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Abstract—Modeling visual attention—particularly stimulus-driven, saliency-based attention—has been a very active research area

over the past 25 years. Many different models of attention are now available which, aside from lending theoretical contributions to other

fields, have demonstrated successful applications in computer vision, mobile robotics, and cognitive systems. Here we review, from a

computational perspective, the basic concepts of attention implemented in these models. We present a taxonomy of nearly 65 models,

which provides a critical comparison of approaches, their capabilities, and shortcomings. In particular, 13 criteria derived from

behavioral and computational studies are formulated for qualitative comparison of attention models. Furthermore, we address several

challenging issues with models, including biological plausibility of the computations, correlation with eye movement datasets, bottom-

up and top-down dissociation, and constructing meaningful performance measures. Finally, we highlight current research trends in

attention modeling and provide insights for future.

Index Terms—Visual attention, bottom-up attention, top-down attention, saliency, eye movements, regions of interest, gaze control,

scene interpretation, visual search, gist

Ç

1 INTRODUCTION

A rich stream of visual data (108-109 bits) enters our
eyes every second [1], [2]. Processing this data in real-

time is an extremely daunting task without the help of
clever mechanisms to reduce the amount of erroneous
visual data. High-level cognitive and complex processes
such as object recognition or scene interpretation rely on
data that has been transformed in such a way as to be
tractable. The mechanism this paper will discuss is referred
to as visual attention—and at its core lies an idea of a
selection mechanism and a notion of relevance. In humans,
attention is facilitated by a retina that has evolved a high-
resolution central fovea and a low-resolution periphery.
While visual attention guides this anatomical structure to
important parts of the scene to gather more detailed
information, the main question is on the computational
mechanisms underlying this guidance.

In recent decades, many facets of science have been aimed
toward answering this question. Psychologists have studied
behavioral correlates of visual attention such as change
blindness [3], [4], inattentional blindness [5], and attentional
blink [6]. Neurophysiologists have shown how neurons
accommodate themselves to better represent objects of
interest [27], [28]. Computational neuroscientists have built
realistic neural network models to simulate and explain
attentional behaviors (e.g., [29], [30]). Inspired by these
studies, robotists and computer vision scientists have tried to
tackle the inherent problem of computational complexity to

build systems capable of working in real-time (e.g., [14], [15]).
Although there are many models available now in the
research areas mentioned above, here we limit ourselves to
models that can compute saliency maps (please see next
section for definitions) from any image or video input. For a
review on computational models of visual attention in
general, including biased competition [10], selective tuning
[15], normalization models of attention [181], and many
others; please refer to [8]. Reviews of attention models from
psychological, neurobiological, and computational perspec-
tives can be found in [9], [77], [10], [12], [202], [204], [224].
Fig. 1 shows a taxonomy of attentional studies and highlights
our scope in this review.

1.1 Definitions

While the terms attention, saliency, and gaze are often used
interchangeably, each has a more subtle definition that
allows their delineation.

Attention is a general concept covering all factors that
influence selection mechanisms, whether they are scene-
driven bottom-up (BU) or expectation-driven top-down (TD).

Saliency intuitively characterizes some parts of a scene—
which could be objects or regions—that appear to an
observer to stand out relative to their neighboring parts.
The term “salient” is often considered in the context of
bottom-up computations [18], [14].

Gaze, a coordinated motion of the eyes and head, has
often been used as a proxy for attention in natural behavior
(see [99]). For instance, a human or a robot has to interact
with surrounding objects and control the gaze to perform a
task while moving in the environment. In this sense, gaze
control engages vision, action, and attention simultaneously
to perform sensorimotor coordination necessary for the
required behavior (e.g., reaching and grasping).

1.2 Origins

The basis of many attention models dates back to Treisman
and Gelade’s [81] “Feature Integration Theory,” where they
stated which visual features are important and how they are
combined to direct human attention over pop-out and
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conjunction search tasks. Koch and Ullman [18] then
proposed a feed-forward model to combine these features
and introduced the concept of a saliency map which is a
topographic map that represents conspicuousness of scene
locations. They also introduced a winner-take-all neural
network that selects the most salient location and employs an
inhibition of return mechanism to allow the focus of attention
to shift to the next most salient location. Several systems were
then created implementing related models which could
process digital images [15], [16], [17]. The first complete
implementation and verification of the Koch and Ullman
model was proposed by Itti et al. [14] (see Fig. 2) and was
applied to synthetic as well as natural scenes. Since then, there
has been increasing interest in the field. Various approaches
with different assumptions for attention modeling have been
proposed and have been evaluated against different datasets.
In the following sections, we present a unified conceptual
framework in which we describe the advantages and
disadvantages of each model against one another. We give
the reader insight into the current state of the art in attention
modeling and identify open problems and issues still facing
researchers.

The main concerns in modeling attention are how, when,
and why we select behaviorally relevant image regions. Due
to these factors, several definitions and computational
perspectives are available. A general approach is to take
inspiration from the anatomy and functionality of the early
human visual system, which is highly evolved to solve these
problems (e.g., [14], [15], [16], [191]). Alternatively, some
studies have hypothesized what function visual attention
may serve and have formulated it in a computational
framework. For instance, it has been claimed that visual
attention is attracted to the most informative [144], the most
surprising scene regions [145], or those regions that
maximize reward regarding a task [109].

1.3 Empirical Foundations

Attentional models have commonly been validated against
eye movements of human observers. Eye movements convey
important information regarding cognitive processes such as
reading, visual search, and scene perception. As such, they
often are treated as a proxy for shifts of attention. For

instance, in scene perception and visual search, when the
stimulus is more cluttered, fixations become longer and
saccades become shorter [19]. The difficulty of the task
(e.g., reading for comprehension versus reading for gist, or
searching for a person in a scene versus looking at the scene
for a memory test) obviously influences eye movement
behavior [19]. Although both attention and eye movement
prediction models are often validated against eye data, there
are slight differences in scope, approaches, stimuli, and level
of detail. Models for eye movement prediction (saccade
programming) try to understand mathematical and theore-
tical underpinnings of attention. Some examples include
search processes (e.g., optimal search theory [20]), informa-
tion maximization models [21], Mr. Chips: an ideal-observer
model of reading [25], EMMA (Eye Movements and Move-
ment of Attention) model [139], HMM model for controlling
eye movements [26], and constrained random walk model
[175]). To that end, they usually use simple controlled
stimuli, while on the other hand, attention models utilize a
combination of heuristics, cognitive, and neural evidence,
and tools from machine learning and computer vision to
explain eye movements in both simple and complex scenes.
Attention models are also often concerned with practical
applicability. Reviewing all movement prediction models is
beyond the scope of this paper. The interested reader is
referred to [22], [23], [127] for eye movement studies and [24]
for a breadth-first survey of eye tracking applications.

Note that eye movements do not always tell the whole
story and there are other metrics which can be used for
model evaluation. For example, accuracy in correctly
reporting a change in an image (i.e., search-blindness [5])
or predicting what attention grabbing items one will
remember show important aspects of attention which are
missed by sole analysis of eye movements. Many attention
models in visual search have also been tested by accurately
estimating reaction times (RT) (e.g., RT/setsize slopes in
pop-out and conjunction search tasks [224], [191]).

1.4 Applications

In this paper, we focus on describing the attention models
themselves. There are, however, many technological applica-
tions of these models which have been developed over the
years and which have further increased interest in attention
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Fig. 2. Neuromorphic Vision C++ Toolkit (iNVT) developed at iLab, USC,
http://ilab.usc.edu/toolkit/. A saccade is targeted to the location that is
different from its surroundings in several features. In this frame from a
video, attention is strongly driven by motion saliency.

Fig. 1. Taxonomy of visual attention studies. Ellipses with solid borders
illustrate our scope in this paper.



modeling. We organize the applications of attention model-
ing into three categories: vision and graphics, robotics, and
those in other areas, as shown in Fig. 3.

1.5 Statement and Organization

Attention is difficult to define formally in a way that is
universally agreed upon. However, from a computational
standpoint, many models of visual attention (at least those
tested against first few seconds of eye movements in free-
viewing) can be unified under the following general problem
statement. AssumeK subjects have viewed a set ofN images
I ¼ fIIIIigNi¼1. Let Lki ¼ fppppkij; ttttkijg

nki
j¼1 be the vector of eye

fixations (saccades) ppppkij ¼ ðxxkij; yykijÞ and their corresponding
occurrence time ttkij for the kth subject over image IIi. Let the
number of fixations of this subject over ith image be nki . The
goal of attention modeling is to find a function (stimuli-
saliency mapping) f 2 F which minimizes the error on eye
fixation prediction, i.e.,

PK
k¼1

PN
i¼1 mðfðIIki Þ; LLki Þ, where m 2

M is a distance measure (defined in Section 2.7). An
important point here is that the above definition better suits
bottom-up models of overt visual attention, and may not
necessarily cover some other aspects of visual attention
(e.g., covert attention or top-down factors) that cannot be
explained by eye movements.

Here we present a systematic review of major attention
models that we apply to arbitrary images. In Section 2, we
first introduce several factors to categorize these models. In
Section 3, we then summarize and classify attention models
according to these factors. Limitations and issues in
attention modeling are then discussed in Section 4 and are
followed by conclusions in Section 5.

2 CATEGORIZATION FACTORS

We start by introducing 13 factors (f1::13) that will be used
later for categorization of attention models. These factors

have their roots in behavioral and computational studies of
attention. Some factors describe models (f1;2;3, f8::11), others
(f4::7, f12;13) are not directly related, but are just as
important as they determine the scope of applicability of
different models.

2.1 Bottom-Up versus Top-Down Models

A major distinction among models is whether they rely on
bottom-up influences (f1), top-down influences (f2), or a
combination of both.

Bottom-up cues are mainly based on characteristics of a
visual scene (stimulus-driven)[75], whereas top-down cues
(goal-driven) are determined by cognitive phenomena like
knowledge, expectations, reward, and current goals.

Regions of interest that attract our attention in a bottom-
up manner must be sufficiently distinctive with respect to
surrounding features. This attentional mechanism is also
called exogenous, automatic, reflexive, or peripherally
cued [78]. Bottom-up attention is fast, involuntary, and
most likely feed-forward. A prototypical example of
bottom-up attention is looking at a scene with only one
horizontal bar among several vertical bars where attention
is immediately drawn to the horizontal bar [81]. While
many models fall into this category, they can only explain
a small fraction of eye movements since the majority of
fixations are driven by task [177].

On the other hand, top-down attention is slow, task-
driven, voluntary, and closed-loop [77]. One of the most
famous examples of top-down attention guidance is from
Yarbus in 1967 [79], who showed that eye movements
depend on the current task with the following experiment:
Subjects were asked to watch the same scene (a room with a
family and an unexpected visitor entering the room) under
different conditions (questions) such as “estimate the
material circumstances of the family,” “what are the ages
of the people?”, or simply to freely examine the scene. Eye
movements differed considerably for each of these cases.

Models have explored three major sources of top-down
influences in response to this question: How do we decide
where to look? Some models address visual search in which
attention is drawn toward features of a target object we
are looking for. Some other models investigate the role of
scene context or gist to constrain locations that we look at. In
some cases, it is hard to precisely say where or what we are
looking at since a complex task governs eye fixations, for
example, in driving. While, in principle, task demands on
attention subsume the other two factors, in practice models
have been focusing on each of them separately. Scene layout
has also been proposed as a source of top-down attention
[80], [93] and is considered here together with scene context.

2.1.1 Object Features

There is a considerable amount of evidence for target-driven
attentional guidance in real-world search tasks [84], [85],
[23], [83]. In classical search tasks, target features are a
ubiquitous source of attention guidance [81], [82], [83].
Consider a search over simple search arrays in which the
target is a red item: Attention is rapidly directed toward the
red item in the scene. Compare this with a more complex
target object, such as a pedestrian in a natural scene, where,
although it is difficult to define the target, there are still some
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Fig. 3. Some applications of visual attention modeling.



features (e.g., upright form, round head, and straight body)
to direct visual attention [87].

The guided search theory [82] proposes that attention can
be biased toward targets of interest by modulating the
relative gains through which different features contribute to
attention. To return to our prior example, when looking for a
red object, a higher gain would be assigned to red color.
Navalpakkam and Itti [51] derived the optimal integration
of cues (channels of the BU saliency model [14]) for detection
of a target in terms of maximizing the signal-to-noise ratio of
the target versus background. In [50], a weighting function
based on a measure of object uniqueness was applied to each
map before summing up the maps for locating an object.
Butko and Movellan [161] modeled object search based on
the same principles of visual search as stated by Najemnik
and Geisler [20] in a partially observable framework for face
detection and tracking, but they did not apply it to explain
eye fixations while searching for a face. Borji et al. [89] used
evolutionary algorithms to search in a space of basic saliency
model parameters for finding the target. Elazary and Itti [90]
proposed a model where top-down attention can tune both
the preferred feature (e.g., a particular hue) and the tuning
width of feature detectors, giving rise to more flexible top-
down modulation compared to simply adjusting the gains of
fixed feature detectors. Last but not least are studies such as
[147], [215], [141] that derive a measure of saliency from
formulating search for a target object.

The aforementioned studies on the role of object features
in visual search are closely related to object detection
methods in computer vision. Some object detection ap-
proaches (e.g., Deformable Part Model by Felzenszwalb
et al. [206] and the Attentional Cascade of Viola and Jones
[220]) have high-detection accuracy for several objects such
as cars, persons, and faces. In contrast to cognitive models,
such approaches are often purely computational. Research
on how these two areas are related will likely yield mutual
benefits for both.

2.1.2 Scene Context

Following a brief presentation of an image (� 80 ms or less),
an observer is able to report essential characteristics of a
scene [176], [71]. This very rough representation of a scene,
so-called “gist,” does not contain many details about
individual objects, but can provide sufficient information
for coarse scene discrimination (e.g., indoor versus outdoor).
It is important to note that gist does not necessarily reveal the
semantic category of a scene. Chun and Jiang [91] have
shown that targets appearing in repeated configurations
relative to some background (distractor) objects were
detected more quickly [71]. Semantic associations among
objects in a scene (e.g., a computer is often placed on top of a
desk) or contextual cues have also been shown to play a
significant role in the guidance of eye movements [199], [84].

Several models for gist utilizing different types of low-
level features have been presented. Oliva and Torralba [93],
computed the magnitude spectrum of a Windowed Fourier
Transform over nonoverlapping windows in an image. They
then applied principal component analysis (PCA) and
independent component analysis (ICA) to reduce feature
dimensions. Renninger and Malik [94] applied Gabor filters
to an input image and then extracted 100 universal textons

selected from a training set using K-means clustering. Their
gist vector was a histogram of these universal textons.
Siagian and Itti [95] used biological center-surround features
from orientation, color, and intensity channels for modeling
gist. Torralba [92] used wavelet decomposition tuned to six
orientations and four scales. To extract gist, a vector is
computed by averaging each filter output over a 4� 4 grid.
Similarly, he applied PCA to the resultant 384D vectors to
derive a 80D gist vector. For a comparison of gist models,
please refer to [96], [95].

Gist representations have become increasingly popular in
computer vision since they provide rich global yet discrimi-
native information useful for many applications such as
search in the large-scale scene datasets available today [116],
limiting the search to locations likely to contain an object of
interest [92], [87], scene completion [205], and modeling top-
down attention [101], [218]). It can thus be seen that research
in this area has the potential to be very promising.

2.1.3 Task Demands

Task has a strong influence on deployment of attention [79].
It has been claimed that visual scenes are interpreted in a
need-based manner to serve task demands [97]. Hayhoe
and Ballard [99] showed that there is a strong relationship
between visual cognition and eye movements when dealing
with complex tasks. Subjects performing a visually guided
task were found to direct a majority of fixations toward
task-relevant locations [99]. It is often possible to infer the
algorithm a subject has in mind from the pattern of her eye
movements. For example, in a “block-copying” task where
subjects had to replicate an assemblage of elementary
building blocks, the observers’ algorithm for completing the
task was revealed by patterns of eye movements. Subjects
first selected a target block in the model to verify the block’s
position, then fixated the workspace to place the new block
in the corresponding location [216]. Other research has
studied high-level accounts of gaze behavior in natural
environments for tasks such as sandwich making, driving,
playing cricket, and walking (see Henderson and Holling-
worth [177], Rensink [178], Land and Hayhoe [135], and
Bailensen and Yee [179]). Sodhi et al. [180] studied how
distractors while driving such as adjusting the radio or
answering a phone affect eye movements.

The prevailing view is that bottom-up and top-down
attentions are combined to direct our attentional behavior.
An integration method should be able to explain when and
how to attend to a top-down visual item or skip it for the sake
of a bottom-up salient cue. Recently, [13] proposed a
Bayesian approach that explains the optimal integration of
reward as a top-down attentional cue and contrast or
orientation as a bottom-up cue in humans. Navalpakkam
and Itti [80] proposed a cognitive model for task-driven
attention constrained by the assumption that the algorithm
for solving the task was already available. Peters and Itti
[101] learned a top-down mapping from scene gist to eye
fixations in video game playing. Integration was simply
formulated as multiplication of BU and TD components.

2.2 Spatial versus Spatio-Temporal Models

In the real world, we are faced with visual information that
constantly changes due to egocentric movements or
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dynamics of the world. Visual selection is then dependent
on both current scene saliency as well as the accumulated
knowledge from previous time points. Therefore, an
attention model should be able to capture scene regions
that are important in a spatio-temporal manner.

To be detailed in Section 3, almost all attention models
include a spatial component. We can distinguish between
two types of modeling temporal information in saliency
modeling: 1) Some bottom-up models use the motion
channel to capture human fixations drawn to moving
stimuli [119]. More recently, several researchers have started
modeling temporal effects on bottom-up saliency (e.g., [143],
[104], [105]). 2) On the other hand, some models [109], [218],
[26], [25], [102] aim to capture the spatio-temporal aspects of
a task, for example, by learning sequences of attended
objects or actions as the task progresses. For instance, the
Attention Gate Model (AGM) [183], emphasizes the tempor-
al response properties of attention and quantitatively
describes the order and timing for humans attending to
sequential target stimuli. Previous information about
images, eye fixations, image content at fixations, physical
actions, as well as other sensory stimuli (e.g., auditory) can
be exploited to predict the next eye movement. Adding a
temporal dimension and the realism of natural interactive
tasks brings a number of complications in predicting gaze
targets within a computational model.

Suitable environments for modeling temporal aspects of
visual attention are dynamic and interactive setups such as
movies and games. Boiman and Irani [122] proposed an
approach for irregularity detection from videos by compar-
ing texture patches of actions with a learned dataset of
irregular actions. Temporal information was limited to the
stimulus level and did not include higher cognitive functions
such as the sequence of items processed at the focus of
attention or actions performed while playing the games.
Some methods derive static and dynamic saliency maps and
propose methods to fuse them (e.g., Li et al. [133] and Marat
et al. [49]). In [103], a spatio-temporal attention modeling
approach for videos is presented by combining motion
contrast derived from the homography between two images
and spatial contrast calculated from color histograms.
Virtual reality (VR) environments have also been used in
[99], [109], [97]. Some other models dealing with the temporal
dimension are [105], [108], [103]. We postpone the explana-
tion of these approaches to Section 3.

Factor f3 indicates whether a model uses spatial only or
spatio-temporal information for saliency estimation.

2.3 Overt versus Covert Attention

Attention can be differentiated based on its attribute as
“overt” versus “covert.” Overt attention is the process of
directing the fovea toward a stimulus, while covert attention
is mentally focusing onto one of several possible sensory
stimuli. An example of covert attention is staring at a person
who is talking but being aware of visual space outside the
central foveal vision. Another example is driving, where a
driver keeps his eyes on the road while simultaneously
covertly monitoring the status of signs and lights. The
current belief is that covert attention is a mechanism for
quickly scanning the field of view for an interesting location.
This covert shift is linked to eye movement circuitry that

sets up a saccade to that location (overt attention) [203].
However, this does not completely explain complex inter-
actions between covert and overt attention. For instance, it is
possible to attend to the right-hand corner field of view and

actively suppress eye movements to that location. Most of
these models detect regions that attract eye fixations and
few explain overt orientation of eyes along with head
movements. Lack of computational frameworks for covert
attention might be because behavioral mechanisms and
functions of covert attention are still unknown. Further, it is

not known yet how to measure covert attention.
Because of a great deal of overlap between overt and

covert attention and since they are not exclusive concepts,
saliency models could be considered as modeling both overt
and covert mechanisms. However, in-depth discussion of

this topic goes beyond the scope and merits of this paper
and demands special treatment elsewhere.

2.4 Space-Based versus Object-Based Models

There is no unique agreement on the unit of attentional
scale: Do we attend to spatial locations, to features, or to

objects? The majority of psychophysical and neurobiological
studies are about space-based attention (e.g., Posner’s
spatial cueing paradigm [98], [111]). There is also strong
evidence for feature-based attention (detecting an odd item
in one feature dimension [81] or tuning curve adjustments of

feature selective neurons [7]) and object-based attention
(selectivity attending to one of two objects, e.g., face versus
vase illusion [112], [113], [84]). The current belief is that
these theories are not mutually exclusive and visual
attention can be deployed to each of these candidate units,

implying there is no single unit of attention. Humans are
capable of attending to multiple (between four and five)
regions of interest simultaneously [114], [115].

In the context of modeling, a majority of models are space
based (see Fig. 7). It is also viable to think that humans work
and reason with objects (compared with rough pixel values)

as main building blocks of top-down attentional effects [84].
Some object-based attentional models have previously been
proposed, but they lack explanation for eye fixations
(e.g., Sun and Fisher [117], Borji et al. [88]). This shortcoming
makes verification of their plausibility difficult. For example,
the limitation of the Sun and Fisher [117] model is the use of

human segmentation of the images; it employs information
that may not be available in the preattentive stage (before the
objects in the image are recognized). Availability of object-
tagged image and video datasets (e.g., LabelMe Image and
Video [116], [188]) has made conducting effective research in

this direction possible. The link between object-based and
space-based models remains to be addressed in the future.
Feature-based models (e.g., [51], [83]) adjust properties of
some feature detectors in an attempt to make a target object
more salient in a distracting background. Because of the close

relationship between visual features and objects, in this
paper we categorize feature-based models under object-
based models as shown in Fig. 7.

The ninth factor, f9, indicates whether a model is space-
based or object-based—meaning that it needs to work with
objects instead of raw spatial locations.
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2.5 Features

Traditionally, according to feature integration theory (FIT)
and behavioral studies [81], [82], [118], three features have
been used in computational models of attention: intensity
(or intensity contrast, or luminance contrast), color, and
orientation. Intensity is usually implemented as the average
of three color channels (e.g., [14], [117]) and processed by
center-surround processes inspired by neural responses in
lateral geniculate nucleus (LGN) [10] and V1 cortex. Color is
implemented as red-green and blue-yellow channels in-
spired by color-opponent neurons in V1 cortex, or alter-
natively by using other color spaces such as HSV [50] or Lab
[160]. Orientation is often implemented as a convolution
with oriented Gabor filters or by the application of oriented
masks. Motion was first used in [119] and was implemented
by applying directional masks to the image (in the primate
brain motion is derived by the neurons at MT and MST
regions which are selective to direction of motion). Some
studies have also added specific features for directing
attention like skin hue [120], face [167], horizontal line
[93], wavelet [133], gist [92], [93], center-bias [123], curvature
[124], spatial resolution [125], optical flow [15], [126], flicker
[119], multiple superimposed orientations (crosses or
corners) [127], entropy [129], ellipses [128], symmetry
[136], texture contrast [131], above average saliency [131],
depth [130], and local center-surround contrast [189]. While
most models have used the features proposed by FIT [81],
some approaches have incorporated other features like
Difference of Gaussians (DOG) [144], [141] and features
derived from natural scenes by ICA and PCA algorithms
[92], [142]. For target search, some have employed the
structural description of objects such as the histogram of
local orientations [87], [199]. For detailed information
regarding important features in visual search and direction
of attention, please refer to [118], [81], [82]. Factor f10

categorizes models based on features they use.

2.6 Stimuli and Task Type

Visual stimulus can be first distinguished as being either
static (e.g., search arrays, still photographs; factor f4) or
dynamic (e.g., videos, games; factor f5). Video games are
interactive and highly dynamic since they do not generate
the same stimuli each run and have nearly natural render-
ings, though they still lag behind the statistics of natural
scenes and do not have the same noise distribution. The
setups here are more complex, more controversial, and more
computationally intensive. They also engage a large number
of cognitive behaviors.

The second distinction is between synthetic stimuli
(Gabor patches, search arrays, cartoons, virtual environ-
ments, games; factor f6) and natural stimuli (or approxima-
tions thereof, including photographs and videos of natural
scenes; factor f7). Since humans live in a dynamic world,
video and interactive environments provide a more faithful
representation of the task facing the visual system than static
images. Another interesting domain for studying attentional
behavior, agents in virtual reality setups, can be seen in the
work of Sprague and Ballard [109], who employed a realistic
human agent in VR and used reinforcement learning (RL) to
coordinate action selection and visual perception in a
sidewalk navigation task involving avoiding obstacles,
staying on the sidewalk, and collecting litter.

Factor f8 distinguishes among task types. The three most
widely explored tasks to date in the context of attention
modeling are: 1) free viewing tasks, in which subjects are
supposed to freely watch the stimuli (there is no task or
question here, but many internal cognitive tasks are usually
engaged), 2) visual search tasks, where subjects are asked to
find an odd item or a specific object in a natural scene, and
3) interactive tasks. In many real-world situations, tasks
such as driving and playing soccer engage subjects
tremendously. These complex tasks involve many subtasks,
such as visual search, object tracking, and focused and
divided attention.

2.7 Evaluation Measures

So we have a model that outputs a saliency map S, and we
have to quantitatively evaluate it by comparing it with eye
movement data (or click positions) G. How do you compare
these? We can think of them as probability distributions,
and use Kullback-Leibler (KL) or Percentile metrics to
measure distance between distributions. Or we can consider
S as a binary classifier and use signal detection theory
analysis (Area Under the ROC Curve (AUC) metric) to
assess the performance of this classifier. We can also think
of S and G as random variables and use Correlation
Coefficient (CC) or Normalized Scanpath Saliency (NSS) to
measure their statistical relationship. Another way is to
think of G as a sequence of eye fixations (scanpath) and
compare this sequence with the sequence of fixations
chosen by a saliency model (string-edit distance).

While in principle any model might be evaluated using
any measure, in Fig. 7 we list in factor f12 the measures which
were used by the authors of each model. In the rest, when we
use Estimated Saliency Maps (ESM S), we mean a saliency
map of a model, and by Ground-truth Saliency Map (GSMG)
we mean a map that is built by combining recorded eye
fixations from all subjects or combining tagged salient
regions by human subjects for each image.

From another perspective, evaluation measures for
attention modeling can be classified into three categories:
1) point-based, 2) region-based, and 3) subjective evaluation.
In point-based measures, salient points from ESMs are
compared to GSMs made by combining eye fixations.
Region-based measures are useful for evaluating attention
models over regional saliency datasets by comparing the
ESMs and labeled salient regions (GSM annotated by human
subjects) [133]. In [103], subjective scores on estimated
saliency maps were reported on three levels: “Good,”
“Acceptable,” and “Failed.” The problem with such sub-
jective evaluation is that it is difficult to extend it to large-
scale datasets.

In the following, we focus on explaining those metrics
with more consensus from the literature and provide
pointers for others (Percentile [134] and Fixation Saliency
Method (FS) [131], [182]) for reference.

Kullback-Leibler (KL) divergence. The KL divergence is
usually used to measure distance between two probability
distributions. In the context of saliency, it is used to
measure the distance between distributions of saliency
values at human versus random eye positions [145], [77].
Let ti ¼ 1 . . .N be N human saccades in the experimental
session. For a saliency model, ESM is sampled (or averaged
in a small vicinity) at the human saccade xi;human and at a
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random point xi;random. The saliency magnitude at the
sampled locations is then normalized to the range ½0; 1�.
The histogram of these values in q bins covering the range
½0; 1� across all saccades is then calculated. Hk and Rk are the
fraction of points in bin k for salient and random points.
Finally, the difference between these histograms with the
(symmetric) KL divergence (A.k.a relative entropy) is

KL ¼ 1

2

Xq
k¼1

Hklog
Hk

Rk
þRklog

Rk

Hk

� �
: ð1Þ

Models that can better predict human fixations exhibit
higher KL divergence since observers typically gaze toward
a minority of regions with the highest model responses
while avoiding the majority of regions with low model
responses. Advantages of KL divergence over other scoring
schemes [212], [131] are: 1) Other measures essentially
calculate the rightward shift of Hk histogram relative to the
Rk histogram, whereas KL is sensitive to any difference
between the histograms, and 2) KL is invariant to repar-
ameterizations such that applying any continuous mono-
tonic nonlinearity (e.g., S3;

ffiffiffiffi
S
p

; eS) to ESM values S does not
affect scoring. One disadvantage of the KL divergence is that
it does not have a well-defined upper bound—as the two
histograms become completely nonoverlapping, the KL
divergence approaches infinity.

Normalized scanpath saliency (NSS). The normalized
scanpath saliency [134], [131] is defined as the response
value at the human eye position, ðxh; yhÞ in a model’s ESM
that has been normalized to have zero mean and unit
standard deviation NSS ¼ 1

�s
ðSðxh; yhÞ � �SÞ. Similarly to

the percentile measure, NSS is computed once for each
saccade, and subsequently the mean and standard error are
computed across the set of NSS scores. NSS ¼ 1 indicates
that the subjects’ eye positions fall in a region whose
predicted density is one standard deviation above average.
Meanwhile, NSS � 0 indicates that the model performs no
better than picking a random position on the map. Unlike
KL and percentile, NSS is not invariant to reparameteriza-
tions. Please see [134] for an illustration of NSS calculation.

Area under curve (AUC). AUC is the area under Receiver
Operating Characteristic (ROC) [195] curve. As the most
popular measure in the community, ROC is used for the
evaluation of a binary classifier system with a variable
threshold (usually used to classify between two methods like
saliency versus random). Using this measure, the model’s
ESM is treated as a binary classifier on every pixel in the
image; pixels with larger saliency values than a threshold are
classified as fixated while the rest of the pixels are classified
as nonfixated [144], [167]. Human fixations are then used as
ground truth. By varying the threshold, the ROC curve is
drawn as the false positive rate versus true positive rate, and the
area under this curve indicates how well the saliency map
predicts actual human eye fixations. Perfect prediction
corresponds to a score of 1. This measure has the desired
characteristic of transformation invariance in that the area
under the ROC curve does not change when applying any
monotonically increasing function to the saliency measure.
Please see [192] for an illustration of ROC calculation.

Linear correlation coefficient (CC). This measure is
widely used to compare the relationship between two
images for applications such as image registration, object
recognition, and disparity measurement [196], [197]. The

linear correlation coefficient measures the strength of a
linear relationship between two variables

CCðG; SÞ ¼
P

x;yðGðx; yÞ � �GÞ:ðSðx; yÞ � �SÞffiffiffiffiffiffiffiffiffiffiffiffi
�2
G:�

2
S

q ; ð2Þ

where G and S represent the GSM (fixation map, a map
with 1s at fixation locations, usually convolved with a
Gaussian) and the ESM, respectively. � and �2 are the mean
and the variance of the values in these maps. An interesting
advantage of CC is the capacity to compare two variables by
providing a single scalar value between �1 and þ1. When
the correlation is close to þ1=� 1 there is almost a perfectly
linear relationship between the two variables.

String editing distance. To compare the regions of
interest selected by a saliency model (mROI) to human
regions of interest (hROI) using this measure, saliency maps
and human eye movements are first clustered to some
regions. Then ROIs are ordered by the value assigned by the
saliency algorithm or temporal ordering of human fixations
in the scanpath. The results are strings of ordered points
such as: stringh ¼ 00abcfeffgdc00 and strings ¼ 00afbffdcdf 00.
The string editing similarity index Ss is then defined by an
optimization algorithm with unit cost assigned to the three
different operations: deletion, insertion, and substitution.
Finally, the sequential similarity between the two strings
is defined as similarity ¼ 1� Ss

jstringsj . For our example
strings, the above similarity is 1� 6=9 ¼ 0:34 (see [198],
[127] for more information on string editing distance).
Please see [127] for an illustration of this score.

2.8 Data Sets

There are several eye movement datasets of still images (for
studying static attention) and videos (for studying dynamic
attention). In Fig. 7, we list as factor f13 some available
datasets. Here we only mention those datasets that are
mainly used for evaluation and comparison of attention
models, though there are many other works that have
gathered special-purpose data (e.g., for driving, sandwich
making, and block copying [135]).

Figs. 4 and 5 show summaries of image and video eye
movements datasets (for a few, labeled salient regions are
available). Researchers have also used mouse tracking to
estimate attention. Although this type of data is noisier, some
early results show a reasonably good ground-truth approx-
imation. For instance, Scheier and Egner [61] showed that
mouse movement patterns are close to eye-tracking patterns.
A web-based mouse tracking application was set up at the
TCTS laboratory [110]. Other potentially useful datasets
(which are not eye-movement datasets) are tagged-object
datasets like PASCAL and Video LabelMe. Some attentional
works have used this type of data (e.g., [116]).

3 ATTENTION MODELS

In this section, models are explained based on their
mechanism to obtain saliency. Some models fall into more
than one category. In the rest of this review, we focus only on
those models which have been implemented in software and
can process arbitrary digital images and return correspond-
ing saliency maps. Models are introduced in chronological
order. Note that here we are more interested in models of
saliency instead of those approaches that detect and segment
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the most salient region or object in a scene. While these
models use a saliency operator at the initial stage, their main
goal is not to explain attentional behavior. However, some
methods have further inspired subsequent saliency models.
Here, we reserve the term “saliency detection” to refer to
such approaches.

3.1 Cognitive Models (C)

Almost all attentional models are directly or indirectly
inspired by cognitive concepts. The ones that have more
bindings to psychological or neurophysiological findings
are described in this section.

Itti et al.’s basic model [14] uses three feature channels
color, intensity, and orientation. This model has been the
basis of later models and the standard benchmark for

comparison. It has been shown to correlate with human
eye movements in free-viewing tasks [131], [184]. An input
image is subsampled into a Gaussian pyramid and each
pyramid level � is decomposed into channels for Red (R),
Green (G), Blue (B), Yellow (Y ), Intensity (I), and local
orientations (O�). From these channels, center-surround
“feature maps” fl for different features l are constructed
and normalized. In each channel, maps are summed across
scale and normalized again:

fl ¼ N
X4

c¼2

Xcþ4

s¼cþ3

fl;c;s

 !
; 8l 2 LI [ LC [ LO;

LI ¼ fIg; LC ¼ fRG;BY g; LO ¼ f0�; 45�; 90�; 135�g:
ð3Þ
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These maps are linearly summed and normalized once

more to yield the “conspicuity maps”:

CI ¼ fI; CC ¼ N
X
l2LC

fl

 !
; CO ¼ N

X
l2LO

fl

 !
: ð4Þ

Finally, conspicuity maps are linearly combined once

more to generate the saliency map S ¼ 1
3

P
k2fI;C;Og Ck.

There are at least four implementations of this model:

iNVT by Itti [14], Saliency Toolbox (STB) by Walther [35],

VOCUS by Frintrop [50], and a Matlab code by Harel [121].

In [119], this model was extended by adding motion and

flicker contrasts to video domain. Zhaoping Li [170],

introduced a neural implementation for saliency map in

the V1 area that can also account for search difficulty in pop-

out and conjunction search tasks.
Le Meur et al. [41] proposed an approach for bottom-up

saliency based on the structure of the human visual system

(HVS). Contrast sensitivity functions, perceptual decom-
position, visual masking, and center-surround interactions
are some of the features implemented in this model. Later,
Le Meur et al. [138] extended this model to spatio-temporal
domain by fusing achromatic, chromatic, and temporal
information. In this new model, early visual features are
extracted from the visual input into several separate parallel
channels. A feature map is obtained for each channel, then a
unique saliency map is built from the combination of those
channels. The major novelty proposed here lies in the
inclusion of the temporal dimension as well as the addition
of a coherent normalization scheme.

Navalpakkam and Itti [51] modeled visual search as a
top-down gain optimization problem by maximizing the
signal-to-noise ratio (SNR) of the target versus distractors
instead of learning explicit fusion functions. That is, they
learned linear weights for feature combination by maximiz-
ing the ratio between target saliency and distractor saliency.
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Kootstra et al. [136] developed three symmetry-saliency
operators and compared them with human eye tracking
data. Their method is based on the isotropic symmetry and
radial symmetry operators of Reisfeld et al. [137] and the
color symmetry of Heidemann [64]. Kootstra extended
these operators to multiscale symmetry-saliency models.
The authors showed that their model performs significantly
better on symmetric stimuli compared to the Itti et al. [14].

Marat et al. [104] proposed a bottom-up approach for
spatio-temporal saliency prediction in video stimuli. This
model extracts two signals from the video stream corre-
sponding to parvocellular and magnocellular cells of the
retina. From these signals, two static and dynamic saliency
maps are derived and fused into a spatio-temporal map.
Prediction results of this model were better for the first few
frames of each clip snippet.

Murray et al. [200] introduced a model based on a low-
level vision system in three steps: 1) Visual stimuli are
processed according to what is known about the early human
visual pathway (color-opponent and luminance channels,
followed by a multiscale decomposition), 2) a simulation of
the inhibition mechanisms present in cells of the visual cortex
normalize their response to stimulus contrast, and 3) infor-
mation is integrated at multiple scales by performing an
inverse wavelet transform directly on weights computed
from the nonlinearization of the cortical outputs.

Cognitive models have the advantage of expanding our
view of biological underpinnings of visual attention. This
further helps understanding computational principles or
neural mechanisms of this process as well as other complex
dependent processes such as object recognition.

3.2 Bayesian Models (B)

Bayesian modeling is used for combining sensory evidence
with prior constraints. In these models, prior knowledge
(e.g., scene context or gist) and sensory information
(e.g., target features) are probabilistically combined accord-
ing to Bayes’ rule (e.g., to detect an object of interest).

Torralba [92] and Oliva et al. [140] proposed a Bayesian

framework for visual search tasks. Bottom-up saliency is

derived from their formulation as 1
pðf jfGÞ , where fG repre-

sents a global feature that summarizes the probability

density of presence of the target object in the scene, based

on analysis of the scene gist. Following the same direction,

Ehinger et al. [87] linearly integrated three components

(bottom-up saliency, gist, and object features) for explaining

eye movements in looking for people in a database of about

900 natural scenes.
Itti and Baldi [145] defined surprising stimuli as those

which significantly change beliefs of an observer. This is
modeled in a Bayesian framework by computing the KL
divergence between posterior and prior beliefs. This notion is
applied both over space (surprise arises when observing
image features at one visual location affects the observer’s
beliefs derived from neighboring locations) and time
(surprise then arises when observing image features at one
point in time affects beliefs established from previous
observations).

Zhang et al. [141] proposed a definition of saliency known
as SUN, Saliency Using Natural statistics, by considering

what the visual system is trying to optimize when directing
attention. The resulting model is a Bayesian framework in
which bottom-up saliency emerges naturally as the self-
information of visual features, and overall saliency (incor-
porating top-down information with bottom-up saliency)
emerges as the pointwise mutual information between local
image features and the search target’s features when
searching for a target. Since this model provides a general
framework for many models, we describe it in more detail.

SUN’s formula for bottom-up saliency is similar to the
work of Oliva et al. [140], Torralba [92], and Bruce and
Tsotsos [144] in that they are all based on the notion of self-
information (local information). However, differences be-
tween current image statistics and natural statistics lead to
radically different kinds of self-information. Briefly, the
motivating factor for using self-information with the
statistics of the current image is that a foreground object
is likely to have features that are distinct from those of the
background. Since targets are observed less frequently than
background during an organism’s lifetime, rare features are
more likely to indicate targets.

Let Z denote a pixel in the image, C whether or not a
point belongs to a target class, and L the location of a point
(pixel coordinates). Also, let F be the visual features of a
point. Having these, the saliency sz of a point z is defined as
P ðC ¼ 1jF ¼ fz; L ¼ lzÞ, where fz and lz are the feature and
location of z. Using the Bayes rule and assuming that
features and locations are independent and conditionally
independent given C ¼ 1, then the saliency of a point is

log sz ¼� logP ðF ¼ fzÞ þ logP ðF ¼ fzjC ¼ 1Þ
þ logP ðC ¼ 1jL ¼ lzÞ:

ð5Þ

The first term at the right side is the self-information
(bottom-up saliency) and it depends only on the visual
features observed at the point Z. The second term on the
right is the log-likelihood, which favors feature values that
are consistent with prior knowledge of the target (e.g., if
the target is known to be green, the log-likelihood will take
larger values for a green point than for a blue point). The
third term is the location prior which captures top-down
knowledge of the target’s location and is independent of
visual features of the object. For example, this term may
capture knowledge about some target being often found in
the top-left quadrant of an image.

Zhang et al. [142] extended the SUN model to dynamic
scenes by introducing temporal filters (Difference of Ex-
ponentials) and fitting a generalized Gaussian distribution to
the estimated distribution for each filter response. This was
implemented by first applying a bank of spatio-temporal
filters to each video frame, then for any video, the model
calculates its features and estimates the bottom-up saliency
for each point. The filters were designed to be both efficient
and similar to the human visual system. The probability
distributions of these spatio-temporal features were learned
from a set of videos from natural environments.

Li et al. [133] presented a Bayesian multitask learning
framework for visual attention in video. Bottom-up saliency
modeled by multiscale wavelet decomposition was fused
with different top-down components trained by a multitask
learning algorithm. The goal was to learn task-related
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“stimulus-to-saliency” functions, similar to [101]. This
model also learns different strategies for fusing bottom-up
and top-down maps to obtain the final attention map.

Boccignone [55] addressed joint segmentation and sal-
iency computation in dynamic scenes using a mixture of
Dirichlet processes as a basis for object-based visual atten-
tion. He also proposed an approach for partitioning a video
into shots based on a foveated representation of a video.

A key benefit of Bayesian models is their ability to learn
from data and their ability to unify many factors in a
principled manor. Bayesian models can, for example, take
advantage of the statistics of natural scenes or other features
that attract attention.

3.3 Decision Theoretic Models (D)

The decision-theoretic interpretation states that perceptual
systems evolve to produce decisions about the states of the
surrounding environment that are optimal in a decision
theoretic sense (e.g., minimum probability of error). The
overarching point is that visual attention should be driven
by optimality with respect to the end task.

Gao and Vasconcelos [146] argued that for recognition,
salient features are those that best distinguish a class of
interest from all other visual classes. They then defined top-
down attention as classification with minimal expected error.
Specifically, given some set of features F ¼ fF1; . . . ; Fd}, a
location l, and a class label C with Cl ¼ 0 corresponding to
samples drawn from the surround region and Cl ¼ 1
corresponding to samples drawn from a smaller central
region centered at l, the judgment of saliency then corre-
sponds to a measure of mutual information, computed as
IðF;CÞ ¼

Pd
i¼1 IðFi; CÞ. They used DOG and Gabor filters,

measuring the saliency of a point as the KL divergence
between the histogram of filter responses at the point and the
histogram of filter responses in the surrounding region. In
[185], the same authors used this framework for bottom-up
saliency by combining it with center-surround image
processing. They also incorporated motion features (optical
flow) between pairs of consecutive images to their model to
account for dynamic stimuli. They adopted a dynamic
texture model using a Kalman filter in order to capture the
motion patterns in dynamic scenes.

Here we show the Bayesian computation of (5) is a
special case of the Decision theoretic model. Saliency
computation in the entire decision theoretic approach boils
down to calculating the target posterior probability P ðC ¼
1jF ¼ fzÞ (the output of their simple cells [215]). By
applying Bayesian rule, we have

P ðCl ¼ 1jFl ¼ fzÞ ¼ � log
P ðFl ¼ fzjCl ¼ 1ÞP ðCl ¼ 1Þ
P ðFl ¼ fzjCl ¼ 0ÞP ðCl ¼ 0Þ

� �
;

ð6Þ

where �ðxÞ ¼ ð1þ e�xÞ�1 is the sigmoid function. The log
likelihood ratio inside the sigmoid can be trivially written
(using the independence assumptions of [141]) as

�logP ðF ¼ fzjC ¼ 0Þ þ logP ðF ¼ fzjC ¼ 1Þ

þ P ðC ¼ 1jL ¼ lzÞ
P ðC ¼ 0jL ¼ lzÞ

; ð7Þ

which is the same as (5) under the following assumptions:
1 ) P ðF ¼ fzjC ¼ 0Þ ¼ P ðF ¼ fzÞ a n d 2 ) P ðC ¼ 0jL ¼
lzÞ ¼ K, for some constant K. Assumption 1 states that
the feature distribution in the absence of the target is the
same as the feature distribution for the set of natural
images. Since the overwhelming majority of natural images
do not have the target, this is really not much of an
assumption. The two distributions are virtually identical.
Assumption 2 simply states that the absence of the target is
equally likely in all image locations. This, again, seems like
a very mild assumption.

Because of above connections, both Decision theoretic
and Bayesian approaches have a biologically plausible
implementation, which has been extensively discussed by
Vasconcelos et al. [223], [147], [215]. The Bayesian methods
can be mapped to a network with a layer of simple cells and
the decision theoretic models to a network with a layer of
simple and a layer of complex cells. The simple cell layer in
fact can also implement AIM [144] and Rosenholtz [191]
models in Section 3.4, Elazary and Itti [90], and probably
some more. So, while these models have not been directly
derived from biology, they can be implemented as
cognitive models.

Gao et al. [147] used discriminant saliency model for
visual recognition and showed good performance on
PASCAL 2006 dataset.

Mahadevan and Vasconcelos [105] presented an unsu-
pervised algorithm for spatio-temporal saliency based on
biological mechanisms of motion-based perceptual group-
ing. It is an extension of the discriminant saliency model
[146]. Combining center-surround saliency with the power
of dynamic textures made their model applicable to highly
dynamic backgrounds and moving cameras.

In Gu et al. [148], an activation map was first computed
by extracting primary visual features and detecting mean-
ingful objects from the scene. An adaptable retinal filter was
applied to this map to generate “regions of interest” (ROIs
whose locations correspond to these activation peaks and
whose sizes were estimated by an iterative adjustment
algorithm). The focus of attention was moved serially over
the detected ROIs by a decision theoretic mechanism. The
generated sequence of eye fixations was determined from a
perceptual benefit function based on perceptual costs and
rewards, while the time distribution of different ROIs was
estimated by memory learning and decaying.

Decision theoretic models have been very successful in
computer vision applications such as classification while
achieving high accuracy in fixation prediction.

3.4 Information Theoretic Models (I)

These models are based on the premise that localized
saliency computation serves to maximize information
sampled from one’s environment. They deal with selecting
the most informative parts of a scene and discarding the rest.

Rosenholtz [191], [193] designed a model of visual search
which could also be used for saliency prediction over an
image in free-viewing. First, features of each point, pi, are
derived in an appropriate uniform feature space (e.g.,
uniform color space). Then, from the distribution of the
features, mean, �, and covariance,

P
, of distractor features

are computed. The model then defines target saliency as the
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Mahalanobis distance, �, between the target feature vector,
T , and the mean of the distractor distribution, where
�2 ¼ ðT � �Þ

0P�1ðT � �Þ. This model is similar to [92],
[141], [160] in the sense that it estimates 1=P ðxÞ (rarity of a
feature or self-information) for each image location x. This
model also underlies a clutter measure of natural scenes
(same authors [189]). An online version of this model is
available at [194].

Bruce and Tsotsos [144] proposed the AIM model
(Attention based on Information Maximization) which uses
Shannon’s self-information measure for calculating saliency
of image regions. Saliency of a local image region is the
information that region conveys relative to its surround-
ings. Information of a visual feature X is IðXÞ ¼ �log pðXÞ,
which is inversely proportional to the likelihood of
observing X (i.e., pðXÞ). To estimate IðXÞ, the probability
density function pðXÞmust be estimated. Over RGB images,
considering a local patch of size M �N , X has the high
dimensionality of 3�M �N . To make the estimation of
pðXÞ feasible, they used ICA to reduce the dimensionality of
the problem to estimating 3�M �N 1D probability
density functions. To find the bases of ICA, they used a
large sample of RGB patches drawn from natural scenes.
For a given image, the 1D pdf for each ICA basis vector is
first computed using nonparametric density estimation.
Then, at each image location, the probability of observing
the RGB values in a local image patch is the product of the
corresponding ICA basis likelihoods for that patch.

Hou and Zhang [151] introduced the Incremental Coding
Length (ICL) approach to measure the respective entropy
gain of each feature. The goal was to maximize the entropy
of the sample visual features. By selecting features with
large coding length increments, the computational system
can achieve attention selectivity in both dynamic and static
scenes. They proposed ICL as a principle by which energy
is distributed in the attention system. In this principle, the
salient visual cues correspond to unexpected features.
According to the definition of ICL, these features may elicit
entropy gain in the perception state and are therefore
assigned high energy.

Mancas [152] hypothesized that attention is attracted by
minority features in an image. The basic operation is to
count similar image areas by analyzing histograms, which
makes this approach closely related to Shannon’s self-
information measure. Instead of comparing only isolated
pixels it takes into account the spatial relationships of areas
surrounding each pixel (e.g., mean and variance). Two types
of rarity models are introduced: global and local. While
global rarity considers uniqueness of features over entire
image, some image details may still appear salient due to
local contrast or rarity. Similarly to the center-surround
ideas of [14], they used a multiscale approach for the
computation of local contrast.

Seo and Milanfar [108] proposed the Saliency prediction
by Self-Resemblance (SDSR) approach. First, a local image
structure at each pixel is represented by a matrix of local
descriptors (local regression kernels) which are robust in
the presence of noise and image distortions. Then, matrix
cosine similarity (a generalization of cosine similarity) is
employed to measure the resemblance of each pixel to its

surroundings. For each pixel, the resulting saliency map
represents the statistical likelihood of its feature matrix Fi
given the feature matrices Fj of the surrounding pixels:

si ¼
1PN

j¼1 exp
�1þ�ðFi;FjÞ

�2

� � ; ð8Þ

where �ðFi; FjÞ is the matrix cosine similarity between two
feature maps Fi and Fj, and � is a local weighting
parameter. The columns of local feature matrices represent
the output of local steering kernels, which are modeled as

Kðxl � xiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCiÞ

p
h2

exp
ðxl � xiÞTClðxl � xiÞ

�2h2

( )
; ð9Þ

where l ¼ 1; . . . ; P , P is the number of the pixels in a local
window, h is a global smoothing parameter, and the matrix
Cl is a covariance matrix estimated from a collection of
spatial gradient vectors within the local analysis window
around a sampling position xl ¼ ½x1; x2�Tl .

Li et al. [171] proposed a visual saliency model based on
conditional entropy for both image and video. Saliency
was defined as the minimum uncertainty of a local region
given its surrounding area (namely, the minimum condi-
tional entropy) when perceptional distortion is considered.
They approximated the conditional entropy by the lossy
coding length of multivariate Gaussian data. The final
saliency map was accumulated by pixels and further
segmented to detect the proto objects. Yan et al. [186]
proposed a newer version of this model by adding a
multiresolution scheme to it.

Wang et al. [201] introduced a model to simulate human
saccadic scanpaths on natural images by integrating three
related factors guiding eye movements sequentially: 1) re-
ference sensory responses, 2) fovea-periphery resolution
discrepancy, and 3) visual working memory. They compute
three multiband filter response maps for each eye movement
which are then combined into multiband residual filter
response maps. Finally, they compute residual perceptual
information (RPI) at each location. The next fixation is
selected as the location with the maximal RPI value.

3.5 Graphical Models (G)

A graphical model is a probabilistic framework in which a
graph denotes the conditional independence structure
between random variables. Attention models in this
category treat eye movements as a time series. Since there
are hidden variables influencing the generation of eye
movements, approaches like Hidden Markov Models
(HMM), Dynamic Bayesian Networks (DBN), and Condi-
tional Random Fields (CRF) have been incorporated.

Salah et al. [52] proposed an approach for attention and
applied it to handwritten digit and face recognition. In the
first step (Attentive level), a bottom-up saliency map is
constructed using simple features. In the intermediate level,
“what” and “where” information is extracted by dividing
the image space into uniform regions and training a single-
layer perceptron over each region in a supervised manner.
Eventually this information is combined at the associative
level with a discrete Observable Markov Model (OMM).
Regions visited by a fovea are treated as states of the OMM.
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An inhibition of return allows the fovea to focus on the
other positions in the image.

Liu et al. [43] proposed a set of novel features and adopted
a Conditional Random Field to combine these features for
salient object detection on their regional saliency dataset.
Later, they extended this approach to detect salient object
sequences in videos [48]. They presented a supervised
approach for salient object detection, formulated as an
image segmentation problem using a set of local, regional,
and global salient object features. A CRF was trained and
evaluated on a large image database containing 20,000
labeled images by multiple users.

Harel et al. [121] introduced Graph-Based Visual
Saliency (GBVS). They extract feature maps at multiple
spatial scales. A scale-space pyramid is first derived from
image features: intensity, color, and orientation (similar to
Itti et al. [14]). Then, a fully connected graph over all grid
locations of each feature map is built. Weights between two
nodes are assigned proportional to the similarity of feature
values and their spatial distance. The dissimilarity between
two positions ði; jÞ and ðp; qÞ in the feature map, with
respective feature values Mði; jÞ and Mðp; qÞ, is defined as

dðði; jÞ k ðp; qÞÞ ¼ log
Mði; jÞ
Mðp; qÞ

����
����: ð10Þ

The directed edge from node ði; jÞ to node ðp; qÞ is then
assigned a weight proportional to their dissimilarity and
their distance on lattice M:

wðði; jÞ; ðp; qÞÞ ¼ dðði; jÞ k ðp; qÞÞ:F ði� p; j� qÞ

where F ða; bÞ ¼ exp � a
2 þ b2

2�2

� �
:

ð11Þ

The resulting graphs are treated as Markov chains by
normalizing the weights of the outbound edges of each node
to 1 and by defining an equivalence relation between nodes
and states, as well as between edge weights and transition
probabilities. Their equilibrium distribution is adopted as
the activation and saliency maps. In the equilibrium
distribution, nodes that are highly dissimilar to surrounding
nodes will be assigned large values. The activation maps are
finally normalized to emphasize conspicuous detail, and
then combined into a single overall map.

Avraham and Lindenbaum, [153] introduced the
E-saliency (Extended saliency) model by utilizing a graphi-
cal model approximation to extend their static saliency
model based on self-similarities. The algorithm is essen-
tially a method for estimating the probability that a
candidate is a target. The E-Saliency algorithm is as follows:

1. Candidates are selected using some segmentation
process.

2. The preference for a small number of expected
targets (and possibly other preferences) is used to set
the initial (prior) probability for each candidate to be
a target.

3. The visual similarity is measured between every two
candidates to infer the correlations between the
corresponding labels.

4. Label dependencies are represented using a Baye-
sian network.

5. The N most likely joint label assignments are found.
6. And, the saliency of each candidate is deduced by

marginalization.

Pang et al. [102] presented a stochastic model of visual
attention based on the signal detection theory account of
visual search and attention [155]. Human visual attention
is not deterministic and people may attend to different
locations on the same visual input at the same time. They
proposed a dynamic Bayesian network to predict where
humans typically focus in a video scene. Their model
consists of four layers. In the first layer, a saliency map
(Itti’s) is derived that shows the average saliency response
in each location in a video frame. Then in the second layer,
a stochastic saliency map converts the saliency map into
natural human responses through a Gaussian state space
model. As to the third layer, an eye movement pattern
controls the degree of overt shifts of attention through a
Hidden Markov Model and, finally, an eye focusing
density map predicts positions that people likely pay
attention to based on the stochastic saliency map and eye
movement patterns. They reported a significant improve-
ment in eye fixation detection over previous efforts at the
cost of decreased speed.

Chikkerur et al. [154] proposed a model similar to the
model of Rao [217] based on assumptions that the goal of
the visual system is to know what is where and that
visual processing happens sequentially. In this model,
attention emerges as the inference in a Bayesian graphical
model which implements interactions between ventral and
dorsal areas. This model is able to explain some
physiological data (neural responses in ventral stream
(V4 and PIT) and dorsal stream (LIP and FEF)) as well as
psychophysical data (human fixations in free viewing and
search tasks).

Graphical models could be seen as a generalized version
of Bayesian models. This allows them to model more
complex attention mechanisms over space and time which
results in good prediction power (e.g., [121]). The draw-
backs lie in model complexity, especially when it comes to
training and readability.

3.6 Spectral Analysis Models (S)

Instead of processing an image in the spatial domain, models
in this category derive saliency in the frequency domain.

Hou and Zhang [150] developed the spectral residual
saliency model based on the idea that similarities imply
redundancies. They propose that statistical singularities
in the spectrum may be responsible for anomalous regions
in the image, where proto objects become conspicuous.
Given an input image IðxÞ, amplitude AðfÞ, and phase PðfÞ
are derived. Then, the log spectrum LðfÞ is computed from
the down-sampled image. From LðfÞ, the spectral residual
RðfÞ can be obtained by multiplying LðfÞwith hnðfÞ, which
is an n� n local average filter, and subtracting the result
from itself. Using the inverse Fourier transform, they
construct the saliency map in the spatial domain. The value
of each point in the saliency map is then squared to indicate
the estimation error. Finally, they smooth the saliency map
with a Gaussian filter gðxÞ for better visual effect. The entire
process is summarized below:
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AðfÞ ¼ R
�
F½IðxÞ�

�
;

PðfÞ ¼ ’
�
F½IðxÞ�

�
;

LðfÞ ¼ log
�
AðfÞ

	
;

RðfÞ ¼ LðfÞ � hnðfÞ � LðfÞ;
SðxÞ ¼ gðxÞ � F�1



exp
�
RðfÞ þ PðfÞ

	�
;2

ð12Þ

where F and F�1 denote the Fourier and Inverse Fourier
Transforms, respectively. P denotes the phase spectrum of
the image and is preserved during the process. Using a
threshold they find salient regions called proto objects for
fixation prediction. As a testament to its conceptual clarity,
residual saliency could be computed in five lines of Matlab
code [187]. But note that these lines exploit complex
functions that have long implementations (e.g., F and F�1).

Guo et al. [156] showed that incorporating the phase
spectrum of the Fourier transform instead of the amplitude
transform leads to better saliency predictions. Later, Guo
and Zhang [157] proposed a quaternion representation of
an image combining intensity, color, and motion features.
They called this method “phase spectrum of quaternion
Fourier transform (PQFT)” for computing spatio-temporal
saliency and applied it to videos. Taking advantage of the
multiresolution representation of the wavelet, they also
proposed a foveation approach to improve coding effi-
ciency in video compression.

Achanta et al. [158] implemented a frequency-tuned
approach to salient region detection using low-level features
of color and luminance. First, the input RGB image I is
transformed to CIE Lab color space. Then, the scalar saliency
map S for image I is computed as Sðx; yÞ ¼ kI� � I!hck,
where I� is the arithmetic mean image feature vector, I!hc is a
Gaussian blurred version of the original image using a 5� 5
separable binomial kernel, k:k is the L2 norm (euclidean
distance), and x; y are the pixel coordinates.

Bian and Zhang [159] proposed the Spectral Whitening
(SW) model based on the idea that visual system bypasses
the redundant (frequently occurring, noninformative) fea-
tures while responding to rare (informative) features. They
used spectral whitening as a normalization procedure in the
construction of a map that only represents salient features
and localized motion while effectively suppressing redun-
dant (noninformative) background information and ego-
motion. First, a grayscale input image Iðx; yÞ is low-pass
filtered and subsampled. Next, a windowed Fourier trans-
form of the image is calculated as: fðu; vÞ ¼ F ½wðIðx; yÞÞ�,
where F denotes the Fourier transform and w is a
windowing function. The normalized (flattened or whi-
tened) spectral response ðnðu; vÞ ¼ fðu; vÞ=kfðu; vÞkÞ is
transformed into the spatial domain through the inverse
Fourier transform (F�1) squared to emphasize salient
regions. Finally, it is convolved with a Gaussian low-pass
filter gðu; vÞ to model the spatial pooling operation of
complex cells: Sðx; yÞ ¼ gðu; vÞ � kF�1½nðu; vÞ�k2.

Spectral analysis models are simple to explain and
implement. While still very successful, biological plausi-
bility of these models is not very clear.

3.7 Pattern Classification Models (P)

Machine learning approaches have also been used in
modeling visual attention by learning models from recorded

eye-fixations or labeled salient regions. Typically, attention
control works as a “stimuli-saliency” function to select,
reweight, and integrate the input visual stimuli. Note that
these models may not be purely bottom-up since they use
features that guide top-down attention (e.g., faces or text).

Kienzle et al. [165] introduced a nonparametric bottom-
up approach for learning attention directly from human eye
tracking data. The model consists of a nonlinear mapping
from an image patch to a real value, trained to yield positive
outputs on fixations and negative outputs on randomly
selected image patches. The saliency function is determined
by its maximization of prediction performance on the
observed data. A support vector machine (SVM) was
trained to determine the saliency using the local intensities.
For videos, they proposed to learn a set of temporal filters
from eye-fixations to find the interesting locations.

The advantage of this approach is that it does not need
a priori assumptions about features that contribute to
salience or how these features are combined to a single
salience map. Also, this method produces center-surround
operators analogous to receptive fields of neurons in early
visual areas (LGN and V1).

Peters and Itti [101] trained a simple regression classifier
to capture the task-dependent association between a given
scene (summarized by its gist) and preferred locations to
gaze at while human subjects were playing video games.
During testing of the model, the gist of a new scene is
computed for each video frame and is used to compute the
top-down map. They showed that a pointwise multiplication
of bottom-up saliency with the top-down map learned in this
way results in higher prediction performance.

Judd et al. [166], similarly to Kienzle et al. [165], trained a
linear SVM from human fixation data using a set of low, mid,
and high-level image features to define salient locations.
Feature vectors from fixated locations and random locations,
were assigned þ1 and �1 class labels, respectively. Their
results over a dataset of 1,003 images observed by 15 subjects
(gathered by the same authors) show that combining all the
aforementioned features plus distance from image center
produces the best-eye fixation prediction performance.

As available eye movement data increases and with a
wider spread of eye tracking devices supporting gathering
mass data, these models are becoming popular. This
however, makes models data-dependent, thus influencing
fair model comparison, slow, and to some extent, black-box.

3.8 Other Models (O)

Some other attention models that do not fit into our
categorization are discussed below.

Ramstrom and Christiansen [168] introduced a saliency
measure using multiple cues based on game theory concepts
inspired by the selective tuning approach of Tsotsos et al.
[15]. Feature maps are integrated using a scale pyramid
where the nodes are subject to trading on a market and the
outcome of the trading represents the saliency. They use the
spot-light mechanism for finding regions of interest.

Rao et al. [23] proposed a template matching type of
model by sliding a template of the desired target to every
location in the image and at each location compute salience
as some similarity measure between template and local
image patch.
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Ma et al. [33] proposed a user attention model to video
contents by incorporating top-down factors into the classical
bottom-up framework by extracting semantic cues (e.g., face,
speech, and camera motion). First, the video sequence is
decomposed into primary elements of basic channels. Next,
a set of attention modeling methods generate attention maps
separately. Finally, fusion schemes are employed to obtain a
comprehensive attention map which may be used as
importance ranking or the index of video content. They
applied this model to video summarization.

Rosin [169] proposed an edge-based scheme (EDS) for
saliency detection over grayscale images. First, a Sobel edge
detector is applied to the input image. Second, the graylevel
edge image is thresholded at multiple levels to produce a
set of binary edge images. Third, a distance transform is
applied to each of the binary edge images to propagate the
edge information. Finally, the gray-level distance trans-
forms are summed to obtain the overall saliency map. This
approach has not been successful over color images.

Garcia-Diaz et al. [160] introduced the Adaptive Whiten-
ing Saliency (AWS) model by adopting the variability in local
energy as a measure of saliency estimation. The input image
is transformed to Lab color space. The luminance (L) channel
is decomposed into multioriented multiresolution represen-
tation by means of Gabor-like bank of filters. The opponent
color components a and b undergo a multiscale decomposi-
tion. By decorrelating the multiscale responses, extracting
from them a local measure of variability, and further
performing a local averaging they obtained a unified and
efficient measure of saliency. Decorrelation is achieved by
applying PCA over a set of multiscale low-level features.
Distinctiveness is measured using Hoteling’s T 2 statistic.

Goferman et al. [46] proposed a context-aware saliency
detection model. Salient image regions are detected based
on four principles of human attention:

1. local low-level considerations such as color and
contrast,

2. global considerations which suppress frequently
occurring features while maintaining features that
deviate from the norm,

3. visual organization rules which state that visual
forms may possess one or several centers of gravity
about which the form is organized, and

4. high-level factors, such as human faces.

They applied their saliency method to two applications:
retargeting and summarization.

Aside from the models discussed so far, there are several
other attention models that are relevant to the topic of this
review, though they do not explicitly generate saliency
maps. Here we mention them briefly.

To overcome the problem of designing the state-space for
a complex task, an approach proposed by Sprague and
Ballard [109], decomposes a complex temporally extended
task to simple behaviors (also called microbehaviors), one of
which is to attend to obstacles or other objects in the world.
This behavior-based approach learns each microbehavior
and uses arbitration to compose these behaviors and solve
complex tasks. This complete agent architecture is of interest
as it studies the role of attention while it interacts and shares
limited resources with other behaviors.

Based on the idea that vision serves action, Jodogne [162]
introduced an approach for learning action-based image
classification known as Reinforcement Learning of Visual
Classes (RLVC). RLVC consists of two interleaved learning
processes: an RL unit which learns image to action mappings
and an image classifier which incrementally learns to
distinguish visual classes. RLVC is a feature-based approach
in which the entire image is processed to find out whether a
specific visual feature exists or not in order to move in a
binary decision tree. Inspired by RLVC and U-TREE [163],
Borji et al. [88] proposed a three-layered approach for
interactive object-based attention. Each time the object that is
most important to disambiguate appears, a partially un-
known state is attended by the biased bottom-up saliency
model and recognized. Then the appropriate action for the
scene is performed. Some other models in this category are:
Triesch et al. [97], Mirian et al. [100], and Paletta et al. [164].

Walker [21] built a model based on the idea that humans
fixate at those informative points in an image which reduce
our overall uncertainty about the visual stimulus—similar to
another approach by Lee and Yu [149]. This model is a
sequential information maximization approach whereby
each fixation is aimed at the most informative image location
given the knowledge acquired at each point. A foveated
representation is incorporated with reducing resolution as
distance increases from the center. Shape histogram edges
are used as features.

Lee and Yu [149] proposed that mutual information
among the cortical representations of the retinal image, the
priors constructed from our long-term visual experience,
and a dynamic short-term internal representation con-
structed from recent saccades all provide a map for guiding
eye navigations. By directing the eyes to locations of
maximum complexity in neuronal ensemble responses at
each step, the automatic saccadic eye movement system
greedily collects information about the external world while
modifying the neural representations in the process. This
model is close to Najemnik and Geisler’s work [20].

To recap, here we offer a unification of several saliency
models from a statistical viewpoint. The first-class measures
bottom-up saliency as 1=P ðxÞ or logP ðxÞ or EX½�logP ðxÞ�,
which is the entropy. This includes Torralba and Oliva [92],
[93], SUN [141], AIM [144], Hou and Zhang [151], and
probably Li et al. [171]. Some other methods are equivalent to
this but with specific assumptions for P ðxÞ. For example,
Rosenholtz [191] assume a Gaussian and Seo and Milanfar
[108] assume that P ðxÞ is a kernel density estimate (with the
kernel that appears inside the summation on the denomi-
nator of (7)). Next, there is a class of top-down models with
the same saliency measure. For example, Elazary and Itti [90]
use logP ðxjY ¼ 1Þ (where Y ¼ 1 means target presence ) and
assume a Gaussian for P ðxjY ¼ 1Þ. SUN can also be seen like
this, if you call the first term of (5) a bottom-up component.
But, as discussed next, it is probably better to just consider it
an approximation to the methods in the third class. The third
class includes models that compute posterior probabilities
P ðY ¼ 1jXÞ or likelihood ratios log½P ðxjY ¼ 1Þ=P ðxjY ¼ 0Þ�.
This is the case of discriminant saliency [146], [147], [215], but
also appears in Harel et al. [121] (e.g., 10) and in Liu et al. [43]
(if you set the interaction potentials of a CRF to zero, you end

BORJI AND ITTI: STATE-OF-THE-ART IN VISUAL ATTENTION MODELING 199



up with a computation of the posterior P ðY ¼ 1jXÞ at each
location). All these methods model the saliency of each
location independently of the others. The final class,
graphical models, introduces connections between spatial
neighbors. These could be clique potentials in CRFs, edge
weights in Harel et al. [121], etc.

Fig. 6 shows a hierarchical illustration of models. A
summary of attention models and their categorization
according to factors mentioned in Section 2 is presented in
Fig. 7.

4 DISCUSSION

There are a number of outstanding issues with attention
models that we discuss next.

A big challenge is the degree to which a model agrees with
biological findings. Why is such an agreement important?
How can we judge whether a model is indeed biologically
plausible? While there is no clear answer to these questions in
the literature, here we give some hints at their answer. In the
context of attention, biologically inspired models have
resulted in higher accuracies in some cases. In support of
this statement, the Decision theoretic [147], [223] and (later)
AWS model [160] (and perhaps some other models) are good
examples because they explain some basic behavioral data
(e.g., nonlinearity against orientation contrast, efficient
(parallel), and inefficient (serial) search, orientation and
presence-absence asymmetries, and Weber’s law [75]) well
that has been less explored by other models. These models
are among the best in predicting fixations over images and
videos [160]. Hence, biological plausibility could be reward-
ing. We believe that creating a standard set of experiments for

judging biological plausibility of models would be a
promising direction to take. For some models, prediction of
fixations is more important than agreement with biology
(e.g., pattern classification versus cognitive models). These
models usually feed features to some classifier—but what
type of features or classifiers falls under the realm of
biologically inspired techniques? The answer lies in the
behavioral validity of each individual feature as well as the
classifier (e.g., faces or text, SVM versus Neural Networks).
Note that these problems are not specific to attention
modeling and are applicable to other fields in computer
vision (e.g., object detection and recognition).

Regarding fair model comparison, results often disagree
when using different evaluation metrics. Therefore, a unified
comparison framework is required—one that standardizes
measures and datasets. We should also discuss the treatment
of image borders and its influence on results. For example,
KL and NSS measures are corrupted by an edge effect due to
variations in handling invalid filter responses at the image
borders. Zhang et al. [141] studied the impact of varying
amounts of edge effects on ROC score over a dummy
saliency map (consisting of all ones) and showed that as the
border increases, AUC and KL measures increase as well.
The dummy saliency map gave an ROC value of 0.5, a four-
pixel black border gave 0.62, and an eight-pixel black border
map gave 0.73. The same 3 border sizes would yield KL
scores of 0, 0.12, and 0.25. Another challenge is handling the
center-bias that results from a high density of eye fixations at
the image center. Because of this, a trivial Gaussian blob
model scores higher than almost all saliency models (see
[166]). This can be partially verified from the average eye
fixation maps of three popular datasets shown in Fig. 8.
Comparing the mean saliency map of models and the
fixation distributions, it could be seen that the Judd [166]
model has a higher center-bias due to explicitly using the
center feature, which leads to higher eye movement
prediction for this model as well. To eliminate the border
and center-bias effects, Zhang et al. [141] defined an
unshuffled AUC metric instead of the uniform AUC metric:
for an image, the positive sample set is composed of the
fixations of all subjects on that image and the negative set is
composed of the union of all fixations across all images—
except for the positive samples.

As shown by Figs. 4 and 5, many different eye movement
datasets are available, each one recorded in different
experimental conditions with different stimuli and tasks.
Yet more datasets are needed because the available ones
suffer from several drawbacks. Consider that current
datasets do not tell us about covert attention mechanisms at
all and can only tell us about overt attention (eye tracking).
One approximation can compare overt attention shifts to
verbal or other reports, whereby reported objects that were
not fixated might have been covertly attended to. There is also
a lack of multimodal datasets in interactive environments. In
this regard, a promising new effort is to create tagged object
datasets similar to video LabelMe [188]. Bruce and Tsotsos
[144] and ORIG [184] are, respectively, the most widely used
image and video datasets, though they are highly center-
biased (see Fig. 8). Thus, there is a need for standard
benchmark datasets as well as rigorous performance
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Fig. 7. Summary of visual attention models. Factors in order are: Bottom-up (f1), Top-down (f2), Spatial(-)/Spatio-temporal (+) (f3), Static (f4),
Dynamic (f5), Synthetic (f6) and Natural (f7) stimuli, Task-type (f8), Space-based(+)/Object-based(-) (f9), Features (f10), Model type (f11), Measures
(f12), and Used dataset (f13). In the Task type (f8) column: free-viewing (f), target search (s), interactive (i). In the Features (f10) column: M* =
motion saliency, static saliency, camera motion, object (face) and aural saliency (Speech-music); LM* = contrast sensitivity, perceptual
decomposition, visual masking and center-surround interactions; Liu* = center-surround histogram, multiscale contrast and color spatial-distribution;
R* = luminance, contrast, luminance-bandpass, contrast-bandpass; SM* = orientation and motion; J* = CIO, horizontal line, face, people detector,
gist, etc; S* = color matching, depth and lines;) = face. In Model type (f11) column, R means that a model is based RL. In the Measures (f12) column:
K* = used Wilcoxon-Mann-Whitney test (the probability that a random chosen target patch receives higher saliency than a randomly chosen negative
one); DR means that models have used a measure of detection/classification rate to determine how successful was a model. PR stands for
Precision-Recall. In the dataset (f13) column: Self-data means that authors gathered their own data.



measures for attention modeling. Similar efforts have already
been started among other research communities, such as
object recognition (PASCAL challenge), text information
retrieval (TREC datasets), and face recognition (e.g., FERET).

The majority of models are bottom-up, though it is
known that top-down factors play a major role in directing
attention [177]. However, the field of attention modeling
lacks principled ways to model top-down attention compo-
nents as well as the interaction of bottom-up and top-down
factors. Feed-forward bottom-up models are general, easy to
apply, do not need training, and yield reasonable perfor-
mance making them good heuristics. On the other hand,
top-down definitions usually use feedback and employ
learning mechanisms to adapt themselves to specific tasks/
environments and stimuli, making them more powerful but
more complex to deploy and test (e.g., need to train on large
datasets).

Some models need many parameters to be tuned while
some others need fewer (e.g., spectral saliency models).
Methods such as Gao et al. [147], Itti et al. [14], Oliva et al.
[140], and Zhang et al. [142]) are based on Gabor or DOG
filters and require many design parameters such as the
number and type of filters, choice of nonlinearities, and
normalization schemes. Properly tuning the parameters is
important in performance of these types of models.

Fig. 9 presents sample saliency maps of some models
discussed in this paper.

5 SUMMARY AND CONCLUSION

In this paper, we discussed recent advances in modeling
visual attention with an emphasis on bottom-up saliency
models. A large body of past research was reviewed and
organized in a unified context by qualitatively comparing
models over 13 experimental criteria. Advancement in this
field could greatly help solving other challenging vision

problems such as cluttered scene interpretation and object

recognition. In addition, there are many technological

applications that can benefit from it. Several factors influen-

cing bottom-up visual attention have been discovered by

behavioral researchers and have further inspired the model-

ing community. However, there are several other factors

remaining to be discovered and investigated. Incorporating

those additional factors may help to bridge the gap between

human interobserver (a map built from fixations of other

subjects over the same stimulus) and prediction accuracy of

computational models. With the recent rapid progress, there

is hope this may be accessible in the near future.
Most of the previous modeling research has been focused

on the bottom-up component of visual attention. While

previous efforts are appreciated, the field of visual attention

still lacks computational principles for task-driven attention.

A promising direction for future research is the development

of models that take into account time varying task demands,

especially in interactive, complex, and dynamic environ-

ments. In addition, there is not yet a principled computa-

tional understanding of covert and overt visual attention,

which should be clarified in the future. The solutions are

beyond the scope of computer vision and require collabora-

tion from the machine learning community.
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Fig. 8. Sample images from image and video datasets along with eye fixations and predicted attention maps. As can be seen, human and animal
body and face, symmetry, and text attract human attention. The fourth row shows that these datasets are highly center-biased, mainly because there
are some interesting objects at the image center (MEP map). Less center-bias at mean saliency map of models indicates that a Gaussian, on
average, works better than many models.
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