
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 1, JANUARY 2013 55
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Abstract— Visual attention is a process that enables biological
and machine vision systems to select the most relevant regions
from a scene. Relevance is determined by two components:
1) top-down factors driven by task and 2) bottom-up factors
that highlight image regions that are different from their sur-
roundings. The latter are often referred to as “visual saliency.”
Modeling bottom-up visual saliency has been the subject of
numerous research efforts during the past 20 years, with many
successful applications in computer vision and robotics. Available
models have been tested with different datasets (e.g., synthetic
psychological search arrays, natural images or videos) using
different evaluation scores (e.g., search slopes, comparison to
human eye tracking) and parameter settings. This has made
direct comparison of models difficult. Here, we perform an
exhaustive comparison of 35 state-of-the-art saliency models over
54 challenging synthetic patterns, three natural image datasets,
and two video datasets, using three evaluation scores. We find
that although model rankings vary, some models consistently
perform better. Analysis of datasets reveals that existing datasets
are highly center-biased, which influences some of the evaluation
scores. Computational complexity analysis shows that some mod-
els are very fast, yet yield competitive eye movement prediction
accuracy. Different models often have common easy/difficult stim-
uli. Furthermore, several concerns in visual saliency modeling,
eye movement datasets, and evaluation scores are discussed and
insights for future work are provided. Our study allows one
to assess the state-of-the-art, helps to organizing this rapidly
growing field, and sets a unified comparison framework for
gauging future efforts, similar to the PASCAL VOC challenge in
the object recognition and detection domains.

Index Terms— Bottom-up attention, eye movement prediction,
model comparison, visual attention, visual saliency.

I. INTRODUCTION

V ISUAL attention is a low-cost preprocessing step by
which artificial and biological visual systems select the

most relevant information from a scene, and relay it to
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higher-level cognitive areas that perform complex processes
such as scene understanding, action selection, and decision
making. In addition to being an interesting scientific chal-
lenge, modeling visual attention has many engineering applica-
tions, including in: computer vision (e.g., object recognition
[1]–[3], object detection [4], [5], target tracking [6], image
compression [7], and video summarization [8]); computer
graphics (e.g., image rendering [9], image thumb-nailing [10],
automatic collage creation [11], and dynamic lighting [12]);
robotics (e.g., active gaze control [13], [14], robot localization
and navigation [15], and human-robot interaction [16], [18]);
and others (e.g., advertising [17] and retinal prostheses [19]).

Modeling visual saliency has attracted much interest
recently and there are now several frameworks and compu-
tational approaches available. Some are inspired by cognitive
findings, some are purely computational, and others are in
between. However, since models have used different evaluation
scores and datasets while applying various parameters, model
evaluation against the state-of-the-art is becoming an increas-
ingly complex challenge. In this paper, inspired by the PAS-
CAL VOC object detection/recognition challenge [20], we aim
to compare visual attention models in a unified framework over
several scoring methods and datasets. Such a comparison helps
better understand modeling parameters and provides insights
towards further developing more effective models. It also helps
better focus and calibrate the research effort by avoiding
repetitive work and discarding less promising directions. It will
also benefit experimentalists to choose the right tool/model
for their applications. Since our main purpose is to compare
models, rather than discuss attention concepts and models
in detail, we refer the interested reader to general reviews
for more information (e.g., Itti and Koch [21], Heinke and
Humphreys [22], Frintrop et al. [23], and Borji and Itti [24]).

There is often a confusion between saliency and attention.
Visual attention is a broad concept covering many topics (e.g.,
bottom-up/top-down, overt/covert, spatial/spatio-temporal, and
space-based/object-based attention). Visual saliency, on the
other hand, has been mainly referring to bottom-up processes
that render certain image regions more conspicuous: For
instance, image regions with different features from their
surroundings (e.g., a single red dot among several blue dots).
Bottom-up saliency has been studied in search tasks such as
finding an odd item among distractors in pop-out and conjunc-
tion search arrays, as well as in eye movement prediction on
free-viewing of images or videos. In contrast to bottom-up,
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top-down attention deals with high-level cognitive factors that
make image regions relevant, such as task demands, emotions,
and expectations. It has been studied in natural behaviors
such as sandwich making [25], driving [26], and interactive
game playing [27]. In the real-world, bottom-up and top-
down mechanisms are combined to direct visual attention.
Correspondingly, models of visual attention often focus either
on bottom-up (known as saliency models) or on top-down
factors of visual attention. Due to the relative simplicity of
bottom-up processing (compared to top-down), the majority
of existing models has focused on bottom-up attention. For a
review on attention in natural behavior, please refer to [28].

In addition to the dissociation between bottom-up and top-
down, visual attention studies (and likewise models) can be
categorized based on several other factors. Some studies have
addressed explaining fixations/saccades in free viewing of
static images while others have approached dynamic stimuli,
such as observing movies or playing video games [29], [28].
This distinction has divided models into spatial (still images)
or spatio-temporal models (over video stimuli). The majority
of spatio-temporal models are also applicable to saliency
estimation over static images. Although static models are also
applicable to videos by processing each single frame, they
have not been fundamentally built to account for such stimuli.

Models can be categorized as being space-based or object-
based. Object-based models try to segment or detect objects
to predict salient regions. This is supported by the finding
that objects predict fixations better than early saliency [30]. In
contrast, in space-based models, all operations happen at the
image level (pixels or image patches), or in the image spectral
phase domain. For these space-based models, the goal is to
create saliency maps that may predict which locations have
higher probability of attracting human attention (as measured,
e.g., by subjective rankings of interesting and salient locations,
reaction times in visual search, or eye movements). Salient
region detection in object-based models adds a segmenta-
tion problem where the goal is to not only locate but also
segment the most salient objects within a scene from the
background. Perhaps because object segmentation remains a
difficult machine vision problem, there are not as many object-
based models as space-based models.

Another distinction is between overt and covert attention.
Overt attention is the process of directing the the eyes towards
a stimulus, while covert attention is that of mentally focusing
onto one of several possible sensory stimuli (without necessar-
ily moving the eyes). Many bottom-up saliency models have
blurred the distinction between overt and covert attention and
have focused onto detecting salient image regions, which in
turn could attract one or both types of attention. Indeed, as
detailed below, few models offer explicit mechanisms for the
control of head/body/gaze movements.

Considering the above definitions, here we compare those
visual saliency models that belong to the majority class of
models, namely, those models that are: 1) bottom-up; 2) spatial
or spatio-temporal; 3) space-based; 4) able to generate a
topographic saliency map for an arbitrary digital image or a
video; and 5) addressing free-viewing of images or videos (not
solely visual search or salient object segmentation).

TABLE I

COMPARED VISUAL SALIENCY MODELS.

No. Acronym: Model Year S P Resolution

1 Gauss: Gaussian-blob - I M 51 × 51

2 IO: Human inter-observer - I M W × H

3 Variance: [31] - I C 1
16 W × 1

16 H

4 Entropy: [74] - I C 1
16 W × 1

16 H

5 Itti-CIO2: Itti et al. [31], [32] 1998 I C 1
16 W × 1

16 H

6 Itti-Int: Itti et al. [31], [32] 1998 I C 1
16 W × 1

16 H

7 Itti-CIO: Itti et al. [33], [32] 2000 I C 1
16 W × 1

16 H

8 Itti-M: Itti et al. [34] 2003 V C 1
16 W × 1

16 H

9 Itti-CIOFM: Itti et al. [34] 2003 B C 1
16 W × 1

16 H

10 Torralba: [35] 2003 I M W × H

11 VOCUS: Frintrop et al. [4] 2005 B C 1
4 W × 1

4 H

12 Surprise-CIO: [36] 2005 I C 1
16 W × 1

16 H

13 Surprise-CIOFM: [36] 2005 B C 1
16 W × 1

16 H

14 AIM: Bruce and Tsotsos [37] 2005 I M 1
2 W × 1

2 H

15 STB: saliency toolbox [1] 2006 I M 1
16 W × 1

16 H

16 Le Meur: Le Meur et al. [38], [39] 2006 B X W × H

17 GBVS: Harel et al. [40] 2006 I M W × H

18 HouCVPR: Hou et al. [41] 2007 I M 64 × 64

19 Rarity-L: local rarity [42] 2007 I M W × H

20 Rarity-G: global rarity [42] 2007 I M W × H

21 HouNIPS: Hou et al. [43] 2008 I M W × H

22 Kootstra: Kootstra and Shomacker [44] 2008 I E W × H

23 SUN: Zhang et al. [45] 2008 I M 246 × 331

24 Marat: Marat et al. [46] 2009 B X W × H

25 PQFT: Guo et al. [47] 2009 I M 400 × 400

26 Yin Li: Yin Li et al. [48] 2009 I M W × H

27 SDSR: Seo and Milanfar [49] 2009 B M W × H

28 Judd: Judd et al. [50] 2009 I M W × H

29 Bian: Bian et al. [51] 2009 I M 1
16 W × 1

16 H

30 E-Saliency: Avraham et al. [52] 2010 I X W × H

31 Yan: Yan et al. [53] 2010 I M W × H

32 AWS: Diaz et al. [54] 2010 I E 1
2 W × 1

2 H

33 Jia Li: Jia Li et al. [55] 2010 I E 1
16 W × 1

16 H

34 Tavakoli: Tavakoli et al. [56] 2011 I M W/16 × H/16

35 Murray: Murray et al. [57] 2011 I M W × H

S: Stimuli I: Image, V: Video, B: Both Image and Video. P: Programming
Language M: MATLAB, C: C/C++, E: Executables, X: Sent Saliency Maps.
W: Image Width and H: Image Height.

II. COMPARISON PLAN

First, we briefly explain experimental settings in Sec. II-A.
Then, datasets including widely-used synthetic patterns and
eye movement datasets over static scenes (natural, abstract,
and cartoon images) and videos are described in Sec. II-B.
Next, in Sec. II-C, three popular evaluation scores are
explained. We then discuss some challenges in model com-
parison and our way to tackle them (Sec. II-D). Finally,
experimental results of thorough model evaluation are shown
in Sec. III followed by learned lessons in Sec. IV.

A. Settings

The first step in this study was to collect saliency models.
Some models were already shared online. For others, we
contacted their creators for software; the authors then either
sent source code for us to compile or sent executables. Some
authors, however, preferred to run their models on our stimuli
and to send back saliency maps. In the end, we were able to



BORJI et al.: QUANTITATIVE ANALYSIS OF HUMAN-MODEL AGREEMENT 57

evaluate the 35 models listed in Table I, sorted by publication
year. This table also shows stimulus types that models are
applicable to and their implementation language. In addition
to developed models by the authors, we also implemented
two other simple yet powerful models, to serve as baseline:
The Gaussian Blob (Gauss) and Human Inter-Observer (IO)
models. The Gaussian blob model is simply a 2D Gaussian
shape drawn at the center of the image; it is expected to
predict human gaze well if such gaze is strongly clustered
around the image center. The human inter-observer model
outputs, for a given stimulus, a map built by integrating eye
fixations from other subjects than the one under test, while
they watched that stimulus. The map is then smoothed by
convolving with a Gaussian filter. This inter-observer “model”
is expected to provide an upper bound on prediction accuracy
of computational models, to the extent that different humans
may be the best predictors of each other. Since maps made
by models have different resolutions, we resized them (using
nearest neighbor interpolation) to the size of the original
images onto which eye movements have been recorded. Map
resolutions as well as model acronyms used in the rest of the
paper are listed in Table I. Please note that, besides models
compared here, some other models may exist that might
perform well, but are not publicly available or easily accessible
(e.g., [58]). We leave such models for future investigations.

B. Stimuli

Attention models have first been validated by predicting
accuracy and reaction times of human subjects in target
detection in visual search arrays. In addition, many models
have commonly been validated against eye movement data.

1) Synthetic Stimuli: Early attention studies and models
used simple synthetic patterns such as searching for a target
or detecting an odd item among distractor items to find out
important feature channels in directing attention and how
they are combined [59]. For instance, it has been shown
that reaction time for a simple pop-out search task remains
constant as a function of set size (number of all items on
the screen), while in conjunction search tasks (searching for a
target that is different in two features) reaction time increases
linearly with set size [59]. In [21], [60], authors enumerate and
discuss features that influence attention. For a computational
perspective on implementation of these features in saliency
models, please refer to [6], [21], [24].

Fig. 1, shows a collection of 54 diverse synthetic patterns
where one item (a target) differs from all other (distractor)
items (pop-out, search asymmetry, texture, semantics, size,
grouping, curvature, etc.). Such stimuli have been widely used
for qualitative evaluation of saliency and attention models in
the past. Patterns are sorted from easy to hard for models
(Fig. 5) from left to right and top to bottom. They can be
categorized into: orientation pop-out (3, 9, 21, 25, 38, 43, 51,
54), texture pop-out (6, 12, 14, 24, 36, 39, 47), curvature pop-
out (35, 48), size pop-out (8, 10, 17, 30, 52), grouping (2, 13,
26, 28, 34), color pop-out (1, 4, 16, 19, 20, 27, 29, 31, 32,
33, 41, 44, 50, 53), intensity pop-out (11, 18, 37, 42), search
asymmetry (5;15, 22;46, 40;49), and other complex search

arrays (7, 23). In some patterns, targets are embedded in noise
(e.g., speckle noise: 11, 20, 31 and orientation noise: 19, 41).
We aimed to assess the pure target detection performance of
models. This is why we included harder displays, even though
humans may perform poorly on them (hence a great model of
human attention should also perform poorly, but some models
might transcend human abilities with such images).

2) Natural Scenes: Space-based models have often been
tested for eye fixation prediction over still image datasets
and spatio-temporal models have been evaluated against
video data.

a) Image datasets: Since statistics of different datasets
vary, we employed three popular image datasets often used
for saliency evaluation: 1) Bruce and Tsotsos [37] (one of the
earliest and most widely used datasets). It contains 120 images
mainly indoor and in-city scenes. Due to the small size of
this dataset and the small number of subjects, its sole usage
is less encouraged; 2) Kootstra and Shomacker [44] (which
contains a wide variety of images); and 3) Judd et al. [50]
(which is the largest dataset available to date containing 1003
images). It contains many images with human faces and has
a high degree of photographer bias and a smaller number of
subjects. Le Meur [38] dataset has only 27 images with the
highest number of eye-tracking subjects (40). We avoided to
use this dataset as its images are highly center-biased (See
Sec. II-D).

Because of the specialty of datasets (different optimal
weights for features over different datasets [61]), a fair evalu-
ation is to compare models over several datasets (Sec. III).

b) Video datasets: Unfortunately, there are not many pub-
licly available video datasets with associated eye-tracking data.
This calls for collecting more eye movement data over videos.
Here, we run models over two datasets: 1) A large popular
benchmark dataset for comparison of spatio-temporal saliency,
called CRCNS-ORIG [62], which is freely accessible. Fig. 2
shows a sample frame from each video of CRCNS-ORIG
dataset embedded with eye fixations. 2) A recent project called
DIEM (Dynamic Images and Eye Movements) has investigated
where people look during dynamic scene viewing such as
during film trailers, music videos, or advertisements [63]1.
Fig. 3 shows sample frames of DIEM with fixations
overlaid.

Please refer to [24] for more details on available datasets.
Our choice of datasets emphasizes popularity, thoroughness,
and variety in the stimuli.

We applied spatial and spatio-temporal models over static
(still images) and dynamic (video) stimuli to compare accuracy
of both types of models over both types of stimuli. This
way we can analyze the usefulness of temporal information
by comparing accuracy of models built from simple features
plus the motion channel (e.g., the Itti-CIOFM model) with
other high-performing models without temporal information.

1DIEM has so far collected data from over 250 participants watching 85
different videos. All of this data is freely available. We selected 20 videos and
about 1,000 frames from each to make a benchmark for model comparison.
Selected videos cover different concepts/topics. We only used right-eye
positions of subjects to make model evaluation tractable. Frames of this dataset
were scaled down to 640 × 480 while maintaining aspect ratio.



58 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 1, JANUARY 2013

Fig. 1. Synthetic patterns. Stimuli are numbered in blue/yellow from 1 to 54 in row-first order. Numbers are positioned close to the target locations and are
for illustration purposes only. Stimuli are sorted according to their average easiness of oddity detection for saliency models (see Fig. 5).

Fig. 2. One sample frame (frame no. 100) from 50 videos of CRCNS-ORIG eye movement dataset. Eye movements are embedded on images in yellow. For
some videos, eye fixations are shown in blue for better illustration. Video names in order (from left to right, top to bottom) are: 1) Beverly01; 2) Beverly03;
3) Beverly05; 4) Beverly06; 5) Beverly07; 6) Beverly08; 7) Gamecube02; 8) Gamecube04; 9) Gamecube05; 10) Gamecube06; 11) Gamecube13;
12) Gamecube6; 13) Gamecube7; 14) Gamecube18; 15) Gamecube23; 16) Monica03; 17) Monica04; 18) Monica05; 19) Monica06; 20) Saccadetest ;
21) Standard01; 22) Standard02; 23) Standard03; 24) Standard04; 25) Standard05; 26) Standard06; 27) Standard07; 28) T v − action01;
29) T v − ads01; 30) T v − ads02; 31) T v − ads03; 32) T v − ads04; 33) T v − announce01; 34) T v − music01; 35) T v − news01; 36) T v − news02;
37) T v − news03; 38) T v − news04; 39) T v − news05; 40) T v − news06; 41) T v − news09; 42) T v − sports01; 43) T v − sports02; 44) T v − sports03;
45) T v − sports04; 46) T v − sports05; 47) T v − talk01; 48) T v − talk03; 49) T v − talk04; and 50) T v − talk05. Note that a different number of subjects
observed videos. For results of model comparisons on these videos, please see Fig. 8.

BBC−life−in−cold−blood
−1278x710

advert−bbc4−library−1024x576

BBC−wildlife−serpent−1280x704

advert−iphone−1272x720

DIY−SOS−1280x712

ami−ib4010−closeup−720x576

advert−bbc4−bees−1024x576

ami−ib4010−left−720x576

harry−potter−6−trailer−1280x544

nightlife−in−mozambique−1280x580

music−gummybear−880x720

one−show−1280x712

music−trailer−nine−inch−nails
−1280x720

pingpong−angle−shot−960x720

news−tony−blair−resignation
−720x540

pingpong−no−bodies−960x720

sport−scramblers−1280x720

tv−uni−challenge−final−1280x712

sport−wimbledon−federer−final
−1280x704

university−forum−construction−ionic
−1280x720

Fig. 3. Sample frames from 20 videos of DIEM [63] dataset. Yellow dots show right eye positions of all human subjects. Please see Fig. 8 for results.

Another approach will be extending all spatial models to
the temporal domain before comparison. This, however goes
beyond our scope in this paper and should be addressed by
the model creators.

C. Evaluation Scores
Here, three evaluation scores for comparison of models

are explained. The motivation for analyzing models with
more than one metric is to ensure that the main qualitative
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conclusions are independent of the choice of metric. In the fol-
lowing, G denotes a ground-truth saliency map which is a map
built by inserting 1’s at fixation locations and convolving the
result with a Gaussian for smoothing. An estimated saliency
map which is computed by a saliency model is denoted by S.

1) Linear Correlation Coefficient (CC): The linear correla-
tion coefficient measures the strength of a linear relationship
between two variables: CC(G,S) = cov(G,S)

σGσS
where σG and σS

are the standard deviations of the G and S maps, respec-
tively [64], [65]. When CC is close to +1/−1 there is almost
a perfectly linear relationship between the two variables.

2) Normalized Scanpath Saliency (NSS): NSS [66], [67] is
the average of the response values at human eye positions
(xi

h, yi
h) in a model’s saliency map (S) that has been normal-

ized to have zero mean and unit standard deviation. N SS = 1
indicates that the subjects’ eye positions fall in a region whose
predicted saliency is one standard deviation above average.
Thus, when N SS ≥ 1 the saliency map exhibits significantly
higher saliency values at human fixated locations compared to
other locations. Meanwhile N SS ≤ 0 indicates that the model
performs no better than picking a random position, and hence
is at chance in predicting human gaze.

3) Area Under Curve (AUC): AUC is the area under the
Receiver Operating Characteristics (ROC) curve [68]. Using
this score, human fixations are considered as the positive set
and some points from the image are sampled, either uniformly
or non-uniformly [45] (for discounting center-bias), to form
the negative set. The saliency map S is then treated as a
binary classifier to separate the positive samples from the
negatives. By thresholding over the saliency map and plotting
true positive rate vs. false positive rate an ROC curve is
achieved for each image. Then ROC curves are averaged over
all images and the area underneath the final ROC curve is
calculated [37], [69]. Perfect prediction corresponds to a score
of 1 while a score of 0.5 indicates chance level.

For more details on evaluation scores please refer to [24]2.

D. Challenges and Open Problems

Here we discuss challenges that have emerged as more
saliency models have been proposed. These are open issues
that must be considered, not only for research but also for
performing a fair comparison of all models.

1) Center Bias (CB): Perhaps the biggest challenge in
model comparison is the issue of center-bias. Center-bias
means that a majority of fixations happen to be near the image
center. Several reasons for this have previously been proposed.
For instance, it could be due to a tendency of photographers
to put interesting (and hence salient [70]) objects at the
image center; or it could be because of a viewing strategy
by which subjects first inspect the image center, maybe to
rapidly gather a global view of the scene [71], [72]. Some

2In addition to above scores, Kullback-Leibler (KL) (the divergence between
the saliency distributions at human fixations and at randomly shuffled fix-
ations; used in [36], [45]), [61], and the string-edit distance (difference
between the sequence of fixations generated by a saliency model versus human
fixations) [73], [74]) have also been used for model evaluation. Note that all
of these scores (except the Shuffled AUC) are influenced by the center-bias.
We draw conclusions based on the average model behavior on these scores.

models have implicitly (e.g., GBVS [40]) or explicitly (e.g.,
Judd [50]) used center-preference (location prior) to better
account for eye movements. This, however, makes fair com-
parison challenging. Three remedies are possible: 1) Every
model adds a Gaussian of a certain size to its output. This
approach has the drawback that it is hard to impose to the
large community of researchers. 2) Collecting a dataset with
no center-bias. This is difficult because even if we have
an approach to uniformly distribute image content, viewing
strategy still exists. 3) Designing suitable evaluation metrics,
which is what we consider as the most reasonable approach,
and which we use here.

To eliminate center-bias effects, Zhang et al. [45] used the
shuffled AUC metric instead of the uniform AUC metric.
They defined shuffled AUC as: For an image and a human
subject, the positive sample set is composed of the fixations
of that subject on that image, while the negative set, instead
of uniformly random points, is composed of the union of all
fixations of all subjects across all other images, except for
the positive set. This score allows for a stronger assessment
of the non-trivial off-center fixations, which are the ones
that are more challenging and more interesting to predict.
Alternatively, Qi and Koch [61], defined an unbiased AUC
score as the ratio of normal AUC to the AUC score of the
inter-observer model.

Here, along with using the shuffled AUC score, we apply
models to images with low center-bias. This second-order
study provides another way of differentiating models behavior
over (difficult) fixations which deviate from center. Please note
that this does not necessarily mean that center-bias is not a
fact of human attention behavior. To this end, we propose a
new measure called Center-Bias Ratio (CBR) to quantify the
amount of center-bias in an image or a set of images. First,
for an image, a heat map is generated by pooling fixations
from all subjects without Gaussian smoothing. Then, the ratio
of fixations inside each central circle to the overall number of
fixations in the image is calculated. By varying the radius, a
vector of ratios is derived. If there are more fixations at the
center, the first values of this vector should be very high. By
applying a fixed threshold, one can make a decision whether
an image is center-biased or not.

Fig. 4 shows distribution of fixations for three datasets and
their center-bias ratio. The five most and five least center-
biased images from datasets are also shown. Judd et al., and
Bruce and Tsotsos datasets are highly center-biased (at 40%
circle, from center to image corner, they explain more than
80% of fixations) and Kootstra and Shomacker has the least
center-bias amongst three. This might be because this dataset
has many symmetric objects (e.g., flowers) off the center.

To test how many images pass a CB criterion, at the radius
level of 40%, we selected an image from a dataset if its
CBR was less than 0.7. This way, 10, 58, and 120 images
from Bruce and Tsotsos, Kootstra and Schomaker, and
Judd et al. datasets passed the selection criteria, respectively
(Overall 15% of 1250 images)3.

3We also used another dataset from Le Meur et al. [38] but none of the
images passed the threshold. Link: http://www.irisa.fr/temics/staff/lemeur/.
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Fig. 4. Results of center-bias analysis over three datasets. The first row shows the heatmap of all fixations over all images for each dataset. White rings show
10% increase in radius from the image center, and the bar chart at the right of the heatmap shows the percentage of fixations that happen in each ring. The
red horizontal bar shows the 80% density level. Five most and least center-biased images from each dataset along with eye fixations are shown at the bottom.

2) Border Effect: Another challenge is the treatment of
image borders. Zhang et al. [45] showed that KL and ROC
scores are corrupted by edge effects. When an image filter
lies partially off the edge of an image, the filter response is
not well defined. They varied the size of a black border added
around a dummy white saliency map (of size 120×160 pixels)
and showed that as the border size increases, ROC and KL
scores increase as well. Since human eye fixations are rarely
near the edges of test images, edge effects primarily change
the distribution of saliency of the random samples. For the
dummy saliency map, a baseline map (uniform white) gives
a ROC value of 0.5, adding a four-pixel black border yields
0.62, and an eight-pixel black border yields 0.73. The same
3 border sizes would yield KL scores of 0, 0.12, and 0.25.
Note that a black border effect due to variations in handling
invalid filter responses at the image borders is similar to the
center-bias issue and could be handled the same way. But the
first is a problem with datasets while the second one regards
a problem in modeling.

3) Scores: Some issues concern scores. For instance, as a
limitation of ROC, Qi and Koch [61], compared two saliency
maps with different degrees of false alarm rates. Interestingly,
while one map had a clear dense activation at fixations (with
almost no background activation), its standard AUC (=0.975)
was not dramatically better compared to the other map (with
activations at both fixations and background) with much higher
false alarm rate (AUC = 0.973). Because of the normalization
to the entire map, this problem did not affect NSS score.

4) Model Parameters: Another problem regarding fair
model comparison is adjusting parameters in models. For
instance, it has been shown that smoothing the final saliency
map of a model affects the scores [75]. In models described
in Table I, some authors mentioned the best set of parameters,
and some manually tunned their model on our stimuli and sent
back the saliency maps.

To tackle center-bias, border effects, and scoring issues,
instead of only using one score, we decided to use three, with
an emphasis on analysis of results using the shuffled AUC

score which is more robust to center-bias and borders. A model
that works well should score high (if not the best) at almost
any score. Regarding model parameters, over some cross-
validation data, we tried to tune models for best performance
by qualitatively checking saliency maps or quantitatively by
calculating scores. However, as further discussed in section IV,
ultimately the model parameter issue will be best handled
through an online challenge where participants can tune their
own models before submitting results.

III. EXPERIMENTAL RESULTS

Having laid out the evaluation framework, we are ready to
compare saliency models in this section.

A. Results Over Synthetic Images

Fig. 5 shows ranking of models over synthetic patterns. The
location of each target in each stimulus was tagged manually
(bottom-right panel). Then the accuracy of a saliency model
to capture the target was calculated using the NSS score.
This score is more suitable here because there is only one
target position in each image and if a model could accurately
predict that location it would get a high score. The higher
NSS thus means better target detection. The top-left panel in
this figure shows performance of all models over all stimuli
sorted both ways. The bottom-left panel ranks stimuli in
terms of simplicity of target detection averaged over models
(see also Fig. 1). The top-right panel shows sorted NSS
scores (averaged over stimuli) of models.

On average (over stimuli), all models performed signifi-
cantly above chance. Overall, models based on FIT theory
performed higher on synthetic patterns (e.g., compared to sta-
tistical and information-theoretic models). STB, AWS, GBVS,
VOCUS, Bian, and Itti-CIO models achieved the best NSS
scores. From these models, Itti-CIO and hence its descendants
STB and VOCUS are directly based on the FIT framework.
Similar to these, AWS and GBVS models have used multi-
scale color, intensity and orientation channels. One high-
performing model which is not based on FIT is Bian’s model,
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(a) (b)

(c) (d)

Fig. 5. Ranking models over synthetic patterns shown in Fig. 1. (a) Individual
NSS scores of models for stimuli. (b) Sorts models averaged over stimuli and
(c) sorts stimuli averaged over models. Error bars indicate standard error of
the mean (SEM). (d) Spatial distribution of target locations.

which works in the frequency domain. Inspecting the high-
performing models, we noticed that they all generate maps
with a high peak at the target location and less activation
elsewhere, which results in high NSS values. Models including
AIM and HouNIPS seem impaired by the border effect, which
affects their normalization; indeed, these models perform
poorly on all our search-array stimuli. We expected that some
models might actually surpass human vision in some of these
images, i.e., they might mark as salient some targets which are
hard to be immediately seen by humans. For example, AWS
is doing quite well on hard image 23. Although some stimuli
were easier for many models, no single stimulus was easy for
all models. For example, stimulus 1, a simple red/green color
pop-out was easy for models which include a separate color
channel but remained challenging for several statistical models
which are based on natural scene statistics (AIM, HouNIPS,
Rarity-G). One important conclusion of our study therefore
is that to date no model performs perfectly over all synthetic
stimuli tested here. Fig. 6 illustrates saliency maps of models
over the best and worst synthetic stimuli (averaged over all
models) as well as some other sample synthetic stimuli.

Although in this section we focused on evaluating the
consistency of saliency models with a number of classic
psychophysical results related to bottom-up attention, there
are several other tests that a model could be verified
against, including: nonlinearity against orientation contrast,
efficient (parallel) and inefficient (serial) search, orientation
asymmetry, presence-absence asymmetry and Weber’s law,
and influence of background on color asymmetries (see [76],
[77]). Some models have been partially tested against such
stimuli [37], [54], [58], [77].

B. Results Over Natural Scenes

Fig. 7(a) shows ranking of models for fixation prediction
over still images. For statistical significance testing of mean

scores between two models, we used the t-test at the signif-
icance level of p ≤ 0.05. Although the ranking order is not
exactly the same over all three datasets, some general patterns
can be observed. Using the CC score, over all three datasets,
GBVS works the best. The Yan, Kootstra, and Gauss models
are among the best six. High CC scores for the Gauss model
indicate that there is high density of fixations at the image
center over all three datasets. Higher CC for Gauss over the
Judd et al. dataset (no significant difference between Gauss
and GBVS; p = 0.1) means higher central eye concentration
over this dataset. Similarly, using NSS, GBVS did the best and
the Yan, Judd, AWS, and Kootstra models were among the six
best. High performance for Gauss with NSS again indicates a
high center-preference over datasets (Gauss ranked third over
the Judd et al. dataset). Scores of models over the Kootstra
and Shomacker dataset are smaller than over other datasets.
This might be partially due to difficulty of stimuli in this
dataset. For instance, many of them are outdoor natural scenes
as opposed to close-up shots of objects or animals. Consistent
with previous research, an important point here is that CC
and NSS scores are sensitive to center-preference (high scores
for Gauss model), therefore their usage is not encouraged for
future work. Using shuffled AUC, the Gauss model is the worst
(not significantly higher than chance) over all three datasets
as we expected. Indeed, the shuffled AUC measure explicitly
discounts center bias by sampling random points from human
fixations. With shuffled AUC, the AWS model is significantly
better than all other models over the three datasets, followed
by HouNIPS model. The AIM and Judd models were the other
two models that did well. One interesting observation is that
AWS is able to predict human fixations over the Kootstra
and Shomacker dataset at the level of human inter-observer
similarity (no significant difference between model’s score and
Human inter-observer score). Rarity-L, Entropy, and STB are
three models that did worst over CC and NSS scores. In terms
of AUC scores, Gauss, STB, and Marat are at the bottom.

Except for the aforementioned case of AWS over the Koot-
stra and Shomacker dataset, the main conclusion of this study
is that a significant gap still exists between the best models
and human inter-observer agreement. The spread of models
scores is also quite narrow, and for NSS over the Kootstra
and Shomacker and Judd et al. datasets the gap between IO
and the best model is greater than that between the best and
worst models. This indicates that even though much progress
has been made in modeling saliency over the past 13 years,
dramatic and qualitatively better new models still remain to
be discovered that will better approach human eye fixations.
To the disappointment of the authors, many recent models
overall perform worse that the Itti-CIO2 model published in
1998 [31], indicating the importance of using a comprehensive
comparison framework for measuring progress. We further
examine these issues in the Discussion section (Sec. IV).

An important note from our comparisons is that most
models that did well overall, performed reasonably well over
every combination of dataset and score. An exception is GBVS
which performed the best over three datasets using the CC
and NSS scores but not as well (though still quite well) with
AUC. The performance drop of the GBVS model could be
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Fig. 6. Prediction maps of saliency models for the best, worst, and other sample synthetic stimuli. Best and worst stimuli are determined based on difficulty
of models (on average) to detect the odd item among distractors in a search array.

because it takes advantage of center-bias. Some of the models
which scored well on the synthetic patterns (Fig. 5) scored
poorly on natural image datasets (e.g., STB and Itti-CIO). To
some extent, we find that this may be due to the fact that
these models are developed based on FIT framework which
has been originally proposed to explain synthetic patterns. The
Itti-CIO model also generates very sparse maps which do not
reflect well the substantial inter-observer variations present in
the human eye movement data.

In addition to using the shuffled AUC score, we conducted
another experiment to compare models over stimuli with less
center-bias. We selected 100 images from the Judd et al.
dataset with least center-bias ratio (using 40% circle) and
calculated scores for those images. Results are shown in
Fig. 7(b). The rationale for focusing on images that yield
many off-center fixations is that such fixations may convey
more information about the processes by which attention is
drawn to salient peripheral stimuli (as opposed to central
fixations, which may be stimulus-driven or part of a viewing
strategy; see section II-D). Indeed, we verified that the Gauss
model performed poorly on this dataset. Consistent with CC
and NSS scores over three datasets, here GBVS again scored
the best, and the ranking of models is almost the same as
when using all images across these two scores. With shuffled
AUC, the ranking is almost the same as with the original
datasets, with AWS, HouNIPS, and AIM at the top. Similar
to the original datasets, the AUC performance of GBVS is
not among the best. Note how, with shuffled AUC (which is
emerging as the most reliable score), all models are closer
to the IO performance in the least center-biased dataset. This
new approach to dataset design helps us mitigate the above

remark about the need for a qualitative jump in eye movement
prediction: The off-center fixations, which arguably are the
most important and difficult to predict, are captured quite well
by many models.

Our next analysis is ranking models over different classes
of stimuli from the Kootstra and Shomacker dataset. The
intuition behind this experiment is that since different models
use different features, and different classes of images may
exhibit different feature distributions, it is likely that models
may selectively perform higher over different types of images.
Fig. 4, middle column, shows sample images from the Koot-
stra and Shomacker dataset. Images of this dataset fall into
5 categories: 1) Animals, 2) Automan (cars and humans),
3) Buildings, 4) Flowers, and 5) Nature. The shuffled AUC
scores of all models are shown in Table II for each category.
This table also shows scores of the inter-observer (IO) model
as well as average scores of models (using three scores)
across 5 categories. Interestingly, again the AWS model did
the best over all categories (it was only significantly better than
other models in the Flowers category). HouNIPS, Judd, SDSR,
Yan, and AIM were also at the top. Gauss, STB, Marat, and
Entropy ranked at the bottom. The least performance among
categories belongs to Nature stimuli (using all 3 scores),
probably because stimuli in the Nature category are more noisy
and there are less solid objects or dense salient regions. All
models scored below AUC = 0.6 in that category, and humans
are also less consistent over nature stimuli (smaller AUC score
for IO model). The best performance of models is over the
Automan category, which consists of in-city scenes containing
cars and humans, and IO also scored highest in this category.
Model performance differences over categories suggests that
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(a) (b)

Fig. 7. (a) Ranking visual saliency models over three image datasets using three evaluation scores: Correlation coefficient (CC), normalized scanpath saliency
(NSS), and shuffled AUC. Left column: Bruce and Tsotsos [37]. Middle column: Kootstra and Shomacker [44]. Right column: Judd et al. [50]. Stars indicate
statistical significance using t-test (95%, p ≤ 0.05) between consecutive models. Note that no star between two models that are not immediately close to
each other does not necessarily mean that they are not significantly different. In fact, it is highly probable that a model that is significantly better than the
one in its left, also scores significantly better than all other models on its left. Error bars indicate standard error of the mean (SEM): (σ/

√
N ), where σ is

the standard deviation and N is the number of images. We do not show CC results for IO model because comparing the map built from fixations of one
subject with the map built from fixations of all other subjects using CC, does not generate a high value (both maps are convolved with a Gaussian). This is
because few fixations of only one subject do not generate a diffused map, which is favored by CC score. We also could not calculate IO score over Bruce
and Tsotsos dataset since fixations are not separated for each subject. (b) This column sorts models over 100 least center-biased images from the Judd et al.
dataset (see Section II-D). The heatmap at the top-most panel shows distribution of fixations over selected images. Judd model uses center feature, gist, and
horizon line, and object detectors for cars, faces, and human body. Itti-CIO2 is the approach proposed by Itti et al. [31] that uses the following normalization
scheme: For each feature map, find the global max M and find the average m of all other local maxima. Then just weight the map by (M − m)2. In the
Itti-CIO method [33], normalization is: Convolve each map by a difference of Gaussian(DoG) filter, cut off negative values, and iterate this process for a few
times. This normalization operation results in sparse saliency maps. In the literature, majority of models have been compared against Itti-CIO.

customizing models based on image category might further
improve fixation prediction accuracy. Some models indeed rely
on detecting the “gist” of a scene (e.g., whether it is indoors
or outdoors) to establish a spatial prior on saliency [35];
these could be further combined with learning techniques
(e.g., [61]) to modulate features contributing to saliency based
on a scene’s gist or category. Such research might benefit from
deeper psychological studies of eye movement patterns over
different categories of scenes.

Fig. 8(a) sorts models over the CRCNS-ORIG dataset using
three scores. Rankings are almost the same over CC and NSS
scores with GBVS, Gauss, Marat, HouNIPS, Judd, and Bian
models at the top. Using the AUC score, AWS, HouNIPS, Bian
and Human inter-observer are the best. The reason why, when
using shuffled AUC, the inter-observer model is slightly lower
than the three mentioned models is likely because the number
of subjects is small and hence a map from other subjects
may not be a good predictor of the remaining test subject.
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Fig. 8. (a) Ranking visual saliency models over CRCNS-ORIG dataset [62]. (b) Ranking models over DIEM dataset [63]. Only these models had motion
channel: Itti-M, Itti-CIOFM, Surprise-CIOFM, Marat, and PQFT.

Why then is the human inter-observer significantly better than
other models when using NSS? This is likely because even
if in few occasions humans look at the same location, this
generates a very large NSS value. The human inter-observer
map in this dataset is a very sparse map and a hit results in a
very large NSS score. Also, note that the inter-observer model
is not significantly better than the three best computational
models using AUC. Interestingly, only the motion channel of
the Itti model (Itti-M) worked better than many models over
video stimuli (specially using CC and NSS scores). Itti-Int
was the worst among all models with STB, Entropy, Itti-CIO,
Variance, VOCUS, and Surprise-CIO: all these models indeed
only use static features. CC values are smaller here compared
with still images because there are fewer fixations (due to
smaller numbers of subjects).

All models achieved higher scores (all three) over the
saccadetest video clip, which is a circular moving blob on
a static blue background (see Fig. 2). Other stimuli on which
models did well include gamecube05, gamecube17, tv-news04,
gamecube06, and gamecube23, which tend to depict only one
central moving actor of interest. Lowest scores belong to
standard04, tv-announce01, tv-talk05, and standard03, which
are very cluttered scenes with many actors and moving objects.
Inspecting the difficult video clips suggests that eye fixations
in these clips are often driven by complex cognitive processes;

for instance, in tv-talk-05, fixations switch from one speaker
to the other following their subtle lip movements, while the
overall saliency of both their faces remains high throughout the
clip. Much more thus needs to be studied in modeling such
cognitive influences on saliency, as small dynamic changes
pixel-wise (like moving lips) can yield dramatic differences
in human gaze allocation (see, e.g., [28], [29]). Eye fixation
distributions of CRCNS-ORIG dataset shows higher density
at the center compared to still image datasets (about 42%
at the inner-most circle (10% radius) and about 83% at
40% radius). This could also be verified by the high scores
of the Gauss model over CC and NSS scores. Over this
dataset, similar to image datasets, NSS and AUC scores of
many models are much smaller than human inter-observer
scores. Generally, models that performed well over static
images also achieved higher accuracies over the CRCNS-
ORIG dataset. Interestingly, overall, models with a motion
channel rank towards the middle, i.e., they do not seem to
work better than the best models which only use static features,
though they still work better than the lowest-performing static
models.

Ranking of models over DIEM video dataset is shown
in Fig. 8(b). The IO, Tavakoli, Gauss, GBVS, HouNIPS,
Bian, and Judd models ranked on top using CC and
NSS scores. Using shuffled AUC, however, AWS, Bian,
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Fig. 9. Analysis of Gaussian blob size parameter. CC, NSS, and shuffled AUC scores over Gaussian blobs at the image center with increasing size from
small to large (bottom-row). Size of each blob is 50 × 50 pixels.

TABLE II

MODEL COMPARISON OVER CATEGORIES OF KOOTSTRA AND

SHOMACKER DATASET USING SHUFFLED AUC SCORE. SECOND NUMBER

IN EACH PAIR OF VALUES IS SEM. THE THREE BEST MODELS FOR EACH

CATEGORY ARE SHOWN IN BOLD. LAST THREE ROWS SHOW THE

AVERAGE PERFORMANCE OF ALL MODELS USING THREE SCORES

Buildings Nature Animals Flowers Automan

Size 16 40 12 20 12

IO 0.62 ± 0.03 0.58 ± 0.04 0.65 ± 0.04 0.62 ± 0.04 0.70 ± 0.03

Gauss 0.50 ± 0.04 0.50 ± 0.04 0.50 ± 0.07 0.50 ± 0.07 0.50 ± 0.07

AIM 0.58 ± 0.02 0.55 ± 0.05 0.58 ± 0.05 0.58 ± 0.06 0.63 ± 0.05

AWS 0.60 ± 0.04 0.58 ± 0.06 0.63 ± 0.07 0.62 ± 0.06 0.68 ± 0.05

E-Saliency 0.56 ± 0.04 0.53 ± 0.05 0.57 ± 0.06 0.54 ± 0.07 0.63 ± 0.06

Bian 0.52 ± 0.07 0.55 ± 0.05 0.60 ± 0.08 0.56 ± 0.08 0.61 ± 0.09

Entropy 0.54 ± 0.04 0.52 ± 0.03 0.51 ± 0.05 0.56 ± 0.04 0.57 ± 0.04

GBVS 0.56 ± 0.03 0.55 ± 0.05 0.57 ± 0.04 0.55 ± 0.06 0.60 ± 0.07

Kootstra 0.56 ± 0.03 0.53 ± 0.04 0.54 ± 0.06 0.54 ± 0.07 0.58 ± 0.05

HouCVPR 0.58 ± 0.03 0.54 ± 0.05 0.59 ± 0.05 0.55 ± 0.06 0.62 ± 0.05

HouNIPS 0.58 ± 0.03 0.56 ± 0.05 0.59 ± 0.07 0.59 ± 0.06 0.66 ± 0.07

Itti-CIO 0.52 ± 0.02 0.52 ± 0.03 0.54 ± 0.03 0.51 ± 0.03 0.54 ± 0.02

Itti-CIO2 0.55 ± 0.04 0.55 ± 0.03 0.58 ± 0.05 0.54 ± 0.04 0.64 ± 0.03

Jia Li 0.56 ± 0.04 0.53 ± 0.04 0.57 ± 0.06 0.52 ± 0.08 0.60 ± 0.05

Judd 0.57 ± 0.04 0.56 ± 0.05 0.58 ± 0.06 0.58 ± 0.06 0.63 ± 0.05

Le Meur 0.55 ± 0.05 0.55 ± 0.05 0.55 ± 0.05 0.55 ± 0.05 0.62 ± 0.07

Marat 0.51 ± 0.02 0.50 ± 0.02 0.51 ± 0.02 0.51 ± 0.02 0.51 ± 0.01

PQFT 0.53 ± 0.06 0.53 ± 0.05 0.52 ± 0.06 0.58 ± 0.05 0.58 ± 0.05

Rarity-G 0.53 ± 0.03 0.53 ± 0.03 0.55 ± 0.02 0.56 ± 0.04 0.57 ± 0.04

Rarity-L 0.54 ± 0.02 0.53 ± 0.03 0.54 ± 0.04 0.53 ± 0.04 0.57 ± 0.05

SDSR 0.58 ± 0.04 0.56 ± 0.05 0.62 ± 0.06 0.55 ± 0.06 0.65 ± 0.07

SUN 0.53 ± 0.06 0.53 ± 0.05 0.50 ± 0.06 0.58 ± 0.05 0.59 ± 0.07

Surprise-CIO 0.53 ± 0.03 0.54 ± 0.04 0.55 ± 0.03 0.53 ± 0.05 0.55 ± 0.02

Torralba 0.56 ± 0.03 0.54 ± 0.04 0.55 ± 0.05 0.58 ± 0.06 0.62 ± 0.05

Variance 0.54 ± 0.03 0.53 ± 0.04 0.52 ± 0.05 0.57 ± 0.06 0.59 ± 0.04

VOCUS 0.56 ± 0.03 0.54 ± 0.04 0.58 ± 0.05 0.56 ± 0.06 0.63 ± 0.06

STB 0.51 ± 0.01 0.51 ± 0.01 0.53 ± 0.04 0.51 ± 0.02 0.51 ± 0.01

Yan 0.57 ± 0.03 0.55 ± 0.06 0.60 ± 0.05 0.56 ± 0.06 0.65 ± 0.06

Yin Li 0.55 ± 0.03 0.55 ± 0.05 0.59 ± 0.06 0.57 ± 0.06 0.60 ± 0.07

Average-AUC 0.55 ± 0.02 0.54 ± 0.01 0.56 ± 0.3 0.55 ± 0.02 0.60 ± 0.04

Average-CC 0.17 ± 0.06 0.17 ± 0.07 0.22 ± 0.84 0.19± 0.82 0.24 ± 0.07

Average-NSS 0.33 ± 0.12 0.30 ± 0.13 0.57 ± 0.2 0.46 ± 0.20 0.54 ± 0.18

Murray, Judd, AIM, and HouNIPS scored best. The
sport_scramblers_1280x720 video was the easiest on average
for models over three scores because it has mainly one moving
object. Models that performed poorly over the CRCNS-ORIG
dataset are also ranked at the bottom on DIEM dataset. Several
videos clips in this dataset yield very poor model scores for all
models. Here again, those clips include significant cognitive
factors; for example, in the ping-pong videos, a reactive
saliency model often trails behind human fixations which tend
to be more predictive [78]. Adding stronger predictive abilities

to models is a very hard problem as the predictions occur in the
3D world, thus requiring extensive machine vision to recover
3D structure from videos.

C. Analysis of Gaussian Blob Size

Another important factor in model comparison is the size
of the Gaussian blob. We changed the sigma (σ ) parameter
of the Gauss model and evaluated the scores over three
datasets shown in Fig. 9. Two points should be noticed here:
1) Using all three scores, maximum performance happens
for the Gaussian σ equal to 6, 7, or 8. In our experiments,
Gaussian σ = 10 was used for model comparison and
2) Over shuffled AUC, as it was expected, values do not
change for different Gaussians over three datasets (between 0.5
and 0.512). This again shows that shuffled AUC is invariant
to center-bias.

D. Time Complexity Analysis of Models

In addition to correctly predicting atypical image locations
attracting human attention, a saliency model should be also
very fast. For some species, attention is tightly linked to their
survival (e.g., quick detection and response to a predator).
Some complex processes such as cluttered scene understand-
ing will not be feasible or will be very slow without employing
an effective attentional strategy. Thus, it is important that
attention should kicky orient other complex processes to
important dimensions of stimuli. The average time required
to compute saliency map of an image for models is shown
in Table III. Average time was calculated over 100 images
with resolution 511×681 from Bruce and Tsotsos dataset. All
models were executed on a computer running Linux Mandriva
with 4GB RAM and Quad core 2.8 GHz Intel CPU. The Itti-
CIO model is the fastest (∼17 ms/image) followed by VOCUS
and HouCVPR models (less than 300 ms/image). Note that in
this table, what matters is ranking, while absolute durations
may be reduced with more powerful machines. The Judd et
al., model has high saliency prediction accuracy but is very
slow (about 100 sec/image) since it needs to calculate several
fairly complex channels (person, face, car, gist, horizontal line,
etc). Most of the models need less than 16 sec to calculate
saliency.
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E. Illustrative Figures

The three best and three worst stimuli (measured by shuffled
AUC score) for each model are shown in Fig. 10. Many models
share their three best and three worst images. For the Gauss
model stimuli that have fixations at the center happen to be the
best and those that have fixations off the center are the worst.
Since no model uses face detection (except for Judd et al.) and
text detection channels, most models have difficulty predicting
fixations over stimuli with these types of features. This means
that an important point in building more successful models is
to look for cognitive factors that drive visual attention (e.g.,
gaze direction of human characters in images, meaning of text
messages [69], etc.).

IV. DISCUSSION AND CONCLUSION

In this paper, we briefly reviewed several state-of-the-art
visual saliency models and quantitatively compared them over
54 synthetic patterns, three radically different still image
datasets, and two benchmark video datasets. We also analyzed
datasets in terms of center-bias and models in terms of
time complexity. Here, we list the main conclusions of our
comparison study:

1) All existing datasets are highly center-biased. Develop-
ing less center-biased datasets in the future can help fair
model comparison4.

2) The majority of existing eye movements datasets are
small with small numbers of subjects. Further attempts
are necessary to collect larger datasets with more
observers (to obtain a better notion of average human
performance) with higher stimulus variability. This need
is more pressing for collecting fixations over videos.

3) The CC and NSS scores suffer from the center-bias
issue and their use in future model comparisons is not
encouraged. On the other hand, the shuffled AUC score
tackles center bias and border effects, and is the best
option for model comparison.

4) There is still a gap between current models and human
performance. This gap is smaller for off-center fixations
and for some datasets, but overall exists. As discussed
above, discovering and adding more top-down features
to models will hopefully boost their performance.

5) Saliency models based on FIT theory work better in
locating a target over synthetic patterns.

6) Models that did well over static natural scenes in general
also did well over the video datasets. The majority of
these models are based on statistical techniques.

7) The top performing model in our experiments with static
and dynamic natural scenes is AWS (focusing on the
shuffled AUC score); it also performed second best with
synthetic images.

8) Consistent with [79], we also noticed that models
that generate blurrier maps achieve higher scores (e.g.,
GBVS, AIM, and Itti-CIO2). This should be considered
by authors and future comparisons.

9) Models incorporating motion did not perform better than
the best static models over video datasets. Extension of

4We share a dataset at: https://sites.google.com/site/saliencyevaluation/.
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the best existing static models to the spatio-temporal
domain may further scale up those models.

10) Some categories are harder for models (e.g., Nature
stimuli) while some others containing less cluttered
scenes and scenes with fewer objects are easier (e.g.,
scenes containing humans and cars).

11) Best and worst stimuli are the same for many models,
which means that models have common difficulty in
prediction of saliency over specific classes of stimuli
(Fig. 10). This suggests some hints for future research.

12) Some models are fast and effective (e.g., HouNIPS,
Bian, HouCVPR, Torralba, and Itti-CIO2) providing a
tradeoff between accuracy and speed necessary for many
applications.

One remaining problem in fair model evaluation is the
effect of internal model parameters, such as number of filters,
type of filters, Gabor or DoG filter parameters, choice of the
nonlinearities, blurring, and normalization schemes. Proper
tuning of these parameters is important, and doing so may
dramatically affect the performance of a system. Here, we tried
our best to produce highly predictive maps for models.

Despite significant success of the models evaluated here,
there is still significant room to further improve attention accu-
racy due to a remaining large gap between models and human
observer agreement, as has also been shown using smaller
datasets and less systematic comparisons in previous studies
(e.g., [41], [50], [45]). Here, we suggest several directions that
could help bridge this gap.

One direction to extend current models is adding top-down
factors. Context [3], [35], [45], gain modulation of features for
target detection [4], [5], [80], and use of target detectors tuned
to specific objects [50], [69] has been used for modeling top-
down attentional effects. Here, we comment more on these
factors. While almost all bottom-up models have employed
simple feature channels believed to be computed by early
visual areas, they do not rule out the existence of top-down
influences in free-viewing tasks where these models have been
applied to. For instance, in free viewing of spatio-temporal
stimuli, such as videos, semantic processing of scenes, and
extraction of high-level knowledge plays a significant role in
guiding attention and eye movements. Some semantic cues
involve social interactions in images, living beings, faces (and
eyes, nose, and mouth within faces), text, etc. Also it appears
that attentional-bias is independent of illumination, orientation
as well as scale of the salient object/concept [81]. A large
dataset containing many example images with such factors
(758 images viewed by on average 25.3 viewers) has recently
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Fig. 10. Three best and three worst stimuli using shuffled AUC score for all models over Judd et al. dataset. Note that some images are best for many
models and at the same time some worst cases repeat across many models. Yellow dots represent human fixations.

been collected by Ramanathan et al. [82]. They also observed
that unpleasant concepts, such as reptiles or blood and injury,
considerably influence visual attention whenever present. The
fact that recognized concepts drive visual attention adds sup-
port to the theory that visual attention and object recognition
are concurrent processes, and this is an interesting topic
of research in the cognitive science community. Therefore,
adding top-down factors to bottom-up models can be an impor-
tant topic for future research in saliency modeling. Indeed the
list of top-down factors is not limited to the above factors and
several others, including task demands (e.g., real-world tasks),
memories, experiences, expectations, and internal states play
an important roles in directing overt attention and gaze.

We suggest taking inspiration from early visual cortex for
developing more biologically inspired models of attention.
For instance, the AWS model takes advantage of a basic
idea, decorrelation of neural responses in representing a visual
stimuli [83], [84]. In this regard, shown by our results, having
many features (similar to Judd [50]) might not be as efficient as
discovering the basic principles/features of attention guidance
(employed by models, such as Itti-CIO, AWS, HouNIPS, and
GBVS). An idea in this direction is validating models of
saliency against eye movements of humans over distorted
images (e.g., rotated, mirrored, or inversed images) or by

considering detailed low-level neural findings revealed by
neurophysiological studies (e.g., [85]).

Another future direction will be combining several different
saliency models to achieve higher performances. Since each
of these models is based on different mechanisms, it is likely
that combining them may result in higher fixation prediction.
This trend has been followed previously in biometrics (e.g.,
face identifications) as well as character recognition [86]. Such
direction may not extend our understanding of visual attention,
but if successful it may have several practical applications.

There are several other open questions for future investiga-
tions. As already mentioned, text is an important feature that
is proven to attract attention [69]. But since text detection
in natural scenes is an open problem and few approaches
exist for that, it has not been added to current models.
Basically using more features leads to better fixation prediction
performance with the cost of lowering speed. One solution
is parallel implementation of models (e.g., feature extraction
on GPU (e.g., [87], [88]). Most models have focused on
predicting locations that human observers look at, while few
(e.g., [34]) have investigated other aspects of eye fixations,
such as saccade dynamics, sequencing (Wang et al. [89]),
retinal sampling, inhibition of return, the role of context,
etc [90]. More work needs to be done in this direction.
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A less explored application of saliency modeling is using it
for understanding cluttered scenes by sequentially processing
important regions or objects. Another promising direction is
in developing models that can predict locations that humans
find interesting, for instance by clicking and see how such
models differ from traditional saliency models for fixation
prediction [91]. Also, more attempts are still needed to deter-
mine important features attracting eye fixations. Extending
models to include some understanding of 3D scene structure
is a challenging yet pressing problem, as solving it may allow
the creation of new models with significantly better predictive
abilities (e.g., the expected landing point of a ball might be
more salient than the ball itself). It would be also interesting
to customize a saliency model for each person. For instance,
by learning habits, preferences, etc. of each human subject.
This way, it is theoretically possible to surpass the human
inter-observer model. Interaction between attention and object
recognition and their mutual benefit has been overstated, but
still there are not many works in this area.
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