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Abstract— This paper introduces a new method for learning
top-down and task-driven visual attention control along wth
physical actions in interactive environments. Our method $
based on the Reinforcement Learning of Visual Classes(RLVC
algorithm and adapts it for learning spatial visual selectbn in
order to reduce computational complexity. Proposed algothm
also addresses aliasings due to not knowing previous actisand
perceptions. Continuing learning shows our method is robus
to perturbations in perceptual information. Our method also
allows object recognition when class labels are used instaf
physical actions. We have tried to gain maximum generalizébn
while performing local processing. Experiments over visuh
navigation and object recognition tasks show that our methd
is more efficient in terms of computational complexity and is
biologically more plausible.
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which indicate that attention control mechanisms can be
learned [2]. Some neuropsychological evidences suggast th
human beings learn to extract useful information from visua
scenes in an interactive fashion without the aid of any
external supervisor [3][4]. Instead of attempting to segime
identify, represent and maintain detailed memory of all ob-
jects in a scene, there are evidences that claim our brain may
adopt a need-based approach [5], where only desired objects
are quickly detected, identified and represented. Corisigler
above evidences, in this work, we introduce a model to
consider the influences of task, action, learning and datisi
making to control top-down visual attention.

From another perspective learning top-down attention is
highly coupled with learning representations. Therefdre t
best way to derive visual attention mechanisms is to learn

Similar to humans and animals, artificial creatures IIkGt\hem in concert with visual representations. This is tightl

robots are limited in terms of allocating their resources
to huge perceptual information. That is mainly because
the serial processing mechanisms used in the design
such creatures which allows processing of only a sma

CEf}levant to an area of research known as state space dis-
f

tization in reinforcement learning. Here we adapt these
chniques for deriving spatial visual attention in intethze
nvironments which is like the saccadic eye movements that

3_mou|ntt?f Tcommghsen_sory mforn:at!on lat anyt g“{)e':ugmehumans and animals perform to recognize a scene.
Isual attention mechanisms serve to Impiement a DOWMRNEC  painforcement learning (RL) is a general framework for

through which only informative and relevant informatiorear
allowed to pass to higher level processing centers. Sin
robotic agents are usually supposed to guarantee a Iimitg |
response time, attention is an efficient solution in thisaar

as in biological creatures.

modeling the behavior of an agent that learns how to perform
it task through its interactions with the environment. The
y information that the agent takes in response to itoasti

€is a reinforcement signal instead of being told that itsaarcti

has been right or wrong. Like many existing learning meth-

To pgrform a task, agents ShOUId_ be able_ to perceBlds’ RL suffers from the curse of dimensionality, requiring
the environment and perform appropriate physical actiong, large number of learning trials as state-space grows. But

Perceptual actions are available in several forms like \whe\rt
and what to look in visual modality. The main concern i
learning attention is how to select the relevant infornmatio
since relevancy depends on the tasks and goals. In this, stu

n

has the ability to handle dynamic and non-deterministic

environments. It is believed that curse of dimensionaléy c

Ee lessened to a great extent by implementation of state
¥straction methods and hierarchical structures. Momgove

we consider task relevancy of visual attention and aim 0 cremental improvement of agents performance becomes

extract spatial locations which help the agent to achieve i

goals faster.

Fhuch simpler due to less number of states.
Several approaches for interactive discretization ofestat

: It is Important that a SOIUt'O,n for learning taSk'basecgpace have been proposed. Techniques using a non-uniform
visual attention control to take into account other relevarhiscretization are referred to as variable resolution témhes

and interleaved cognitive processes like learning, degisi
making, action selection, etc. There are several bioldgic
evidences for this. It has been previously shown that atient
and eye movements are context-dependent and task-spe
[1]. Previous experiences also influence attentional hierav
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6]. The parti-game algorithm [7] is an algorithm for auto-
atically generating a variable resolution discretizatid a
continuous, deterministic domain based on observed data.
fis algorithm uses a greedy local controller and moves
within a state or between adjacent states in the discritizat
When the greedy controller fails, the resolution of the dis-
cretization is increased in that state. The G algorithm48H
McCallum’s U-Tree algorithm [9], are similar algorithmsath
automatically generate a variable resolution discratimat
by re-discretizing propositional techniques. Like padime,



they both start with the world as a single state and recussiveSIFT feature with highest magnitude among SIFT features

split it when necessary. The continuous U-Tree algorithrat FOA, fs:

described in [10], extends these algorithms to work with

continuous state spaces. _ .
Jodogne et al. [11] have proposed an approach for learning h o argmin; || SIFTroak — 7 |l

action-based image classification known as Reinforcement k'is the closest SIFT to FOA center

Learning of Visual Classes (RLVC). RLVC consists of two fa = argmin; || SIFTroar —7j |,

@nterleaved Igarning processes: an _RL unit Wh_igh Iear_ns k = argmaz; | SIFTroa; | (1)

image to action mappings and an image classifier which )

incrementally learns to distinguish visual classes. RLVC: Leaming Saccade Tree

could be regarded as a feature based attention method inAn efficient way to implement attention and state space

which the entire image has to be processed to find ogenstruction is by means of tree data structures. They are

whether a specific visual feature exists or not in order téeadable by humans and are hierarchy structured which

move in a binary decision tree. Like RLVC, our approachnakes them a suitable mean for deriving state-space ab-

proposed in [12] extends the U-Tree to visual domain. Owstraction and inclusion of the available knowledge for an

approach tackles weaknesses of the RLVC, the exhausti®é agent. Visual discretization is performed via saccade tr

search for a local descriptor over the entire image andmglyi Whenever aliasing occurs. Such refinement is performed to

only a single feature which makes it susceptive occlusion#)crease the cumulative reward of the agent. Each internal

by computing and searching local descriptors at few spatifiode of the Saccade-Tree proposes a single saccade toward

locations. Once aliasing is detected a spatial location B specific spatial location. Edges below a node test the code-

selected which reduces the perceptual aliasing the moist. THoOok of a SIFT feature. Based on the observed codebook,

local visual processing results in very fast scene recamgnit next saccade is initiated until a leaf node is reached. Lleave

because features are extracted in small regions and thered@int to states in the Q-table. Pruning is done when algarith

no need for exhaustive search for a feature. In this papénds for instance by merging the nodes with the same best

we extend our previous solution to tackle other aliasings diactions or replacing nodes with all their leaves having the

to not knowing the previous actions and observations. W&ame best actions.

also show that it could be applied for object recognition. Saccade-Tree is incrementally built in a quasi-static man-

Perturbation of perceptual data while learning is alsoistid Nner in two phases: 1RRL-fixed (Tree-updatephase and 2)
Tree-fixed (RL-updatg)hase. The algorithm starts with one

[l. PROPOSEDAPPROACH node in the Tree-fixed phase. In each phase of the algorithm
In our method, attention is directed toward spatial circula€xternal feedback of the critic, in the form of a scalar
regions. An attention tree (Saccade-Tree) is incremgntallfeward or punishment, is alternatively used to update the
built from the incoming visual inputs. In each node ofQ-table or refine the attention tree. Initially a tree with a
this tree, visual content at the focus of attention (FOA¥ingle node is created and all the images are mapped to
is inspected. To encode the visual content at the focus #fat node. Evidently, such a single state is not enough and
attention we use the SIFT descriptors which have shown giasing occurs. Then, the algorithm breaks the node into a
be very useful for object and scene recognition and imageumber of leaves based on some gathered experiences under
stitching. Before learning Saccade-Tree, SIFT features alt. In each Tree-fixed phase, RL algorithm is executed for

grouped into some clusters. a number of episodes by following @greedy or soft-max
_ _ action selection policy. In this phase, tree is hold fixed and
A. Clustering Local Descriptors the derived quadrupless;, a;, 11, 5:41) are only used for

Sequential attention in our method shifts the focus of aQ-table update according to Q-learning update rule:
tention toward the discriminant spatial locations. Finatput

of the algorithm is a scanpath of eye movements. Therg is no Qsiar) = (1—a)Q(sear) +
need that the pattern at each FOA to be represented in fine 5
detail, but an approximate characterization also suffices t orisr +ymazaQ(sis1,a)) ()

discriminate among objects and scenes. feP — T be a Attention control and state discretization occur in the RL-
mapping from the set of focuses of attentiBrto a discrete fixed phase. An important point here is that the agent only
set of featuresl’. Here, f returns the class of a specific accesses the environment through its visual sensor (8.g. it
SIFT feature at a member d? which is a circular region CCD camera), therefore in order to determine its state, it
with radiusr. In order to derive a rough local descriptorhas to traverse its saccade tree from the root node down to
representation, SIFT features of some random images a leaf, which determines its statg at timet. In the current
{ql,QQ, e ,q|Q|} are extracted and then clustered usingtate, the agent performs an action according to its learned
standardc-means clustering algorithm. Therefore a seflof policy. At this point, based on the received reward and the
clustersT = {T1,7'27"'7T|T|} hereafter called codebooks next captured image, which leads to state;, the agent
are generated. The specific feature thatturns its codebook calculates perceptual aliasing for this input. After eadh R
could be the closest SIFT to the center of FOA, or the fixed phase, nodes with aliasing are detected and expanded



TABLE | TABLE Il

ALGORITHM 1: SACCADE TREEMAIN FUNCTION ALGORITHM 2: ALIASING DETECTOR check Aliasing(st)
1: tree — create a tree with a single node 1: for actiona € A do
2: repeat ) 2: mem(a)= memorys items with action under s
3 for i =1 to maxEpizodesio 31 02(a) = calcVariance(mem(a))
4 Ip = takelmage() 4: if 02(a) > aliasingThreshold
5: s¢ = traverseTree(tree, It) 5 returntrue
6: [St+1,Tt+1,at] = select Action(st) 6 endif
7. At = calcDelta(st, at, St+1,7t+1) 7: end for
8.  mem(st) = gatherMem(tree, I, a¢, A¢) 8: returnfalse
9: end for
10: forj =1to |S]| do
11. if [mem(s;)| > memThresholénd checkAliasings; )
12: tree =modi fyTree(tree, s;) )
13:  end if D. Tree Refinement
1% end for When an aliased class is detected, a spatial location must
15: fori =1 to maxEpizodeslo - ’ - ! p .
16: I = takeImage() be selected to dissociate items under this aliased class. In
igi ft = tmveme?’@@(?@fitﬁ) (s) order to find the best location an anticipatory mechanism is
: St+1,Tt+1,at] = setectAction(st f . p .
19°  Q — table — updatePolicy(Q — table, st, si41,7es1,a) _needed. Whe_n an image is classified m_stgtecodebooks
20: end for in some spatial regions are saved for this node plusAhe
g;: until (ho aliasing or (max iteration¥ and the elicited actiongéatherMer‘r)l.
: t t .
postprune(tree) Assume thatM;, = {mk,l, Mmp,2,- - ,m;w} is the set of

q spatial locations for thé-th leaf of the tree. Codebooks

at these locations are calculated for every image which ends
in order to reduce aliasing. After expanding aliased stateto this node. LetM em, be the matrix of memory items in
leaf nodes without patterns in their memory are deletedk It ithe k-th leaf:
worth noting that memories of leaf nodes after each RL-fixed
222;?1 ?rr]etr?(ael_?_;%?;o? The whole process of Saccade-Tree 'ﬁ/lemk — [memay)i= 1. Memp,j=1---q+2 (4)

) o Each item of this memory is represented as:
C. Measuring Aliasing

. . . . 4,7 — 74,15 74,25 " "5 Ti,q> 7A 5
After each RL-fixed phase, algorithm refines leaves with memi; = [Tit Tizy s Tisg, Al ©)

perceptual aliasing. In order to estimate aliasing, a numbe wherer;; is the codebook of thé-th spatial position of
of items must be accumulated under a leaf node. This is doi¢h memory item. Note that when a new node is created
by the agent performing some episodes running the curreint the tree, M}, is initialized in some way for this node.
policy learned at the previous Tree-fixed phase. An imagévo possible approaches are random selection of spatial
is captured, saccade tree is traversed in order to find thecations or some positions relative to the end of saccade
perceptual state, appropriate action is performed and arcew at that node (for example in some directions). Every method
is received. An efficient measure of perceptual aliasing in for saccade generation must satisfy this condition that £OA
state (leaf node) is the TD error and can be derived froralong the path from each node to the root must not be
Q-learning formula as follows: the same. Positions are in the image coordinate frame.
Whenever size of the memory under a leaf node exceeds
a threshold themThresholdand it has aliasing, then tree is

Qstyar) = arepr +7mazaQ(set1,a) — Q(st, ar)) refined to remove aliasing. Tree refinement is then done by
+Q(s¢,at) selecting the spatial location which mostly minimizgg\;)
= oA+ Q(sy, ar) (3) of memory items according to 6.

In order to detect aliasing, all memory items under a node

T
are clustered according to their physical actions and then [%*a*] = argming. o2(L) — Z |La,p,0|0_2(La 2)
any of these clusters has a varianceAn greater than a " g |Lal ”
threshold &liasingThresholy then that node has aliasing at -
least with respect to one action; converge to zero as the |Lapel o
RL algorithm converges when there is no further perceptual argmatp,a z; T (Lap.c) )
P

aliasing. This is when the transition functidhand reward

function R are deterministic which means that source of TD In the above formulal is the set ofA;s of all memory
error is because of misclassification. Therefore, in eaep stitems, L, is the set ofA;s of items with actioru. L, . is

of RL, A; is a measure of perceptual aliasing in a statéhe set ofA;s of items with actioru, spatial locatiorp and

s with respect to an actiom. The function for detecting codebooke. |U| anda?(U) are the size and variance of a set
aliasing €heckAliasinyis shown in Table II. U. p* anda* are the location and the action which reduces



TABLE Il -
ALGORITHM 3: TREE REFINEMENT, modi fyTree(tree, s¢) 1% 2u
-

. for actiona € A do

1
2: mem(a)= memory items with actiom unders¢ =

3: for locationm € M do = E
4:  find p* anda™* according to equation 6
5
6

: end for H 15 16 S4B
: end for - G :

=

variance the most respectively. The winning spatial larati 2 “‘;@

p* is saved for the node and is used for future tree traversals. : . g B

Tree is expanded based on seen codebooks at logstidior A A

the new created nodeg potentioal spatial saccade locations w i "

are randomly generated. Tree modification is shown in the

pseudocode of Table IIl. Fig. 1. Navigation in the visual gridworld. Top: visual gndrld with

learned best actions. Bottom: Learned saccade tree. Nsnledow leaves
indicate the positions in the grid, flashes inside the crdbow learned
IIl. EXPERIMENTAL RESULTS actions and blue numbers on the edges are the codebookstshenFDA.
Eight spatial locations were generated in randomg.e: 8 andr = 10.
In order to evaluate the performance of the Saccade-Tree

algorithm, we apply it to two taskg:) navigation in a visual " ' ‘ ' " [—Femepua stateeteawn|
gridworld with obstacles and a goal state afp object o
recognition. . I ——
\
A' \/isual Nav|gat|on Z Al distinct ! Eeéua\ ! 7Eéua\ ! EEquaH_‘{VEqua\
. . . . . Awvg. Tree Depth
The aim in this task is to reach the goal state in the ' }*\\{\
bottom of the grid marked with lette® (Fig. 1). The agent - * T

has a set of4 physical actions,A = {move up, move 12
right, move left, move dowrand has no access to its, y)

position in the grid. Agent’s only perception of the world

is through an image of the object underneath its foot. An§ig- 2. Top: Number of perceptual states Bottom: Avergae ttepth for
movement taking the agent to an obstacle cell or outsiaae4 x 4 gridworld with obstacles at positiortsand 11 and goal atl6.
the gird brings it—1 punishment. When it reaches the goal

state, it is rewarded-1. Each cell of the grid is carpeted yee gepth ofl. The variances in diagrams are due to dif-
with & 128 x 128 image of the COIL100 object database grent initial conditions in each run like the spatial ldoas

Saccade-Tree has managed to recognize all the objects in@fected at the beginning. All cases resulted in optimabact
action-based manner as well as a valid policy by creating e jection policy.

distinct perceptual classes fot objects. Interestingly some Experimenting with another more compleg x 10 grid-
positions with the same best actions are classified under thg.14 shown in Fig. 3, Saccade-Tree suceeded to derive the
same leaves. optimal policy after9 phases. Number of generated visual
Fig. 2 shows the results of action-based object recognitiqfh|sses werés with the avergae tree depth 8f6. The same
and navigation in a grid with obstacles in positidhand11  parameters as in Fig. 1 were used with the saccade generation
and goal state in positioh6. In such a gird only two best f,nction fo.
actions are used from the set ¢fphysical actionsmove We also compared the traditional RL when agent has
right andmove downFour conditions are considered: 1) allaccess to itsaf, y) positions with saccade-tree algorithm.
objects for all positions are unique 2) orypositions with £y 43 shows the instantanous and smoothed average reward
the same best actions are assigned the same objects 3) s§4efy) epizodes of the RL algorithm. Agent was able to solve
positions with the same best actions are assigned the Sajjg task after these epizodes. Figb 4hows the avergae
objects and 4) from3 non-obstacle, non-goal positions, reward of the agent in Tree-fixed phases of saccade tree.
with one action and remainingwith the other action as best Red horizontal line is the avergae reward of the agent deérive
are assigned the same objects. from Fig. 4a. As it shows both methods converged to the

Shown by this figure, as the number of distinct perceptionsame avergae reward but traditional RL Ha#isstates while
decrease, the number of states and hence the average #@@cade-Tree generatedstates.

depth also decrease. This is because there is no need to )

further refine the tree when there is no aliasing. Intergtin B- Handling POMDP Cases

when there are onlg distinct objects in the grid (condition ~When same objects are assigned to the positions with
4), the resultant tree has alwagsnodes with the average different best actions, algorithm does not converge. Téis i

, . , . . .
Al distinct 3 equal 7 equal & equal & 7 equal



mem; ; = [Ti7177—i72; : "7Ti,q7€t,laet,2a'"7et,n7at7At] (8)

History is treated the same as the spatial locations. This
way when splitting a node, the history items at that node also
compete for reducing aliasing. Applying this new modifica-
tion, now the Saccade-Tree algorithm is able to solve a grid
with positions with different best actions having the same
perceptions. In grid with obstacles at positighand11 and
goal at16, positions2, 5, 12 and15 were assigned the same
object. As Fig. 5 shows, Saccade-Tree solved this problem
by checking the previous action in the internal node marked
with blue. Edges below this node check the previous action
leaded to the current node.

(X)) e

Fig. 3. 10 x 10 grid with maxEpizodegqual t0400.
T Jole 0 -

3
15

N Y

| Average Fewara Fig. 5. Saccade tree for a grid with same object assignedditiquas with
/ —t e Smo0thed Average Reward (W=2) 1 different best actions (history depth of 1, previous statéNall) and spatial
E . . ‘ ‘ ‘ locations relative to end of saccade.

5 10 15 20 25 30
Epizode
¢ 9 , .
15| i C. Object Recognition
b 11 1 Object recognition is a fundamental task of biological
—— Average Reward . .
os} RL Grid Reward 1 mechanisms. It allows an agent to abstract its knowledge
ol - | and then be able to derive task independent representations
o5 ‘I/ ‘ . ‘ ‘ ‘ , While above experiments showed that Saccade-Tree is capa-
be e e e ble of visual navigation and action-based object classifica

tion, this experiment investigates the capability of Sdeca
Fig. 4. Comparison with traditional reinforcement leamialgorithm. Tree for classical object recognition. Basics of the aldponi
are the same as before but with the distinction that here
reward function is a x n matrix for recognition ofn objects.
because there is no aliasing in perception however anothBiagonal elements of this matrix afel which shows correct
kind of aliasing which emanates from not knowing theclassification of object and off-diagonal elements -aiefor
previous actions and observations exists yet. This has bepanishing wrong classification. Class labels are assigoed t
predicted in original U-Tree algorithm but has not beernhe images instead of physical actions and there is no grid
addressed in the RLVC algorithm. It is important to notehere. Saccade-Tree was able to clasdifi§y objects from the
that this kind of aliasing frequently occurs in real-worldCOIL100 database (one sample per image) usimgndom
situations. To remedy this, we consider a history for thepatial locations ané codebooks with- = 10.
agent with each item a pair of previous states and actions
to a certain deptm. Let e, ; be thej-th pair of the history: D. Perturbation Analysis
Learning happens all the time in biological creatures. It
will be beneficial for a learning system to be able to adapt
ety = (a—j,8¢—5),j=1---n,a€ {AUNull}, itself to dynamics of the environment and perceptual space.
s e {SUNull} (7) Inthis experiment we altered the image at positlénin the
grid used in Fig. 5 to a new unseen image after convergance
Then new representation of a memory item becomes: and then learning was continued. Saccade-Tree expanded



node9 in the gird and createdl new states instead as shown In above formula,V(n) is the vector of leaf numbers

by Fig. 6. Pruning removed node 4 which classified imagand N is the number of objects. Numbering is done at the
at position 15 earlier. This result shows that Saccade-Trdevel order when tree is built. Zero value for SRI means
is to some extent robust to distortions and perturbations ithat all samples of a scene are classified under the same
perceptual inputs. leaf. The lower the SRI, the more generalization power is.
Fig. 7a compares the SRI, number of states and average tree
depth (average of depths of all leaves) for two SIFT selactio
methods in Saccade-Tre¢, (and f5) and RLVC. As it can

be seen highest magnitude SIFT is more invariant to image
transformations than the nearest SIFT feature. RLVC has
more generalization because it checks the existence of SIF
feature anywhere in the image but with the disadvantage of
more computation. Lower SRI means that lower number of
states in average as Fig.a7shows. Average tree depth of
three approaches is nearly the same.

Fig. 7b shows average number of leaves, number of tree
nodes and phases (turns) after convergence of the Saccade-
Tree for recognition of 16 scenes (5 views each), where
class labels are used instead of actions. Consistent with
Fig. 7a, it shows that largest magnitude SIFT leads to more
generalization.

Before

&0
osRl

48.1

50 O states

Avg. Tree Depth
40

) 30

Fig. 6. Perturbation of a percept after saccade tree legnin 30
20 17
. . 10 6.1 5.5 i a2
E. Invariance Analysis , [:]
Previous experiments showed that Saccade-Tree achieved NesreR SRl Lassumeince RYE
100% correct policy rate or object recognition rate when 120 lons
only a single image per class or position was used. However, o
. . . . 100 O Largest magnitude
this is not a right assumption for the perceptual space. A Ty SIFT
learning system while being able to discriminate among 8o s Nearast SIFT
samples from different classes (specificity) has to be able t } 26

A | A A o 80
treat all the samples within a class equally (generalipdtio -

In this experiment we investigate generalization powehef t

Saccade-Tree algorithm. 20 125 188
A gridworld with obstacles at positionsand11 and the = A Al

goal at16 is used. Each position of this grid is assigned a nat- Leaves Tree nodes Turns

ural 640 x 480 scene £ = 50pixels). Images are taken from

[17] . In each position, the agent captures a scene randonflig. 7. Invariance analysis) comparing Saccade-Tree and RLVC over a

among 5 possible scenes with major transformation (i ' 4y navgalon task with 50 and’ codebookst) recognton

does not observe the same image per position but observes

images from the same scene under major translation, scal . . . .
. : : e also applied the algorithm to visual servoing in real-
and rotation). The goal here is to learn the correct polidy bu . : ;
: I world scenarios. For this purpose, we created the environ-
with minimum number of states or leaves. In all cases agent . . ! ;
2 “ment shown in Fig. & in Webotenvironmrnt [18]. There is
was able to solve the task. To measure the generalization

. . : . a goal box and an obstacle in the middle of the environemt.
power an index known as state reduction index is defined e aim is to reach the goal whereever the simulaged

40

n-9: puck(Fig. 8¢) starts its move. The robot capturg2) x 240
images. We limited it toturn left, turn right and nove
1 X o2(V(n)) forward. The robot uses its infrared sensors to underestand
SRI = Z — whether it hits the obstacle or the goal at the corner. The
mean(V(n))

n=1

Obstacle and the goal have different heights and then edrar
V(in) = [vi(n),v2(n),:--,v5(n)] (9) sensors return different values. Figa&hows the environ-



ment carpeted with natural scenes. The robot was supposEais does not put a big constraint on the method because
to map each image it takes through its camera to its actiorthese clusters could also be learned.
The way is by saccading through the image and following The weakness of Saccade-Tree in generalization is because
the Saccade-Tree algorithm. Examples of some capturedccadic movements are initiated in a coordinate frame
images are shown in Fig. ®.Refering to the generalization locked to the image. This causes relocation of visual cdaten
issue, while Saccade-Tree converges it generates maerg.staat FOA when an image is transformed. While we tried to
One solution to remedy the generalization problem of theemedy this by considering the codebook of the highest
Saccade-Tree for this task is to use other information likenagnitude SIFT to some extent, problem still remains to be
movements of the robot. For example, when robot turns riglimvestigated in future researches. A possible solutionyis b
and goes forward and then turns right again, it is likely thaintroducing a coordinate frame which is relative to a stable
it observess nealry the same scene as it saw first and thgseperty for example salient points introduced by the bratto
two images belong to the same class. up saliency based model of visual attention [16] could be
promising candidates.
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