
Simultaneous Learning of Spatial
Visual Attention and Physical Actions

Ali Borji Majid Nili Ahmadabadi Babak Nadjar Araabi

Abstract— This paper introduces a new method for learning
top-down and task-driven visual attention control along with
physical actions in interactive environments. Our method is
based on the Reinforcement Learning of Visual Classes(RLVC)
algorithm and adapts it for learning spatial visual selection in
order to reduce computational complexity. Proposed algorithm
also addresses aliasings due to not knowing previous actions and
perceptions. Continuing learning shows our method is robust
to perturbations in perceptual information. Our method also
allows object recognition when class labels are used instead of
physical actions. We have tried to gain maximum generalization
while performing local processing. Experiments over visual
navigation and object recognition tasks show that our method
is more efficient in terms of computational complexity and is
biologically more plausible.

I. INTRODUCTION

Similar to humans and animals, artificial creatures like
robots are limited in terms of allocating their resources
to huge perceptual information. That is mainly because of
the serial processing mechanisms used in the design of
such creatures which allows processing of only a small
amount of incoming sensory information at any given time.
Visual attention mechanisms serve to implement a bottleneck
through which only informative and relevant information are
allowed to pass to higher level processing centers. Since
robotic agents are usually supposed to guarantee a limited
response time, attention is an efficient solution in this area
as in biological creatures.

To perform a task, agents should be able to percept
the environment and perform appropriate physical actions.
Perceptual actions are available in several forms like where
and what to look in visual modality. The main concern in
learning attention is how to select the relevant information,
since relevancy depends on the tasks and goals. In this study,
we consider task relevancy of visual attention and aim to
extract spatial locations which help the agent to achieve its
goals faster.

It is important that a solution for learning task-based
visual attention control to take into account other relevant
and interleaved cognitive processes like learning, decision
making, action selection, etc. There are several biological
evidences for this. It has been previously shown that attention
and eye movements are context-dependent and task-specific
[1]. Previous experiences also influence attentional behaviors

A. Borji is with Department of Computer Science, Universityof Southern
California, Hedco Neuroscience Building - Room 9, 3641 WattWay, Los
Angeles, California, 90089-2520, USA.borji@usc.edu

M. N. Ahmadabadi and B. N. Araabi are with the School of Electrical and
Computer Engineering, University of Tehran and also Schoolof Cognitive
Sciences, IPM, Tehran, Iran.{mnili, araabi}@ut.ac.ir

which indicate that attention control mechanisms can be
learned [2]. Some neuropsychological evidences suggest that
human beings learn to extract useful information from visual
scenes in an interactive fashion without the aid of any
external supervisor [3][4]. Instead of attempting to segment,
identify, represent and maintain detailed memory of all ob-
jects in a scene, there are evidences that claim our brain may
adopt a need-based approach [5], where only desired objects
are quickly detected, identified and represented. Considering
above evidences, in this work, we introduce a model to
consider the influences of task, action, learning and decision
making to control top-down visual attention.

From another perspective learning top-down attention is
highly coupled with learning representations. Therefore the
best way to derive visual attention mechanisms is to learn
them in concert with visual representations. This is tightly
relevant to an area of research known as state space dis-
cretization in reinforcement learning. Here we adapt these
techniques for deriving spatial visual attention in interactive
environments which is like the saccadic eye movements that
humans and animals perform to recognize a scene.

Reinforcement learning (RL) is a general framework for
modeling the behavior of an agent that learns how to perform
its task through its interactions with the environment. The
only information that the agent takes in response to its actions
is a reinforcement signal instead of being told that its action
has been right or wrong. Like many existing learning meth-
ods, RL suffers from the curse of dimensionality, requiring
a large number of learning trials as state-space grows. But
it has the ability to handle dynamic and non-deterministic
environments. It is believed that curse of dimensionality can
be lessened to a great extent by implementation of state
abstraction methods and hierarchical structures. Moreover,
incremental improvement of agents performance becomes
much simpler due to less number of states.

Several approaches for interactive discretization of state
space have been proposed. Techniques using a non-uniform
discretization are referred to as variable resolution techniques
[6]. The parti-game algorithm [7] is an algorithm for auto-
matically generating a variable resolution discretization of a
continuous, deterministic domain based on observed data.
This algorithm uses a greedy local controller and moves
within a state or between adjacent states in the discretization.
When the greedy controller fails, the resolution of the dis-
cretization is increased in that state. The G algorithm [8],and
McCallum’s U-Tree algorithm [9], are similar algorithms that
automatically generate a variable resolution discretization
by re-discretizing propositional techniques. Like parti-game,

they both start with the world as a single state and recursively
split it when necessary. The continuous U-Tree algorithm
described in [10], extends these algorithms to work with
continuous state spaces.

Jodogne et al. [11] have proposed an approach for learning
action-based image classification known as Reinforcement
Learning of Visual Classes (RLVC). RLVC consists of two
interleaved learning processes: an RL unit which learns
image to action mappings and an image classifier which
incrementally learns to distinguish visual classes. RLVC
could be regarded as a feature based attention method in
which the entire image has to be processed to find out
whether a specific visual feature exists or not in order to
move in a binary decision tree. Like RLVC, our approach
proposed in [12] extends the U-Tree to visual domain. Our
approach tackles weaknesses of the RLVC, the exhaustive
search for a local descriptor over the entire image and relying
only a single feature which makes it susceptive occlusions,
by computing and searching local descriptors at few spatial
locations. Once aliasing is detected a spatial location is
selected which reduces the perceptual aliasing the most. This
local visual processing results in very fast scene recognition
because features are extracted in small regions and there is
no need for exhaustive search for a feature. In this paper,
we extend our previous solution to tackle other aliasings due
to not knowing the previous actions and observations. We
also show that it could be applied for object recognition.
Perturbation of perceptual data while learning is also studied.

II. PROPOSEDAPPROACH

In our method, attention is directed toward spatial circular
regions. An attention tree (Saccade-Tree) is incrementally
built from the incoming visual inputs. In each node of
this tree, visual content at the focus of attention (FOA)
is inspected. To encode the visual content at the focus of
attention we use the SIFT descriptors which have shown to
be very useful for object and scene recognition and image
stitching. Before learning Saccade-Tree, SIFT features are
grouped into some clusters.

A. Clustering Local Descriptors

Sequential attention in our method shifts the focus of at-
tention toward the discriminant spatial locations. Final output
of the algorithm is a scanpath of eye movements. There is no
need that the pattern at each FOA to be represented in fine
detail, but an approximate characterization also suffices to
discriminate among objects and scenes. Letf : P → T be a
mapping from the set of focuses of attentionP to a discrete
set of featuresT . Here, f returns the class of a specific
SIFT feature at a member ofP which is a circular region
with radius r. In order to derive a rough local descriptor
representation, SIFT features of some random imagesQ =
{

q1, q2, · · · , q|Q|

}

are extracted and then clustered using
standardk-means clustering algorithm. Therefore a set of|T |
clustersT =

{

τ1, τ2, · · · , τ|T |

}

hereafter called codebooks
are generated. The specific feature thatf returns its codebook
could be the closest SIFT to the center of FOA,f1, or the

SIFT feature with highest magnitude among SIFT features
at FOA, f2:

f1 = argminj ‖ SIFTFOA,k − τj ‖,

k is the closest SIFT to FOA center

f2 = argminj ‖ SIFTFOA,k − τj ‖,

k = argmaxi ‖ SIFTFOA,i ‖ (1)

B. Learning Saccade Tree

An efficient way to implement attention and state space
construction is by means of tree data structures. They are
readable by humans and are hierarchy structured which
makes them a suitable mean for deriving state-space ab-
straction and inclusion of the available knowledge for an
RL agent. Visual discretization is performed via saccade tree
whenever aliasing occurs. Such refinement is performed to
increase the cumulative reward of the agent. Each internal
node of the Saccade-Tree proposes a single saccade toward
a specific spatial location. Edges below a node test the code-
book of a SIFT feature. Based on the observed codebook,
next saccade is initiated until a leaf node is reached. Leaves
point to states in the Q-table. Pruning is done when algorithm
ends for instance by merging the nodes with the same best
actions or replacing nodes with all their leaves having the
same best actions.

Saccade-Tree is incrementally built in a quasi-static man-
ner in two phases: 1)RL-fixed (Tree-update)phase and 2)
Tree-fixed (RL-update)phase. The algorithm starts with one
node in the Tree-fixed phase. In each phase of the algorithm
external feedback of the critic, in the form of a scalar
reward or punishment, is alternatively used to update the
Q-table or refine the attention tree. Initially a tree with a
single node is created and all the images are mapped to
that node. Evidently, such a single state is not enough and
aliasing occurs. Then, the algorithm breaks the node into a
number of leaves based on some gathered experiences under
it. In each Tree-fixed phase, RL algorithm is executed for
a number of episodes by following aǫ-greedy or soft-max
action selection policy. In this phase, tree is hold fixed and
the derived quadruples(st, at, rt+1, st+1) are only used for
Q-table update according to Q-learning update rule:

Q(st, at) = (1 − α) Q(st, at) +

α(rt+1 + γmaxaQ(st+1, a)) (2)

Attention control and state discretization occur in the RL-
fixed phase. An important point here is that the agent only
accesses the environment through its visual sensor (e.g. its
CCD camera), therefore in order to determine its state, it
has to traverse its saccade tree from the root node down to
a leaf, which determines its statest at timet. In the current
state, the agent performs an action according to its learned
policy. At this point, based on the received reward and the
next captured image, which leads to statest+1, the agent
calculates perceptual aliasing for this input. After each RL-
fixed phase, nodes with aliasing are detected and expanded

TABLE I

ALGORITHM 1: SACCADE TREE MAIN FUNCTION

1: tree← create a tree with a single node
2: repeat
3: for i = 1 to maxEpizodesdo
4: It = takeImage()
5: st = traverseTree(tree, It)
6: [st+1, rt+1, at] = selectAction(st)
7: ∆t = calcDelta(st, at, st+1, rt+1)
8: mem(st) = gatherMem(tree, I, at,∆t)
9: end for
10: for j = 1 to |S| do
11: if |mem(sj)| > memThresholdand checkAliasing(sj)
12: tree =modifyTree(tree, sj)
13: end if
14: end for
15: for i = 1 to maxEpizodesdo
16: It = takeImage()
17: st = traverseTree(tree, It)
18: [st+1, rt+1, at] = selectAction(st)
19: Q− table = updatePolicy(Q − table, st, st+1, rt+1, at)
20: end for
21: until (no aliasing) or (max iterations)
22: postprune(tree)

in order to reduce aliasing. After expanding aliased states,
leaf nodes without patterns in their memory are deleted. It is
worth noting that memories of leaf nodes after each RL-fixed
phase are deleted too. The whole process of Saccade-Tree is
shown in the Table I.

C. Measuring Aliasing

After each RL-fixed phase, algorithm refines leaves with
perceptual aliasing. In order to estimate aliasing, a number
of items must be accumulated under a leaf node. This is done
by the agent performing some episodes running the current
policy learned at the previous Tree-fixed phase. An image
is captured, saccade tree is traversed in order to find the
perceptual state, appropriate action is performed and a reward
is received. An efficient measure of perceptual aliasing in a
state (leaf node) is the TD error and can be derived from
Q-learning formula as follows:

Q(st, at) = α(rt+1 + γmaxaQ(st+1, a) − Q(st, at))

+Q(st, at)

= α∆t + Q(st, at) (3)

In order to detect aliasing, all memory items under a node
are clustered according to their physical actions and then if
any of these clusters has a variance in∆t greater than a
threshold (aliasingThreshold), then that node has aliasing at
least with respect to one action.∆t converge to zero as the
RL algorithm converges when there is no further perceptual
aliasing. This is when the transition functionT and reward
functionR are deterministic which means that source of TD
error is because of misclassification. Therefore, in each step
of RL, ∆t is a measure of perceptual aliasing in a state
s with respect to an actiona. The function for detecting
aliasing (checkAliasing) is shown in Table II.

TABLE II

ALGORITHM 2: ALIASING DETECTOR, checkAliasing(st)

1: for actiona ∈ A do
2: mem(a)= memorys items with actiona underst

3: σ2(a) = calcV ariance(mem(a))
4: if σ2(a) > aliasingThreshold
5: return true
6: end if
7: end for
8: return false

D. Tree Refinement

When an aliased class is detected, a spatial location must
be selected to dissociate items under this aliased class. In
order to find the best location an anticipatory mechanism is
needed. When an image is classified in statest, codebooks
in some spatial regions are saved for this node plus the∆t

and the elicited action (gatherMem).
Assume thatMk = {mk,1, mk,2, · · · , mk,q} is the set of

q spatial locations for thek-th leaf of the tree. Codebooks
at these locations are calculated for every image which ends
to this node. LetMemk be the matrix of memory items in
the k-th leaf:

Memk = [memi,j] , i = 1 · · ·Memk, j = 1 · · · q + 2 (4)

Each item of this memory is represented as:

memi,j = [τi,1, τi,2, · · · , τi,q , at, ∆t] (5)

whereτi,l is the codebook of thel-th spatial position of
i-th memory item. Note that when a new node is created
in the tree,Mk is initialized in some way for this node.
Two possible approaches are random selection of spatial
locations or some positions relative to the end of saccade
at that node (for example in some directions). Every method
for saccade generation must satisfy this condition that FOAs
along the path from each node to the root must not be
the same. Positions are in the image coordinate frame.
Whenever size of the memory under a leaf node exceeds
a threshold (memThreshold) and it has aliasing, then tree is
refined to remove aliasing. Tree refinement is then done by
selecting the spatial location which mostly minimizesσ(∆t)
of memory items according to 6.

[p∗a∗] = argminp,a



σ2(L) −

|T |
∑

c=1

|La,p,c|

|La|
σ2(La,p,c)





= argmaxp,a





|T |
∑

c=1

|La,p,c|

|La|
σ2(La,p,c)



 (6)

In the above formula,L is the set of∆ts of all memory
items,La is the set of∆ts of items with actiona. La,p,c is
the set of∆ts of items with actiona, spatial locationp and
codebookc. |U | andσ2(U) are the size and variance of a set
U . p∗ anda∗ are the location and the action which reduces

TABLE III

ALGORITHM 3: TREE REFINEMENT, modifyTree(tree, st)

1: for actiona ∈ A do
2: mem(a)= memory items with actiona underst

3: for locationm ∈M do
4: find p∗ anda∗ according to equation 6
5: end for
6: end for

variance the most respectively. The winning spatial location
p∗ is saved for the node and is used for future tree traversals.
Tree is expanded based on seen codebooks at locationp∗. For
the new created nodes,q potentioal spatial saccade locations
are randomly generated. Tree modification is shown in the
pseudocode of Table III.

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of the Saccade-Tree
algorithm, we apply it to two tasks:1) navigation in a visual
gridworld with obstacles and a goal state and2) object
recognition.

A. Visual Navigation

The aim in this task is to reach the goal state in the
bottom of the grid marked with letterG (Fig. 1). The agent
has a set of4 physical actions,A = {move up, move
right, move left, move down} and has no access to its(x, y)
position in the grid. Agent’s only perception of the world
is through an image of the object underneath its foot. Any
movement taking the agent to an obstacle cell or outside
the gird brings it−1 punishment. When it reaches the goal
state, it is rewarded+1. Each cell of the grid is carpeted
with a 128 × 128 image of the COIL100 object database.
Saccade-Tree has managed to recognize all the objects in an
action-based manner as well as a valid policy by creating8
distinct perceptual classes for11 objects. Interestingly some
positions with the same best actions are classified under the
same leaves.

Fig. 2 shows the results of action-based object recognition
and navigation in a grid with obstacles in positions6 and11
and goal state in position16. In such a gird only two best
actions are used from the set of4 physical actions,move
right andmove down. Four conditions are considered: 1) all
objects for all positions are unique 2) only3 positions with
the same best actions are assigned the same objects 3) seven
positions with the same best actions are assigned the same
objects and 4) from13 non-obstacle, non-goal positions,7
with one action and remaining6 with the other action as best
are assigned the same objects.

Shown by this figure, as the number of distinct perceptions
decrease, the number of states and hence the average tree
depth also decrease. This is because there is no need to
further refine the tree when there is no aliasing. Interestingly,
when there are only2 distinct objects in the grid (condition
4), the resultant tree has always2 nodes with the average

Fig. 1. Navigation in the visual gridworld. Top: visual gridworld with
learned best actions. Bottom: Learned saccade tree. Numbers below leaves
indicate the positions in the grid, flashes inside the circles show learned
actions and blue numbers on the edges are the codebooks seen at the FOA.
Eight spatial locations were generated in random i.e.q = 8 andr = 10.

Fig. 2. Top: Number of perceptual states Bottom: Avergae tree depth for
a 4× 4 gridworld with obstacles at positions6 and11 and goal at16.

tree depth of1. The variances in diagrams are due to dif-
ferent initial conditions in each run like the spatial locations
selected at the beginning. All cases resulted in optimal action
selection policy.

Experimenting with another more complex10 × 10 grid-
world shown in Fig. 3, Saccade-Tree suceeded to derive the
optimal policy after9 phases. Number of generated visual
calsses were68 with the avergae tree depth of3.6. The same
parameters as in Fig. 1 were used with the saccade generation
function f2.

We also compared the traditional RL when agent has
access to its (x, y) positions with saccade-tree algorithm.
Fig. 4.a shows the instantanous and smoothed average reward
in 30 epizodes of the RL algorithm. Agent was able to solve
the task after these epizodes. Fig. 4.b shows the avergae
reward of the agent in Tree-fixed phases of saccade tree.
Red horizontal line is the avergae reward of the agent derived
from Fig. 4.a. As it shows both methods converged to the
same avergae reward but traditional RL has16 states while
Saccade-Tree generated8 states.

B. Handling POMDP Cases

When same objects are assigned to the positions with
different best actions, algorithm does not converge. This is

Fig. 3. 10× 10 grid with maxEpizodesequal to400.

Fig. 4. Comparison with traditional reinforcement learning algorithm.

because there is no aliasing in perception however another
kind of aliasing which emanates from not knowing the
previous actions and observations exists yet. This has been
predicted in original U-Tree algorithm but has not been
addressed in the RLVC algorithm. It is important to note
that this kind of aliasing frequently occurs in real-world
situations. To remedy this, we consider a history for the
agent with each item a pair of previous states and actions
to a certain depthn. Let et,j be thej-th pair of the history:

et,j = (at−j , st−j), j = 1 · · ·n, a ∈ {A ∪ Null} ,

s ∈ {S ∪ Null} (7)

Then new representation of a memory item becomes:

memi,j = [τi,1, τi,2, · · · , τi,q, et,1, et,2, · · · , et,n, at, ∆t] (8)

History is treated the same as the spatial locations. This
way when splitting a node, the history items at that node also
compete for reducing aliasing. Applying this new modifica-
tion, now the Saccade-Tree algorithm is able to solve a grid
with positions with different best actions having the same
perceptions. In grid with obstacles at positions6 and11 and
goal at16, positions2, 5, 12 and15 were assigned the same
object. As Fig. 5 shows, Saccade-Tree solved this problem
by checking the previous action in the internal node marked
with blue. Edges below this node check the previous action
leaded to the current node.

Fig. 5. Saccade tree for a grid with same object assigned to positions with
different best actions (history depth of 1, previous state as Null) and spatial
locations relative to end of saccade.

C. Object Recognition

Object recognition is a fundamental task of biological
mechanisms. It allows an agent to abstract its knowledge
and then be able to derive task independent representations.
While above experiments showed that Saccade-Tree is capa-
ble of visual navigation and action-based object classifica-
tion, this experiment investigates the capability of Saccade-
Tree for classical object recognition. Basics of the algorithm
are the same as before but with the distinction that here
reward function is an×n matrix for recognition ofn objects.
Diagonal elements of this matrix are+1 which shows correct
classification of object and off-diagonal elements are−1 for
punishing wrong classification. Class labels are assigned to
the images instead of physical actions and there is no grid
here. Saccade-Tree was able to classifiy100 objects from the
COIL100 database (one sample per image) using8 random
spatial locations and5 codebooks withr = 10.

D. Perturbation Analysis

Learning happens all the time in biological creatures. It
will be beneficial for a learning system to be able to adapt
itself to dynamics of the environment and perceptual space.
In this experiment we altered the image at position15 in the
grid used in Fig. 5 to a new unseen image after convergance
and then learning was continued. Saccade-Tree expanded

node9 in the gird and created3 new states instead as shown
by Fig. 6. Pruning removed node 4 which classified image
at position 15 earlier. This result shows that Saccade-Tree
is to some extent robust to distortions and perturbations in
perceptual inputs.

Fig. 6. Perturbation of a percept after saccade tree learning.

E. Invariance Analysis

Previous experiments showed that Saccade-Tree achieved
100% correct policy rate or object recognition rate when
only a single image per class or position was used. However,
this is not a right assumption for the perceptual space. A
learning system while being able to discriminate among
samples from different classes (specificity) has to be able to
treat all the samples within a class equally (generalization).
In this experiment we investigate generalization power of the
Saccade-Tree algorithm.

A gridworld with obstacles at positions6 and11 and the
goal at16 is used. Each position of this grid is assigned a nat-
ural 640×480 scene (r = 50pixels). Images are taken from
[17] . In each position, the agent captures a scene randomly
among 5 possible scenes with major transformation (i.e it
does not observe the same image per position but observes
images from the same scene under major translation, scale
and rotation). The goal here is to learn the correct policy but
with minimum number of states or leaves. In all cases agent
was able to solve the task. To measure the generalization
power an index known as state reduction index is defined as
in 9:

SRI =
1

N

N
∑

n=1

σ2(V (n))

mean(V (n))

V (n) = [v1(n), v2(n), · · · , v5(n)] (9)

In above formula,V (n) is the vector of leaf numbers
and N is the number of objects. Numbering is done at the
level order when tree is built. Zero value for SRI means
that all samples of a scene are classified under the same
leaf. The lower the SRI, the more generalization power is.
Fig. 7.a compares the SRI, number of states and average tree
depth (average of depths of all leaves) for two SIFT selection
methods in Saccade-Tree (f1 andf2) and RLVC. As it can
be seen highest magnitude SIFT is more invariant to image
transformations than the nearest SIFT feature. RLVC has
more generalization because it checks the existence of a SIFT
feature anywhere in the image but with the disadvantage of
more computation. Lower SRI means that lower number of
states in average as Fig. 7.a shows. Average tree depth of
three approaches is nearly the same.

Fig. 7.b shows average number of leaves, number of tree
nodes and phases (turns) after convergence of the Saccade-
Tree for recognition of 16 scenes (5 views each), where
class labels are used instead of actions. Consistent with
Fig. 7.a, it shows that largest magnitude SIFT leads to more
generalization.

Fig. 7. Invariance analysisa) comparing Saccade-Tree and RLVC over a
4× 4 visual navigation task withr = 50 and5 codebooks,b) recognition
of 16 objects with random spatial locations with 5 views per each position.

We also applied the algorithm to visual servoing in real-
world scenarios. For this purpose, we created the environ-
ment shown in Fig. 8.b in Webotenvironmrnt [18]. There is
a goal box and an obstacle in the middle of the environemt.
The aim is to reach the goal whereever the simulatede-
puck(Fig. 8.c) starts its move. The robot captures320×240
images. We limited it toturn left, turn right and move
forward. The robot uses its infrared sensors to underestand
whether it hits the obstacle or the goal at the corner. The
Obstacle and the goal have different heights and then infrared
sensors return different values. Fig. 8.a shows the environ-

ment carpeted with natural scenes. The robot was supposed
to map each image it takes through its camera to its actions.
The way is by saccading through the image and following
the Saccade-Tree algorithm. Examples of some captured
images are shown in Fig. 8.d. Refering to the generalization
issue, while Saccade-Tree converges it generates many states.
One solution to remedy the generalization problem of the
Saccade-Tree for this task is to use other information like
movements of the robot. For example, when robot turns right
and goes forward and then turns right again, it is likely that
it observess nealry the same scene as it saw first and these
two images belong to the same class.

Fig. 8. Simulation experimenta)carpeted navigation environment,b)Goal
and obstacle and e-puck actions,c)an image of simulated e-puck in the
environment,d)e-puck robot and its sensors ande)sample images robots
takes from the environment

IV. D ISCUSSIONS

Results show that Saccade-Tree is able to solve the
gridworld and object recognition tasks very fast by only
extracting SIFT features at small number of image regions.
Compared with RLVC which hasO(kn2) computational
complexity wherek is the average tree depth andn is the
image size, complexity of Saccade-Tree isO(k

′

πr2) where
the average tree depth or saccade length isk

′

and r is the
radius of FOA. Ignoring the constants, Saccade-Tree isn

r

times more faster than RLVC. Since, this is quite appealing,
a shortcoming arises from this local processing and it is lack
of generalization. Since Saccade-Tree algorithm works in
spatial domain instead of feature space, it makes the method
sensitive to large spatial transformations like translation,
rotation and scale.

V. CONCLUSIONS ANDFUTURE WORKS

An interesting observation is that representations are
learned interactively and are expanded adaptively based on
the agents needs. They are also as compact as possible
and encode the information at the necessary level without
unnecessary details. For example, for recognition of a scene,
it would be very efficient and conclusive to attend to impor-
tant spatial locations. Therefore, global image representation
approaches although might propose more accurate solutions
in some cases seems not to be the best solutions where in-
formation bottlenecks exsit. In accordance with these views,
our method discretizes the visual world when it is needed
and when it helps the agent to perform better by removing
perceptual aliasing. The only predefined knowledge supplied
to the agent was the clusters of visual features or codebooks.

This does not put a big constraint on the method because
these clusters could also be learned.

The weakness of Saccade-Tree in generalization is because
saccadic movements are initiated in a coordinate frame
locked to the image. This causes relocation of visual contents
at FOA when an image is transformed. While we tried to
remedy this by considering the codebook of the highest
magnitude SIFT to some extent, problem still remains to be
investigated in future researches. A possible solution is by
introducing a coordinate frame which is relative to a stable
property for example salient points introduced by the bottom-
up saliency based model of visual attention [16] could be
promising candidates.

REFERENCES

[1] A. L. Yarbus, Eye movements during perception of complex objects,
in Eye Movements and Vision, ed. L. A. Riggs, Plenum Press, New
York, ch. 7, pp. 171196, 1967.

[2] V. Maljkovic and K. Nakayama, Priming of pop-out: I. Roleof
features,Memory and Cognition, vol. 22, pp. 657-672, 1994.

[3] E. Gibson and E. Spelke,The development of perception, In Flavell, J.
H., and Markman, E. M. (Eds.), Handbook of Child Psychology Vol.
III: Cognitive Development (4th edition)., chap. 1, pp. 276. Wiley,
1983.

[4] M. Tarr and Y. Cheng, Learning to see faces and objects,Trends in
Cognitive Sciences, vol. 7, no. 1, pp. 2330, 2003.

[5] J. Triesch, D. H. Ballard, M. M. Hayhoe and B. T. Sullivan,What you
see is what you need,Journal of Vision, vol. 3, pp. 8694, 2003.

[6] R. Munos and A. Moore, Variable resolution discretization in optimal
control, Machine Learning, vol. 49, pp. 291323, 2002.

[7] A. Moore and C. Atkeson, The parti-game algorithm for variable
resolution reinforcement learning in multidimensional state-spaces,
Machine Learning, 21, 1995.

[8] D. Chapman and L. Kaelbling, ”Input generalization in delayed
reinforcement learning: An algorithm and performance comparisons”,
In Proc. of the 12th International Joint Conference on Artificial
Intelligence (IJCAI), Sydney, 1991, pp. 726731.

[9] R. McCallum, Reinforcement learning with selective perception and
hidden state, Ph.D. thesis, University of Rochester, New York, 1996.

[10] W. Uther and M. Veloso, Tree based discretization for continuous state
space reinforcement learning,In Proc. of the 15th National Conference
on Artificial Intelligence (AAAI), pp. 769774, Madison (WI, USA),
1998.

[11] S. Jodogne and J.H. Piater, Closed-Loop learning of visual control
policies, Journal of Artificial Intelligence Research, vol. 28, no. 349-
391, 2007.

[12] A. Borji, M.N. Ahmadabadi and B.N. Araabi, ”Learning sequential
visual attention control through dynamic state space discretization”,
in IEEE International Conference on Robotics and Automation, Kobe,
Japan, 2009, pp. 2258-2263.

[13] R. Sutton and A. Barto,Reinforcement Learning: an Introduction, MIT
Press. 1998.

[14] C. Watkins and P. Dayan, Q-learning,Machine Learning, vol. 8, no.
3,4, pp. 279292, 1992.

[15] D. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

[16] L. Itti, C. Koch and E. Niebur, A model of saliency-basedvisual
attention for rapid scene analysis,IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 20, no. 11, pp. 12541259, 1998.

[17] http://www.montefiore.ulg.ac.be/ jodogne/phd-database/
[18] http://www.cyberbotics.com/

