carreira and Sminchisescu (CVPR 2010)
Gu et al. (CVPR 2009)
van de Sande et al. (ICCV 2011)

and many more...



- Some take home points



Take home points...

Much overlap in fundamental ideas that inspire
techniques in this domain

This isn’t surprising (these are all fundamental
principles in many efforts — not just saliency)

Reveals that the details are important (think of the
tree)

There are several benchmarks (which are
important), but consider also application

Saliency is very useful — but won’t solve everything



