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Einhäuser, Spain, and Perona (2008) explored an
alternative hypothesis to saliency maps (i.e., spatial
image outliers) and claimed that ‘‘objects predict
fixations better than early saliency.’’ To test their
hypothesis, they measured eye movements of human
observers while they inspected 93 photographs of
common natural scenes (Uncommon Places dataset by
Shore, Tillman, & Schmidt-Wulen 2004; Supplement
Figure S4). Subjects were asked to observe an image and,
immediately afterwards, to name objects they saw
(remembered). Einhäuser et al. showed that a map
made of manually drawn object regions, each object
weighted by its recall frequency, predicts fixations in
individual images better than early saliency. Due to
important implications of this hypothesis, we investigate
it further. The core of our analysis is explained here.
Please refer to the Supplement for details.

Introduction

We compare the hypothesis that objects predict
fixations better than early saliency (hereafter called
object map) against 11 saliency models. We employ
three types of saliency model maps: Two of them are
different versions of the Itti, Koch, and Niebur (1998)
model, ITTI98 and ITTI, which correspond to different
normalization schemes. In ITTI98, each feature map’s
contribution to the saliency map is weighted by the
squared difference between the globally most active
location and the average activity of all other local
maxima in the feature map (Itti et al., 1998). This gives
rise to smooth saliency maps, which tend to correlate

better with noisy human eye-movement data. In the
ITTI model, the spatial competition for saliency is
much stronger which gives rise to much sparser saliency
maps (Itti & Koch, 2000). As we will see, these sparser
maps tend to score lower than smoother maps when
compared to noisy human eye-movement data, as
human fixations that occur away from the few saliency
peaks in this model’s maps strongly penalize the
model’s score (i.e., this model yields more misses than a
model with smooth maps). We also use the exact
saliency maps of Einhäuser, Spain, and Perona (2008)
(denoted here as ITTI* and which appear to be
thresholded versions of the ITTI98 maps), to make our
results directly comparable.

We perform three analyses. Our first analysis regards
handling center bias (cb). Instead of the classic area
under curve (AUC) score (employed by Einhäuser et
al., 2008), we use the shuffled AUC (sAUC) score as it
discounts center bias (spatial priors) in fixation data
(Tatler, Baddeley, & Gilchrist, 2005). Briefly, in both
scores, human fixations are considered as the positive
set, but while in the AUC score some points from the
image are sampled uniformly random as the negative
set, in the sAUC score negative points are sampled
from fixations of observers over other images. This
allows sAUC to discount systematic spatial biases in
human gaze patterns (e.g., center bias). sAUC score
varies between 0.5 (chance level) and 1.0 (perfect
agreement between model and gaze data). Figure 1A
shows sAUC values for all models. There is no
significant difference between the object-map model
and ITTI* in their ability to predict human gaze (t test,
p¼ 0.234, a ¼ 0.05/n ¼ 0.0045 with Bonferroni
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Figure 1. (A) Left: The object-map model outperforms the ITTI* significantly above chance when using the classic AUC score (AUC

Type-1; Supplement) aligned with the original analysis of Einhäuser et al. (2008) (t test, p , 0.05; See also Figure S2A). Right: Using

the shuffled AUC score (sAUC; AUC Type-3; Supplement), which discounts center bias in eye data, every difference between the

object map and other models is statistically significant except the ITTI* model. This result shows the importance of appropriate

tackling of center bias in fixation data (our first analysis; no significant difference between the object-map model and the ITTI*

model). With newer saliency models or even with the original ITTI98 model (with a different normalization scheme than the newer

ITTI model resulting in smoother maps), image-based outliers predict fixations significantly better. AWS model scores the best. MEP

and random models score lowest about 0.5. This supports our second analysis about choosing the right model for data analysis (i.e.,

dependency of conclusions on the used model). To build a Gaussian of sigma size 0.288 · 0.288 on this dataset, we used this Matlab

script: myGauss¼ fspecial(‘gaussian’,50,10) where 50 and 10 are image size and standard deviation of the Gaussian, respectively. To

build the normal random model, we used the Gaussian shown in (A) and upsampled it to 1024 · 768 pixels (original image size

presented at 298 · 228 in Einhäuser et al.’s, 2008, study, thus ; 35 pixel/8), resulting in 5.858 · 4.398. (B) Gaussian blobs (kernels) of

three different sizes were added to model prediction maps (shown here for five models). Gaussian kernels are built with size x and

image size 200 using this Matlab script: myGauss ¼ fspecial(‘gaussian’,200,x) where x � {10, 30, 50} which leads to these sizes in

degrees: 1.458 · 1.18, 4.358 · 3.38, and 7.258 · 5.58 for the used dataset. Each prediction map of a model was smoothed by

convolving with a Gaussian filter (for the shown image). Gaussian sizes for smoothing are: 0.288 · 0.288, 0.868 · 0.868, and 1.438

·1.418. (C) Prediction accuracies of models using the sAUC score: (left) center bias added and (right) smoothed saliency maps.

Significance values are according to Bonferroni-corrected t test (a¼ 0.05/5¼ 0.01). By adding center bias, the object-map model is

significantly above the ITTI model but not the ITTI98 model. Adding center bias does not dramatically change prediction power of

models. With smoothing, the object-map model is significantly below the ITTI98 model. Smoothing more rises the accuracy of the ITTI

model to the point that there is no longer a significant difference between this model and the object-map model. There is also no

significant difference between the object-map model and ITTI* model with small amount of smoothing while with large amount of

smoothing the ITTI* model outperforms the object-map model significantly. This supports our third analysis on parameterization.

Error bars indicate standard error of the mean (SEM): r / m0.5, where r is the standard deviation and m¼93 is the number of images.

Please refer to Borji, Sihite, and Itti (2013) for details on fixation prediction models used here. See main text and Supplement for

more details.
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correction to the number of compared non-trivial
models, thus n¼ 11 comparisons; Supplement Table 1).
Therefore, properly accounting center bias, which is
strong in these data and likely due to photographer bias
(photographs were shot by humans who tend to place
the most interesting objects at the center; another
reason might be the viewing strategy), already negates
the object-based hypothesis. ITTI98 scores better than
ITTI on this particular comparison to human gaze
data, thanks to the smoother maps of the ITTI98 model
(See Figure S2). A simple sum of the object map and
the ITTI* model (i.e., adding maps) yields sAUC of
0.576 6 0.069 which is significantly above the ITTI*
alone (t test; p ¼ 2.23 · 10�6 , 0.05) as well as the
object-map alone (t test; p¼ 0.0048 , 0.05). Thus,
object information helps fixation prediction (i.e.,
provides an independent source of information than
what is conveyed by the ITTI* model), but alone does
not perform significantly above saliency. See
Supplement for reasons why center bias was not
correctly addressed in Einhäuser et al. (2008).

Our second analysis regards using different saliency
models as representatives of the saliency hypothesis.
Please see Borji and Itti (2013) for a review of saliency
models. Every difference between the object-map
model and other models is significant (except the ITTI*
model) using the sAUC score, with the object-map
model being significantly above the very sparse ITTI
model but significantly below the smoother ITTI98 and
all other tested models. Performances of these four
models: adaptive whitening saliency (AWS) (Garcia-
Diaz, Fdez-Vidal, Pardo, & Dosil, 2012), attention
based on information maximization (AIM) (Bruce &
Tsotsos, 2009), ITTI98, and MEP (mean eye position),
in order, are: 0.647 6 0.084, 0.637 6 0.077, 0.590 6

0.079, and 0.491 6 0.059. The human interobserver
model (IO), a smoothed map built from fixations of
other subjects over the same image, achieves the highest
score of 0.803 6 0.111 (mean 6 standard deviation).
The normal random model, a central Gaussian with the
sigma of 5.858 · 4.398 (Figure 1A; inset), is discounted
using the sAUC, scoring near 0.5 (and likewise for the
uniform random model). Note, in particular, how MEP
scores at the chance level.

Our third analysis regards model parameters and
their influence on the accuracy of the object-map
hypothesis. We take a closer look at model differences
by systematically investigating two parameters that
impact scores: (a) center bias in a model (as opposed to
in human data) by explicitly adding center preference
to a model prediction map using three central Gaussian
kernels with increasing sigmas 1.458 · 1.18, 4.358 ·
3.38, and 7.258 · 5.58. This analysis was prompted by
several models which add a central Gaussian to maps
and which tend to correlate strongly with human
fixations, and it is complementary to our first analysis

of center bias in scoring metrics above. (b) Smoothing
by convolving the prediction map of a model with six
variable-size Gaussian kernels (0.288 · 0.288, 0.868 ·
0.858, 1.438 · 1.418, 28 · 1.988, 2.588 · 2.558, and 3.158
· 3.18). We chose six models for this analysis: AWS,
ITTI, ITTI98, normal random, ITTI*, and the object
map. Figure 1B shows a sample image and its
corresponding prediction maps with added center bias
and with smoothing (left and right columns, respec-
tively).

By adding center bias (Figure 1C; left panel), there is
no significant difference between the object-map model
and the ITTI* model (similar to Figure 1A; Bonferroni-
corrected t test, a¼ 0.05/5¼ 0.01). The ITTI98 model is
significantly above the object-map model only using the
first Gaussian kernel. The object-map model is
significantly above the ITTI model in all cases (p¼
3.007 · 10�5, p ¼ 0.00016, p¼ 9.793 · 10�5;
Bonferroni-corrected t test). The accuracy of the
normal random model does not increase with further
adding center-bias and is not significantly better than
chance. The AWS model is significantly above the
object-map model using all three Gaussian kernels.

With smoothing (Figure 1C; right panel), we
observed an interesting pattern. With small amounts of
smoothing (first two Gaussian kernels), the object-map
model is significantly better than the ITTI model. This
difference is not statistically significant using the third
Gaussian kernel (p ¼ 0.0850). To further investigate
this, we smoothed saliency maps more with larger
Gaussian sizes (fourth, fifth, and sixth Gaussians).
Accuracies of these two models (object map and ITTI)
become closer to each other and there is no significant
difference between them anymore. Interestingly, with
mild amounts of smoothing, there is no significant
difference between the object-map and ITTI* models
but with further smoothing, the ITTI* model outper-
forms the object map significantly. The AWS and
ITTI98 models score significantly higher than the
object-map model using sAUC with all Gaussian
kernels.

In summary, by introducing perturbations in
Einhäuser et al.’s (2008) original analysis in three
directions, (a) evaluation score and how it may be
affected by center bias; (b) selected model; and (c)
smoothness of saliency maps and object maps; Figure
S3, we find that the conclusion of Einhäuser et al. is
fragile: It is negated in a vast majority of the
perturbation cases we examined—and especially in the
case that best captures the state of the art (sAUC score,
AWS model, any added central Gaussian or smooth-
ing). Thus, contrary to Einhäuser et al.’s claim, we
conclude that objects do not predict fixations better
than early saliency (although objects score above
chance, suggesting that they still play a role in guiding
attention). Our results support that early image-based
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representations based on spatial outliers guide atten-
tion more strongly than object representations in free
viewing of pictures of natural scenes.
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Einhäuser, W., Spain, M., & Perona, P. (2008). Objects
predict fixations better than early saliency. Journal
of Vision, 8(14):18, 1–26, http://www.
journalofvision.org/content/8/14/18, doi:10.1167/8.
14.18. [PubMed] [Article]

Garcia-Diaz, A., Fdez-Vidal, X. R., Pardo, X. M., &
Dosil, R. (2012). Saliency from hierarchical adap-
tation through decorrelation and variance normal-
ization. Image and Vision Computing, 30, 51–64.

Itti, L., & Koch, C. (2000). A saliency-based search
mechanism for overt and covert shifts of visual
attention. Vision Research, 40, 1489–1506.

Itti, L., Koch, C., & Niebur, E. (1998). A model of
saliency-based visual attention for rapid scene
analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20, 1254–1259.

Shore, S., Tillman, L., & Schmidt-Wulen, S. (2004).
Stephen shore: Uncommon places: The Complete
works. New York: Aperture.

Tatler, B. W., Baddeley, R. J., & Gilchrist, I. D. (2005).
Visual correlates of fixation selection: Effects of
scale and time. Vision Research, 45, 643–659.

Journal of Vision (2013) 13(10):18, 1–4 Borji, Sihite, & Itti 4

http://www.journalofvision.org/content/9/3/5
http://www.journalofvision.org/content/9/3/5
http://www.ncbi.nlm.nih.gov/pubmed/19757944
http://www.journalofvision.org/content/9/3/5.long
http://www.journalofvision.org/content/8/14/18
http://www.journalofvision.org/content/8/14/18
http://www.ncbi.nlm.nih.gov/pubmed/19146319
http://www.journalofvision.org/content/8/14/18.long


Supplement to: Objects do not predict fixations better than early

saliency; A re-analysis of Einhäuser et al.’s data
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1 Methods

1.1 Scoring Methods

We use three prevalent scoring methods to test the object-map hypothesis, since validity of this model boils
down to fair model comparison with bottom-up saliency models. Please see Appendix B for explanation
of state-of-the-art saliency models used here. We report results using the previously proposed Normalized
Scanpath Saliency (NSS) (Peters et al., 2005; Parkhurst et al., 2002), Correlation Coefficient (CC), and
Shuffled AUC score (AUC Type-3) (Parkhurst & Niebur, 2003; Tatler, 2007). Our emphasis is more on the
Shuffled AUC score as it is the only score that tackles center-bias at the data level. Please see Appendix C
for detailed explanation of scoring methods.

1.2 Object-based Models

Here we present a formal definition of the object-based model by Einhäuser et al. (2008). Let Bj be a binary
map with “1” at the location of the annotated object j (out of N = 981 unique labels) and zeros elsewhere.
Assume K subjects have performed the task. As defined by Einhäuser et al. (2008), the predicted object
map for each image is the summation of annotated object maps weighted by their recall frequency:

object map =
1

KN

K
∑

i=1

N
∑

j=1

wijBj (1)

where wij is 1 if object j is remembered by subject i and 0, otherwise (i.e., weighted by the object recall
frequency). In addition to Einhäuser’s original model, we investigate the fixation prediction power of three
additional variants of the object map model: 1) a map made of first remembered objects by subjects, 2) a
map made of the most remembered object by all subjects, and 3) a map built from the object that has been
most remembered first. Please see Appendix D for a detailed description of object-map models.

We compare four object-based models (Einhäuser’s original and our three variants, as representatives
of the object-based hypothesis) to eleven bottom-up saliency models (as representatives of the saliency
hypothesis). We employ three types of ITTI model maps: two different versions of the Itti et al. model,
ITTI98 and ITTI, which correspond to different normalization schemes. We also use the exact saliency maps
of Einhäuser et al. (2008) (denoted here as ITTI∗), to make our results directly comparable.

2 Analysis Results

2.1 Scoring Metrics and Center-bias

Fig. S1 shows ROC plots and AUC values for all models. As it can be seen, the original object-map model
(See case 1 in Appendix D) scores significantly below many saliency models, using all three types of AUC
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scores (paired t-test, α < 0.05/n = 0.0045 with Bonferroni correction to the number of compared non-trivial
models, thus n = 11 comparisons).

Results of our first analysis (See main text) shows that the object-map model is significantly better than
the ITTI∗ model using AUC Type-1 (in alignment with Einhäuser et al. (2008)) and AUC Type-2 — two
metrics which do not discount center bias. However, using AUC Type-3 which discounts the center-bias
in data, there is not a significant difference between saliency and objects’ ability to predict human gaze
anymore.

Please note that Einhäuser et al. (2008) superimposed fixations from another randomly chosen image to
measure the amount of center-bias (called random assignment procedure). They showed, both for ITTI∗

saliency model and their object-map model, that gaze patterns over one image could significantly be predicted
by the model map from another, randomly chosen, image. This showed that a common bias (center bias)
existed in all images. However, gaze to model agreement scores were significantly lower when using randomly
chosen maps compared to using each image’s true corresponding map. Thus, center bias alone could not
explain the entire human data. In their results, the saliency model scored 0.578 ± 0.076, of which they
argued a score of 0.529± 0.057 may be due to center bias alone. Similarly, their object-based map scored
0.651 ± 0.106, of which 0.598 ± 0.107 may be due to center bias. Interestingly, while Einhäuser et al. (2008)
were aware of center-bias in fixation data and showed that the prediction accuracy of their proposed object
map exceeds center-bias chance level, they did not directly compare saliency and object-based maps after
discounting center-bias (i.e., comparing residuals).

The object-map model is not significantly better than the ITTI model with the AUC Type-1, although
it is significantly better using the other two types of AUC scores (due to sparseness of this model). The
original, older ITTI98 model scores significantly higher than the object-map model using three types of AUC
scores. ITTI98 also scores better than ITTI on this particular comparison to human gaze data, thanks to
the smoother maps of the ITTI98 model. Performances of the object-map and ITTI∗ models are listed in
Table 1. Combining the object map to the ITTI∗ model (adding maps) scores 0.576 ±0.069 (AUC Type-3)
which is significantly above the ITTI∗ alone (paired t-test; p = 2.23×10−6 < 0.05) as well as the object-map
alone (paired t-test; p = 0.0048 < 0.05). Thus, object information helps fixation prediction (i.e., provides an
independent source of information than what is conveyed by the ITTI∗ model), but alone does not perform
significantly above saliency.

Please see Appendix D for other variants of the object-map model and their performances. The accuracy
of the weighted object map (i.e., Einhäuser et al.’s original, case 1) exceeds the other variants of the object-
map model as well as the unweighted object-map1.

Two other scores which have been frequently used in the past are CC (correlation coefficient between
smoothed human fixation map and a model’s prediction map) and NSS (average activity at human fixations
in a normalized prediction map). These scores are contaminated by center-bias (Borji et al. (2012)). A
central Gaussian (as well as the mean-eye position (MEP) map) using these two scores outperforms almost
all state-of-the-art saliency models (similar to AUC Types 1 and 2). Thus, we recommend not using these
scores in the future because they are overwhelmed by center bias. However, here for the sake of completeness,
we show the results using CC and NSS scores (See Fig. S6; Appendix C).

2.2 Selected Models

In our second analysis (See main text) we used different saliency models as representatives of the saliency
hypothesis2. The human inter-observer model, which is a smoothed map built from fixations of other subjects
over the same image, achieves the highest score (0.803± 0.111; mean ± standard deviation; AUC Type-3).
The Uniform random model scores around 0.5 using all three types of AUC. Note that although the Normal

1One may argue that “object maps“ of Einhäuser et al. (2008) are the crudest possible “object-based“ models one could
possibly think of. Indeed, more sophisticated object-based models may exist and may even work better than all considered
saliency models here. Our results here directly address their claim based on their model, and hold until the proof of the contrary
and discovery of better object-based models.

2Note that saliency is not a unique concept but all saliency models are based on bottom-up image outliers, which is in
contrast to object-based factors. In this study, we chose those models that only use purely bottom-up features.
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Table 1: Accuracy of the object-map vs. the ITTI∗

model (mean ± standard deviation) along with the test
of statistical significance using paired t-test over 93 im-
ages.

Score Object-map (case 1) ITTI∗

AUC Type-1 0.6480† ± 0.107 0.5841 ± 0.076
AUC Type-2 0.6417 ± 0.107 0.5762 ± 0.010
AUC Type-3 0.5590 ± 0.080n.s. 0.5467 ± 0.060

NSS 0.6120 ± 0.471 0.4142 ± 0.421
CC 0.1520 ± 0.114 0.1026 ± 0.103
n.s. Not significant at p < 0.05/n = 0.0045 with Bonferroni

correction (p = 0.2343, See Fi.g S2).
* Saliency maps used in Einhäuser et al. (2008).
† This is close to 0.651 ± 0.106 reported in Einhäuser et al.
(2008).

random model, a central Gaussian with sigma of 5.8◦ × 4.4◦ (See Fig.1 main text), overcomes almost all
other models using AUC Types 1 and 2, it is discounted using the AUC Type-3, scoring about 0.5. Every
difference between the object-map model and other models is significant (except the ITTI∗ model) using the
AUC Type-3, with the object-map model being significantly above the very sparse ITTI model but being
below the smoother ITTI98 and all other tested models.

Using AUC Type-1 like Einhäuser et al. (2008), the ITTI∗ model used by Einhäuser et al. scores
0.578 ± 0.076. Note how the prediction power of both the very sparse ITTI model (AUC Type-1 scores
0.633 ± 0.040) and the smoother ITTI98 model (AUC Type-1 scores 0.689 ± 0.093) are higher than the
score obtained by Einhäuser et al. with the ITTI∗ model (which seems to involve some custom settings and
map thresholding over the published ITTI98 model). Since models have different parameters and versions,
replicating exact values is very difficult. This is another reason for not establishing conclusions based on
just one model3. Using AUC Type-1, the prediction power of the ITTI98 is 0.689± 0.093 and the maximum
among models belongs to the GBVS model (0.786±0.084). MEP (Mean Eye Position over all images) scores
0.792 ± 0.067 and stands above all models due to center-bias in the eye data. Performances of these four
models (ITTI98, AIM, AWS, and MEP) using AUC Type-3, in order are: 0.590 ± 0.079, 0.637 ± 0.077,
0.647± 0.084 and 0.491± 0.059. Note in particular how MEP now scores at chance level with AUC Type-3.

Since some researchers have used the Matlab implementation by D. Walther of the ITTI model (Itti et
al., 1998), known as the Saliency Toolbox (STB; http://www.saliencytoolbox.net/), here we investigate the
predictive power of this model. The STB model achieves 0.535±0.061, 0.520±0.035, and 0.509±0.030 using
AUC types 1 to 3, respectively (all significantly below the corresponding values of the object-map case-1;
using paired t-test α = 0.05). Overall, the original ITTI98 and ITTI models both perform significantly
higher than the STB model over this dataset. From this analysis and our model benchmarking study
(Borji et al., 2012), we observe lower performances for the STB model compared with either the ITTI or
ITTI98 models over free-viewing datasets. The reasons might be different implementations of scale pyramids,
normalization schemes, or blurring techniques in the two approaches. Thus, one should be careful when using
the STB model as a representative of the ITTI98 or ITTI models for behavioral data analysis, as STB yields
significantly different saliency maps compared to ITTI or ITTI98 models. We suggest using high performing
saliency models.

3Not only here we do investigate the object-map hypothesis based on the same parameter setting used in Einhäuser et al.
(2008), we also search in a larger parameter space to test the validity of this hypothesis.
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Figure S1: A) Area under the curve (AUC Type-1) for fixation prediction using ITTI98 model (x-axis) vs.
object-map model of Einhäuser et al. (y-axis). Each data point corresponds to one image. Distribution of
either AUCs depicted as marginals (same axes as the scatter plot). For 56 images, ITTI98 model achieves
higher scores. ITTI98 model scores lower than chance (AUC = 0.5) for only 5 images (9 images for the
object-map model). B) ROC curves of models with Type-1 calculation (over all images). Note that because
AUC Type-1 does not discount center-bias in data, MEP outperforms many models. Normal random which
is a central Gaussian works as well as the MEP and above all other models. Uniform random model ranks
at the bottom. C) We investigate the model agreement by showing images at four corners of the plot in A.
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Figure S2: AUC values of three types of AUC score calculation. Error bars indicate standard error of the mean
(SEM): σ/

√
Q, where σ is the standard deviation and Q = 93 is the number of images. Here, we only show the cases

where t-test value is not significant. To account for multiple model comparisons, we correct the statistical significance
using Bonferroni correction (Shaffer, 1995). Since we have 11 models, we choose α equal to 0.05/11 = 0.0045. Here
we are only interested in comparison of models with the object-map model and not ranking models over this data
although some models obviously work better than the others. A) Using AUC Type-1, (used by Einhäuser et al., 2008)
the object-map is not significantly better than any other model except the ITTI∗ model ((consistent with Einhäuser
et al., 2008) due to center-bias). B) Using AUC Type-2, the object-map model is significantly better than ITTI (due
to sparseness of its maps) and ITTI∗ models. C) With AUC Type-3 (shuffled AUC score), which discounts center-bias
in eye data, every difference between the object-map and other models is statistically significant except the ITTI∗

model. AWS scores the best. MEP and the random model score lowest about 0.5. Over all three types of AUC, the
object-map model is significantly below the ITTI98. Note the big gap among models and the Inter-observer model.
This supports our second analysis about choosing the right model for data analysis (i.e., dependency of conclusions to
the used model). Taking ITTI model as the representative of the bottom-up attention, an object-based representation
explains fixation better (only using AUC Types 1 and 2 which are contaminated by center-bias and not AUC Type 3),
while with newer models or with the original ITTI98 model (with a different normalization scheme than newer ITTI
model resulting in smoother maps), image-based outliers predict fixations significantly better. This result also shows
the importance of appropriate tackling of center-bias in fixation data. While a simple MEP (Mean Eye Position
map) or a Normal random distribution seems to explain fixations better at the first glance, with an appropriate
measure (here shuffled AUC score), it is clear that such models fall short for explaining eye fixation data (specially
those fixations that fall off center). To build a Gaussian of sigma size 0.28◦ × 0.28◦ on this dataset, we used this
Matlab script: myGauss=fspecial(’gaussian’,50,10) where 50 and 10 are the image size and standard deviation of the
Gaussian, respectively.
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Appendix A: Illustration of Data and Model Maps

Fig. S4 shows sample images from Uncommon Places dataset (Shore et al., 2004), average saccade posi-
tion over all images, and the histogram of normalized object sizes. As can be seen, the majority of annotated
objects occupy less than 10% of the image. Object size is important in model performance because smaller
objects could tell more about the fixation location than larger ones. The accumulation of large-size annota-
tions leads to less dense prediction maps. Please refer to the original paper by Einhäuser et al. (2008) for
more details on their model, data, and experimental setup.
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Figure S4: A) Sample images from the Uncommon Places image dataset (Shore et al., 2004). There are 93
images collected as a visual diary and come across as casual snapshots of everyday scenes. We use the same
eye movement dataset used by Einhäuser et al. (2008) where you can find the experimental setup for eye
movement data gathering, subjects, etc. Images have resolution of 1024 × 768 pixels and were viewed by
8 volunteers (6 male, 2 female; mean age: 23) for 3 seconds. The images were presented on a 20-inch CRT
monitor, located in a dark room at 80 cm from the observer, and thus subtended 29 × 22 degrees of visual
angle. A non-invasive infrared Eyelink-1000 (SR Research, Osgoode, ON, Canada) system monitored eye
position at a 1000-Hz sampling rate. Thresholds to detect saccades were set to a velocity of 35◦/s and an
acceleration of 9500◦/s2. The authors marked the outlines of the objects named by the observers which were
verified by additional observers. B) Histogram of normalized annotated object size (i.e., object area divided
by image area). More than 90% of bounding boxes have sizes smaller than 10% of the image. Inset: Mean
saccade position over all 93 images by all subjects. There is a central peak at the image center indicating
center-bias in data.
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Appendix B: Computational Saliency Models

The bottom-up approach of Itti et al. is based on contrasts of intrinsic image features such as color,
orientation, intensity, flicker, motion and others. Later implementations of this model have added channels
for newer features, including text and face (Cerf et al., 2007, 2009; Judd et al., 2009), symmetry (Koot-
stra & Schomaker, 2009), gist and horizontal lines (Oliva & Torralba, 2001; Torralba et al., 2006), and
optical flow (Fukuchi et al., 2010). These additional channels have been able to account for an increasing
fraction of eye fixations. Further, several other bottom-up models with significantly different inspirations
– either biologically-inspired or purely computational – have been proposed, including: Bayesian models
(e.g., Surprise (Itti & Baldi, 2006), SUN (Zhang et al., 2008)), Discriminant saliency models (Gao et al.,
2009), Information-theoretic models (e.g., AIM (Bruce & Tsotsos, 2009)), rarity models (Mancas, 2007),
incremental coding length models by (Hou & Zhang, 2008), Spectral analysis models (e.g., PQFT (Guo &
Zhang, 2010), Adaptive Whitening Saliency (AWS) (Garcia-Diaz et al., 2012a,b), and the model by Hou
& Zhang (2007)), Bottom-up graphical models (e.g., GBVS (Harel et al., 2006); E-Saliency (Avraham &
Lindenbaum, 2010), and the model by (Pang et al., 2008)), and Classification-based approaches (e.g., Judd
et al., 2009; Kienzle et al., 2009). Because each of these models, when published, typically outperforms all
others on some particular dataset and task, no one model is strictly superior to the others. Thus, instead
of drawing conclusions based on only one model, we have applied several models to data of an example
study. We select those models that: 1) have scored well on previous comparisons between model and human
gaze allocation in free-viewing tasks, 2) are based on purely bottom-up features (not those using conceptual
features such as objects or faces such as Judd et al., 2009). These models are based on well-established but
different theories of human attention and visual representation. Eventually, we choose 10 models that fulfill
the above two criteria: AIM, AWS, GBVS, HouCVPR and HouNIPS, ITTI98 and ITTI, PQFT, SEO, and
SUN. The ITTI model (Itti & Koch, 2000) is similar to the ITTI98 (Itti et al., 1998) model but uses an
iterative half-rectifying normalization operator which yields very sparse saliency maps (See also Itti & Koch,
1999).

Fig. S5.A shows a sample prediction map for each model. The average prediction map over all 93 images
for each saliency model (Appendix B) is shown in Fig. S5.B. This map shows a center-bias for object-map
models indicating that objects often occur at the image center. For saliency models, it seems that the average
map is slightly lower at the horizontal line.
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Figure S5: A) A sample image with eye fixations overlaid. Sample prediction maps of Einhäuser et al. (2008)
model (case 1) and our implementations (cases 2 to 4), as well as 10 major bottom-up saliency models, B) Average
prediction maps of models. The unweighted map is just the simple addition of object annotations.
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Appendix C: Evaluation Scores

Here we focus on three popular scores used by many studies in the past. These scores are easy to
understand and have interesting properties like well-defined bounds (lower-, upper-, and chance-level).
Area Under Curve (AUC). The most widely used score for saliency model evaluation is the Area Under
the ROC Curve (Green & Swets, 1966; Tatler, 2007). Having its roots in signal detection theory, AUC
measures the ability of a saliency map in separating fixated locations from non-fixated locations. Thus far
three different variations of AUC exist in the literature:
AUC Type 1. First, the prediction map is resized to the image size where fixations have been recorded.
Then, human fixations are considered as the positive set and some points from the image are randomly
sampled (using a 2D uniform distribution) as the negative set. To form the negative set, some researchers
(Itti, 2005; Berg et al., 2009) use the non-fixated locations while some take random sample from the entire
image Einhäuser et al. (2008). The saliency map S is then treated as a binary classifier to separate the
positive samples from the negatives. By thresholding over the saliency map, the true positive rate is the
proportion of fixations above a threshold while the false positive rate is the proportion of random points
above that same threshold. Then, ROC is plotted by sweeping a threshold from 0 to 1 (on a normalized
map) and then AUC is calculated. Perfect prediction corresponds to a score of 1 while a score of 0.5 indicates
chance level. This definition has been used in Bruce & Tsotsos (2009); Cerf et al. (2009); Berg et al. (2009);
Einhäuser et al. (2008).
AUC Type 2. Here, instead of using random points, true positive rate (number of fixations falling on
the thresholded saliency map) is plotted against the normalized saliency map area above a threshold. This
score has been used by Judd et al. (2009); Ehinger et al. (2009). To tackle center-bias, Ehinger et al. (2009)
proposed a control strategy (called ”cross-image control”): For each saliency map, instead of using fixations
for that image, they used fixations from another randomly selected image (to see how much just viewing
strategy scores).
AUC Type 3. Above AUC definitions receive many true positives for a trivial central Gaussian model
since majority of fixations happen in the center (Tatler, 2007). To tackle the center-bias issue and handle
the spatial priors in viewing (compensation), Parkhurst & Niebur (2003) and Tatler (2007) suggested to
draw random locations from the distribution of eye fixations. Here, we use the AUC Type-1, but instead of
uniform random points for an image, we draw negative points from fixations of other observers over other
images. This way, central fixations receive less credit compared with off-center (non-trivial) saccades. This
score is also known as the Shuffled AUC score and has been used in Zhang et al. (2008); Tatler (2007); Hou
et al. (2012). Tatler (2007) argue that it is better to draw the negative samples from the fixations of the
same observer on different images to account for any individual biases.
AUC Type 4. This type of AUC is basically the same as type 3 but instead of drawing random points from
fixations of other subjects over all other images, random points are same fixation locations as the current
image but saliency values are taken from other images. While AUC type three gives score about 0.5, this
type of AUC leads to score of exactly 0.5.
Normalized Scanpath Salience (NSS). First the saliency map is normalized to have zero mean and
unit standard deviation. Next, the normalized salience values are extracted from each point corresponding
to the fixation locations along a subject’s scanpath, and the mean of these values, or NSS (Peters et al.,
2005; Parkhurst et al., 2002), is taken as a measure of the correspondence between the saliency map and the
scanpath. Mathematically, NSS is:

NSS =
1

N

N
∑

i=1

S(xi
g, y

i
g)− µS

σS

(2)

where S(xi
g, y

i
g) is the saliency value at the i-th human eye position (xi

g, y
i
g), N is the number of fixations

for each image, and µS and σS are mean and standard deviation of the saliency map, respectively. NSS = 1
indicates that the subjects’ eye positions fall in a region whose predicted density is one standard deviation
above average. Meanwhile, NSS ≤ 0 indicates that the model performs no better than picking a random
position.
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Linear Correlation Coefficient (CC). The third score is the correlation coefficient between human
saliency map G (a map with frequency of saccades at each location which is usually convolved with a
small Gaussian kernel; here of size 0.28◦ × 0.28◦; (See Fig.1 main text) and a model’s saliency map S (Jost
et al., 2005; Rajashekar et al., 2008):

CC(G,S) =

∑

xy(G(x, y)− µG).(S(x, y)− µS)
√

σ2
G.σ

2
S

(3)

In above formula, µ and σ2 are the mean and the variance of the values in these maps and
∑

xy is the
covariance matrix. An interesting advantage of CC is its capacity to compare two variables by providing a
single scalar value between -1 and +1. Another advantage of CC is that it has the well-defined upper-bound
of 1. When CC is close to +1/− 1 there is almost a perfect linear relationship between the two variables.

Note that CC, NSS, and classic AUC scores (Types 1 and 2) are all affected by center-bias. Here, we
emphasize more on the Shuffled AUC score which is becoming a standard score for saliency model evaluation
(Zhang et al., 2008; Borji et al., 2012; Hou et al., 2012).

Results using CC and NSS are shown in Fig. S6. Using both scores and original maps, the object-map
model is significantly above the ITTI and ITTI∗ while being significantly below other models (paired t-test,
α < 0.0045; Bonferroni-corrected). This is because generated maps by the ITTI model are very sparse.
GBVS model takes advantage of center-bias in data implicitly which results in high CC and NSS scores for
this model. Models with more blurry/smoothed maps achieve higher CC values. MEP and Normal random
model outperform others consistent with the AUC Type-1. Since these two models have peaks at locations
that many people look at (usually center), they achieve very high NSS scores. T-test p-values (Bonferroni
corrected) of object-map model versus ITTI, ITTI98, and AWS model in order are: p = 2.33× 10−7, 0.517,
and 1.22×10−7. These values for NSS are: p = 1.5×10−6, 0.4646, and 4.70×10−8. Based on current results
and our previous investigations (Borji et al., 2012), the AWS model has the highest fixation prediction power
among saliency models (averaged over all different scores). Therefore, it is thus far the best predictor of
human fixations and we suggest its use in future studies of visual attention. Of course Einhäuser et al. were
not aware of this model at the time of their study (which is why, in the paper, we continued to use the
ITTI and ITTI98 models that were available at the time). Similar to the ITTI98 model, AWS uses basic
features (luminance, and a, b color channels from the Lab image representation) in several scales. It then
decorrelates the multi-scale responses and extracts a local measure of variability for saliency calculation. A
more conservative approach will be using multiple high-performing models (i.e., GBVS, AIM, and HouNIPS).

By adding center-bias (Fig. S6.B), usually CC and NSS scores rise to a maximum value and then drop (see
also Borji et al., 2012). Using CC, the object-map model is significantly below the ITTI model with the first
(p = 0.00017) and second Gaussian kernels (p = 0.00026). There is no significant difference between these
two models after adding the third Gaussian kernel to them (paired t-test, α < 0.05/5 = 0.01). There is also
no significant difference between object-map and ITTI98 models using first and third Gaussian kernels. The
AWS model outperforms the object-map model in all cases with p = 1.3402× 10−8, p = 6.6647× 10−11, and
3.4256× 10−11 for the three Gaussian kernels, respectively. Nearly the same pattern holds for the NSS score
where the object-map model is significantly lower than the ITTI model with the first and second Gaussian
kernels, but not the third kernel, for which there is no significant difference. Again, there is no significant
difference between ITTI98 and object-map models. Using CC and NSS scores, AWS model outperforms the
object-map model significantly with a large margin. The AWS model is significantly above the object-map
model using all three Gaussian kernels. The object-map model is significantly above the ITTI∗ model only
using the first Gaussian kernel.

With smoothing (Fig. S6.C), the object-map model is significantly above the ITTI model using CC and
NSS scores and using all three Gaussian kernels (for smoothing). There is no significant difference between
ITTI98 and the object-map models using all three Gaussian kernels. AWS model outperforms the object-
map model significantly using all three Gaussians. Similar to adding center-bias, the object-map model is
significantly above the ITTI∗ model only using the first Gaussian kernel.
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Figure S6: A) Correlation coefficient (CC) and Normalized Scanpath Saliency (NSS) scores of models. Again
aligned with our conclusions from Fig. S2, the object-map model is significantly above the ITTI but not
ITTI98 model. Object-map is however significantly below several newer saliency models using these two
scores (e.g., AIM, HouCVPR, HouNIPS, AWS, and GBVS). The Inter-observer model stands on top of all
models. Note that these two scores result in high values for MEP leading it above other models with a large
margin. GBVS that uses center-bias is getting high scores here. Significance values are Bonferroni-corrected
(paired t-test, α < 0.0045). B and C) Prediction accuracies of models using CC and NSS scores: B) center-
bias added and C) smoothed saliency maps. With adding center-bias using CC and NSS, object-map model
does not outperform any model. Smoothing raises accuracy of models using CC and NSS scores (except the
Gauss model). There is no significant difference between ITTI∗ and the object-map with adding center-bias
and smoothing. Significance values are according to Bonferroni-corrected paired t-test (α < 0.05/5 = 0.01).
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Appendix D: The Object-based Models

We devised three other variants of Einhäuser et al. (2008)’s model, in addition to their original proposal,
to cover all bases and to gauge the dependency of conclusions on the exact model (similar to what we do
with saliency models). These cases are motivated and described below:
Case 1) By analyzing Einhäuser et al.’s data, we noticed that their subjects often tended to report the
same object as the first remembered one. To quantify subject agreement on the m− th image (i.e., am), we
define the following variable rmuv which is one when both u − th and v − th subjects remembered the same
object as the first one on image m, and 0 otherwise (i.e., rmuv = (omu == omv ) where omu and omv are the first
remembered objects of subjects u and v over image m). Then, we loop through all pairs of subjects and
calculate the histogram of these values:

am =
2

K(K − 1)

K−1
∑

u=1

K
∑

v=u+1

rmuv (4)

The above score has the well-defined lower-bound of 0 when there is no agreement between subjects and
upper-bound of 1 when all subjects remembered the same object at the first place. Fig. S7.A suggests that
the histogram of a values has a rightward shift compared with a process which randomly selects a value for
each of the omu and omv variables from the set of annotated objects for image m.

Having seen this, we build a map out of those first recalled objects. Formulation is as in case 1, but wij

is 1 if object j is the first remembered object by subject i and 0 otherwise.
Case 2) Another possibility is that subjects may look at the frequently remembered objects. Here, we
measure the agreement of subjects by the most frequently remembered object. For image m, we calculate
bm = tm/8 which is the fraction of subjects that recalled the most remembered object on this image (tm). A
value close to 1 means high recall consistency. The histogram of b values over all images is shown in Fig. S7.B.
As it shows human agreement is higher than random. We simulate a random process as follows: generate a
random binary table where each element indicates whether an object was remembered by a subject or not
(rows are subjects and columns are the annotated objects for an image). Find the object occurrence in each
column, divide it to K (number of subjects), and then pick the maximum.

High recall consistency among subjects leads us to propose the third variant. We build an object map
containing only the annotation of the object that has been recalled the most: object − map = Be, e =
argmaxj nj where nj represents the frequency in which object j has been recalled over all subjects.
Case 3) Similar to the case 3, here we calculate the histogram of the subject agreement for the most likely
first remembered object. Again, according to Fig. S7.C, humans agree with each other more often than
chance. The random process is similar to the third case with the exception that there is only one non-zero
element in each row of the table (i.e., randomly assigning a first remembered object). Thus, we propose the
forth variant. Here, the prediction map is similar to case 3, with the only difference that e is the index of
the object that has been maximally remembered first (i.e., e = argmaxj nj where nj is the number of times
object j is remembered first).

We test whether other cases of the object-map model could predict fixations better than early saliency.
Results are shown in Fig. S7 using AUC Types 1 and 3. We find that case-1 (the map weighted by the object
recall frequency) performs significantly above other cases (paired t-test; α < 0.0125). Thus, since case-1 was
not performing better overall than many saliency models in Fig. S2, we conclude that object-based models
(weighted recall of objects, first remembered, max first remembered, or max remembered object) cannot
account for eye fixations better than the early saliency although they all perform significantly above chance.
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Figure S7: Histogram of subject agreements for the first remembered object (A), the most remembered object
(B), and the most first remembered object (C). Blue bars represent agreements of humans and red bars are
for the random processes. In all three histograms, human agreements are higher than chance. Comparison of
accuracies of four cases of the object-based models over Einhäuser et al. (2008) data (D and E). As it shows,
case 1 is the best among all models (significantly above others). Object-map case 3 scores the lowest among
four cases. All of the 4 cases are significantly above the ITTI model but significantly below the ITTI98. The
fact that all cases are above chance indicates that objects convey some information regarding eye fixation
positions. Every difference is statistically significant except between cases 3 and 4.
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