
A Tutorial on Bayesian Optimization of

Expensive Cost Functions, with Application to

Active User Modeling and Hierarchical

Reinforcement Learning

Eric Brochu, Vlad M. Cora and Nando de Freitas

December 14, 2010

Abstract

We present a tutorial on Bayesian optimization, a method of finding
the maximum of expensive cost functions. Bayesian optimization employs
the Bayesian technique of setting a prior over the objective function and
combining it with evidence to get a posterior function. This permits a
utility-based selection of the next observation to make on the objective
function, which must take into account both exploration (sampling from
areas of high uncertainty) and exploitation (sampling areas likely to offer
improvement over the current best observation). We also present two
detailed extensions of Bayesian optimization, with experiments—active
user modelling with preferences, and hierarchical reinforcement learning—
and a discussion of the pros and cons of Bayesian optimization based on
our experiences.

1 Introduction

An enormous body of scientific literature has been devoted to the problem of
optimizing a nonlinear function f(x) over a compact set A. In the realm of
optimization, this problem is formulated concisely as follows:

max
x∈A⊂Rd

f(x)

One typically assumes that the objective function f(x) has a known mathe-
matical representation, is convex, or is at least cheap to evaluate. Despite the
influence of classical optimization on machine learning, many learning problems
do not conform to these strong assumptions. Often, evaluating the objective
function is expensive or even impossible, and the derivatives and convexity prop-
erties are unknown.

In many realistic sequential decision making problems, for example, one can
only hope to obtain an estimate of the objective function by simulating fu-
ture scenarios. Whether one adopts simple Monte Carlo simulation or adaptive

1

ar
X

iv
:1

01
2.

25
99

v1
 [

cs
.L

G
]

 1
2

D
ec

 2
01

0

schemes, as proposed in the fields of planning and reinforcement learning, the
process of simulation is invariably expensive. Moreover, in some applications,
drawing samples f(x) from the function corresponds to expensive processes:
drug trials, destructive tests or financial investments. In active user modeling,
x represents attributes of a user query, and f(x) requires a response from the
human. Computers must ask the right questions and the number of questions
must be kept to a minimum so as to avoid annoying the user.

1.1 An Introduction to Bayesian Optimization

Bayesian optimization is a powerful strategy for finding the extrema of objective
functions that are expensive to evaluate. It is applicable in situations where one
does not have a closed-form expression for the objective function, but where one
can obtain observations (possibly noisy) of this function at sampled values. It
is particularly useful when these evaluations are costly, when one does not have
access to derivatives, or when the problem at hand is non-convex.

Bayesian optimization techniques are some of the most efficient approaches
in terms of the number of function evaluations required (see, e.g. [Močkus, 1994,
Jones et al., 1998, Streltsov and Vakili, 1999, Jones, 2001, Sasena, 2002]). Much
of the efficiency stems from the ability of Bayesian optimization to incorporate
prior belief about the problem to help direct the sampling, and to trade off
exploration and exploitation of the search space. It is called Bayesian because
it uses the famous “Bayes’ theorem”, which states (simplifying somewhat) that
the posterior probability of a model (or theory, or hypothesis) M given evi-
dence (or data, or observations) E is proportional to the likelihood of E given
M multiplied by the prior probability of M :

P (M |E) ∝ P (E|M)P (M).

Inside this simple equation is the key to optimizing the objective function. In
Bayesian optimization, the prior represents our belief about the space of possible
objective functions. Although the cost function is unknown, it is reasonable to
assume that there exists prior knowledge about some of its properties, such as
smoothness, and this makes some possible objective functions more plausible
than others.

Let’s define xi as the ith sample, and f(xi) as the observation of the objective
function at xi. As we accumulate observations1 D1:t = {x1:t, f(x1:t)}, the prior
distribution is combined with the likelihood function P (D1:t|f). Essentially,
given what we think we know about the prior, how likely is the data we have
seen? If our prior belief is that the objective function is very smooth and noise-
free, data with high variance or oscillations should be considered less likely than
data that barely deviate from the mean. Now, we can combine these to obtain
our posterior distribution:

P (f |D1:t) ∝ P (D1:t|f)P (f).

1 Here we use subscripts to denote sequences of data, i.e. y1:t = {y1, . . . , yt}.

2

acquisition max

acquisition function (u(·))

observation (x)
objective fn (f(·))

t = 2

new observation (xt)

t = 3

posterior mean (µ(·))

posterior uncertainty
(µ(·)±σ(·))

t = 4

Figure 1: An example of using Bayesian optimization on a toy 1D design problem.
The figures show a Gaussian process (GP) approximation of the objective function over
four iterations of sampled values of the objective function. The figure also shows the
acquisition function in the lower shaded plots. The acquisition is high where the GP
predicts a high objective (exploitation) and where the prediction uncertainty is high
(exploration)—areas with both attributes are sampled first. Note that the area on the
far left remains unsampled, as while it has high uncertainty, it is (correctly) predicted
to offer little improvement over the highest observation.

The posterior captures our updated beliefs about the unknown objective func-
tion. One may also interpret this step of Bayesian optimization as estimating
the objective function with a surrogate function (also called a response sur-
face), described formally in §2.1 with the posterior mean function of a Gaussian
process.

To sample efficiently, Bayesian optimization uses an acquisition function to
determine the next location xt+1 ∈ A to sample. The decision represents an
automatic trade-off between exploration (where the objective function is very
uncertain) and exploitation (trying values of x where the objective function is
expected to be high). This optimization technique has the nice property that it
aims to minimize the number of objective function evaluations. Moreover, it is
likely to do well even in settings where the objective function has multiple local
maxima.

3

Figure 1 shows a typical run of Bayesian optimization on a 1D problem.
The optimization starts with two points. At each iteration, the acquisition
function is maximized to determine where next to sample from the objective
function—the acquisition function takes into account the mean and variance of
the predictions over the space to model the utility of sampling. The objective
is then sampled at the argmax of the acquisition function, the Gaussian process
is updated and the process is repeated. +One may also interpret this step
of Bayesian optimization as estimating the objective function with a surrogate
function (also called a response surface), described formally in §2.1 with the
posterior mean function of a Gaussian process.

1.2 Overview

In §2, we give an overview of the Bayesian optimization approach and its history.
We formally present Bayesian optimization with Gaussian process priors (§2.1)
and describe covariance functions (§2.2), acquisition functions (§2.3) and the role
of Gaussian noise (§2.4). In §2.5, we cover the history of Bayesian optimization,
and the related fields of kriging, GP experimental design and GP active learning.

The second part of the tutorial builds on the basic Bayesian optimization
model. In §3 and §4 we discuss extensions to Bayesian optimization for active
user modelling in preference galleries, and hierarchical control problems, respec-
tively. Finally, we end the tutorial with a brief discussion of the pros and cons
of Bayesian optimization in §5.

2 The Bayesian Optimization Approach

Optimization is a broad and fundamental field of mathematics. In order to
harness it to our ends, we need to narrow it down by defining the conditions we
are concerned with.

Our first restriction is to simply specify that the form of the problem we
are concerned with is maximization, rather than the more common form of
minimization. The maximization of a real-valued function x? = argmaxx f(x)
can be regarded as the minimization of the transformed function

g(x) = −f(x).

We also assume that the objective is Lipschitz-continuous. That is, there
exists some constant C, such that for all x1,x2 ∈ A:

‖f(x1)− f(x2)‖ ≤ C‖x1 − x2‖,

though C may be (and typically is) unknown.
We can narrow the problem down further by defining it as one of global,

rather than local optimization. In local maximization problems, we need only
find a point x(?) such that

f(x(?)) ≥ f(x),∀x s.t. ‖x(?) − x‖ < ε.

4

If −f(x) is convex, then any local maximum is also a global maximum. However,
in our optimization problems, we cannot assume that the negative objective
function is convex. It might be the case, but we have no way of knowing before
we begin optimizing.

It is common in global optimization, and true for our problem, that the ob-
jective is a black box function: we do not have an expression of the objective
function that we can analyze, and we do not know its derivatives. Evaluating
the function is restricted to querying at a point x and getting a (possibly noisy)
response. Black box optimization also typically requires that all dimensions
have bounds on the search space. In our case, we can safely make the sim-
plifying assumption these bounds are all axis-aligned, so the search space is a
hyperrectangle of dimension d.

A number of approaches exist for this kind of global optimization and have
been well-studied in the literature (e.g., [Törn and Žilinskas, 1989, Mongeau et al., 1998,
Liberti and Maculan, 2006, Zhigljavsky and Žilinskas, 2008]). Deterministic ap-
proaches include interval optimization and branch and bound methods. Stochas-
tic approximation is a popular idea for optimizing unknown objective func-
tions in machine learning contexts [Kushner and Yin, 1997]. It is the core
idea in most reinforcement learning algorithms [Bertsekas and Tsitsiklis, 1996,
Sutton and Barto, 1998], learning methods for Boltzmann machines and deep
belief networks [Younes, 1989, Hinton and Salakhutdinov, 2006] and parameter
estimation for nonlinear state space models [Poyiadjis et al., 2005, Martinez–Cantin et al., 2006].
However, these are generally unsuitable for our domain because they still re-
quire many samples, and in the active user-modelling domain drawing samples
is expensive.

Even in a noise-free domain, evaluating an objective function with Lipschitz
continuity C on a d-dimensional unit hypercube, guaranteeing the best observa-
tion f(x+) ≥ f(x?)− ε requires (C/2ε)d samples [Betrò, 1991]. This can be an
incredibly expensive premium to pay for insurance against unlikely scenarios.
As a result, the idea naturally arises to relax the guarantees against patho-
logical worst-case scenarios. The goal, instead, is to use evidence and prior
knowledge to maximize the posterior at each step, so that each new evalua-
tion decreases the distance between the true global maximum and the expected
maximum given the model. This is sometimes called “one-step” [Močkus, 1994]
“average-case” [Streltsov and Vakili, 1999] or “practical” [Lizotte, 2008] opti-
mization. This average-case approach has weaker demands on computation
than the worst-case approach. As a result, it may provide faster solutions in
many practical domains where one does not believe the worst-case scenario is
plausible.

Bayesian optimization uses the prior and evidence to define a posterior dis-
tribution over the space of functions. The Bayesian model allows for an elegant
means by which informative priors can describe attributes of the objective func-
tion, such as smoothness or the most likely locations of the maximum, even
when the function itself is not known. Optimizing follows the principle of max-
imum expected utility, or, equivalently, minimum expected risk. The process of
deciding where to sample next requires the choice of a utility function and a

5

Algorithm 1 Bayesian Optimization
1: for t = 1, 2, . . . do
2: Find xt by optimizing the acquisition function over the GP: xt = argmaxx u(x|D1:t−1).

3: Sample the objective function: yt = f(xt) + εt.
4: Augment the data D1:t = {D1:t−1, (xt, yt)} and update the GP.

5: end for

way of optimizing the expectation of this utility with respect to the posterior
distribution of the objective function. This secondary optimization problem is
usually easier because the utility is typically chosen so that it is easy to evaluate,
though still nonconvex. To make clear which function we are discussing, we will
refer to this utility as the acquisition function (also sometimes called the infill
function). In §2.3, we will discuss some common acquisition functions.

In practice, there is also have the possibility of measurement noise, which
we will assume is Gaussian. We define xi as the ith sample and yi = f(xi) + εi,

with εi
iid∼ N (0, σ2

noise), as the noisy observation of the objective function at xi.
We will discuss noise in more detail in §2.4.

The Bayesian optimization procedure is shown in Algorithm 1. As men-
tioned earlier, it has two components: the posterior distribution over the ob-
jective and the acquisition function. Let us focus on the posterior distribu-
tion first and come back to the acquisition function in §2.3. As we accumu-
late observations D1:t = {x1:t, y1:t}, a prior distribution P (f) is combined
with the likelihood function P (D1:t|f) to produce the posterior distribution:
P (f |D1:t) ∝ P (D1:t|f)P (f). The posterior captures the updated beliefs about
the unknown objective function. One may also interpret this step of Bayesian
optimization as estimating the objective function with a surrogate function (also
called a response surface). In §2.1, we will discuss how Gaussian process priors
can be placed on f .

2.1 Priors over functions

Any Bayesian method depends on a prior distribution, by definition. A Bayesian
optimization method will converge to the optimum if (i) the acquisition func-
tion is continuous and approximately minimizes the risk (defined as the ex-
pected deviation from the global minimum at a fixed point x); and (ii) con-
ditional variance converges to zero (or appropriate positive minimum value in
the presence of noise) if and only if the distance to the nearest observation
is zero [Močkus, 1982, Močkus, 1994]. Many models could be used for this
prior—early work mostly used the Wiener process (§2.5). However, Gaussian
process (GP) priors for Bayesian optimization date back at least to the late
1970s [O’Hagan, 1978, Žilinskas, 1980]. Močkus [1994] explicitly set the frame-
work for the Gaussian process prior by specifying the additional “simple and
natural” conditions that (iii) the objective is continuous; (iv) the prior is ho-
mogeneous; (v) the optimization is independent of the mth differences. This

6

Figure 2: Simple 1D Gaussian process with three observations. The solid black line
is the GP surrogate mean prediction of the objective function given the data, and the
shaded area shows the mean plus and minus the variance. The superimposed Gaussians
correspond to the GP mean and standard deviation (µ(·) and σ(·)) of prediction at the
points, x1:3.

includes a very large family of common optimization tasks, and Močkus showed
that the GP prior is well-suited to the task.

A GP is an extension of the multivariate Gaussian distribution to an infinite-
dimension stochastic process for which any finite combination of dimensions will
be a Gaussian distribution. Just as a Gaussian distribution is a distribution over
a random variable, completely specified by its mean and covariance, a GP is a
distribution over functions, completely specified by its mean function, m and
covariance function, k:

f(x) ∼ GP(m(x), k(x,x′)).

It is often useful to intuitively think of a GP as analogous to a function, but
instead of returning a scalar f(x) for an arbitrary x, it returns the mean and
variance of a normal distribution (Figure 2) over the possible values of f at x.
Stochastic processes are sometimes called “random functions”, by analogy to
random variables.

For convenience, we assume here that the prior mean is the zero func-

7

tion m(x) = 0; alternative priors for the mean can be found in, for example
[Martinez–Cantin et al., 2009, Brochu et al., 2010a]. This leaves us the more
interesting question of defining the covariance function k. A very popular choice
is the squared exponential function:

k(xi,xj) = exp

(
−1

2
‖xi − xj‖2

)
. (1)

Note that this function approaches 1 as values get close together and 0 as
they get further apart. Two points that are close together can be expected
to have a very large influence on each other, whereas distant points have almost
none. This is a necessary condition for convergence under the assumptions of
[Močkus, 1994]. We will discuss more sophisticated kernels in §2.2.

If we were to sample from the prior, we would choose {x1:t} and sample the
values of the function at these indices to produce the pairs {x1:t, f1:t}, where
f1:t = f(x1:t). The function values are drawn according to a multivariate normal
distribution N (0,K), where the kernel matrix is given by:

K =

k(x1,x1) . . . k(x1,xt)
...

. . .
...

k(xt,x1) . . . k(xt,xt)

 .
Of course, the diagonal values of this matrix are 1 (each point is perfectly
correlated with itself), which is only possible in a noise-free environment. We
will discuss noise in §2.4. Also, recall that we have for simplicity chosen the
zero mean function.

In our optimization tasks, however, we will use data from an external model
to fit the GP and get the posterior. Assume that we already have the observa-
tions {x1:t, f1:t}, say from previous iterations, and that we want to use Bayesian
optimization to decide what point xt+1 should be considered next. Let us de-
note the value of the function at this arbitrary point as ft+1 = f(xt+1). Then,
by the properties of Gaussian processes, f1:t and ft+1 are jointly Gaussian:[

f1:t
ft+1

]
∼ N

(
0,

[
K k
kT k(xt+1,xt+1)

])
,

where
k =

[
k(xt+1,x1) k(xt+1,x2) · · · k(xt+1,xt)

]
Using the Sherman-Morrison-Woodbury formula (see, e.g., [Rasmussen and Williams, 2006,
Press et al., 2007]), one can easily arrive at an expression for the predictive dis-
tribution:

P (ft+1|D1:t,xt+1) = N
(
µt(xt+1), σ2

t (xt+1)
)

where

µt(xt+1) = kTK−1f1:t

σ2
t (xt+1) = k(xt+1,xt+1)− kTK−1k.

8

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
θ=0.1

0 1 2 3 4 5
3

2

1

0

1

2

3

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
θ=0.2

0 1 2 3 4 5
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
θ=0.5

0 1 2 3 4 5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

Figure 3: The effect of changing the kernel hyperparameters. Shown are squared
exponential kernels with θ = 0.1, 0.2, 0.5. On the left is the function k(0,x). On the
right are some one-dimensional functions sampled from a GP with the hyperparameter
value.

That is, µt(·) and σ2
t (·) are the sufficient statistics of the predictive posterior

distribution P (ft+1|D1:t,xt+1). For legibility, we will omit the subscripts on
µ and σ except where it might be unclear. In the sequential decision making
setting, the number of query points is relatively small and, consequently, the
GP predictions are easy to compute.

2.2 Choice of covariance functions

The choice of covariance function for the Gaussian Process is crucial, as it
determines the smoothness properties of samples drawn from it. The squared
exponential kernel in Eqn (1) is actually a little naive, in that divergences of all
features of x affect the covariance equally.

Typically, it is necessary to generalize by adding hyperparameters. In an
isotropic model, this can be done with a single hyperparameter θ, which controls
the width of the kernel:

k(xi,xj) = exp

(
− 1

2θ2
‖xi − xj‖2

)
.

For anisotropic models, a very popular choice is the squared exponential kernel
with a vector of automatic relevance determination (ARD) hyperparameters θ

9

[Rasmussen and Williams, 2006, page 106]:

k(xi,xj) = exp
(
− 1

2 (xi − xj)
T diag(θ)−2(x− x′)

)
,

where diag(θ) is a diagonal matrix with d entries θ along the diagonal. In-
tuitively, if a particular θ` has a small value, the kernel becomes indepen-
dent of `-th input, effectively removing it automatically. Hence, irrelevant
dimensions are discarded. Figure 3 shows examples of different hyperparam-
eter values on the squared exponential function and what functions sampled
from those values look like. Typically, the hyperparameter values are learned
by “seeding” with a few random samples and maximizing the log-likelihood
of the evidence given θ [Jones et al., 1998, Sasena, 2002, Santner et al., 2003,
Rasmussen and Williams, 2006]. This can often be aided with an informative
hyperprior on the hyperparameters, often a log normal prior [Lizotte, 2008,
Frean and Boyle, 2008]. Methods of learning these values more efficiently is cur-
rently an active subfield of research (e.g. [Osborne, 2010, Brochu et al., 2010a]).

Another important kernel for Bayesian optimization is the Matérn kernel
[Matérn, 1960, Stein, 1999], which incorporates a smoothness parameter ς to
permit greater flexibility in modelling functions:

k(xi,xj) =
1

2ς−1Γ(ς)
(2
√
ς ‖xi − xj‖)

ς
Hς (2

√
ς ‖xi − xj‖) ,

where Γ(·) and Hς(·) are the Gamma function and the Bessel function of order ς.
Note that as ς →∞, the Matérn kernel reduces to the squared exponential ker-
nel, and when ς = 0.5, it reduces to the unsquared exponential kernel. As with
the squared exponential, length-scale hyperparameter are often incorporated.

While the squared exponential and Matérn are the most common kernels
for GPs, numerous others have been examined in the machine learning liter-
ature (see, e.g., [Genton, 2001] or [Rasmussen and Williams, 2006, Chapter 4]
for an overview). Appropriate covariance functions can also be used to ex-
tend the model in other interesting ways. For example, the recent sequential
sensor work of Osborne, Garnett and colleagues uses GP models with exten-
sions to the covariance function to model the characteristics of changepoints
[Osborne et al., 2010] and the locations of sensors in a network [Garnett et al., 2010a].
A common additional hyperparameter is simply a scalar applied to k to control
the magnitude of the variance.

Determining which of a set of possible kernel functions to use for a problem
typically requires a combination of engineering and automatic model selection,
either hierarchical Bayesian model selection [Mackay, 1992] or cross-validation.
However, these methods require fitting a model given a representative sam-
ple of data. In [Brochu et al., 2010a], we discuss how model selection can be
performed using models believed to be similar. The techniques introduced in
[Brochu et al., 2010b] could also be applied to model selection, though that is
outside the scope of this tutorial.

10

2.3 Acquisition Functions for Bayesian Optimization

Now that we have discussed placing priors over smooth functions and how to
update these priors in light of new observations, we will focus our attention on
the acquisition component of Bayesian optimization. The role of the acquisition
function is to guide the search for the optimum. Typically, acquisition functions
are defined such that high acquisition corresponds to potentially high values of
the objective function, whether because the prediction is high, the uncertainty
is great, or both. Maximizing the acquisition function is used to select the
next point at which to evaluate the function. That is, we wish to sample f at
argmaxx u(x|D), where u(·) is the generic symbol for an acquisition function.

2.3.1 Improvement-based acquisition functions

The early work of Kushner [1964] suggested maximizing the probability of im-
provement over the incumbent f(x+), where x+ = argmaxxi∈x1:t

f(xi), so that

PI(x) = P (f(x) ≥ f(x+))

= Φ

(
µ(x)− f(x+)

σ(x)

)
,

where Φ(·) is the normal cumulative distribution function. This function is also
sometimes called MPI (for “maximum probability of improvement”) or “the
P -algorithm” (since the utility is the probability of improvement).

The drawback, intuitively, is that this formulation is pure exploitation.
Points that have a high probability of being infinitesimally greater than f(x+)
will be drawn over points that offer larger gains but less certainty. As a result,
a modification is to add a trade-off parameter ξ ≥ 0:

PI(x) = P (f(x) ≥ f(x+) + ξ)

= Φ

(
µ(x)− f(x+)− ξ

σ(x)

)
, (2)

The exact choice of ξ is left to the user, though Kushner recommended a sched-
ule for ξ, so that it started fairly high early in the optimization, to drive ex-
ploration, and decreased toward zero as the algorithm continued. Several re-
searchers have studied the empirical impact of different values of ξ in different
domains [Törn and Žilinskas, 1989, Jones, 2001, Lizotte, 2008].

An appealing characteristic of this formulation for perceptual and preference
models is that while maximizing PI(·) is still greedy, it selects the point most
likely to offer an improvement of at least ξ. This can be useful in psychoper-
ceptual tasks, where there is a threshold of perceptual difference.

Jones [2001] notes that the performance of PI(·)

“is truly impressive. It would be quite natural if the reader, like
so many others, became enthusiastic about this approach. But if
there is a single lesson to be taken away from this paper, it is that

11

Figure 4: Gaussian process from Figure 2, additionally showing the region of probable
improvement. The maximum observation is at x+. The darkly-shaded area in the
superimposed Gaussian above the dashed line can be used as a measure of improvement,
I(x). The model predicts almost no possibility of improvement by observing at x1 or
x2, while sampling at x3 is more likely to improve on f(x+).

nothing in this response-surface area is so simple. There always
seems to be a counterexample. In this case, the difficulty is that
[the PI(·) method] is extremely sensitive to the choice of the target.
If the desired improvement is too small, the search will be highly
local and will only move on to search globally after searching nearly
exhaustively around the current best point. On the other hand, if
[ξ] is set too high, the search will be excessively global, and the
algorithm will be slow to fine-tune any promising solutions.”

A somewhat more satisfying alternative acquisition function would be one
that takes into account not only the probability of improvement, but the magni-
tude of the improvement a point can potentially yield. In particular, we want to
minimize the expected deviation from the true maximum f(x?), when choosing

12

a new trial point:

xt+1 = argmin
x

E(‖ft+1(x)− f(x?)‖ |D1:t)

= argmin
x

∫
‖ft+1(x)− f(x?)‖P (ft+1|D1:t)dft+1,

Note that this decision process is myopic in that it only considers one-step-
ahead choices. However, if we want to plan two steps ahead, we can easily
apply recursion:

xt+1 = argmin
x

E
(

min
x′

E(‖ft+2(x′)− f(x?)‖ |Dt+1) |D1:t

)
One could continue applying this procedure of dynamic programming for as
many steps ahead as desired. However, because of its expense, Močkus et al.
[1978] proposed the alternative of maximizing the expected improvement with
respect to f(x+). Specifically, Močkus defined the improvement function as:

I(x) = max{0, ft+1(x)− f(x+)}.

That is, I(x) is positive when the prediction is higher than the best value known
thus far. Otherwise, I(x) is set to zero. The new query point is found by
maximizing the expected improvement:

x = argmax
x

E(max{0, ft+1(x)− f(x+)} |Dt)

The likelihood of improvement I on a normal posterior distribution characterized
by µ(x), σ2(x) can be computed from the normal density function,

1√
2πσ(x)

exp

(
− (µ(x)− f(x+)− I)2

2σ2(x)

)
.

The expected improvement is the integral over this function:

E(I) =

∫ I=∞

I=0

I
1√

2πσ(x)
exp

(
− (µ(x)− f(x+)− I)2

2σ2(x)

)
d I

= σ(x)

[
µ(x)− f(x+)

σ(x)
Φ

(
µ(x)− f(x+)

σ(x)

)
+ φ

(
µ(x)− f(x+)

σ(x)

)]
The expected improvement can be evaluated analytically [Močkus et al., 1978,

Jones et al., 1998], yielding:

EI(x) =

{
(µ(x)− f(x+))Φ(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

(3)

Z =
µ(x)− f(x+)

σ(x)

13

where φ(·) and Φ(·) denote the PDF and CDF of the standard normal distribu-
tion respectively. Figure 4 illustrates a typical expected improvement scenario.

It should be said that being myopic is not a requirement here. For ex-
ample, it is possible to derive analytical expressions for the two-step ahead
expected improvement [Ginsbourger et al., 2008] and multistep Bayesian opti-
mization [Garnett et al., 2010b]. This is indeed a very promising recent direc-
tion.

2.3.2 Exploration-exploitation trade-off

The expectation of the improvement function with respect to the predictive
distribution of the Gaussian process enables us to balance the trade-off of ex-
ploiting and exploring. When exploring, we should choose points where the
surrogate variance is large. When exploiting, we should choose points where
the surrogate mean is high.

It is highly desirable for our purposes to express EI(·) in a generalized form
which controls the trade-off between global search and local optimization (ex-
ploration/exploitation). Lizotte [2008] suggests a ξ ≥ 0 parameter such that:

EI(x) =

{
(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

, (4)

where

Z =

{
µ(x)−f(x+)−ξ

σ(x) if σ(x) > 0

0 if σ(x) = 0
.

This ξ is very similar in flavour to the ξ used in Eqn (2), and to the approach
used by Jones et al. [2001]. Lizotte’s experiments suggest that setting ξ = 0.01
(scaled by the signal variance if necessary) works well in almost all cases, and
interestingly, setting a cooling schedule for ξ to encourage exploration early and
exploitation later does not work well empirically, contrary to intuition (though
Lizotte did find that a cooling schedule for ξ might slightly improve performance
on short runs (t < 30) of PI optimization).

2.3.3 Confidence bound criteria

Cox and John [1992, 1997] introduce an algorithm they call “Sequential Design
for Optimization”, or SDO. Given a random function model, SDO selects points
for evaluation based on the lower confidence bound of the prediction site:

LCB(x) = µ(x)− κσ(x),

where κ ≥ 0. While they are concerned with minimization, we can maximize
by instead defining the upper confidence bound:

UCB(x) = µ(x) + κσ(x).

14

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0
p
o
st

e
ri

o
r

P
I

ξ=0.01

ξ=0.10

ξ=1.00

E
I

ξ=0.01

ξ=0.10

ξ=1.00

G
P
-U

C
B

ν=0.2

ν=1.0

ν=2.0

Figure 5: Examples of acquisition functions and their settings. The GP posterior is
shown at top. The other images show the acquisition functions for that GP. From the
top: probability of improvement (Eqn (2)), expected improvement (Eqn (4)) and upper
confidence bound (Eqn (5)). The maximum of each function is shown with a triangle
marker.

Like other parameterized acquisition models we have seen, the parameter
κ is left to the user. However, an alternative acquisition function has been
proposed by Srinivas et al. [2010]. Casting the Bayesian optimization problem
as a multi-armed bandit, the acquisition is the instantaneous regret function

r(x) = f(x?)− f(x).

The goal of optimizing in the framework is to find:

min

T∑
t

r(xt) = max

T∑
t

f(xt),

where T is the number of iterations the optimization is to be run for.
Using the upper confidence bound selection criterion with κt =

√
ντt and the

hyperparameter ν > 0 Srinivas et al. define

GP-UCB(x) = µ(x) +
√
ντtσ(x). (5)

15

Figure 6: Examples of acquisition functions and their settings in 2 dimensions. The
top row shows the objective function (which is the Branin function here), and the
posterior mean and variance estimates µ(·) and σ2(·). The samples used to train the
GP are shows with white dots. The second row shows the acquisition functions for the
GP. From left to right: probability of improvement (Eqn (2)), expected improvement
(Eqn (4)) and upper confidence bound (Eqn (5)). The maximum of each function is
shown with a triangle marker.

With ν = 1 and τt = 2 log(td/2+2π2/3δ), it can be shown2 with high probability
that this method is no regret, i.e. limT→∞RT /T = 0, whereRT is the cumulative
regret

RT =

T∑
t=1

f(x?)− f(xt).

This in turn implies a lower-bound on the convergence rate for the optimization
problem.

Figures 5 and 6 show how with the same GP posterior, different acquisition
functions with different maxima are defined. Figure 7 gives an example of how

2 These bounds hold for reasonably smooth kernel functions, where the exact formulation
of the bounds depends upon the form of kernel used. We refer the interested reader to the
original paper [Srinivas et al., 2010].

16

0
.0

0
.5

1
.0

101

t
=

 1

0
.0

0
.5

1
.0

PI

t
=

 2
t

=
 3

t
=

 4
t

=
 5

t
=

 6

0
.0

0
.5

1
.0

101

t
=

 1

0
.0

0
.5

1
.0

EI

t
=

 2
t

=
 3

t
=

 4
t

=
 5

t
=

 6

0
.0

0
.5

1
.0

101

t
=

 1

0
.0

0
.5

1
.0

GP-UCB

t
=

 2
t

=
 3

t
=

 4
t

=
 5

t
=

 6

F
ig

u
re

7:
C

o
m

pa
ri

so
n

o
f

p
ro

ba
bi

li
ty

o
f

im
p

ro
ve

m
en

t
(t

o
p

),
ex

pe
ct

ed
im

p
ro

ve
m

en
t

(m
id

d
le

)
a

n
d

u
p

pe
r

co
n

fi
d

en
ce

bo
u

n
d

(b
o

tt
o

m
)

a
cq

u
i-

si
ti

o
n

fu
n

ct
io

n
s

o
n

a
to

y
1

D
p

ro
bl

em
.

In
th

e
u

p
pe

r
ro

w
s,

th
e

o
bj

ec
ti

ve
fu

n
ct

io
n

is
sh

o
w

n
w

it
h

th
e

d
o

tt
ed

re
d

li
n

e,
th

e
so

li
d

bl
u

e
li

n
e

is
th

e
G

P
po

st
er

io
r

m
ea

n
.

In
th

e
lo

w
er

ro
w

s,
th

e
re

sp
ec

ti
ve

in
fi

ll
fu

n
ct

io
n

s
a

re
sh

o
w

n
,

w
it

h
a

st
a

r
d

en
o

ti
n

g
th

e
m

a
xi

m
u

m
.

T
h

e
o

p
ti

m
iz

a
ti

o
n

s
a

re
in

it
ia

li
ze

d
w

it
h

th
e

sa
m

e
tw

o
po

in
ts

,
bu

t
qu

ic
kl

y
fo

ll
o

w
d

iff
er

en
t

sa
m

p
li

n
g

tr
a

je
ct

o
ri

es
.

In
pa

rt
ic

u
la

r,
n

o
te

th
a

t
th

e
gr

ee
d

y
E

I
a

lg
o

ri
th

m
ig

n
o

re
s

th
e

re
gi

o
n

a
ro

u
n

d
x

=
0
.4

o
n

ce
it

is
d

et
er

m
in

ed
th

er
e

is
m

in
im

a
l

ch
a

n
ce

o
f

im
p

ro
ve

m
en

t,
w

h
il

e
G

P
-U

C
B

co
n

ti
n

u
es

to
ex

p
lo

re
.

17

PI, EI and GP-UCB give rise to distinct sampling behaviour over time.
With several different parameterized acquisition functions in the literature,

it is often unclear which one to use. Brochu et al. [2010b] present one method
of utility selection. Instead of using a single acquisition function, they adopt
a portfolio of acquisition functions governed by an online multi-armed bandit
strategy, which almost always outperforms the best individual acquisition func-
tion of a suite of standard test problems.

2.3.4 Maximizing the acquisition function

To find the point at which to sample, we still need to maximize the con-
strained objective u(x). Unlike the original unknown objective function, u(·)
can be cheaply sampled. We optimize the acquisition function using DIRECT
[Jones et al., 1993], a deterministic, derivative-free optimizer. It uses the exist-
ing samples of the objective function to decide how to proceed to DIvide the
feasible space into finer RECTangles. A particular advantage in active learning
applications is that DIRECT can be implemented as an “any-time” algorithm,
so that as long as the user is doing something else, it continues to optimize, and
when interrupted, the program can use the best results found to that point in
time. Methods such as Monte Carlo and multistart have also been used, and
seem to perform reasonably well [Močkus, 1994, Lizotte, 2008].

2.4 Noise

The model we’ve used so far assumes that we have perfectly noise-free observa-
tions. In real life, this is rarely possible, and instead of observing f(x), we can
often only observe a noisy transformation of f(x).

The simplest transformation arises when f(x) is corrupted with Gaussian
noise ε ∼ N (0, σ2

noise) [Rasmussen and Williams, 2006]. If the noise is additive,
we can easily add the noise distribution to the Gaussian distribution N (0,K)
and define

yi = f(xi) + εi.

Since the mean is zero, this type of noise simply requires that we replace the
kernel K with the following kernel for the noisy observations of f(·):

K =

k(x1,x1) . . . k(x1,xt)
...

. . .
...

k(xt,x1) . . . k(xt,xt)

+ σ2
noiseI (6)

This yields the predictive distribution:

P (yt+1|D1:t,xt+1) = N (µt(xt+1), σ2
t (xt+1) + σ2

noise),

and the sufficient statistics

µt(xt+1) = kT [K + σ2
noiseI]−1y1:t

σ2
t (xt+1) = k(xt+1,xt+1)− kT [K + σ2

noiseI]−1k.

18

In a noisy environment, we also change the definition of the incumbent in
the PI and EI acquisition functions. Instead of using the best observation, we
use the distribution at the sample points, and define as the incumbent, the point
with the highest expected value,

µ+ = argmax
xi∈x1:t

µ(xi).

This avoids the problem of attempting to maximize probability or expected
improvement over an unreliable sample. It is also possible to resample potential
incumbents to get more reliable estimates of the values in a noisy environment
[Bartz-Beielstein et al., 2005, Huang et al., 2006, Hutter et al., 2009], a process
sometimes called intensification. Nonstationary noise models are also possible,
such as autoregressive moving-average noise [Murray-Smith and Girard, 2001]
and heteroskedastic Gaussian noise [Goldberg et al., 1998].

2.5 A brief history of Bayesian optimization

The earliest work we are aware of resembling the modern Bayesian optimization
approach is the early work of Kushner [1964], who used Wiener processes for
unconstrained one-dimensional problems. Kushner’s decision model was based
on maximizing the probability of improvement (§2.3.1). He also included a
parameter that controlled the trade-off between ‘more global’ and ‘more local’
optimization, in the same spirit as the exploration-exploitation trade-off. A key
difference is that in a (one-dimensional) Wiener process, the intervals between
samples are independent, and Kushner was concerned with the problem of se-
lecting from a finite set of intervals. Later work extended Kushner’s technique to
multidimensional optimization, using, for example, interpolation in a Delauney
triangulation of the space [Elder, 1992] or projecting Wiener processes between
sample points [Stuckman, 1988].

Meanwhile, in the former Soviet Union, Močkus and colleagues developed
a multidimensional Bayesian optimization method using linear combinations
of Wiener fields. This was first published in English as [Močkus et al., 1978].
This paper also, significantly, describes an acquisition function that is based on
myopic expected improvement of the posterior, which has been widely adopted
in Bayesian optimization as the expected improvement function (§2.3.1). A
more recent review of Močkus’ approach is [Močkus, 1994].

At the same time, a large, related body of work emerged under the name krig-
ing (§2.6), in honour of the South African student who developed this technique
at the University of the Witwatersrand [Krige, 1951], though largely popular-
ized by Matheron and colleagues (e.g. [Matheron, 1971]). In kriging, the goal is
interpolation of a random field via a linear predictor. The errors on this model
are typically assumed to not be independent, and are modelled with a Gaussian
process.

More recently, Bayesian optimization using Gaussian processes has been
successfully applied to derivative-free optimization and experimental design,
where it is called Efficient Global Optimization, or EGO (§2.7).

19

There exist several consistency proofs for this algorithm in the one-dimensional
setting [Locatelli, 1997] and one for a simplification of the algorithm using sim-
plicial partitioning in higher dimensions [Žilinskas and Žilinskas, 2002]. The
convergence of the algorithm using multivariate Gaussian processes has been
recently established in [Vasquez and Bect, 2008].

2.6 Kriging

Kriging has been used in geostatistics and environmental science since the 1950s
and remains important today. We will briefly summarize the connection to
Bayesian optimization here. More detailed examinations can be found in, for
example, [Stein, 1999, Sasena, 2002, Diggle and Ribeiro, 2007]. This section is
primarily drawn from these sources.

In many modelling techniques in statistics and machine learning, it is as-
sumed that samples drawn from a process with independent, identically dis-
tributed residuals, typically, ε ∼ N (0, σ2

noise):

y(x) = f(x) + ε

In kriging, however, the usual assumption is that errors are not independent,
and are, in fact, spatially correlated: where errors are high, it is expected that
nearby errors will also be high. Kriging is a combination of a linear regression
model and a stochastic model fitted to the residual errors of the linear model.
The residual is modelled with a zero-mean Gaussian process, so ε is actually
parameterized by x: ε(x) ∼ N (0, σ2(x)).

The actual regression model depends on the type of kriging. In simple krig-
ing, f is modelled with the zero function, making it a zero-mean GP model. In
ordinary kriging, f is modelled with a constant but unknown function. Univer-
sal kriging models f with a polynomial of degree k with bases m and coefficients
β, so that

y(x) =

k∑
j=1

βjmj(x) + ε(x).

Other, more exotic types of kriging are also used.
Clearly, kriging and Bayesian optimization are very closely related. There

are some key differences in practice, though. In Bayesian optimization, mod-
els are usually fit through maximum likelihood. In kriging, models are usually
fit using a variogram, a measure of the average dissimilarity between samples
versus their separation distance. Fitting is done using least squares or similar
numerical methods, or interactively, by an expert visually inspecting the var-
iogram plot with specially-designed software. Kriging also often restricts the
prediction model to use only a small number of neighbours, making it fit locally
while ignoring global information. Bayesian optimization normally uses all the
data in order to learn a global model.

20

2.7 Experimental design

Kriging has been applied to experimental design under the name DACE, after
“Design and Analysis of Computer Experiments”, the title of a paper by Sacks
et al. [1989] (and more recently a book by Santner et al. [2003]). In DACE, the
regression model is a best linear unbiased predictor (BLUP), and the residual
model is a noise-free Gaussian process. The goal is to find a design point or
points that optimizes some criterion.

The “efficient global optimization”, or EGO, algorithm is the combination
of DACE model with the sequential expected improvement (§2.3.1) acquisition
criterion. It was published in a paper by Jones et al. [1998] as a refinement
of the SPACE algorithm (Stochastic Process Analysis of Computer Experi-
ments) [Schonlau, 1997]. Since EGO’s publication, there has evolved a body of
work devoted to extending the algorithm, particularly in adding constraints to
the optimization problem [Audet et al., 2000, Sasena, 2002, Boyle, 2007], and
in modelling noisy functions [Bartz-Beielstein et al., 2005, Huang et al., 2006,
Hutter et al., 2009, Hutter, 2009].

In so-called “classical” experimental design, the problem to be addressed is
often to learn the parameters ζ of a function gζ such that

yi = gζ(xi) + εi,∀i ∈ 1, . . . , t

with noise εi (usually Gaussian) for scalar output yi. xi is the ith set of exper-
imental conditions. Usually, the assumption is that gζ is linear, so that

yi = ζTxi + εi.

An experiment is represented by a design matrix X, whose rows are the inputs
x1:t. If we let ε ∼ N (0, σ), then for the linear model, the variance of the

parameter estimate ζ̂ is

V ar(ζ̂) = σ2(XTX)−1,

and for an input xi, the prediction is

V ar(ŷt) = σ2xTi (XTX)−1xi.

An optimal design is a design matrix that minimizes some characteristic of
the inverse moment matrix (XTX)−1. Common criteria include A-optimality,
which minimizes the trace; D-optimality, which minimizes the determinant; and
E-optimality, which minimizes the maximum eigenvalue.

Experimental design is usually non-adaptive: the entire experiment is de-
signed before data is collected. However, sequential design is an important and
active subfield (e.g. [Williams et al., 2000, Busby, 2009].

2.8 Active learning

Active learning is another area related to Bayesian optimization, and of par-
ticular relevance to our task. Active learning is closely related to experimen-
tal design and, indeed, the decision to describe a particular problem as active

21

learning or experimental design is often arbitrary. However, there are a few
distinguishing characteristics that most (but by no means all) active learning
approaches use.

• Active learning is most often adaptive: a model exists that incorporates
all the data seen, and this is used to sequentially select candidates for
labelling. Once labelled, the data are incorporated into the model and
new candidates selected. This is, of course, the same strategy used by
Bayesian optimization.

• Active learning employs an oracle for data labelling, and this oracle is very
often a human being, as is the case with interactive Bayesian optimization.

• Active learning is usually concerned with selecting candidates from a fi-
nite set of available data (pool-based sampling). Experimental design and
optimization are usually concerned with continuous domains.

• Finally, active learning is usually used to learn a model for classification,
or, less commonly, regression. Usually the candidate selection criterion is
the maximization of some informativeness measure, or the minimization
of uncertainty. These criteria are often closely related to the alphabetic
criteria of experimental design.

An excellent recent overview of active learning is [Settles, 2010]. We are
particularly interested in active learning because it often uses a human oracle for
label acquisition. An example using GPs is the object categorization of Kapoor
et al. [2007]. In this work, candidates are selected from a pool of unlabelled
images so as to maximize the margin of the GP classifier and minimize the
uncertainty. Osborne et al. [2010] also use active learning in a Gaussian process
problem, deciding when to sample variables of interest in a sequential sampling
problem with faults and changepoints. Chu and Ghahramani [2005a] briefly
discuss how active learning could be used for ranking GPs, by selecting sample
points that maximize entropy gained with a new preference relation.

Interesting recent work with GPs that straddles the boundary between ac-
tive learning and experimental design is the sensor placement problem of Krause
et al. [2008]. They examine several criteria, including maximum entropy, and
argue for using mutual information. Ideally, they would like to simultaneously
select a set of points to place the entire set of sensors in a way that maximizes the
mutual information. This is essentially a classical experimental design problem
with maximum mutual information as the design criterion. However, maxi-
mizing mutual information over a set of samples is NP-complete, so they use
an active learning approach. By exploiting the submodularity of mutual infor-
mation, they are able to show that sequentially selecting sensor locations that
greedily maximize mutual information, they can bound the divergence of the
active learning approach from the experimental design approach. This work
influenced the GP-UCB acquisition function (§2.3.3).

Finally, as an aside, in active learning, a common acquisition strategy is se-
lecting the point of maximum uncertainty. This is called uncertainty sampling

22

[Lewis and Gale, 1994]. GPs have in the useful property that the posterior vari-
ance (interpreted as uncertainty) is independent of the actual observations! As
a result, if this is the criterion, the entire active learning scheme can be designed
before a single observation are made, making adaptive sampling unnecessary.

2.9 Applications

Bayesian optimization has recently begun to appear in the machine learning
literature as a means of optimizing difficult black box optimizations. A few
recent examples include:

• Lizotte et al. [2007, 2008] used Bayesian optimization to learn a set of
robot gait parameters that maximize velocity of a Sony AIBO ERS-7
robot. As an acquisition function, the authors used maximum probabil-
ity of improvement (§2.3.1). They show that the Bayesian optimization
approach not only outperformed previous techniques, but used drastically
fewer evaluations.

• Frean and Boyle [2008] use Bayesian optimization to learn the weights of
a neural network controller to balance two vertical poles with different
weights and lengths on a moving cart.

• Cora’s MSc thesis [2008] uses Bayesian optimization to learn a hierarchical
policy for a simulated driving task. At the lowest level, using the vehicle
controls as inputs and fitness to a course as the response, a policy is learned
by which a simulated vehicle performs various activities in an environment.

• Martinez–Cantin et al. [2009] also applied Bayesian optimization to policy
search. In this problem, the goal was to find a policy for robot path
planning that would minimize uncertainty about its location and heading,
as well as minimizing the uncertainty about the environmental navigation
landmarks.

• Hutter’s PhD thesis [2009] studies methods of automatically tuning algo-
rithm parameters, and presents several sequential approaches using Bayesian
optimization.

• The work of Osborne, Garnett et al. [Osborne, 2010, Osborne et al., 2010,
Garnett et al., 2010b] uses Bayesian optimization to select the locations
of a set of (possibly heterogenous) sensors in a dynamic system. In this
case, the samples are a function of the locations of the entire set of sensors
in the network, and the objective is the root mean squared error of the
predictions made by the sensor network.

3 Bayesian Optimization for Preference Galleries

The model described above requires that each function evaluation have a scalar
response. However, this is not always the case. In applications requiring hu-

23

man judgement, for instance, preferences are often more accurate than rat-
ings. Prospect theory, for example, employs utility models based on rela-
tion to a reference point, based on evidence that the human perceptual ap-
paratus is attuned to evaluate differences rather than absolute magnitudes
[Kahneman and Tversky, 1979, Tversky and Kahneman, 1992]. We present here
a Bayesian optimization application based on discrete choice for a “preference
gallery” application, originally presented in [Brochu et al., 2007a, Brochu et al., 2007b].

In the case of a person rating the suitability of a procedurally-generated ani-
mation or image, each sample of valuation involves creating an instance with the
given parameters and asking a human to provide feedback, which is interpreted
as the function response. This is a very expensive class of functions to evaluate!
Furthermore, it is in general impossible to even sample the function directly
and get a consistent response from users. Asking humans to rate an animation
on a numerical scale has built-in problems—not only will scales vary from user
to user, but human evaluation is subject to phenomena such as drift, where
the scale varies over time, anchoring, in which early experiences dominate the
scale [Siegel and Castellan, 1988, Payne et al., 1993]. However, human beings
do excel at comparing options and expressing a preference for one over others
[Kingsley, 2006]. This insight allows us to approach the optimization function
in another way. By presenting two or more realizations to a user and requiring
only that they indicate preference, we can get far more robust results with much
less cognitive burden on the user [Kendall, 1975]. While this means we can’t get
responses for a valuation function directly, we model the valuation as a latent
function, inferred from the preferences, which permits a Bayesian optimization
approach.

Probability models for learning from discrete choices have a long history in
psychology and econometrics [Thurstone, 1927, McFadden, 1980, Stern, 1990].
They have been studied extensively, for example, in rating chess players, and
the Elo system [Élő, 1978] was adopted by the World Chess Federation FIDE to
model the probability of one player beating another. It has since been adopted
to many other two-player games such as Go and Scrabble, and, more recently,
online computer gaming [Herbrich and Graepel, 2006].

Parts of §3.1 are based on [Chu and Ghahramani, 2005b], which presents a
preference learning method using probit models and Gaussian processes. They
use a Thurstone–Mosteller model (below), but with an innovative nonparametric
model of the valuation function.

3.1 Probit model for binary observations

The probit model allows us to deal with binary observations of f(·) in general.
That is, every time we try a value of x, we get back a binary variable, say either
zero or one. From the binary observations, we have to infer the latent function
f(·). In order to marry the presentation in this section to the user modeling
applications discussed later, we will introduce probit models in the particular
case of preference learning.

Assume we have shown the user M pairs of items from a set of N instances.

24

In each case, the user has chosen which item she likes best. The data set
therefore consists of the ranked pairs:

D = {ri � ci; i = 1, . . . ,M},

where the symbol � indicates that the user prefers r to c. We use x1:t to denote
the t distinct elements in the training data. That is, ri and ci correspond to
two elements of x1:t. ri � ci can be interpreted as a binary variable that takes
value 1 when ri is preferred to ci and is 0 otherwise.

In the probit approach, we model the value functions v(·) for items r and c
as follows:

v(ri) = f(ri) + ε

v(ci) = f(ci) + ε, (7)

where the noise terms are Gaussian: ε ∼ N (0, σ2
noise). Following [Chu and Ghahramani, 2005b],

we assign a nonparametric Gaussian process prior to the unknown mean valua-
tion: f(·) ∼ GP(0,K(·, ·)). That is, at the t training points:

P (f) = |2πK|− 1
2 exp

(
−1

2
fTK−1f

)
,

where f = {f(x1), f(x2), . . . , f(xt)}.
Random utility models such as (7) have a long and influential history in

psychology and the study of individual choice behaviour in economic markets.
Daniel McFadden’s Nobel Prize speech [McFadden, 2001] provides a glimpse of
this history. Many more comprehensive treatments appear in classical economics
books on discrete choice theory.

Under our Gaussian utility models, the probability that item r is preferred
to item c is given by:

P (ri � ci|f(ri), f(ci)) = P (v(ri) > v(ci)|f(ri), f(ci))

= P (ε− ε < f(ri)− f(ci))

= Φ(Zi),

where

Zi =
f(ri)− f(ci)√

2σnoise

and Φ(·) is the CDF of the standard normal distribution. This model, relating
binary observations to a continuous latent function, is known as the Thurstone-
Mosteller law of comparative judgement [Thurstone, 1927, Mosteller, 1951]. In
statistics it goes by the name of binomial-probit regression. Note that one could
also easily adopt a logistic (sigmoidal) link function ϕ (Zi) = (1 + exp (−Zi))−1.
In fact, such choice is known as the Bradley-Terry model [Stern, 1990]. If the
user had more than two choices one could adopt a polychotomous regression
model [Holmes and Held, 2006]. This multi-category extension would, for ex-
ample, enable the user to state no preference, or a degree of preference for any
of the two items being presented.

25

Note that this approach is related to, but distinct from the binomial logistic-
linear model used in geostatistics [Diggle et al., 1998], in which the responses y
represent the outcomes of Bernoulli trials which are conditionally independent
given the model (i.e., the responses are binary observations yt ∈ {0, 1} for xt,
rather than preference observations between {rt, ct}).

Our goal is to estimate the posterior distribution of the latent utility function
given the discrete data. That is, we want to maximize

P (f |D) ∝ P (f)

M∏
i=1

P (ri � ci|f(ri), f(ci)).

Although there exist sophisticated variational and Monte Carlo methods
for approximating this distribution, we favour a simple strategy: Laplace ap-
proximation. The Laplace approximation follows from Taylor-expanding the
log-posterior about a set point f̂ :

logP (f |D) = logP (f̂ |D) + gT (f − f̂)− 1

2
(f − f̂)TH(f − f̂),

where g = ∇f logP (f |D) and H = −∇f∇f logP (f |D). At the mode of the

posterior (f̂ = fMAP), the gradient g vanishes, and we obtain:

P (f |D) ≈ P (f̂ |D) exp

[
−1

2
(f − f̂)H(f − f̂)

]
In order to obtain this approximation, we need to compute the maximum a
posteriori (MAP) estimate fMAP, the gradient g and the information matrix H.

The gradient is given by:

g = ∇f logP (f |D)

= ∇f

[
const− 1

2
fTK−1f +

M∑
i=1

log Φ(Zi)

]

= −K−1f +∇f

[
M∑
i=1

log Φ(Zi)

]
= −K−1f + b,

where the j-th entry of the N -dimensional vector b is given by:

bj =
1√

2σnoise

M∑
i=1

φ(Zi)

Φ(Zi)

[
∂

∂f(xj)
(f(ri)− f(ci))

]
,

where φ(·) denotes the PDF of the standard normal distribution. Clearly, the
derivative hi(xj) = ∂

∂f(xj)
(f(ri) − f(ci)) is 1 when xj = ri, -1 when xj = ci

and 0 otherwise. Proceeding to compute the second derivative, one obtains the

26

preferences
0.2 � 0.1
0.35 � 0.5
0.2 � 0.35
0.2 � 0.6
0.8 � 0.7

0 0.2 0.4 0.6 0.8 1

Figure 8: Example of a set of preference relations (left table) used to infer a GP (right
plot) on a toy problem. The preferences are indicated as a set of preferences between
two points in the space, which serves as input to a function that finds a Gaussian
process that takes into account all the available preference information, as well as
prior information on the smoothness and noise.

Hessian: H = K−1 + C, where the matrix C has entries

Cm,n = − ∂2

∂f(xm)∂f(xn)

M∑
i=1

log Φ(Zi)

=
1

2σ2

M∑
i=1

hi(xm)hi(xn)

[
φ(Zi)

Φ2(Zi)
+
φ2(Zi)

Φ(Zi)
Zi

]
The Hessian is a positive semi-definite matrix. Hence, one can find the MAP

estimate with a simple Newton–Raphson recursion:

fnew = fold −H−1g |f=fold .

At f = fMAP, we have

P (f |D) ≈ N
(
Kb, (K−1 + C)−1

)
.

with b = K−1fMAP. The goal of our derivation, namely the predictive distribu-
tion P (ft+1|D), follows by straightforward convolution of two Gaussians:

P (ft+1|D) =

∫
P (ft+1|fMAP)P (fMAP|D)dfMAP

∝ N (kTK−1fMAP, k(xt+1,xt+1)− kT (K + C−1)−1k).

An example of the procedure on a toy 1D problem is shown in Figure 8. We
can see that the inferred model explains the observed preferences, while also
adhering to prior information about smoothness and noise.

27

3.2 Application: Interactive Bayesian optimization for ma-
terial design

Target 1.

2.

3.

4.

Figure 9: A shorter-than-average but otherwise typical run of the BRDF preference
gallery tool. At each (numbered) iteration, the user is provided with two images gen-
erated with parameter instances and indicates the one they think most resembles the
target image (top-left) they are looking for. The boxed images are the user’s selections
at each iteration.

Properly modeling the appearance of a material is a necessary component

28

of realistic image synthesis. The appearance of a material is formalized by the
notion of the Bidirectional Reflectance Distribution Function (BRDF). In com-
puter graphics, BRDFs are most often specified using various analytical models.
Analytical models that are of interest to realistic image synthesis are the ones
that observe the physical laws of reciprocity and energy conservation while typ-
ically also exhibiting shadowing, masking and Fresnel reflectance phenomenon.
Realistic models are therefore fairly complex with many parameters that need to
be adjusted by the designer for the proper material appearance. Unfortunately
these parameters can interact in non-intuitive ways, and small adjustments to
certain settings may result in non-uniform changes in the appearance. This can
make the material design process quite difficult for the artist end user, who is
not expected to be an expert in the field, but who knows the look that she
desires for a particular application without necessarily being interested in un-
derstanding the various subtleties of reflection. We attempt to deal with this
using a preference gallery approach, in which users are simply required to view
two or more images rendered with different material properties and indicate
which they prefer, in an iterative process.

We use the interactive Bayesian optimization model with probit responses on
an example gallery application for helping users find a BRDF. For the purposes
of this example, we limit ourselves to isotropic materials and ignore wavelength
dependent effects in reflection. Our gallery demonstration presents the user
with two BRDF images at a time. We start with four predetermined queries
to “seed” the parameter space, and after that use the learned model to select
gallery images. The GP model is updated after each preference is indicated. We
use parameters of real measured materials from the MERL database for seeding
the parameter space, but can draw arbitrary parameters after that.

By querying the user with a paired comparison, one can estimate statistics
of the valuation function at the query point, but only at considerable expense.
Thus, we wish to make sure that the samples we do draw will generate the
maximum possible improvement.

Our method for achieving this goal iterates over the following steps:

1. Present the user with a new set of instances and record preferences
from the user: Augment the training set of paired choices with the new user
data.

2. Infer the valuation function: Here we use a Thurstone–Mosteller model
with Gaussian processes. See §3.1 for details. Note that in this application, the
valuation function is the objective of Bayesian optimization. We will use the
terms interchangeably.

3. Optimize the acquisition function of the valuation to obtain the query
points for the next gallery: Methods for selecting a set of instances are
described in §3.2.1.

3.2.1 User Study

To evaluate the performance of our application, we have run a simple user study
in which the generated images are restricted to a subset of 38 materials from the

29

algorithm trials n (mean ± std)
random 50 18.40 ± 7.87
argmaxσ 50 17.87 ± 8.60
argmaxEI 50 8.56 ± 5.23

Table 1: Results of the user study on the BRDF gallery.

MERL database that we deemed to be representative of the appearance space of
the measured materials. The user is given the task of finding a single randomly-
selected image from that set by indicating preferences. Figure 9 shows a typical
user run, where we ask the user to use the preference gallery to find a provided
target image. At each step, the user need only indicate the image they think
looks most like the target. This would, of course, be an unrealistic scenario
if we were to be evaluating the application from an HCI stance, but here we
limit our attention to the model, where we are interested here in demonstrating
that with human users maximizing valuation is preferable to learning the entire
latent function.

Using five subjects, we ran 50 trials each of three different methods of select-
ing sample pairs3. In all cases, one of the pair is the incumbent argmaxxi

µ(xi),xi ∈
x1:t. The second is selected via one of the following methods:

• random The second point is sampled uniformly from the parameter do-
main A.

• argmaxσ The second point is the point of highest uncertainty, argmaxx σ(x).

• argmaxEI The second point is the point of maximum expected improve-
ment, argmaxx EI(x).

The results are shown in Table 1. n is the number clicks required of the user
to find the target image. Clearly argmaxEI dominates, with a mean n less than
half that of the competing algorithms. Interestingly, selecting images using
maximum variance does not perform much better than random. We suspect
that this is because argmaxσ has a tendency to select images from the corners
of the parameter space, which adds limited information to the other images,
whereas Latin hypercubes at least guarantees that the selected images fill the
space.

4 Bayesian Optimization for Hierarchical Con-
trol

In general, problem solving and planning becomes easier when it is broken down
into subparts. Variants of functional hierarchies appear consistently in video

3An empirical study of various methods on a variety of test functions, and a discussion of
why these were selected can be found in [Brochu et al., 2007a].

30

game AI solutions, from behaviour trees, to hierarchically decomposed agents
(teams vs. players), implemented by a multitude of customized hierarchical
state machines. The benefits are due to isolating complex decision logic to
fairly independent functional units (tasks). The standard game AI development
process consists of the programmer implementing a large number of behaviours
(in as many ways as there are published video games), and hooking them up to
a more manageable number of tuneable parameters. We present a class of algo-
rithms that attempt to bridge the gap between game development, and general
reinforcement learning. They reduce the amount of hand-tuning traditionally
encountered during game development, while still maintaining the full flexibility
of manually hard-coding a policy when necessary.

The Hierarchical Reinforcement Learning [Barto and Mahadevan, 2003] field
models repeated decision making by structuring the policy into tasks (actions)
composed of subtasks that extend through time (temporal abstraction) and are
specific to a subset of the total world state space (state abstraction). Many al-
gorithms have recently been developed, and are described further in Section 4.1.
The use of Bayesian optimization for control has previously been proposed by
Murray-Smith and Sbarbaro [2002], and (apparently independently) by Frean
and Boyle [2008], who used it for a control problem of balancing two poles on a
cart. This work did not involve a nonhierarchical setting, however.

The exploration policies typically employed in HRL research tend to be slow
in practice, even after the benefits of state abstraction and reward shaping.
We demonstrate an integration of the MAXQ hierarchical task learner with
Bayesian active exploration that significantly speeds up the learning process,
applied to hybrid discrete and continuous state and action spaces. Section 4.2
describes an extended Taxi domain, running under The Open Racing Car Sim-
ulator [Wymann et al., 2009], a 3D game engine that implements complex vehi-
cle dynamics complete with manual and automatic transmission, engine, clutch,
tire, suspension and aerodynamic models.

4.1 Hierarchical Reinforcement Learning

Manually coding hierarchical policies is the mainstay of video game AI develop-
ment. The requirements for automated HRL to be a viable solution are it must
be easy to customize task-specific implementations, state abstractions, reward
models, termination criteria and it must support continuous state and action
spaces. Out of the solutions investigated, MAXQ [Dietterich, 2000] met all our
requirements, and was the easiest to understand and get positive results quickly.
The other solutions investigated include HAR and RAR [Ghavamzadeh, 2005]
which extend MAXQ to the case of average rewards (rather than discounted
rewards). The implementation of RAR is mostly the same as MAXQ, and
in our experiments gave the same results. Hierarchies of Abstract Machines
(HAM) [Parr, 1998] and ALisp [Andre, 2003] are an exciting new development
that has been recently applied to a Real-Time-Strategy (RTS) game [Marthi et al., 2005].
ALisp introduces programmable reinforcement learning policies that allows the
programmer to specify choice points for the algorithm to optimize. Although

31

the formulation is very nice and would match game AI development processes,
the underlying solver based on HAMs flattens the task hierarchy by including
the program’s memory and call-stack into a new joint-state space, and solves
this new MDP instead. It is less clear how to extend and implement per-task
customized learning with this formulation. Even if this difficulty is surmounted,
as evidenced by the last line in the concluding remarks of [Marthi et al., 2005],
there is an imperative need for designing faster algorithms in HRL. This paper
aims to address this need.

In our solution, we still require a programmer or designer to specify the
task hierarchy. In most cases breaking a plan into sub-plans is much easier
than coding the decision logic. With the policy space constrained by the task
hierarchy, termination and state abstraction functions, the rate of learning is
greatly improved, and the amount of memory required to store the solution
reduces. The benefits of HRL are very dependant however on the quality of
these specifications, and requires the higher-level reasoning of a programmer or
designer. An automatic solution to this problem would be an agent that can
learn how to program, and anything less than that will have limited applicability.

We can use Bayesian optimization to learn the relevant aspects of value
functions by focusing on the most relevant parts of the parameter space. In the
work on this section, we use refer to the objective as the value function, to be
consistent with the HRL literature.

4.1.1 Semi-MDPs

Each task in an HRL hierarchy is a semi-Markov Decision Process [Sutton et al., 1999],
that models repeated decision making in a stochastic environment, where the
actions can take more than one time step. Formally, an SMDP is defined as a
tuple: {S,A, P (s′, N |s, a), R(s, a)} where S is the set of state variables, A is a
set of actions, P (s′, N |s, a) is the transition probability of arriving to state s′

in N time steps after taking action a in s, and R(s, a) is the reward received.
The solution of this process is a policy π∗(s) ∈ A, that selects the action with
the highest expected discounted reward in each state. The function V ∗(s) is the
value of state s when following the optimal policy. Equivalently, the Q∗(s, a)
function stores the value of taking action a in state s and following the optimal
policy thereafter. These quantities follow the classical Bellman recursions:

V ∗(s) = max
a∈A

R(s, a) + γ
∑
s′,N

P (s′, N |s, a)γNV ∗(s′)

Q∗(s, a) = R(s, a) + γ

∑
s′,N

P (s′, N |s, a)γNV ∗(s′) (8)

4.1.2 Hierarchical Value Function Decomposition

A task i in MAXQ [Dietterich, 2000] is defined as a tuple: {Ai, Ti(s), Zi(s), πi(s)}
where s is the current world state, Ai is a set of subtasks, Ti(s) ∈ {true, false}

32

is a termination predicate, Zi(s) is a state abstraction function that returns a
subset of the state relevant to the current subtask, and πi(s) ∈ Ai is the policy
learned by the agent (or used to explore during learning). Each task is effec-
tively a separate, decomposed SMDP that has allowed us to integrate active
learning for discrete map navigation with continuous low-level vehicle control.
This is accomplished by decomposing the Q function into two parts:

a = πi(s) (9)

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a)

Cπ(i, s, a) =
∑
s′,N

Pπi (s′, N |s, a)γNQπ(i, s′, πi(s
′))

V π(i, s) =

{
Qπ(i, s, πi(s)) if composite∑
s′ P (s′|s, i)R(s′|s, i) if primitive

Here, γ is the discount factor, i is the current task, and a is a child action
given that we are following policy πi. The Q function is decomposed into two
parts: the value of V π being the expected one step reward, plus Cπ which is the
expected completion reward for i after a completes. V is defined recursively,
as the expected value of its child actions, or the expected reward itself if i is a
primitive (atomic) action. The MAXQ learning routine is a simple modification
of the typical Q-learning algorithm. In task i, we execute subtask a, observe
the new state s′ and reward r. If a is primitive, we update V (s, a), otherwise
we update C(i, s, a), with learning rate α ∈ (0, 1):

V (a, s) = (1− α)× V (a, s) + α× r (10)

C(i, s, a) = (1− α)× C(i, s, a) + α×max
a′

Q(i, s′, a′)

An important consideration in HRL is whether the policy calculated is hier-
archically or recursively optimal. Recursive optimality, satisfied by MAXQ and
RAR, means that each subtask is locally optimal, given the optimal policies of
the descendants. This may result in a suboptimal overall policy because the
effects of tasks executed outside of the current task’s scope are ignored. For
example if there are two exits from a room, a recursively optimal policy would
pick the closest exit, regardless of the final destination. A hierarchically optimal
policy (computed by the HAR [Ghavamzadeh, 2005] and HAM [Andre, 2003]
three-part value decompositions) would pick the exit to minimize total trav-
elling time, given the destination. A recursively optimal learning algorithm
however generalizes subtasks easier since they only depend on the local state,
ignoring what would happen after the current task finishes. So both types
of optimality are of value in different degrees for different cases. The MAXQ
formulation gives a programmer or designer the ability to selectively enable hi-
erarchical optimality by including the relevant state features as parameters to
a task. However, it may be difficult to identify the relevant features, as they
would be highly application specific.

33

Figure 10: City Experiment uses a simplified map (orange overlay) roughly based
on downtown Vancouver, and used by the TORCS simulator. Each waypoint is labeled,
and pickup and dropoff locations are marked by the Taxi icons. One way streets are
accounted for in the waypoint adjacency matrix. Source image care of Google Maps.

4.2 Application: The Vancouver Taxi Domain

Our domain is a city map roughly based on a portion of downtown Vancouver,
British Columbia, illustrated in Figure 10. The data structure is a topological
map (a set of intersection nodes and adjacency matrix) with 61 nodes and 22
possible passenger pickup and drop-off locations. The total navigable area of
the map is roughly 28 kilometers.

The state model includes both discrete variables used in the top layers of
the task hierarchy, as well as continuous variables used by the Follow task
that tracks a trajectory, and are described in Table 3. The original taxi do-
main [Dietterich, 2000] is a 5x5 grid, with 4 possible pickup and dropoff des-
tinations, and 6 actions (pickup, dropoff, and navigating North, South, East,
West).

Table 2 makes a rough comparison between the size of our extended appli-
cation and the original taxi domain. Ignoring the continuous trajectory states
(including the Stopped flag) and assuming the taxi hops from one intersection
to an adjacent one in a single time step results in a fully discrete problem. A
flat learning solution scales poorly, not only in terms of world samples required,
but also in the size of the computed policy (if represented in a discrete table).
The extended task hierarchy illustrated in Figure 11 requires just a little bit
more memory than the small 5x5 taxi domain.

34

Table 2: Comparing Domain Size

Domain Size of final policy
5x5 Taxi Flat ∼ 12, 200 bytes
Vancity Flat ∼ 1, 417, 152 bytes
Vancity Hierarchical ∼ 18, 668 bytes

Table 3: States and Task Parameters

Name Range/Units Description

TaxiLoc {0,1,..61} current taxi waypoint #, or 0 if in
transit between waypoints

PassLoc {0,1,..22} passenger waypoint #, or 0 if in taxi
PassDest {1,2,..22} passenger destination waypoint #
LegalLoad {true, false} true if taxi is empty and at

passenger, or loaded and at target
Stopped {true, false} indicates whether the taxi is at

a complete stop

T {1,2,..22} passenger location or destination
parameter passed into Navigate

WP {1,2,..22} waypoint parameter adjacent to

TaxiLoc passed to Follow

Yerr meters lateral error between desired point
on the trajectory and vehicle

Vy meters/second lateral velocity (to detect drift)
Verr meters/second error between desired and real speed
Ωerr radians error between trajectory angle and

vehicle yaw

4.2.1 State Abstraction, Termination and Rewards

Figure 11 compares the original task hierarchy, with our extended version that
includes continuous trajectory following and a hard-coded Park task. The state
abstraction function filters out irrelevant states while computing the hash key
for looking up and updating values of V (s, a) and C(i, s, a), where s is the
current state, i is the current task, and a is the child task. The Follow task has
been previously trained with the Active Policy optimizer from section 4.3.1 and
the policy parameters fixed before learning the higher level tasks. Algorithms
RAR and MAXQ are applied to all the tasks above and including Navigate,
which also uses the Active Path learning algorithm from section 4.3.2. Here is
a summary of each task, including its reward model, termination predicate Ti,
and state abstraction function Zi:

35

Root - this task selects between Get and Put to pickup and deliver the pas-
senger. It requires no learning because the termination criteria of the subtasks
fully determine when they should be invoked. TRoot = (PassLock = PassDest)
and ZRoot = {}.

Get - getting the passenger involves navigating through the city, parking
the car and picking up the passenger. In this task, the LegalLoad state is true
when the taxi is at the passenger’s location. Receives a reward of 750 when the
passenger is picked up, TGet = ((PassLoc = 0) or (PassLoc = PassDest)),
and ZGet = {}.

Put - similar to Get, also receives reward of 750 when passenger is success-
fully delivered. The passenger destination PassDest is passed to the Navigate
task. The abstracted LegalLoad state is true when the taxi is at the passenger’s
destination location. TPut = ((PassLoc > 0) or (PassLoc = PassDest)) and
ZPut = {}.

Pickup - this is a primitive action, with a reward of 0 if successful, and
−2500 if a pickup is invalid (if the taxi is not stopped, or if LegalLoad is false).
ZPickup = {LegalLoad, Stopped}.

Dropoff - this is a primitive action, with a reward of 1500 if successful, and
−2500 if a dropoff is invalid. ZDropoff = {LegalLoad, Stopped}.

Navigate - this task learns the sequence of intersections from the current
TaxiLoc to a target destination T. By parameterizing the value function of
this task, we can apply Active Path learning as described in Section 4.3.2.
TNavigate = (TaxiLoc = T) and ZNavigate = {T, TaxiLoc}.

Follow - this is the previously trained continuous trajectory following task
that takes as input an adjacent waypoint WP, and generates continuous steering
and throttle values to follow the straight-line trajectory from TaxiLoc to WP.
TFollow = (TaxiLoc = WP) and ZFollow = {WP ,Ωerr, Verr, Yerr, Vy}.

Park - this is a hard-coded task which simply puts on the brakes (steer = 0,
throttle = −1).

Drive - this performs one time step of the physics simulation, with the given
steer and throttle inputs. The default reward per time step of driving is −0.75.

4.3 Bayesian Optimization for Hierarchical Policies

The objective of Bayesian optimization is to learn properties of the value func-
tion or policy with as few samples as possible. In direct policy search, where
this idea has been explored previously [Martinez–Cantin et al., 2007], the evalu-
ation of the expected returns using Monte Carlo simulations is very costly. One,
therefore, needs to find a peak of this function with as few policy iterations as
possible. As shown here, the same problem arises when we want to learn an
approximation of the value function only over the relevant regions of the state
space. Bayesian optimization provides an exploration-exploitation mechanism
for finding these relevant regions and fitting the value function where needed.

When carrying out direct policy search [Ng and Jordan, 2000], the Bayesian
optimization approach has several advantages over the policy gradients method
[Baxter and Bartlett, 2001]: it is derivative free, it is less prone to be caught in

36

����

������

���������

������	
����	
�� ������

������������

������������
���

������������������

�������� �

�������������

�����������

��

����

������

�������������

���������
������	
��

��	
�� ������

���� ���� ����� ����

Figure 11: Task Hierarchies. Each composite task is a separate SMDP whose policy
is optimal given the optimal policies of its subtasks (recursive optimality). Triangles
are composite tasks, and rectangle are primitive actions. The hierarchy on the right
simplifies learning by reusing policies for navigating form waypoint to waypoint, and the
Navigation task only needs to learn the sequence of waypoints to get to the destination.
For the continuous case, the discrete actions N/S/E/W are replaced by one continuous
Drive(steer, throttle) task, with driving parameters generated by the parameterized
policy contained in the Follow task.

the first local minimum, and it is explicitly designed to minimize the number of
expensive value function evaluations.

4.3.1 Active Policy Optimization

Algorithm 2 Bayesian Active Learning with GPs
1: N = 0
2: Update the expected improvement function over D1:N .
3: Choose xN+1 = argmaxx EI(x).
4: Evaluate VN+1 = V (xN+1) and halt if a stopping criterion is met.
5: Augment the data D1:N+1 = {D1:N , (xN+1, VN+1)}.
6: N = N + 1 and go to step 2.

The lowest level Drive task uses the parameterized function illustrated in
Figure 12 to generate continuous steer and throttle values, within the range of
-1 to 1. The |x| = 15 parameters (weights) are trained using the Bayesian active
policy learning Algorithm 2. We first generate and evaluate a set of 30 Latin
hypercube samples of x and store them and corresponding values vector V in
the data matrix D. The value of a trajectory is the negative accumulated error
between the car’s position and velocity, and the desired position and velocity.
The policy evaluation consists of averaging 10 episodes along the same trajec-

37

�������

��

�� ��

��

��

��

�� �	

�

	

��

����

�

��

���

���

���

	

���

���

���

���� ���

���

	���		�

������
���

���

������

��

��

����

����

	���
�	���

Figure 12: Trajectory-following policy: this parameterized policy, inspired by Ng et
al [2003] minimizes the error between the vehicle’s heading and velocity while following
a trajectory. The positional errors Xerr and Yerr are in trajectory coordinates, Ωerr

refers to the difference between the current heading and the trajectory tangent, and
Verr is the difference between the real and desired velocities.

tory but with different, evenly spaced starting angles, where the car needs to
accelerate from rest, go to the first waypoint, perform a u-turn, and arrive back
to the starting location. In a noisier environment, more samples would be neces-
sary to properly evaluate a policy. The TORCS simulator is deterministic, and
a small amount of noise arises from unmodeled tire slipping and random bumpi-
ness of the road. The 10 different starting angles were sufficient for evaluating
a policy in our experiments. Subsequently, we perform the iteration described
in Algorithm 2 to search for the best instantiation of the parameters.

4.3.2 Active Value Function Learning

The Navigate task learns path finding from any intersection in the topological
map to any of the destinations. Although this task operates on a discrete set
of waypoints, the underlying map coordinates are continuous, and we can again
apply active exploration with GPs.

Unlike the previous algorithm that searches for a set of optimal parameters,
Algorithm 3 learns the value function at a finite set of states, by actively gen-
erating exploratory actions; it is designed to fit within a MAXQ task hierarchy.
The 4-dimensional value function V (x) in this case is parameterized by two 2D
map coordinates x = {xC , yC , xT , yT }, and stores the sum of discounted rewards
while travelling from the current intersection |C| = 61 to the target |T | = 22.
The 1342 sampled instances of x1:1342 and corresponding V vector are stored

38

Algorithm 3 Active Path Learning with GPs

1: function NavigateTaskLearner(Navigate i, State s)

2: let trajectory=() - list of all states visited in i
3: let intersections=() - intersection states visited in i
4: let visits = 0 - # of visits at an intersection in i

5: while Terminatedi(s) is false do
6: choose adjacent intersection WP using ε-greedy or Active exploration.
7: let childSeq = Follow(WP , s)
8: append childSeq onto the front of trajectory
9: observe result state s′

10: N = length(childSeq)

11: R =
∑N
j=1 γ

N−j × rj be the total discounted reward received from s to s′

12: V ′s = V (TaxiLocs′ , Targeti) { guaranteed <= 0}
13: Vs = V (TaxiLocs, Targeti) { guaranteed <= 0}
14: if Terminatedi(s

′) is true then
15: Vs ← (1− α)× Vs + α×R
16: for all j = 1 to length(intersections) do
17: {s′, N ′, R′} = intersections(j)
18: R← R′ + γN

′ ×R
19: V ′s ← V (TaxiLocs′ , Targeti)
20: V ′s ← (1− α)× V ′s + α×R
21: end for

22: else
23: append {s,N,R} onto the front of intersections
24: visits(TaxiLocs)← visits(TaxiLocs) + 1
25: penalty ← Vs × visits(TaxiLocs) {prevent loops}
26: Vs ← (1− α)× Vs + α(penalty +R+ γN × V ′s)
27: end if

28: s = s′

29: end while

30: return trajectory

in the data matrix D; it is initialized with V (xT , yT , xT , yT) = 0 for all target
destinations T , which enables the GP to create a useful response surface without
actually having observed anything yet.

In the ε−greedy experiments, a random intersection is chosen with chance
0.1, and the greedy one with chance 0.9. For the active exploration case, we fit a
GP over the data matrix D, and pick the adjacent intersection that maximizes
the expected improvement function. We parameterize this function with an
annealing parameter that decays over time such that initially we place more
importance on exploring.

The true value will not be known until the Navigate task reaches its desti-

39

nation and terminates, but we still need to mark visited intersections to avoid
indefinite looping. Lines 23–26 compute an estimated value for V (s) by sum-
ming the immediate discounted reward of executing Follow(WP , s) with the
discounted, previously recorded value of the new state V (s′), and a heuristic
penalty factor to avoid looping. Once we reach the destination of this task,
Targeti, we have the necessary information to propagate the discounted reward
to all the intersections along the trajectory, in lines 15–21.

4.4 Simulations

The nature of the domain requires that we run policy optimization first to
train the Follow task. This is reasonable, since the agent cannot be expected
to learn map navigation before learning to drive the car. Figure 13 com-
pares the results of three different values for the GP kernel k, when running
the active policy optimization algorithm from §4.3.1. The desired velocity
is 60km/hr, a time step lasts 0.25 seconds, and the trajectory reward R =

−
∑
t

[
1× Ỹ 2

err + 0.8× Ṽ 2
err + 1× Ω̃2

err + 0.7× ã′ã
]

is the negative weighted sum

of normalized squared error values between the vehicle and the desired trajec-
tory, including a = [steer, throttle] to penalize for abrupt actions. After ∼ 50
more parameter samples (after the initial 30 random samples), the learner has
already found a useable policy.

Subsequently, the best parameters are fixed inside the Follow task, and we
run the full hierarchical learners, with results in Figure 14. We averaged the
results from 10 runs of RAR, MAXQ, and the value learning Algorithm 3 ap-
plied only to the Navigate task (with the rest of the hierarchy using MAXQ).
All the experiments use the hierarchical task model presented in Section 4.2.1.
Each reward time step lasts 0.3 seconds, so the fastest learner, VTM GP with
ε = 0.2 drove for ∼ 4 hours real-time at ∼ 60 km/hr before finding a good ap-
proximation of the VNavigate value function. Refer to Figure 15 for an intuition
of how fitting the GP over the samples values transfers observations to adja-
cent areas of the state space. This effect is controlled through the GP kernel
parameter k. While the application is specific to navigating a topological map,
the algorithm is general and can be applied to any continuous state spaces of
reasonable dimensionality.

5 Discussion and advice to practitioners

Bayesian optimization is a powerful tool for machine learning, where the prob-
lem is often not acquiring data, but acquiring labels. In many ways, it is like
conventional active learning, but instead of acquiring training data for classifi-
cation or regression, it allows us to develop frameworks to efficiently solve novel
kinds of learning problems such as those discussed in Sections 3 and 4. It proves
us with an efficient way to learn the solutions to problems, and to collect data,
all within a Bayesian framework.

40

0 20 40 60 80 100 120 140
−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

of Parameter Samples

A
c
c
u
m

u
la

te
d
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Active Policy Optimization for Trajectory Following

Active GP k=0.2

Active GP k=0.1

Active GP k=0.05

Figure 13: Active Policy Optimizer: searching for the 15 policy parameters, and
comparing different values for the GP kernel size k. We used the Expected Improvement
function 3, and the three experiments are initialized with the the same set of 30 Latin
hypercube samples. A total of 20 experimental runs were averaged for this plot.

0 1 2 3 4 5

x 10
5

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

of Reward Samples

A
c
c
u
m

u
la

te
d
 R

e
w

a
rd

 p
e
r

E
p
is

o
d
e

Active Taxi on Vancity Topological Map

RAR

MAXQ

MAXQ V
TM

 e−Greedy e=0.1

MAXQ V
TM

 GP k=.01 e=0.2

Figure 14: Parameterized VTM vs. RAR and MAXQ: These experiments com-
pare the original Recursive Average Reward (RAR) and MAXQ (discounted reward)
algorithms against the parameterized VTM (TaxiLoc,WP) path learner.

41

0

50

100

150

0
50

100
150
−25

−20

−15

−10

−5

0

X: 125
Y: 25
Z: −8.371e−006

X
C

X: 100
Y: 25
Z: −6.451

X: 75
Y: 25
Z: −11.03

X: 50
Y: 50
Z: −18.02

GP Estimate of Value Function, k=0.01

Y
C

X: 50
Y: 100
Z: −22.03V

(
x

C
,

y
C

,
x

T
,

y
T
)

(a) VTM GP k = 0.01

0

20

40

60

80

100

120

0

50

100

−25

−20

−15

−10

−5

0

X: 125

Y: 25

Z: −0

X: 100

Y: 25

Z: −4.75

X: 75

Y: 25

Z: −11.6

X: 50

Y: 50

Z: −20.16

X: 50

Y: 100

Z: −23.36

(b) VTM GP k = 0.02

Figure 15: GP Response Surface. A small kernel value narrows the ‘footprint’ of
an observation, whereas a larger k interpolates to the surrounding state space.

42

However, Bayesian optimization is also a fairly recent addition to the ma-
chine learning community, and not yet extensively studied on user applications.
Here, we wish to describe some of the shortcomings we have experienced in our
work with Bayesian optimization, both as caveats and as opportunities for other
researchers.

A particular issue is that the design of the prior is absolutely critical to
efficient Bayesian optimization. Gaussian processes are not always the best or
easiest solution, but even when they are, great care must be taken in the de-
sign of the kernel. In many cases, though, little is known about the objective
function, and, of course, it is expensive to sample from (or we wouldn’t need
to use Bayesian optimization in the first place). The practical result is that in
the absence of (expensive) data, either strong assumptions are made without
certainty that they hold, or a weak prior must be used. It is also often unclear
how to handle the trade-off between exploration and exploitation in the acqui-
sition function. Too much exploration, and many iterations can go by without
improvement. Too much exploitation leads to local maximization.

These problems are exacerbated as dimensionality is increased—more dimen-
sions means more samples are required to cover the space, and more parameters
and hyperparameters may need to be tuned, as well. In order to deal with this
problem effectively, it may be necessary to do automatic feature selection, or
assume independence and optimize each dimension individually.

Another limitation of Bayesian optimization is that the acquisition is cur-
rently both myopic and permits only a single sample per iteration. Looking
forward to some horizon would be extremely valuable for reinforcement learn-
ing problems, as well as in trying to optimize within a known budget of future
observations. Recent work [Garnett et al., 2010b, Azimi et al., 2011] has indi-
cated very promising directions for this work to follow. Being able to efficiently
select entire sets of samples to be labelled at each iteration would be a boon to
design galleries and other batch-incremental problems.

Finally, there are many extensions that will need to be made to Bayesian
optimization for particular applications—feature selection, time-varying models,
censored data, heteroskedasticity, nonstationarity, non-Gaussian noise, etc. In
many cases, these can be dealt with as extensions to the prior—in the case of
Gaussian processes, for example, a rich body of literature exists in which such
extensions have been proposed. However, these extensions need to take into
account the adaptive and iterative nature of the optimization problem, which
can vary from trivial to impossible.

Clearly, there is a lot of work to be done in Bayesian optimization, but we
feel that the doors it opens make it worthwhile. It is our hope that as Bayesian
optimization proves itself useful in the machine learning domain, the community
will embrace the fascinating new problems and applications it opens up.

43

References

[Andre, 2003] D. Andre. Programmable Reinforcement Learning Agents. PhD thesis,
University of California at Berkley, 2003.

[Audet et al., 2000] C. Audet, J. Jr, Dennis, D. W. Moore, A. Booker, and
P. D. Frank. Surrogate-model-based method for constrained optimization. In
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti-
mization, 2000.

[Azimi et al., 2011] J. Azimi, A. Fern, and X. Z. Fern. Batch Bayesian optimization
via simulation matching. In Advances in Neural Information Processing Systems
24, 2011.

[Barto and Mahadevan, 2003] A. G. Barto and S. Mahadevan. Recent advances in
hierarchical reinforcement learning. Discrete Event Dynamic Systems, 13(1-2):41–
77, 2003.

[Bartz-Beielstein et al., 2005] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. Se-
quential parameter optimization. In Proc. CEC-05, 2005.

[Baxter and Bartlett, 2001] J. Baxter and P. L. Bartlett. Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence Research, 15:319–350, 2001.

[Bertsekas and Tsitsiklis, 1996] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1996.

[Betrò, 1991] B. Betrò. Bayesian methods in global optimization. J. Global Optimiza-
tion, 1:1–14, 1991.

[Boyle, 2007] P. Boyle. Gaussian Processes for Regression and Optimisation. PhD
thesis, Victoria University of Wellington, Wellington, New Zealand, 2007.

[Brochu et al., 2007a] E. Brochu, N. de Freitas, and A. Ghosh. Active preference
learning with discrete choice data. In Advances in Neural Information Processing
Systems 21, 2007.

[Brochu et al., 2007b] E. Brochu, A. Ghosh, and N. de Freitas. Preference galleries
for material design. In ACM SIGGRAPH 2007 Posters, page 105, 2007.

[Brochu et al., 2010a] E. Brochu, T. Brochu, and N. de Freitas. A Bayesian interac-
tive optimization approach to procedural animation design. In Eurographics/ ACM
SIGGRAPH Symposium on Computer Animation, 2010.

[Brochu et al., 2010b] E. Brochu, M. Hoffman, and N. de Freitas. Hedging strategies
for Bayesian optimization. eprint arXiv:1009.5419, arXiv.org, September 2010.

[Busby, 2009] D. Busby. Hierarchical adaptive experimental design for Gaussian pro-
cess emulators. Reliability Engineering and System Safety, 94(7):1183–1193, July
2009.

[Chu and Ghahramani, 2005a] W. Chu and Z. Ghahramani. Extensions of Gaussian
processes for ranking: semi-supervised and active learning. In Learning to Rank
workshop at NIPS-18, 2005.

[Chu and Ghahramani, 2005b] W. Chu and Z. Ghahramani. Preference learning with
Gaussian processes. In Proc. 22nd International Conf. on Machine Learning, 2005.

[Cora, 2008] V. M. Cora. Model-based active learning in hierarchical policies. Master’s
thesis, University of British Columbia, Vancouver, Canada, April 2008.

44

[Cox and John, 1992] D. D. Cox and S. John. A statistical method for global opti-
mization. In Proc. IEEE Conference on Systems, Man and Cybernetics, volume 2,
pages 1241–1246, 1992.

[Cox and John, 1997] D. D. Cox and S. John. SDO: A statistical method for global
optimization. In M. N. Alexandrov and M. Y. Hussaini, editors, Multidisciplinary
Design Optimization: State of the Art, pages 315–329. SIAM, 1997.

[Dietterich, 2000] T. G. Dietterich. Hierarchical reinforcement learning with the maxq
value function decomposition. Journal of Artificial Intelligence Research, 13:227–
303, 2000.

[Diggle and Ribeiro, 2007] P. J. Diggle and P. J. Ribeiro. Model-Based Geostatistics.
Springer Series in Statistics. Springer, 2007.

[Diggle et al., 1998] P. J. Diggle, J. A. Tawn, and R. A. Moyeed. Model-based geo-
statistics. Journal of the Royal Statistical Society: Series C (Applied Statistics),
47(3):299–350, 1998.

[Elder, 1992] J. F. Elder, IV. Global Rd optimization when probes are expensive: The
GROPE algorithm. In Proc. IEEE International Conference on Systems, Man and
Cybernetics, 1992.

[Élő, 1978] Á. Élő. The Rating of Chess Players: Past and Present. Arco Publishing,
New York, 1978.

[Frean and Boyle, 2008] M. Frean and P. Boyle. Using Gaussian processes to optimize
expensive functions. In W. Wobcke and M. Zhang, editors, AI 2008: Advances in
Artificial Intelligence, volume 5360 of Lecture Notes in Computer Science, pages
258–267. Springer Berlin / Heidelberg, 2008.

[Garnett et al., 2010a] R. Garnett, M. Osborne, S. Reece, A. Rogers, and S. Roberts.
Sequential Bayesian prediction in the presence of changepoints and faults. The
Computer Journal, 2010.

[Garnett et al., 2010b] R. Garnett, M. Osborne, and S. Roberts. Bayesian optimiza-
tion for sensor set selection. In Proceedings of the 9th ACM/IEEE International
Conference on Information Processing in Sensor Networks, pages 209–219. ACM,
2010.

[Genton, 2001] M. G. Genton. Classes of kernels for machine learning: A statistics
perspective. Journal of Machine Learning Research, 2:299–312, 2001.

[Ghavamzadeh, 2005] M. Ghavamzadeh. Hierarchical Reinforcement Learning in Con-
tinuous State and Multi-agent Environments. PhD thesis, University of Mas-
sachusetts Amherst, 2005.

[Ginsbourger et al., 2008] D. Ginsbourger, R. Le Riche, and L. Carraro. A Multi-
points Criterion for Deterministic Parallel Global Optimization based on Gaussian
Processes. 2008.

[Goldberg et al., 1998] P. W. Goldberg, C. K. I. Williamsn, and C. M. Bishop. Re-
gression with input-dependent noise: A Gaussian process treatment. In Advances
in Neural Information Processing Systems 10, 1998.

[Herbrich and Graepel, 2006] R. Herbrich and T. Graepel. Trueskill: A Bayesian skill
rating system. Technical Report MSR-TR-2006-80, Microsoft Research, June 2006.

[Hinton and Salakhutdinov, 2006] G. Hinton and R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science, 313(5786):504 – 507, 2006.

45

[Holmes and Held, 2006] C. Holmes and L. Held. Bayesian auxiliary variable models
for binary and multinomial regression. Bayesian Analysis, 1(1):145–168, 2006.

[Huang et al., 2006] D. Huang, T. T. Allen, W. I. Notz, and N. Zheng. Global op-
timization of stochastic black-box systems via sequential Kriging meta-models. J.
Global Optimization, 34(3):441–466, March 2006.

[Hutter et al., 2009] F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy.
An experimental investigation of model-based parameter optimisation: SPO and
beyond. In Proc. GECCO’09, 2009.

[Hutter, 2009] F. Hutter. Automating the Configuration of Algorithms for Solving
Hard Computational Problems. PhD thesis, University of British Columbia, Van-
couver, Canada, August 2009.

[Jones et al., 1993] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian
optimization without the Lipschitz constant. J. Optimization Theory and Apps,
79(1):157–181, 1993.

[Jones et al., 1998] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global opti-
mization of expensive black-box functions. J. Global Optimization, 13(4):455–492,
1998.

[Jones, 2001] D. R. Jones. A taxonomy of global optimization methods based on
response surfaces. J. Global Optimization, 21:345–383, 2001.

[Kahneman and Tversky, 1979] D. Kahneman and A. Tversky. Prospect theory: an
analysis of decision making under risk. Econometrica, 47:263–291, 1979.

[Kapoor et al., 2007] A. Kapoor, K. Grauman, R. Urtasun, and T. Sarrell. Active
learning with Gaussian processes for object categorization. In Proc. International
Conference on Computer Vision (ICCV), 2007.

[Kendall, 1975] M. Kendall. Rank Correlation Methods. Griffin Ltd, 1975.

[Kingsley, 2006] D. C. Kingsley. Preference uncertainty, preference refinement and
paired comparison choice experiments. Working Paper 06-06, Center for Economic
Analysis, University of Colorado at Boulder, 2006. Dept. of Economics, University
of Colorado.

[Krause et al., 2008] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor place-
ments in Gaussian processes: Theory, efficient algorithms and empirical studies. J.
Machine Learning Research, 9:235–284, 2008.

[Krige, 1951] D. G. Krige. A statistical approach to some basic mine valuation prob-
lems on the Witwatersrand. J. the Chemical, Metallurgical and Mining Soc. of South
Africa, 52(6), 1951.

[Kushner and Yin, 1997] H. J. Kushner and G. G. Yin. Stochastic Approximation
Algorithms and Applications. Springer-Verlag, 1997.

[Kushner, 1964] H. J. Kushner. A new method of locating the maximum of an arbi-
trary multipeak curve in the presence of noise. J. Basic Engineering, 86:97–106,
1964.

[Lewis and Gale, 1994] D. Lewis and W. Gale. A sequential algorithm for training
text classifiers. In Proc. ACM SIGIR Conference on Research and Development in
Information Retreival, 1994.

[Liberti and Maculan, 2006] L. Liberti and N. Maculan, editors. Global Optimiza-
tion: From Theory to Implementation. Springer Nonconvex Optimization and Its
Applications. Springer, 2006.

46

[Lizotte et al., 2007] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Auto-
matic gait optimization with Gaussian process regression. In IJCAI, 2007.

[Lizotte, 2008] D. Lizotte. Practical Bayesian Optimization. PhD thesis, University
of Alberta, Edmonton, Alberta, Canada, 2008.

[Locatelli, 1997] M. Locatelli. Bayesian algorithms for one-dimensional global opti-
mization. J. Global Optimization, 1997.

[Mackay, 1992] D. J. C. Mackay. A practical bayesian framework for backpropagation
networks. Neural Computation, 4(3):448–472, 1992.

[Marthi et al., 2005] B. Marthi, D. Latham, S. Russell, and C. Guestrin. Concurrent
hierarchical reinforcement learning. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, 2005.

[Martinez–Cantin et al., 2006] R. Martinez–Cantin, N. de Freitas, and J. Castellanos.
Analysis of particle methods for simultaneous robot localization and mapping and
a new algorithm: Marginal-SLAM. In Proc. IEEE International Conference on
Robots and Automation, 2006.

[Martinez–Cantin et al., 2007] R. Martinez–Cantin, N. de Freitas, A. Doucet, and
J. A. Castellanos. Active policy learning for robot planning and exploration un-
der uncertainty. Robotics: Science and Systems (RSS), 2007.

[Martinez–Cantin et al., 2009] R. Martinez–Cantin, N. de Freitas, E. Brochu,
J. Castellanos, and A. Doucet. A Bayesian exploration-exploitation approach for op-
timal online sensing and planning with a visually guided mobile robot. Autonomous
Robots, 27(2):93–103, 2009.

[Matérn, 1960] B. Matérn. Spatial Variation. Springer-Verlag, 2nd (1986) edition,
1960.

[Matheron, 1971] G. Matheron. The theory of regionalized variables and its applica-
tions. Cahier du Centre de Morphologie Mathematique, Ecoles des Mines, 1971.

[McFadden, 1980] D. McFadden. Econometric models for probabilistic choice among
products. Journal of Business, 53(3):13–29, 1980.

[McFadden, 2001] D. McFadden. Economic choices. The American Economic Review,
91:351–378, 2001.

[Močkus et al., 1978] J. Močkus, V. Tiesis, and A. Žilinskas. Toward Global Opti-
mization, volume 2, chapter The Application of Bayesian Methods for Seeking the
Extremum, pages 117–128. Elsevier, 1978.

[Močkus, 1982] J. Močkus. The Bayesian approach to global optimization. In
R. Drenick and F. Kozin, editors, System Modeling and Optimization, volume 38,
pages 473–481. Springer Berlin / Heidelberg, 1982.

[Močkus, 1994] J. Močkus. Application of Bayesian approach to numerical methods
of global and stochastic optimization. J. Global Optimization, 4(4):347 – 365, 1994.

[Mongeau et al., 1998] M. Mongeau, H. Karsenty, V. Rouzé, and J.-B. Hiriart-Urruty.
Comparison of public-domain software for black-box global optimization. Technical
Report LAO 98-01, Universite Paul Sabatier, Toulouse, France, 1998.

[Mosteller, 1951] F. Mosteller. Remarks on the method of paired comparisons: I. the
least squares solution assuming equal standard deviations and equal correlations.
Psychometrika, 16:3–9, 1951.

47

[Murray-Smith and Girard, 2001] R. Murray-Smith and A. Girard. Gaussian process
priors with ARMA noise models. In Irish Signals and Systems Conference, 2001.

[Murray-Smith and Sbarbaro, 2002] R. Murray-Smith and D. Sbarbaro. Nonlinear
adaptive control using non-parametric Gaussian process prior models. In 15th IFAC
World Congress on Automatic Control. Citeseer, 2002.

[Ng and Jordan, 2000] A. Y. Ng and M. I. Jordan. Pegasus: A policy search method
for large MDPs and POMDPs. In Uncertainty in Artificial Intelligence (UAI2000),
2000.

[O’Hagan, 1978] A. O’Hagan. On curve fitting and optimal design for regression.
Journal of the Royal Statistical Society B, 40:1–42, 1978.

[Osborne et al., 2010] M. Osborne, R. Garnett, and S. Roberts. Active data selection
for sensor networks with faults and changepoints. In IEEE International Conference
on Advanced Information Networking and Applications, 2010.

[Osborne, 2010] M. Osborne. Bayesian Gaussian Processes for Sequential Prediction,
Optimization and Quadrature. PhD thesis, University of Oxford, 2010.

[Parr, 1998] R. E. Parr. Hierarchical control and learning for markov decision pro-
cesses. PhD thesis, 1998. Chair-Stuart Russell.

[Payne et al., 1993] J. W. Payne, J. R. Bettman, and E. J. Johnson. The Adaptive
Decision Maker. Cambridge University Press, 1993.

[Poyiadjis et al., 2005] G. Poyiadjis, A. Doucet, and S. S. Singh. Particle methods for
optimal filter derivative: Application to parameter estimation. In IEEE ICASSP,
pages 925–928, 2005.

[Press et al., 2007] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes: The Art of Scientific Computing. Cambridge University Press,
3rd edition, 2007.

[Rasmussen and Williams, 2006] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, Cambridge, Massachusetts, 2006.

[Sacks et al., 1989] J. Sacks, W. J. Welch, T. J. Welch, and H. P. Wynn. Design and
analysis of computer experiments. Statistical Science, 4(4):409–423, 1989.

[Santner et al., 2003] T. J. Santner, B. Williams, and W. Notz. The Design and Anal-
ysis of Computer Experiments. Springer, 2003.

[Sasena, 2002] M. J. Sasena. Flexibility and Efficiency Enhancement for Constrained
Global Design Optimization with Kriging Approximations. PhD thesis, University
of Michigan, 2002.

[Schonlau, 1997] M. Schonlau. Computer Experiments and Global Optimization. PhD
thesis, University of Waterloo, Waterloo, Ontario, Canada, 1997.

[Settles, 2010] B. Settles. Active learning literature survey. Computer Science Tech-
nical Report 1648, University of Wisconsin-Madison, January 2010.

[Siegel and Castellan, 1988] S. Siegel and N. J. Castellan. Nonparametric Statistics
for the Behavioral Sciences. McGraw-Hill, 1988.

[Srinivas et al., 2010] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. In
Proc. International Conference on Machine Learning (ICML), 2010.

48

[Stein, 1999] M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging.
Springer Series in Statistics. Springer, 1999.

[Stern, 1990] H. Stern. A continuum of paired comparison models. Biometrika,
77:265–273, 1990.

[Streltsov and Vakili, 1999] S. Streltsov and P. Vakili. A non-myopic utility function
for statistical global optimization algorithms. J. Global Optimization, 14:283–298,
1999.

[Stuckman, 1988] B. Stuckman. A global search method for optimizing nonlinear
systems. IEEE Transactions on Systems, Man and Cybernetics, 18(6):965–977,
1988.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[Sutton et al., 1999] R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning. Ar-
tificial Intelligence, 112(1-2):181–211, 1999.

[Thurstone, 1927] L. Thurstone. A law of comparative judgement. Psychological Re-
view, 34:273–286, 1927.

[Törn and Žilinskas, 1989] A. Törn and A. Žilinskas. Global Optimization. Springer-
Verlag, 1989.

[Tversky and Kahneman, 1992] A. Tversky and D. Kahneman. Advances in prospect
theory: Cumulative representation of uncertainty. J. Risk and Uncertainty, 5:297–
323, 1992.

[Vasquez and Bect, 2008] E. Vasquez and J. Bect. On the convergence of the expected
improvement algorithm. Technical Report arXiv:0712.3744v2, arXiv.org, Feb 2008.

[Williams et al., 2000] B. J. Williams, T. J. Santner, and W. I. Notz. Sequential
design of computer experiments to minimize integrated response functions. Statistica
Sinica, 10:1133–1152, 2000.

[Wymann et al., 2009] B. Wymann, C. Dimitrakakis, and C. Alexopoulos. The open
racing car simulator (http://torcs.sourceforge.net/), 2009.

[Younes, 1989] L. Younes. Parameter estimation for imperfectly observed Gibbsian
fields. Prob. Theory and Rel. fields, 82:625–645, 1989.

[Zhigljavsky and Žilinskas, 2008] A. Zhigljavsky and A. Žilinskas. Stochastic Global
Optimization. Springer Optimization and Its Applications. Springer, 2008.

[Žilinskas and Žilinskas, 2002] A. Žilinskas and J. Žilinskas. Global optimization based
on a statistical model and simplical partitioning. Computers and Mathematics with
Applications, 44:957–967, 2002.

[Žilinskas, 1980] A. Žilinskas. Lecture Notes in Control and Information Sciences,
chapter On the Use of Statistical Models of Multimodal Functions for the Con-
struction of Optimization Algorithms. Number 23. Springer-Verlag, 1980.

49

	1 Introduction
	1.1 An Introduction to Bayesian Optimization
	1.2 Overview

	2 The Bayesian Optimization Approach
	2.1 Priors over functions
	2.2 Choice of covariance functions
	2.3 Acquisition Functions for Bayesian Optimization
	2.3.1 Improvement-based acquisition functions
	2.3.2 Exploration-exploitation trade-off
	2.3.3 Confidence bound criteria
	2.3.4 Maximizing the acquisition function

	2.4 Noise
	2.5 A brief history of Bayesian optimization
	2.6 Kriging
	2.7 Experimental design
	2.8 Active learning
	2.9 Applications

	3 Bayesian Optimization for Preference Galleries
	3.1 Probit model for binary observations
	3.2 Application: Interactive Bayesian optimization for material design
	3.2.1 User Study

	4 Bayesian Optimization for Hierarchical Control
	4.1 Hierarchical Reinforcement Learning
	4.1.1 Semi-MDPs
	4.1.2 Hierarchical Value Function Decomposition

	4.2 Application: The Vancouver Taxi Domain
	4.2.1 State Abstraction, Termination and Rewards

	4.3 Bayesian Optimization for Hierarchical Policies
	4.3.1 Active Policy Optimization
	4.3.2 Active Value Function Learning

	4.4 Simulations

	5 Discussion and advice to practitioners

