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Abstract 
 
Humans are remarkably efficient to act reasonably in an environment based on perceptual 
information they receive. Vision is the most important sensor humans rely on, and that’s the main 
reason of being the most-studied mode of machine perception in artificial intelligence (AI). 
Despite the huge active research in computer vision and robotics, many real-world visiomotor 
tasks which are easily performed by humans are still unsolved. Of special interest is designing 
efficient learning algorithms, in terms of high accuracy and low computational complexity, for 
enabling autonomous mobile robots to act in visual interactive environments where agents have 
to deal with natural outdoor scenes. This is actually much harder to tackle compared with 
controlled visual environments (e.g. indoor scenes) used in robotic laboratories. Example 
applications of visual learning are vision guided navigation, vision-based place recognition, 
grasping and object manipulation. 

Recent trend in robotics is toward developing robots able to act autonomously in unknown, 
stochastic and partially observable environments. This desired quality makes interactive and 
online learning of visual representations and control policies an essential element. Such dynamic 
methods results in flexible solutions with less complexity and lower computational power. For a 
robotic agent to be able to act in a visual environment, it should map its visual perceptual space 
into physical actions also called visiomotor coordination, vision for action or purposive vision. In 
contrast with machine vision solutions which assume predefined and rich visual representations in 
mind of an agent, necessary representations could be learned while the agent performs physical 
actions for achieving a goal. 

In this dissertation, I introduce several solutions for learning top-down and task-driven visual 
attention control in interactive environments and when natural scenes have to be dealt with. 
Agent should learn visual representations in concert with physical actions in order to do a 
complex task. This work is motivated by the paradigm of purposive vision and visual attention. 
The original contributions consist in the design of reinforcement learning algorithms that are 
applicable to visual spaces. Inspired by the spatial attention paradigm, our main aim is to design 
solutions for feature extraction at only subsets of image regions. Emphasis is on learning spatial 
attention along with motor actions. 

 
Keywords: purposive vision, vision for action, top-down attention, visual attention, bottom-up 
attention, learning attention control, task-driven attention, reinforcement learning, RLVC, U-
TREE, computer vision, cognitive robotics 
  



5 
 

Contents 
 
Declaration .................................................................................................................................................... 2 

Acknowledgement ........................................................................................................................................ 3 

Abstract ......................................................................................................................................................... 4 

Contents ......................................................................................................................................................... 5 

List of Tables ................................................................................................................................................. 8 

List of Figures ............................................................................................................................................... 9 

 

1 Introduction………………………………………………………….…………………………………...11 

1.1  Task Relevancy of Visual Attention ............................................................................................. 11  
1.2  Reinforcement Learning and State-Space Discretization .......................................................... 12 

1.3  Link between Task-driven Attention and State-Space Discretization ...................................... 12 

1.4  Objectives ....................................................................................................................................... 13 

1.5  Contributions ................................................................................................................................. 14 

1.6  Outline of the Thesis ...................................................................................................................... 15 

 
Part I  Background Material ..................................................................................................................... 18 

 
2 Visual Attention ....................................................................................................................................... 19 

2.1 Basic Concepts ...................................................................................................................................... 19 

2.2 Computational Models ......................................................................................................................... 22 

2.3 Applications .......................................................................................................................................... 29 

2.3.1 Computer Vision ................................................................................................................................ 29 

2.3.2 Robotics .............................................................................................................................................. 30 

 
3 State-space Discretization ....................................................................................................................... 32 

 
3.1 Introduction .......................................................................................................................................... 32 

3.2 RL .......................................................................................................................................................... 33 

3.3 U-TREE ................................................................................................................................................. 34 

3.4 RLVC ..................................................................................................................................................... 35 

 
Part II Learning Top-down Attention Control ........................................................................................ 39 

 
4 Associative Learning of Attention and Action ...................................................................................... 39 



6 
 

4.1 Introduction .......................................................................................................................................... 39 

4.2 Related Works ...................................................................................................................................... 40 

4.3 Proposed Approach .............................................................................................................................. 42 

4.4 Mathematical Formulation .................................................................................................................. 43 

4.5 Experiments and Results...................................................................................................................... 45 

4.6 Conclusions ........................................................................................................................................... 46 

 
5 Cost-senstive Learning of Top-down Modulation for Attentional Control ........................................ 48 

5.1 Introduction .......................................................................................................................................... 48 

5.2 Related works ....................................................................................................................................... 50 

5.2.1 Learning top-down attention control ............................................................................................... 50 

5.2.2 Traffic sign detection and recognition ............................................................................................. 52 

5.3 Learning top-down attentional modulations ...................................................................................... 53 

5.3.1 Revised saliency-based model of visual attention ........................................................................... 53 

5.3.2 Offline learning of top-down attentional modulations ................................................................... 57 

5.4 Experiments and results ....................................................................................................................... 59 

5.4.1 Learning top-down feature based attention control ....................................................................... 59 

5.4.2 Learning top-down spatial attention control ................................................................................... 67 

5.5 Discussions ............................................................................................................................................ 68 

5.6 Conclusions and future works ............................................................................................................. 69 

 
6 Interactive Learning of Object-based Attention Control ..................................................................... 71 

6.1 Introduction .......................................................................................................................................... 72 

6.2 Related researches ................................................................................................................................ 74 

6.3 Proposed model ..................................................................................................................................... 77 

6.3.1 Early visual processing layer ............................................................................................................ 79 

6.3.2 Higher visual processing layer .......................................................................................................... 79 

6.3.3 Decision making layer ....................................................................................................................... 81 

6.4 Experimental results ............................................................................................................................ 84 

6.4.1 Visual navigation task ....................................................................................................................... 84 

6.4.2 Uncertainty analysis .......................................................................................................................... 95 

6.4.3 Comparison with decision trees learned with C4.5 algorithm ....................................................... 96 

6.5 Discussions ............................................................................................................................................ 99 

6.6 Summary and conclusions ................................................................................................................... 99 

 

7 Saliency Maps for Attentive and Action-based Scene Classification .................................................101 



7 
 

7.1 Introduction .........................................................................................................................................101 

7.2 Saliency-based model of visual attention ...........................................................................................104 

7.3 Attentive Scene Classification .............................................................................................................105 

7.3.1 Repeatability of Salient Regions ......................................................................................................105 

7.3.2 Repeatability Results ........................................................................................................................108 

7.3.3 Classification Results ........................................................................................................................110 

7.4 Attentive and Action-based Scene Classification ..............................................................................113 

7.4 RLVC ....................................................................................................................................................114 

7.4 RLVC with Saliency ............................................................................................................................115 

7.5 Discussions ...........................................................................................................................................119 

7.6 Conclusions ..........................................................................................................................................121 

 

8 Interactive Learning of Space-based Attention Control and Physical Actions .................................122 

8.1 Introduction .........................................................................................................................................122 

8.1.1 Purposive vision or Vision-for-Action ............................................................................................123 

8.1.2 Visual Attention ................................................................................................................................125 

8.1.3 Contributions ....................................................................................................................................125 

8.2 Related Works .....................................................................................................................................125 

8.2.1 State- Space Discretization ..............................................................................................................126 

8.2.2 Attentional Studies ...........................................................................................................................128 

8.3 Learning top-down space-based visual attention control .................................................................130 

8.3.1 Basic Method .....................................................................................................................................130 

8.3.2 Visual Representations .....................................................................................................................131 

8.3.3 Learning top-down attention tree ...................................................................................................133 

8.4 Experimental results ...........................................................................................................................138 

8.4.1 Navigation in the visual girdworld ..................................................................................................138 

8.4.3 Handling POMDP Cases ..................................................................................................................143 

8.4.4 Object Recognition ...........................................................................................................................144 

8.4.5 Invariance and Perturbation Analysis ............................................................................................145 

8.5 Discussions ...........................................................................................................................................148 

8.6 Conclusions ..........................................................................................................................................149 

 
9 Conclusions and Perspectives ................................................................................................................150 

Bibliography ...............................................................................................................................................153 



8 
 

List of Tables 
 

Algorithm for learning top-down visual attention control ....................................................... 45 

States of the robot behind the cross ............................................................................................ 46 

Parameters of CLPSO used in experiments ............................................................................... 59 

Detection performances of biased saliency model ..................................................................... 64 

Detection performance over natural objects and traffic signs ................................................. 64 

Mean detection rates and computation times of traffic signs over test images ....................... 67 

Average hit numbers of our biasing approach versus two other biasing approaches ............ 69 

Algorithm for learning top-down object-based attention control ............................................ 87 

A random assignment of objects to states of the complex map... ............................................. 93 

Tracking repeatability of scene classes ..................................................................................... 109 

Attentive scene classification with kNN .................................................................................... 110 

Attentive scene Classification using SIFTS .............................................................................. 110 

Attentive scene Classification using C2 features |C2|= 256 ..................................................... 111 

Attentive scene Classification using C2 features |C2|= 4096 ................................................... 111 

Classification rate using second distance measure and SIFT features .................................. 112 

Comparison of basic RLVC and RLVC with saliency ............................................................ 119 

Comparing number of salient regions on trees generated by RLVC with saliency ............. 119 

Main algorithm for learning top-down spatial attention control and physical actions ........ 135 

Function for detection of aliased perceptual states ................................................................. 136 

Tree refinement function ........................................................................................................... 138 

 

 
  



9 
 

List of Figures 
 
Outline of this thesis .................................................................................................................................... 17 

The reaction time (RT) a subject ................................................................................................................ 20 

Example of a human scan path performed under different questions .................................................... 21 

The Koch-Ullman model ............................................................................................................................. 22 

Model of the Neuromorphic Vision Toolkit (NVT) by Itti et al ............................................................... 24 

Model of Navalpakkam et  al. ..................................................................................................................... 26 

VOCUS Attentional System ........................................................................................................................ 27 

Model of Walther et al. ............................................................................................................................... 28 

A U-Tree instance-chain and tree .............................................................................................................. 35 

The different components of the RLVC algorithm. .................................................................................. 36 

Small visual Gridworld topology ................................................................................................................ 36 

Resolution of the small visual Gridworld by RLVC ................................................................................. 37 

Architecture for learning associative attention control ............................................................................ 43 

Motor actions of the agent and its states behind a cross  ......................................................................... 46 

Examples of simulated driving environments from simple to complex  ................................................. 47 

Learning curves associated with the driving environment  ..................................................................... 47 

Surround inhibition operation  .................................................................................................................. 54 

Proposed top-down saliency model  ........................................................................................................... 55 

Synthetic search arrays  .............................................................................................................................. 60 

Learned weights after CLPSO convergence over synthetic search arrays  ............................................ 60 

Objects in natural scenes  ........................................................................................................................... 61 

CLPSO convergence for traffic signs and natural objects  ...................................................................... 62 

Learned weights after CLPSO convergence over traffic signs and objects  ........................................... 63 

Mean detection of cost-limited case for traffic signs and objects over test sets  ..................................... 65 

Three first attended locations of the biased saliency model over traffic signs and the objects  ............ 66 

Pedestrian sign detection over noisy images with biased saliency model  .............................................. 66 

Task-relevant saliency map (TSM)  ........................................................................................................... 68 

Proposed model for learning task-driven object-based visual attention control.  ................................. 78 

Binary attention tree  .................................................................................................................................. 82 

Simple navigation map  ............................................................................................................................... 85 

Sample scenes with embedded objects.  ..................................................................................................... 86 

Selective attention to two different objects in the same scene.  ................................................................ 86 

Flowchart of the algorithm for learning attention control.  ..................................................................... 88 

Cumulative average reward during episodes.  .......................................................................................... 89 

Tree Statitistics for the simple map  .......................................................................................................... 91 



10 
 

Learned attention tree for the simple map.  .............................................................................................. 91 

Prunned attention tree for the simple map.  ............................................................................................. 92 

Complex navigation map.  .......................................................................................................................... 93 

Tree Statitistics for the complex map.  ...................................................................................................... 94 

Learned attention tree for the complex map.  ........................................................................................... 95 

Robustness Analysis.  .................................................................................................................................. 96 

Offline learned decision tree with C4.5.  .................................................................................................... 97 

Salient regions of some natural scenes.  ................................................................................................... 109 

Comparison of recognition rate of salient regions.  ................................................................................ 112 

Classification results using C2 features with different dimensionalities..  ............................................ 113 

Visual Navigation Task 6×6.  .................................................................................................................... 116 

RLVC Saliency results.  ............................................................................................................................ 117 

Assignment of views to states a) RLVC b) RLVC with saliency  .......................................................... 118 

Computational complexity vs. recognition rate.  .................................................................................... 120 

Schematic view of the learning system for purposive vision through visual attention.  ...................... 124 

Illustration of visual attention process.  ................................................................................................... 125 

Overall architecture for learning concurrent spatial visual attention and physical actions.  ............. 131 

Visual attention and state space discretization.  ..................................................................................... 133 

Sample objects from COIL 100 object database.  ................................................................................... 133 

Tree pruning.  ............................................................................................................................................ 136 

Navigation in the visual gridworld.  ......................................................................................................... 138 

Results of the Navigation in the visual gridworld.  ................................................................................. 139 

Number of perceptual states vs. distinctive inputs.  ............................................................................... 140 

10×10 visual gridworld.  ............................................................................................................................ 141 

Results over 10×10 visual gridworld.  ...................................................................................................... 142 

Comparison with traditional RL.  ............................................................................................................ 143 

Handling POMDP cases.  .......................................................................................................................... 144 

Object recognition with S-Tree.  .............................................................................................................. 145 

Perturbation analysis.  .............................................................................................................................. 146 

Perturbation of perceptual inputs after learning.  .................................................................................. 146 

Invariance analysis.  .................................................................................................................................. 148 

 
 
 



11 
 

 
 
Chapter 1 
Introduction 
 
Human vision can basically be divided into two main phases, low-level vision and high-level 
vision. Although the border between these two vision phases is not clearly defined, their main 
roles have already been established. Low-level vision starts with gathering visual information by 
means of the retinas in the order of 108 bits/second. The gathered information is then transmitted 
to the visual cortex where information about motion, depth, color, orientation, and shape is 
extracted. The high-level vision performs then its task on these extracted features. It is mainly 
responsible for recognizing scene contents by matching the representative scene features to a 
huge database of learned and memorized objects (i.e. object recognition). 

Despite the huge amount of visual information to be processed and despite the combinatorial 
nature of the recognition task, it has been estimated that humans can recognize a large number of 
objects in less than 200 ms. The computational resources of the human brain can not entirely 
explain this surprising performance, since about 1011 neurons of our brain cannot process such 
amount of information in such a short time, given their slow response rate. This high performance 
speaks rather for the high efficiency of our vision system. The existence of a mechanism that 
selects only a reduced set of the available visual information for high level processing seems to be 
the most coherent explanation of the high performance of the human visual system. This 
mechanism is referred to as visual attention. Visual Attention helps people to extract the relevant 
information at an early processing stage. The extracted information is then directed to higher 
brain areas where complex processes such as object recognition take place. Restricting processes 
to a limited subset of the sensory data enables efficient processing. 

 
1.1 Task Relevancy of Visual Attention 
What is the relevant information to be attended? There is no general answer to this question 
because relevancy depends on situation. Without any goal in mind like in free-viewing tasks, 
certain cues like strong contrasts attract our attention. The saliency also depends on the spatial 
context in which objects are presented. In addition to the bottom-up cues, attention is also 
influenced by top-down cues, that means cues from higher brain areas like knowledge, 
motivations, internal states and emotions. These bottom-up and top-down attentional mechanisms 
interact together for controlling attention. 

In addition to many psychophysical, and neurophysiological studies to unveil the mysteries 
behind attention, many computational models have also been proposed in the literature to inspire 
from this natural behavior for solving complex problems with the same characteristics like 
information overload. In computer vision, the computational complexity of numerous tasks like 
perceptual grouping and object recognition, which are known to be NP-Complete, represents a 
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fundamental obstacle for real-world applications. Thus, the visual attention paradigm is a highly 
relevant topic if we want to resolve the complexity issue in computer vision and robotics. Indeed, 
visual attention can be thought as a preprocessing step which permits a rapid selection of a subset 
of the sensory information. Once detected, the salient parts become the specific scene locations 
on which higher level computer vision tasks can focus. 

 
1.2 Reinforcement Learning and State-Space Discretization 
Reinforcement learning is a biologically-inspired computational framework that can generate 
nearly optimal control policies in an automatic way, by interacting with the environment. RL is 
founded on the analysis of a so-called reinforcement signal. Whenever the agent takes a decision, 
it receives as feedback a real number that evaluates the relevance of this decision. From a 
biological perspective, when this signal becomes positive, the agent experiences pleasure, and we 
can talk about a reward. Conversely, a negative reinforcement implies a sensation of pain, which 
corresponds to a punishment. 
Now, RL algorithms are able to map every possible perception to an action that maximizes the 
reinforcement signal over time. In this framework, the agent is never told what the optimal action 
is when facing a given percept, nor whether one of its decisions was optimal. Rather, the agent 
has to discover by itself what the most promising actions are by constituting a representative 
database of interactions, and by understanding the influence of its decisions on future 
reinforcements. 

Like many existing learning methods, RL suffers from the curse of dimensionality, requiring 
a large number of learning trials as state-space grows. But it has the ability to handle dynamic and 
non-deterministic environments. It is believed that curse of dimensionality can be lessened to a 
great extent by implementation of state abstraction methods and hierarchical structures. 
Moreover, incremental improvement of agent’s performance becomes much simpler due to less 
number of states.  

Several approaches for interactive discretization of state space have been proposed. 
Techniques using a non-uniform discretization are referred to as variable resolution techniques 
(Munos & Moore, 2002). The parti-game algorithm (Moore & Atkeson, 1995) is an algorithm for 
automatically generating a variable resolution discretization of a continuous, deterministic 
domain based on observed data. This algorithm uses a greedy local controller and moves within a 
state or between adjacent states in the discretization. When the greedy controller fails, the 
resolution of the discretization is increased in that state. The G algorithm (Chapman & Kaelbling, 
1991), and McCallum’s U-Tree algorithm (1996), are similar algorithms that automatically 
generate a variable resolution discretization by re-discretizing propositional techniques. Like 
parti-game, they both start with the world as a single state and recursively split it when necessary. 
The continuous U-Tree algorithm described in (Uther & Velso, 1998), extends these algorithms 
to work with continuous state spaces. 
 
1.3  The Link between Task-driven Attention and State-Space Discretization 
To perform a task, agents should be able to percept the environment and perform appropriate 
physical actions. Perceptual actions are available in several forms like where and what to look in 
visual modality. The main concern in learning attention is how to select the relevant information, 
since relevancy depends on the tasks and goals. In this thesis, we consider task relevancy of 
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visual attention and aim to extract spatial locations which help the agent to achieve its goals 
faster.  

It is important that a solution for learning task-based visual attention control to take into 
account other relevant and interleaved cognitive processes like learning, decision making, action 
selection, etc. There are several biological evidences for this. It has been previously shown that 
attention and eye movements are context-dependent and task-specific (Yarbus, 1967). Previous 
experiences also influence attentional behaviors which indicate that attention control mechanisms 
can be learned (Maljkovic & Nakayama, 1994). Some neuropsychological evidences suggest that 
human beings learn to extract useful information from visual scenes in an interactive fashion 
without the aid of any external supervisor (Gibson & Spelke, 1983; Tarr & Cheng, 2003). Instead 
of attempting to segment, identify, represent and maintain detailed memory of all objects in a 
scene, there are evidences that claim our brain may adopt a need-based approach (Triesch et al., 
2003), where only desired objects are quickly detected, identified and represented. Considering 
above evidences, in this work, we introduce a model to consider the influences of task, action, 
learning and decision making to control top-down visual attention.  

From another perspective learning top-down attention is highly coupled with learning 
representations. Therefore the best way to derive visual attention mechanisms is to learn them in 
concert with visual representations. This is tightly relevant to an area of research known as state 
space discretization in reinforcement learning. Through this thesis we elaborate more on this 
relevancy.  

Following from the above discussion, a breakthrough in modern artificial intelligence would 
be to design an artificial system that would acquire object or scene recognition skills based only 
on its experience with the surrounding environment. To state it in more general terms, an 
important research direction would be to design a robotic agent that could autonomously acquire 
visual skills from its interactions with an uncommitted environment in order to achieve some set 
of goals. Learning new visual skills in a dynamic, task-driven fashion so as to complete an a 
priori unknown visual task is known as the purposive vision paradigm. Our solutions in thesis are 
in the context of the purposive vision and extend this track of research by integrating concepts of 
purposive vision with visual attention. In the context of purposive vision, visual attention 
enhances them by reducing the computational complexity. In the context of visual attention, 
approaches for purposive vision propose valid and efficient solutions for learning task-driven 
visual attention control. 
 
1.4  Objectives 
Because of high importance and criticality of attention in computer vision and cognitive robotics 
applications, our aim in this project is to extend state-of-the art approaches for modeling attention 
by incorporating a learning mechanism. In another words, we are going to take the essence of this 
phenomenon in biology and incorporate it for artificial agents and robots. Although the problem 
is the same, because artificial agents are much different than humans in terms of their body, brain 
and the environment, the same solution might not be appropriate and therefore appropriate 
solutions has to be devised.  

An agent dealing a complex task faces a huge amount of data from which a lot is irrelevant to 
its task. Therefore agent needs a mechanism or filter to bypass irrelevant information and pick up 
important and relevant information to perform its task. In many cases attention leads to more 
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efficient solutions but in some cases attention is critical meaning that without attention a task is 
not possible to be solved. An example of such a complex task is driving. When driving, our eyes 
capture a lot of information from the surroundings, knowing how and when we collect a piece of 
that information could be very useful in designing artificial driving agents. For naïve drivers, it is 
hard to attend and perform motor actions simultaneously at first but after training they learn to 
coordinate their actions and attentions and learn what to do and what to attend.  

Our motivation for learning spatial attention is human eye movement behavior. Humans 
actively move their eyes over a scene for gathering relevant information for example for 
indentifying a face. This kind of eye movement is known as saccadic eye movements. We would 
like to generate such a scanpath of eye movements for an artificial agent. But here the relevancy 
is determined by the task demands. Based on studies in neuroscience of visual attention we 
propose a framework for learning top-down and task-driven visual attention control. We also 
bring rationales for the link of solutions with biology.  
 
1.5 Contributions 
Our contributions are shortly explained here and each one will be explained in detail in its own 
section in the thesis. 
 
Associative Learning of Attention and Action Similar to humans and primates, artificial 
creatures like robots are limited in terms of allocation of their resources to huge sensory and 
perceptual information. Thus attention is regarded as the same solution as humans in this domain. 
Some sorts of our attentional behaviors are associative where we know what to attend in which 
situation. Motivated by this we formulate attention as an optimization problem in which the agent 
has to gain maximum reward while satisfying a constraint which is its information processing 
bottleneck. Reinforcement learning is then used to solve that optimization problem. A driving 
environment is simulated in that agent has to learn how to drive safely by attending to the right 
spatial locations and performing appropriate motor actions. 
 
Biasing the bottom-up saliency-based model of visual attention A biologically-inspired model 
of visual attention known as basic saliency model is biased for object detection. It is possible to 
make this model faster by inhibiting computation of features or scales which are less important 
for detection of an object. To this end, we revise this model by implementing a new scale-wise 
surround inhibition. Each feature channel and scale is associated with a weight and a processing 
cost. Then a global optimization algorithm is used to find a weight vector with maximum 
detection rate and minimum processing cost. This allows achieving maximum object detection 
rate for real time tasks when maximum processing time is limited. A heuristic is also proposed for 
learning top-down spatial attention control to further limit the saliency computation.  
 
Interactive Learning of Object-based Attention Control In this contribution, we propose a 
biologically-motivated computational model for learning task-driven and object-based visual 
attention control in interactive environments. In order to do a task an artificial agent should be 
able to perform motor and perceptual actions at the same time. Our model consists of three layers. 
First, in the early visual processing layer, basic layout and gist of a scene are extracted. The most 
salient location of the scene is simultaneously derived using the biased saliency-based bottom-up 
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model of visual attention. Then a cognitive component in the higher visual processing layer 
performs an application specific operation such as object recognition and scene understanding at 
the focus of attention. From this information, a state is derived in the decision making layer. Top-
down attention in our model is learned by the U-TREE algorithm which successively grows a tree 
whenever perceptual aliasing occurs. Internal nodes in this tree check the existence of a specific 
object in the scene and its leaves point to states in the Q-table. Motor actions are associated with 
leaves. After performing a motor action, the agent receives a reinforcement signal from the critic. 
This signal is alternately used for modifying the tree or updating the action selection policy. A 
long-term memory component holds the bias signals of important task-relevant objects of the 
environment. Basic saliency-based model of visual attention is devised to consider processing 
costs of feature channels and image resolutions. To recognize objects, a recent and successful 
object recognition method, inspired by the hierarchical organization of the visual ventral stream, 
is used. The proposed model is evaluated on visual navigation tasks, where obtained results lend 
support to the applicability and usefulness of developed method for robotics. 
 
Saliency maps for Attentive and Action-based Scene Classification This contribution proposes 
an approach for scene classification by extracting and matching visual features only at the focuses 
of visual attention instead of the entire scene. Analysis over a database of natural scenes 
demonstrates that regions proposed by the saliency-based model of visual attention are robust 
with image transformations. Classification results show that classification rate is nearly the same 
as when features are extracted over the entire scene but with feature extraction at a small fraction 
of scene regions. An approach for simultaneous learning of physical actions and representations 
known as RLVC is also extended by limiting it’s SIFT search and extraction to only salient 
regions. Results prove that RLVC has still the same performance with a huge decrease in 
computational complexity. Overall, our results prove that efficient scene classification, in terms 
of reducing the complexity of feature extraction is possible without a significant drop in 
performance. 
 
Interactive Learning of Space-based Visual Attention Control and Physical Actions A new 
method for learning top-down and task-driven visual attention control along with physical actions 
in interactive environments is proposed. Our method is based on the RLVC algorithm and adapts 
it for learning spatial visual selection in order to reduce computational complexity. Proposed 
algorithm also addresses aliasings due to not knowing previous actions and perceptions. 
Continuing learning shows our method is robust to perturbations in perceptual information. 
Proposed method also allows object recognition when class labels are used instead of physical 
actions. We have tried to gain maximum generalization while performing local processing. 
Experiments over visual navigation and object recognition tasks show that our method is more 
efficient in terms of computational complexity and is biologically more plausible. 
 
1.6  Outline of the Thesis 
Outline of this thesis is as follows. Chapter one, introduces the scope of the thesis and highlights 
its objective and the problems it is aimed to solve. Part one brings the background material and 
forms the basis for next chapters. Background literature is reviewed from two perspectives: visual 
attention and reinforcement learning and state-space discretization. Basics of visual attention 
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which involves behavioral and modeling studies are covered in chapters 2.1 and 2.2 respectively. 
Applications of attentional models in computer vision and robotics are also reviewed in chapter 
2.3. Theoretical framework which is the basis of our solutions in this thesis are shown in chapter 
3. Next sections show how our approaches are built upon these solutions.  

Second part contains chapters 4 to 8. Chapter four considers learning associations between 
states on the environment and physical actions. This solution solves tasks where there is not a 
specific goal to be achieved. For example in a simulated driving environment, a driver agent has 
to learn to drive safely without collision. Chapter five is not based on RL and despite other 
methods does not target interactive learning. It forms a basis for chapter 6 for interactive learning 
of object based attention control. The idea behind the object based attention control is that an 
agent should find its state which is a natural scene and then map it to an appropriate action. The 
way to classify a scene here is to identify objects present in that scene. However, since 
segmentation of all the objects of a scene is costly we only limit the processing to few objects. 
The objects that have to be attended are learned in an interactive fashion. Since in this top-down 
approach, bottom-up biases are applied to a scene to find whether and object is present in a scene 
or not, these bottom-up biases are learned in a data-driven approach from a set of training images 
in the contribution of chapter 5.  

Chapters 7 and 8 are devoted for interactive learning space-based attention and physical 
actions and are direct extensions to the RLVC. In chapter 7, computations of RLVC are limited to 
only salient regions which are to some degree stable over image transformations. Chapter 8, is a 
saccade learning approach known as S-Tree and only inspects a few spatial regions of the image. 
Figure 1.1 shows the dependency of chapters. 
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Figure 1.1 Outline of this thesis. Arrows represent the dependencies between the various concepts that are 
introduced in the chapters. 
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Chapter 2 
Visual Attention 
2.1 Basic Concepts 
 
2.1.1 Introduction 
Information overload is one key problem in perception. We continuously acquire new 
information about our environment through our sensors. Processing this much information can be 
very expensive. Accordingly, brain can not process all of this data. Therefore, it makes decisions 
on which information is relevant and will be selected for further information processing and 
which will be filtered out. This process of selection and priorization of incoming information is 
called SELECTIVE ATTENTION. 

Only a limited aspect of visual information is being processed by higher level of the visual 
system, demonstrating the limited capacity of the visual system, an experiment called change 
blindness has been introduced by (O’Regan, Rensink, and Clark, 1997). In this experiment 
subjects presented a visual scene as an image fail to detect significant changes in the image (e.g. a 
car disappears). Hence, VISUAL ATTENTION can be seen as the process for reducing the 
amount of incoming visual information to a smaller quantity which the brain can handle. As Itti 
(2000) argues, O’Regan and collegues experiment reveals something about the mechanisms used 
by humans to control where they deploy spatial or focal attention while they examine a scene.  

Therefore, it can be said that visual attention controls the levels of information which will be 
selected and ensures that the selected information is relevant to further behavioral decisions. 

 
2.1.2 Components of Visual Attention 
“VISUAL SALIENCY is the distinct subjective perceptual quality which makes some items in 
the world stand out from their neighbors and immediately grab our attention” (Itti, 2007). 

This immediately raises the following questions: How is it that some items in the world stand 
out more than others and how is this process handled in the human visual system? This question 
was first addressed in a theory called FEATURE INTEGRATION THEORY which was proposed 
in 1980 by Treisman and colleagues (Treisman and Gelade, 1980). Using visual search 
experiments, this theory proposed that only simple visual features – such as color, orientation, 
size, and spatial frequency – are computed in a parallel way and that the combination of simple 
features happens – say a red and vertical bar - serialized. Many successful computational models 
of visual attention are related to this theory. 



20 
 

Hence, it is to be considered as the pioneer in the field of computational modeling of visual 
attention. Two components of processing visual attention have been suggested in many visual 
processing studies: 1) Bottom-up processing and 2) Top-down processing. 

BOTTOM-UP processing is a fast, mostly unconscious and stimuli-driven computation (Itti, 
2003). For example, as illustrated in the following figure, the horizontal red target embedded in a 
field of horizontal green distractors pops-out (cmp. Figure 2.1(a)) and is salient. This occurrence 
is independent of how many distractors in the neighborhood of the target stimuli are present. But 
not every salient item is as obvious as in a pop-out stimuli. In a visual search task where the 
distractors are selected similar to the target, before attending the target, one starts first to examine 
the image. When such stimuli are displayed, it has been shown that subjects’ fixations to the 
attended stimuli takes longer than by for a pop-out stimulus. Targets that require the combination 
of two features to identify, e.g. red and vertical, are termed CONJUCTIVE TARGET (cmp. 
Figure 3.1(b)) (Treisman and Gelade, 1980). For conjunctive target search, reaction time 
increases roughly linearly with the number of distractors. Treisman and Gelade (1980) interpret 
this as the serial processing of the combination of different features. (e.g. intensity combined with 
orientation in figure 3.1(b)).  

Top-down processing also known as the task dependent attention on the other hand guides, 
the search for a particular target (in memory) to potential targets (for example, a given instruction 
such as look for the vertical bar). It is a slower processing which directs the attention under 
volitional control (e.g. personal goal, experience, etc.).  

 

 
Figure 2.1 The reaction time (RT) a subject needs to detect a target depends on the complexity of the 
search task (c). If the target differs only in one feature from the distractors, the search time is almost 
constant with respect to the number of elements in the display (feature search); the target seems to pop out 
of the scene (a). If the target is defined by a conjunction of features (conjunction search), the reaction time 
increases linearly with the number of distractors (b). 

 
2.1.3 Eye Movement and Visual Attention 
There exist numerous types of eye movements. The most studied ones are the saccadic eye 
movements, which are responsible for shifting the high-resolution fovea onto a given target. Once 
foveated, this target can be processed with more details. Thus, while exploring a given scene 



21 
 

humans shift, successively, their fovea to a set of targets, creating the so called scan path. The 
question that arises here is how these saccades are generated. As early as 1967, Yarbus 
ascertained a relationship between saccadic eye movements and visual attention. More recent 
works argued that visual attention anticipates an eye movement at the same scene location. 
Furthermore, it has been stated that attention can be shifted about four times before the next eye 
movement takes place. This behavior allows the attention mechanism to examine several targets 
and retain the most important one, to which the fovea is then shifted. 

Note that the kind of attention deployment that causes eye movement is called overt attention 
(as opposed to covert attention which is not followed by an eye movement). A large part of the 
eye saccades is generated and controlled by the visual attention mechanism in order to foveate 
salient or informative locations of the observed scene. The next relevant question would be how 
the human visual attention mechanism selects the locations to be attended next. As figure 2.2 
shows saccadic eye movements depend on the question subjects were asked. It shows that task 
has a great effect on the pattern of eye movements. Bottom-up cues are important in free-viewing 
tasks and in such situations attention is attracted to more salient regions of the scene. However 
top-down influences come to play role when subjects are doing a specific task or process the 
image based on their knowledge and motivations. Our aim in this thesis is to model this 
phenomenon based on a learning approach which considers effect of task in different situations. 
We use a learning approach to take into account task and visual context.  

 
Figure 2.2 Example of a human scan path performed under different questions. 
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2.2 Computational Models 
 
2.2.1 Introduction 
In this section, we will introduce some of the most important computational attention systems, 
especially those with the highest impact on our work. We start be introducing the model of Koch 
& Ullman, which laid the theoretical basis for many current attention systems (Koch and Ullman, 
1985). Next, one of the currently best-known attention systems is presented: the Neuromorphic 
Vision Toolkit (NVT) of Itti et al. (Itti et al., 1998). It will be described in some detail since it will 
be used in on our work. Then we explain another work based which has been aimed for modeling 
task-driven modulations over the saliency model (Navalpakkam et al., 2005). A system which has 
many features in common with saliency model and has been built upon it is VOCUS and has been 
presented in (Frintrop et al. 2005). Since this model also enables top-down extension for search 
task it is related to our work. Finally a model which has been integrated bottom-up saliency 
model with a hierarchical object recognition model which has the same biological background 
will be explained (Walther at al. 2006). 
 

 
 
Figure 2.3 The Koch-Ullman model. Different features are computed in parallel and their conspicuities are 
represented in several feature maps. A central saliency map combines the saliencies of the features and a 
winner take all network (WTA) determines the most salient location. This region is routed to the central 
representation where complex processing takes place (Koch and Ullman, 1985). 
 
Koch & Ullman The first approach for a computational architecture of visual attention was 
introduced by Koch and Ullman (Koch and Ullman, 1985) (see Fig. 2.3).When it was first 
published, the model was not yet implemented, but it provided the algorithmic reasoning serving 
as a foundation for later implementations and for many current computational models of visual 
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attention. The idea is that several features are computed in parallel and their conspicuities are 
collected in a saliency map. A Winner-Take-All network (WTA) determines the most salient 
region in this map, which is finally routed to a central representation. 

Here, complex processing takes place restricted to the region of interest. The model is based 
on the Feature Integration Theory by Treisman (Treisman and Gelade, 1980): the idea of feature 
maps that represent in parallel different features as well as the idea of a central map of attention 
— Treisman’s master map of location — are adopted. The saliency computations are also 
influenced by rules called proximity and similarity preferences, which favor regions that are close 
or similar to the last focused region. However, newer findings claim that distance has no effect on 
attentional shifts, that means there is no proximity effect (Remington and Pierce, 1984, Krose and 
Julesz, 1989). An important contribution of Koch and Ullman’s work is the WTA network — a 
neural network that determines the most salient region in a topographical map — and a detailed 
description of its implementation. It may be noted that the WTA network shows how the selection 
of a maximum is implementable by neural networks that means by single units which are only 
locally connected. This approach is strongly biological motivated and shows how such a 
mechanism might be realized in the human brain. However, for a technical system a WTA is 
certainly an overhead since there are much easier ways to compute a maximum from a saliency 
map. Nevertheless, many computational attention systems take over the idea of a WTA. After 
selecting the most salient region by the WTA, this region is routed into a central representation 
which at any instant contains only the properties of a single location in the visual scene. Due to 
this routing, the approach is also referred to as selective routing model. How the routing is 
performed and what happens with the information in the central representation is not mentioned; 
the idea is that more complex vision tasks are restricted to the selected information. 

Finally, the authors suggest a mechanism for inhibiting the selected region causing an 
automatic shift towards the next most conspicuous location (inhibition of return (IOR)). The idea 
of a central representation in this form is hardly plausible from a biologically point of view: 
simple and complex processing of visual information in the brain is thought to be more 
intertwined than suggested by this model. But from a computational point of view the method is 
suggestive since it enables a modular assembling of different systems: an attentional system for 
the detection of regions of interest and a recognition system for the detailed investigation of these 
regions. The proposed architecture is merely bottom-up; it is not discussed how top-down 
influences from higher brain areas may contribute to the selection of salient regions. 
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Figure 2.4 Model of the Neuromorphic Vision Toolkit (NVT) by Itti et al. From an input image, three 
features are computed: color, intensity, and orientation. For each feature, an image pyramid is built to 
enable computations on different scales. Center-surround mechanisms determine the conspicuities 
concerning the features which are collected in a central saliency map. A winner take all network determines 
the most salient location in this map which yields the focus of attention. Inhibition of return inhibits this 
region in the saliency map and enables the computation of the next focus (Fig. reprinted with permission 
from (Itti et al., 1998) 
 
Itti. One of the currently best known attention systems is the Neuromorphic Vision Toolkit 
(NVT), a derivative of the Koch-Ullman model (Koch and Ullman, 1985), that is steadily kept up 
to date by the group around Laurent Itti (Itti et al., 1998,Itti and Koch, 2001a,Miau et al., 2001,Itti 
and Koch, 2001b,Navalpakkam et al., 2005). Their model as well as their implementation serves 
as a basis for many research groups; one reason for this is the good documentation and the 
availability of the source code for download, allowing other researchers to experiment and further 
develop the system. Fig. 2.4 shows the basic structure of the model. The ideas of the feature 
maps, the saliency map, the WTA and the IOR were adopted from the Koch-Ullman Model, the 
approaches of using linear filters for the computation of the features, of determining contrasts by 
center-surround differences and the idea of the conspicuity maps were probably adopted from 
Milanese (Milanese, 1993). The main contributions of this work are detailed elaborations on the 
realization of theoretical concepts, a concrete implementation of the system and the application to 
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artificial and real-world scenes. The authors describe in detail how the feature maps for intensity, 
orientation, and color are computed: all computations are performed on image pyramids, Image 
pyramid a common technique in computer vision that enables the detection of features on 
different scales. Additionally, they propose a weighting function for the weighted combination of 
the different feature maps by promoting maps with few peaks and suppressing those with many 
ones. This technique is computationally much faster than the relaxation process of Milanese and 
yields good results. Since the suggested weighting function still suffered from several drawbacks, 
they introduced an improved procedure in (Itti and Koch, 2001b). 

To evaluate the quality of the NVT, a comparison with human behavior was performed in 
(Parkhurst et al., 2002). The authors compared how the saliency computed by the system matched 
with human fixations on the same scenes and found a significant coherence which was highest for 
the initial fixation. They also found that the coherence was dependent on the kind of scene: for 
fractals it was higher than for natural scenes. This was explained by the influence of top-down 
cues in the human processing of natural scenes, an aspect left out in the NVT. 
 
Navalpakkam. The NVT in its basic version does concentrate on computing bottom-up attention. 
The need for top-down influences is mentioned but not realized. In a recent approach, 
Navalpakkam and Itti introduce a derivative of their bottom-up model which is able to deal with 
top-down cues (Navalpakkam et al., 2005). The idea is to learn feature values of a target from a 
training image in which the target is indicated by a binary mask. Considering the target region as 
well as a region in the close surrounding — considering 9 locations from a 3×3 grid of fixed size 
centered at the salient location — the system learns the feature values from the different feature 
maps on different scales. This yields a 42 component feature vector (red/green, blue/yellow, 
intensity, and 4 orientations, each on 6 scales). However, it may be doubted if it is useful to learn 
the scale of a target since during visual search the target should be detected on different scales. 
During object detection, this feature vector is used to bias the feature maps by multiplying each 
map with the corresponding weight. Thereby, exciting and inhibiting as well as bottom-up and 
top-down cues are mixed and directly fused into the resulting saliency map. Figure 2.5 shows this 
task-driven visual attention model. 
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Figure 2.5 Overview of current understanding of how task influences visual attention: Given a task such as 
“find humans in the scene”, prior knowledge of the targets features is known to influence low-level feature 
extraction by priming the desired features. These low-level features are used to compute the gist and layout 
of the scene as well as the bottom-up salience of scene locations. Finally, the gist, layout and bottom-up 
salience map are somehow combined with the task and prior knowledge to guide attention to likely target 
locations. The present study attempts to cast this fairly vague overview model into a more precise 
computational framework that can be tested against real visual inputs. 

 
Frintrop. (Frintrop et al. 2005) have introduced a new computational attention system known as 
VOCUS for efficient and robust detection of regions of interest in images. In their approach, the 
selection of an image region is determined by two kinds of influences: bottom-up and top-down 
cues. Bottom-up cues are determined by local contrasts and by uniqueness of a feature. Top-down 
cues depend on the features of a pre-specified target. Bottom-up and top-down down saliency 
maps are then linearly added and weighted to form a final saliency map. They have shown that 
VOCUS is robust and applicable to real-world scenes. Figure 2.6 illustrates this model. 
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Figure 2.6 VOCUS Attentional System. The bottom-up saliency map Sbu competes for saliency with a top-
down saliency map Stu which results from an excitation map E and an inhibition map I. These maps result 
weighted from sum of the feature and conspicuity maps, using the learned vector. When creating the global 
saliency map S, the influence of bottom-up and top-down is adjustable by the top-down factor t. The 
images were produced with t=1.  (Adopted from Frintrop et al.) 
 
Walther. Miau at al. investigated the combination of the NVT with object recognition, 
considering in (Miau and Itti, 2001,Miau et al., 2001) the simple biologically plausible 
recognition system HMAX and in (Miau et al., 2001) the recognition with support vector 
machines. Walther et al. continued these investigations, starting in (Walther et al., 2002) also with 
a combination with the HMAX model. In a current approach (Walther et al., 2004), they combine 
the system with the well-known recognition approach of Lowe (Lowe, 2004) and show how the 
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detection results are improved by concentrating on regions of interest. Integration of saliency and 
HMAX models are shown in figure 2.7. 
 

 Figure 2.7 Walther’s model combines a saliency-based attention system with a hierarchical recognition 
system.  For the attention system, the retinal image is filtered for colors (red-green and blue-yellow), 
intensities, and four orientations at four different scales, and six center-surround differences are computed 
for each feature. The resulting 7×6 = 42 feature maps are combined into three conspicuity maps (for color, 
intensity and orientations), from which one saliency map is computed. All locations within the saliency 
map compete in a winner-take-all (WTA) network of integrate and fire neurons, and the winning location is 
attended to. Subsequently, the saliency map is inhibited at the winning location (inhibition-of-return), 
allowing the competition to go on, so that other locations can be attended to. The hierarchical recognition 
system starts out from units tuned to bar-like stimuli with small receptive fields, similar to V1 simple cells. 
In a succession of layers, information is combined alternatively by spatial pooling (using a maximum 
pooling function) and by feature combination (using a weighted sum operation). View-tuned units at the 
top of the hierarchy respond to a specific view of an object while showing tolerance to changes in scale and 
position. The activity of units at level S2 is modulated by the attention system (Fig. 2).
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2.3 Applications 
 
While psychological models of visual attention usually aim at describing and better understanding 
human perception, computational attention systems usually intend to improve technical systems. 
In this section, we discuss several application scenarios in the field of computer vision and 
robotics and introduce the approaches that currently exist in this field. 
 
2.3.1 Computer Vision 
Object Recognition Probably the most suggesting application of an attention system is object 
recognition since the two-stage approach of a preprocessing attention system and a classifying 
recognizer is adapted to human perception (Neisser, 1967). It is worth mentioning that object 
recognition may be a subtask of more complex applications like object manipulation in robotics, 
which will be described later. One example of a combination of an attentional front-end with a 
classifying object recognizer is shown in (Miau and Itti, 2001,Miau et al., 2001). The recognizer 
is the biologically motivated system HMAX (Riesenhuber and Poggio, 1999). Since this system 
focuses on simulating processes in human cortex, it is rather restricted in its capabilities and it is 
only possible to recognize simple artificial objects like circles or rectangles. In (Miau et al., 
2001), the authors replace the HMAX system by a support vector machine algorithm to detect 
pedestrians in natural images. This approach is much more powerful with respect to the 
recognition rate but still computationally very expensive and lacks real-time abilities. Walther 
and colleagues combine in (Walther et al., 2004) an attention system with an object recognizer 
based on SIFT features (Lowe, 2004) and show that the recognition results are improved by the 
attentional front-end. In (Salah et al., 2002) an attention system is combined with neural networks 
and an observable Markov model to do handwritten digit recognition and face recognition. In 
(Ouerhani, 2003), an attention-based traffic sign recognition system is presented. 

All of these systems rely only on bottom-up information and therefore on the assumption that 
the objects of interest are sufficiently salient by themselves. Non-salient objects are not detected 
and so they are missed. For some object classes like traffic signs which are intentionally designed 
salient, this works quite well; for other applications, top-down information would be needed to 
enable the system to focus on the desired objects. It may also be mentioned that when combining 
object recognition with attention, the advantage over pure classification is usually the time saving 
and not the quality improvement: most classifiers show no improvement if restricted to a region 
of interest (an exception is the work of Walther et al. (Walther et al., 2004) since the Lowe 
detector improves if restricted to a region of interest). Since most attention systems are still rather 
slow and the recognition systems not powerful enough to deal with a wide variety of objects, the 
advantage of such a combination of attention and classification does usually not yet show to its 
best. Currently, there is no existing approach that exhibits a time saving resulting from the 
combination of attention and classification. However, in future, with more powerful recognition 
systems and more complex requirements concerning vision systems, an attentional frontend is a 
promising approach. 

A different view on attention for object recognition is presented in (Fritz et al., 2004): an 
information-theoretic saliency measure is used to determine discriminative regions of interest in 
objects. The saliency measure is computed by the conditional entropy of estimated posteriors of 
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the local appearance patterns. That means, regions of an object are considered as salient if they 
discriminate the object well from other objects in an object data base. A similar approach is 
presented in (Pessoa and Exel, 1999).  
 
Image Compression A new and interesting application scenario is presented in (Ouerhani et al., 
2001): focused image compression. Here, a color image compression method adaptively 
determines the number of bits to be allocated for coding image regions according to their 
saliency. Regions with high saliency have a higher reconstruction quality with respect to the rest 
of the image. In (Itti 2005) saliency model is used for image compression. The idea is different 
coding resolution based on saliency value of image regions. 
 
Image Matching Image matching is the task to redetect a scene, or part of a scene, in a newly 
presented image. This is often done by matching relevant key points. An approach that uses foci 
of attention computed by a saliency operator for image matching is presented in (Fraundorfer and 
Bischof, 2003). 
 
Image Segmentation The automatic segmentation of images into regions usually deals with two 
major problems: first, setting the starting points for segmentation (seeds) and second, choosing 
the similarity criterion to segment regions (cf. appendix A.3). Ouerhani et al. present an approach 
that supports both aspects by visual attention (Ouerhani et al., 2002, Ouerhani and Hugli, 2003a): 
the saliency spots of the attention system serve as natural candidates for the seeds and the 
homogeneity criterion is adapted according to the features that discriminate the region to be 
segmented from its surroundings. 
 
2.3.1 Robotics 
Active Vision Active vision represents the technical equivalent for overt attention by directing a 
camera to interesting scene regions and/or zooming these regions. The goal is to acquire data that 
is as suitable as possible to the current task and to reduce the processing complexity by actively 
guiding the sensors (usually the camera) to reasonable regions (Aloimonos et al., 1988). In 
several cases, active vision is a subtask for applications like human-robot interaction and object 
manipulation, which will be discussed in the next sections. 

In (Mertsching et al., 1999, Bollmann, 1999), the active vision system NAVIS is presented 
that uses an attention system to guide the gaze. It is evaluated on a fixed stereo camera head as 
well as on a mobile robot with a monocular camera head. In (Vijayakumar et al., 2001) an 
attention system is used to guide the gaze of a humanoid robot. The authors consider only one 
feature, visual flow, which enables the system to attend to moving objects. To simulate the 
different resolutions of the human eye, two cameras per eye are used: one wide-angle camera for 
peripheral vision and one narrow-angle camera for foveal vision. Other approaches which use 
attention systems to direct the gaze of an active vision system are described in (Clark and Ferrier, 
1989) and (Driscoll et al., 1998). 
 
Human-Robot Interaction If robots shall interact with humans, it is important that both agree on 
a current object or region of interest. A computational attention system similar to the human one 
can help to focus on the same region. Breazeal introduces a robot that shall look at people or toys 
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(Breazeal, 1999). Although top-down information would be necessary to focus on an object 
relevant for a certain task, bottom-up information can be useful too if it is combined with other 
cues. For example, Heidemann et al. combine an attention system with a system that follows the 
direction of a pointing finger and so can adjust to the region that is pointed at (Heidemann et al., 
2004). In (Rae, 2000) this approach is used to guide a robot arm to an object and grasp it. In 
(Ajalooian et al, 2009) saliency model is used for fast detection of hand regions and then concepts 
of handmovements are learned for interaction with a robotic marionette. 
 
Object Manipulation in Robotics A robot that has to grasp and manipulate objects first has to 
detect and possibly also to recognize the object. Attentional mechanisms can be used to support 
these tasks. For example, Tsotsos et al. present a robot for disabled children that detects toys by 
the help of attention, moves to a toy and grasps it (Tsotsos et al., 1998). In another approach, 
Bollmann et al. present a robot that uses the active vision system NAVIS to play at dominoes 
(Bollmann et al., 1999). The above mentioned approach of Rae in which a robot arm has to grasp 
an object a human has pointed at, falls also into this category (Rae, 2000). 
 
Robot Localization Another application scenario of an attention system in robotics is the 
detection of landmarks for localization. Especially in outdoor environments and open areas, the 
standard methods for localization like matching 2D laser range and sonar scans are likely to fail. 
Instead, localization by detection of visual landmarks with a known position can be used. 
Attentional mechanisms can facilitate the search of landmarks during operation by selecting 
interesting regions in the sensor data. By focusing on these regions and comparing the candidates 
with trained landmarks, the most probable location can be determined. A project that follows this 
approach is the ARK project (Nickerson et al., 1998). It relies on hand-coded maps, including the 
locations of known static obstacles as well as the locations of natural visual landmarks. As 
already mentioned, (Ouerhani and Hugli, 2004) suggest to use matching and tracking of salient 
regions for robot localization but a realization of the localization itself has not yet been done. 
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Chapter 3 
State-space Discretization 
3.1 Introduction 
 
Standard reinforcement learning explicitly assumes that the agent is able to distinguish between 
the states of the environment using only its sensors: The perceptual space is said fully observable, 
and the right decisions can always be made on the basis of the percepts. If it is not the case (i.e. if 
the perceptual space is only partially observable), the agent cannot distinguish between any pair 
of states and thus will possibly not be able to take systematically the right decision. This 
phenomenon is known as the perceptual aliasing (or hidden state) problem, and is closely related 
to ours. Indeed, Section 4.2 has explained that the incremental selection of a set of perceptual 
features necessarily leads to a temporary perceptual aliasing, which RLVC tries to get rid of. 
Early work in reinforcement learning has tackled this general problem in two distinct ways: 
Either the agent identifies and then avoids states where perceptual aliasing occurs (as in the Lion 
algorithm (Whitehead and Ballard, 1991), or it tries to build a short-term memory that will allow 
it to remove the ambiguities on its percepts (as in the predictive distinctions approach (Chrisman, 
1992)). Very sketchily, these two algorithms detect the presence of perceptual aliasing through an 
analysis of the sign of Q-learning updates (cf. Section 2.4.2). The possibility of managing a short-
term memory has led to the development of the Partially Observable Markov Decision Processes 
(POMDP) theory (Kaelbling, et al. 1996), in which the current state is a random variable of the 
percepts. Hasinoff’s technical report (Hasinoff, 2003) is an up-to-date reference about the 
perceptual aliasing issue. 

Although these approaches are closely related to the perceptual aliasing RLVC temporarily 
introduces, they do not consider the exploitation of perceptual features. Indeed, they tackle a 
structural problem in a given control task, and, as such, they assume that perceptual aliasing 
cannot be removed. As a consequence, these approaches are orthogonal to our research interest, 
since the ambiguities RLVC generates can be removed by further refining the percept classifier. 
In fact, the techniques above tackle a lack of information inherent to the used sensors, whereas 
our goal is to handle a surplus of information related to the high redundancy of visual 
representations. 

From another perspective learning top-down attention is highly coupled with learning 
representations. Therefore the best way to derive visual attention mechanisms is to learn them in 
concert with visual representations. This is tightly relevant to an area of research known as state 
space discretization in reinforcement learning. Here we adapt these techniques for deriving spatial 
visual attention in interactive environments which is like the saccadic eye movements that 
humans and animals perform to recognize a scene.  



33 
 

Reinforcement learning (RL) is a general framework for modeling the behavior of an agent that 
learns how to perform its task through its interactions with the environment. The only information 
that the agent takes in response to its actions is a reinforcement signal instead of being told that its 
action has been right or wrong. Like many existing learning methods, RL suffers from the curse 
of dimensionality, requiring a large number of learning trials as state-space grows. But it has the 
ability to handle dynamic and non-deterministic environments. It is believed that curse of 
dimensionality can be lessened to a great extent by implementation of state abstraction methods 
and hierarchical structures. Moreover, incremental improvement of agent’s performance becomes 
much simpler due to less number of states.  

Several approaches for interactive discretization of state space have been proposed. 
Techniques using a non-uniform discretization are referred to as variable resolution techniques 
(Munos & Moore, 2002). The parti-game algorithm (Moore & Atkeson, 1995) is an algorithm for 
automatically generating a variable resolution discretization of a continuous, deterministic 
domain based on observed data. This algorithm uses a greedy local controller and moves within a 
state or between adjacent states in the discretization. When the greedy controller fails, the 
resolution of the discretization is increased in that state. The G algorithm (Chapman & Kaelbling, 
1991), and McCallum’s U-Tree algorithm (1996), are similar algorithms that automatically 
generate a variable resolution discretization by re-discretizing propositional techniques. Like 
parti-game, they both start with the world as a single state and recursively split it when necessary. 
The continuous U-Tree algorithm described in (Uther & Velso, 1998), extends these algorithms 
to work with continuous state spaces. 

Jodogne et al. (2007) have proposed an approach for learning action-based image 
classification known as Reinforcement Learning of Visual Classes (RLVC). RLVC consists of 
two interleaved learning processes: an RL unit which learns image to action mappings and an 
image classifier which incrementally learns to distinguish visual classes. RLVC could be 
regarded as a feature based attention method in which the entire image has to be processed to find 
out whether a specific visual feature exists or not in order to move in a binary decision tree. Like 
RLVC, our approach also extends the U-Tree to visual domain. Our approach tackles this 
weakness of the RLVC, the exhaustive search for a local descriptor over the entire image, by 
computing and searching local descriptors at few spatial locations. Once aliasing is detected a 
spatial location is selected which reduces the perceptual aliasing the most. This local visual 
processing results in very fast scene recognition because features are extracted in small regions 
and there is no need for exhaustive search for a feature. 
 

3.2 RL 
 
In RL (Sutton & Barto, 1998), the environment is modeled as a Markov Decision Process (MDP). 
An MDP is a 4-tuple ۃS, A, ࣮,  ,where S and A are finite sets of states and actions respectively ,ۄ࣬
࣮ is a probabilistic transition function from S×A to S, and ࣬ is a reinforcement function from 
S×A to Թ. An MDP obeys the following discrete-time dynamics. If at time t, the agent takes the 
action at, while the environment lies in state st, the agent perceives a numerical 
reinforcement r୲ାଵ ൌ ࣬ሺs୲, a୲ሻ, then reaches some state st+1 with probability ࣮ሺs୲, a୲, s୲ାଵሻ. For 
an infinite sequence of interactions starting in a state st, R୲ ൌ  ∑ γ୧∞

୧ୀ଴ r୲ା୧ାଵ is the discounted 
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return where γ א ሾ0,1ሿ is the discount factor that gives the current value of the future 
reinforcements. The solution to the Markovian Decision Problem is to find an optimal percept-to-
action mapping that maximizes the expected discounted return. Q-learning is a direct, interactive, 
and adaptive solution (Watkins & Dayan, 1992) with the convergence proof. It is used here for 
learning top-down attention in concert with motor actions.  
 

3.3 U-TREE 
 
The U-Tree (McCallum, 1996) abstracts the state space incrementally. Each leaf lt of the U-Tree 
corresponds to an abstract state st. Leaves store the action-values ࡽሺ࢚࢙,  ሻ for all available࢚ࢇ
actions at. The tree is initialized with a single leaf, and new abstract states are added if necessary. 
Sub-trees of the tree represent subtasks of the whole task. Each sub-tree can have other sub-sub-
trees that correspond to its sub-sub-tasks. The hierarchy breaks down to the leaves that specify the 
primitive sub-tasks. The procedure for construction of the abstraction tree loops through a two 
phase process: sampling and processing. During the sampling phase the algorithm behaves as a 
standard RL, with the added step of using the tree to translate sensory input to an abstract state. A 
history of the transition steps, i.e.  ࢚ࢀ ൌ ሺ࢚࢙, ,࢚ࢇ ,࢚࢘  ା૚ሻ composed of the current state, the࢚࢙
selected action, the received immediate reward, and the next state is recorded. The sample is 
assigned to a unique leaf based on the value of the current state. Each leaf has a list per action for 
recording the sampled data-points. After some learning episodes the processing phase starts. In 
this phase a value is assigned to each sample: 
 

ሻ࢚ࢀሺࢂ ൌ ࢚࢘  ൅ ,ା૚ሻ࢚ത࢙ሺࢂࢽ  ା૚ሻ࢚ത࢙ሺࢂ ൌ ܠ܉ܕ
ࢇ

,ା૚࢚ത࢙ሺࡽ .ሻ                  ሺ૛ࢇ ૚ሻ 

 
where ࢙ത࢚ା૚ is the abstract state that ࢚࢙ା૚ belongs to. If a significant difference among the 
distribution of sample-values within a leaf is found, the leaf is broken up to two leaves. To find 
the best split point, the algorithm loops over the features. The samples within a leaf are sorted 
according to a feature, and a trial split is virtually added between consecutive pairs of the feature 
values. This split divides the abstract state into two sub-sets. A splitting criterion compares the 
two sub-sets, and returns a number indicating the difference between their distributions. If the 
largest difference among all features is bigger than a confidence threshold, then the split is 
introduced. 
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Figure 3.1 A U-Tree instance-chain and tree. The instance-chain is at the bottom: each instance circle is 
labeled by the observation received at that time step, each instance transition is labeled by the action taken 
to make that transition. In the tree, each branch is labeled by its history count and perceptual dimension 
label; beside each node is the conjunction of features the node represents. The tree nodes drawn as squares 
are the agent’s internal states; each contains a Q-value for each action, although the figure only shows the 
policy action. The dashed-arrows show which agent internal state holds each instance. Adopted from 
(McCallum et al.) 
 

3.4 RLVC 
 
RLVC (Jodogne & Piater, 2007) shares the same theoretical basis as the original U-Tree 
algorithm. It iteratively builds a series of classifiers ࡯ ൌ ሼ࡯૚, ,૛࡯ … ,  ሽ that discretizes the࢑࡯
perceptual space P into a finite set of perceptual classes by testing the presence of features in the 
percepts. After k refinement steps, the classifier denoted by Ck, partitions the visual perceptual 
space P into a finite number mk of visual classes ሼ࢜૚

,࢑ … , ࢑࢓࢜
࢑ ሽ. Ck is a binary decision tree, each 

internal node of which tests the presence of a given visual feature, and each leaf of which 
corresponds to a visual class. In iteration k, a visual class, ࢏࢜

 is refined if it has perceptual ,࢑
aliasing meaning that optimal decisions cannot be always made since different percepts requiring 
different actions are grouped together. In order to reduce aliasing, visual classes with aliasing are 
expanded by checking the existence of a feature. To detect nodes with aliasing Bellman’s 
Residual or TD-error is measured for all experiences under a visual class which is defined as: 
 

,࢙ሺ࢑࡮ ሻࢇ ൌ जሺ࢙, ሻࢇ ൅ ࢽ ࢞ࢇ࢓
࡭ࣕ′ࢇ

࢑ࡽ
,࢙൫ञሺ࢑࡯൫כ′ ,ሻ൯ࢇ ൯′ࢇ െ ࢑ࡽ

,ሻ࢙ሺ࢑࡯ሺכ′ .ሻ        ሺ૛ࢇ ૛ሻ 
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where ܳ௞

 ,௞ are the estimation of the optimal Q function using Ck and the residual at state sܤ and כ′
respectively. A non-zero ܤ௞ሺݏ, ܽሻ for some time stamp t indicates the presence of aliasing in the 
visual class Ck (s) with respect to the action a. After aliasing is detected a SIFT feature (Lowe, 
2004) from the percepts in Ck (s) is selected which mostly reduces the variance of Bellman 
residuals and also results in two significantly different distributions. Figure 3.2 shows the 
structure of the RLVC algorithm. 
 

 
 

Figure 3.2 The different components of the RLVC algorithm. 
 

An example application of the RLVC over the visual Gridworld shown in Figure 3.3 is shown in 
Figure 2.9. As shown by Figure 3.4, RLVC succeeded to learn the optimal policy by 
discriminating among objects in the grid. Shown binary tree checks SIFT features in order to find 
the class of an object. 
 

 
Figure 3.3 Small visual Gridworld topology. Cells with a cross are walls, and the exit is indicated by a gray 
background. Empty cells are labeled by a picture, in which circles indicate the interest points that are 
detected by the Color Harris detector. 
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Figure 3.4 Resolution of the small visual Gridworld by RLVC: (a) The final classifier Ck that tests the 
presence of the circled local-appearance features, (b) the label of the perceptual class that is assigned to 
each empty cell by Ck, and (c) the computed optimal policy for this classification. 
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Abstract. Like humans and primates, artificial creatures like robots are limited in terms of 
allocation of their resources to huge sensory and perceptual information. Thus attention is 
regarded as the same solution as humans in this domain. While bottom-up attention is determined 
by the image statistics, top down attention is dependent the on behavior and the task an agent is 
doing. This work attempts to consider a task based top-down visual attention control when 
resources of the agent are limited. Particularly attention control is formulated as an optimization 
problem in which the agent has to gain maximum reward while satisfying a constraint which is its 
information processing bottleneck. Reinforcement learning is then used to solve that optimization 
problem. A driving environment is simulated in that agent has to learn how to drive safely by 
attending to the right spatial locations and performing appropriate motor actions.  
 
Key words: Reinforcement Learning, Q-Learning, Spatial Attention 
 
4.1 Introduction 
Possible confusion because of huge sensory space, limited response time, dynamicity of 
perceptual space and environment, and accuracy and reliability of sensors causes a bounded 
rationality for an agent instead of full rationality. In this regard attention control could act like 
enhancing the rationality of the agent by proposing small amount of information for further 
processing. For the agent to be successful in terms of receiving maximum cumulative reward, it 
should be able to perform perceptual actions or attentions as well as motor actions at the same 
time. These perceptual actions are available at several forms like where to look and what to look 
in visual modality. In situations where the environment is unfamiliar or not clearly defined or 
there is a small training dataset, fixed design of a control strategy is helpless. Therefore 
interactive learning methods like reinforcement learning are the first options in these cases.  

In order to better understand the mechanisms of attention, it is not just enough to examine 
simple synthetic or natural stimuli in laboratory because attention behavior under top down 
control is mostly determined by task demands and characteristics which change through time in 
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spatial and temporal manner. To better cope with this type of attention, we should consider 
embodiment and situatedness which are two main concepts of new trends in artificial intelligence 
(Clark & Grush, 1999). The main claim behind this concept is that behaviors like attention, 
emotion, etc evolve depending body characteristics (dynamics, form, etc) and the environment 
which agents live in. Thus attention could not be studied and understood in an abstract manner. 
Therefore the study of attention is much influenced by actions which are based on visual 
information like grasping, etc. For instance to drive safely needs very complex behaviors like 
detecting and monitoring stop signs, traffic lights, other cars as well coordinating actions and 
attentions. That’s why novice drivers usually consider driving in crowded big cities hard and 
challenging.  

In this work we consider attention control as an optimization problem. In this optimization 
framework an artificial agent has a certain limited amount of processing power which he should 
devote them to the most appropriate items from the sensory space. Particularly our aim is to 
propose a mechanism for learning top top-down visual attention control for an agent performing 
tasks which needs motor actions in natural interactive environments like driving. Both top down 
attention control signals and motor actions will be learned concurrently to fulfill task demands. 
Our approach is motivated by studies in neuroscience and psychology of attention.  

 
4.2 Related Works 
A broad range of works in modeling visual attention are reported in the literature. In this section 
we review those works which are related to ours, especially those which have considered learning 
aspects of attention control. Unfortunately, there are a few researches on learning and formation 
of attention control; rather they are mostly related to the attention modeling. Our focus will be to 
review those works which has followed a learning based approach to develop visual routines 
specially attention. In this regard we look at those works which have merged those two topics.  

One of the earliest studies which showed that attention is task based and is controlled top-
down is done by Yarbus (Yarbus, 1967). He showed that task has a great effect on the pattern of 
eye movements. Bottom-up cues are important in free-viewing tasks and in such situations 
attention is attracted to more salient regions of the scene. However top-down influences come to 
play role when subjects are doing a specific task or process the scene based on their knowledge 
and motivations. Some previous works have tried to implement top-down influences. One 
drawback of those approaches is that they have tackled the problem in a very limited and abstract 
way and have not considered the temporal aspects of top-cues such as task demands on attention 
which happens in our every day behavior. In brain these processes are done mainly in frontal 
cortex where short and long term memories are stored and our intentions and plans are formed. It 
is clear that attention is not such an episodic process but is also dependent on temporal manner 
the stimuli are presented and also temporal needs and internal states of the agent. This approach 
has been followed up in active vision systems for building robots able to control their gazes 
according to their tasks. One of the outstanding works on visual attention which is based on an 
earlier model of visual attention developed by Koch and Ullman (Koch & Ullman, 1998) is 
proposed in (Peters & Itti, 2008). Simplicity and little processing time are two main advantages of 
this model. It is continuously updated and has been the basis of many other models. It‘s called 
saliency based model and have been used to explain behavioral data on simple synthetic static 
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search arrays to dynamic natural stimuli like movies and interactive ones like game playing 
(Peters & Itti, 2008).  

In (Reichle & Patryk, 2006), a reinforcement learning method is proposed to model the 
reading task. A model for mimicking an expert reader is introduced by predicting where eyes 
should look (spatial attention) and how long they should stop there in order to lead to the best 
comprehension from the text. This is an interesting work which proposes an optimization 
framework for attention and then uses RL to solve it. Our approach is the same, but with the 
difference that we are aim to apply it to complex tasks where agents have to perform physical 
actions while controlling their sensory acquisition behavior. Furthermore this research has the 
limited generalization and could only explain reading experiments.  

In (Fritz et. al, 2004, Paletta et al., 2005), a 3-step-architecture is presented which first 
extracts attention focus according to information theoretic saliency measures. Then, by searching 
in pre-specified areas from the first step, decides whether the object is available in the image or 
not and finally suggests a shift for attention. The final step is done using Q-learning with the goal 
to find the best perceptual action according to the search task. This research is related to our work 
because it also couples decision making and attention control and uses a reinforcement based 
learning approach. But, due to the simple task of search in a limited image database, the approach 
is very simple and the application domain is limited.  

In (Gonic et al., 1999), an approach for attention control is presented in a robotic platform 
with neck, eyes and arms. The first approach is a simple feed forward method which uses back-
propagation learning algorithm while the second one uses reinforcement learning and a finite 
state machine for state space representation. The robot has 3 types of actions: attention shift, 
visual improvement and haptic improvement. Their results confirm that the second approach 
generates a better performance in terms of finding previously observed objects even with fewer 
movements in head and neck and also shifting the attention.  

In (Sprague & Ballard, 2005), a new model for human eye movements is proposed that 
directly ties eye movements to the ongoing demands of behavior. The basic idea is that eye 
movements serve to reduce uncertainty about environmental variables that are task relevant. A 
value is assigned to an eye movement by estimating the expected cost of the uncertainty that will 
result if the movement is not made. If there are several candidate eye movements, the one with 
the highest expected value is chosen. The model is illustrated using a humanoid graphical figure 
that navigates on a sidewalk in a virtual urban environment.  

An approach for learning gaze control for a mobile robot is proposed in (Minut & 
Mahadaven, 2001), which proposes a model of selective attention for visual search tasks. They 
have implemented their model using a fixed pan-tilt-zoom camera in a visually cluttered lab 
environment, which samples the environment at discrete time steps. The agent has to decide 
where to fixate next purely based on visual information, in order to reach the region where a 
target object is most likely to be found. The model consists of two regions in the room for 
reaching the target object, using as objective function which is the expected value of the sum of 
discounted rewards. By selecting an appropriate gaze direction at each step, this module provides 
top-down control in the selection of the next fixation point. The second module performs “within 
fixation” processing, based exclusively on visual information. An interesting point with this work 
is that it has incorporated learning where to look in a simple visual search task. Main feature of 
this work is its implementation on a real robotic agent working in a natural environment.  
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A study reported in (Maljkovic & Nakayama, 1994), supports the idea that attention could be 
learned by past experience. In a behavioral task authors observed that subjects showed better 
performance in successive trails, which evidently is in favor of learning attention control. A 
modeling work trying to explain such data is done in (Mozer et al., 2006). They have proposed an 
optimization framework to minimize an objective function which is the sum over reaction time of 
each state weighted by the probability of that state to occur. Then by means of a Bayesian belief 
network they minimized this objective function.  

A biologically motivated framework for learning attention control and decision making is 
reported in (Shariatpanahi and Ahmadabadi, 2007). Physical actions and attentions are integrated 
in augmented actions and reinforcement learning is used to solve an optimization problem which 
is to maximize the cumulated reward. Mirror neurons are proposed for concept extraction and 
knowledge abstraction to deliver to other environments and tasks. Our work follows the 
integration of attention control and action selection for an artificial agent performing a complex 
cognitive task, but with the distinction of adding rich visual sensory information, achieving 
complex tasks in natural interactive environments, coping with biology and incorporating other 
sources which influence visual attention.  

In regard with the above researches, we consider attention control and decision making in a 
unified framework and formularize them as an optimization problem where agent has a limited 
number of processing resources while facing a lot of sensory information. Then by incorporating 
reinforcement learning, we try to solve that optimization problem. Some advantages of such a 
learning approach are easy generalization, knowledge transfer and no need for exact modeling of 
the environment in advance.  
 
4.3 Proposed Approach 
Agent is to learn performing physical actions and visual attentions simultaneously in a working 
environment in order to optimize an objective (goal) function. Agent captures visual information 
from the scene in the form of still images or video through its visual sensor. Captured visual 
scene undergoes an early visual processing. This stage contains two units which act in parallel. 
According to psychophysical findings, we are not blind outside our focus of attention, and 
information outside the focus of attention is also processed but not to the extent of the attended 
area. A bottom-up visual attention unit selects a subset of image and GIST extractor performs a 
rough categorization of the image (Olica & Torralba, 2006).  

Visual information from attended area, visual sensor and GIST extractor enters to the higher 
visual processing unit. This unit is aimed to derive cognitive information useful for decision 
making (eg. scene interpretation, object recognition, etc). Processing in this unit are dependent on 
the environment the agent is living and the type of tasks it is supposed to do. Although other 
higher processes like emotions, internal events, etc are also important in determination of visual 
attention, we limit ourselves here to those cues produced only based on visual scene and task 
demands.  

Next, based on this information a decision has to be made. A state extractor unit in decision 
making state gets input from the higher cognitive unit as well as GIST extractor which determines 
spatial context, and outputs a well defined state. Reinforcement learning is used to find the best 
policy which optimizes an objective function. An augmented action is generated which consists 
of a motor action and perceptual action (top-down attention signal). A reinforcement signal which 
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is the effect of the motor action and implicitly attention is fed back to RL unit by a critic, which 
evaluates this action. Reinforcement learning is used here because of its flexibility, power where 
critic’s information is limited as well as its biological plausibility.  

Theoretically any bottom-up visual attention unit could be used in early visual processing 
stage. For example to extend the model to work with natural scenes, saliency based model of 
visual attention could be used. Overall model is summarized in Figure 4.1.  
 

 
Figure 4.1 Agent is doing a behavior or a task in it. A visual stimulus is captured by the visual sensor of 
the agent. This stimulus is processed by an early visual system which could be artificial counterpart of V1 
and V2 of the primary visual cortex and also by a bottom-up visual attention system. A saliency map is the 
output of this unit. Evidences exist for availability of such a saliency map in multiple brain areas like FEF, 
SC, LIP and V4. Another top-down component is based on the idea of “Gist,” which in psychophysical 
terms is the ability of people to roughly describe the type and overall layout of an image after only a very 
brief presentation, and to use this information to guide subsequent target searches. Higher cognitive 
processes which are believed to occur in higher visual areas V4/IT perform a variety of cognitive visual 
processes like scene understanding, object recognition, etc. Conceptual output of this unit is transferred to 
prefrontal, posterior parietal, LIP, etc which perform a sensory motor processing and action selection. Two 
control signals (motor action and attention) are generated which affect the world and bottom-up visual 
attention system. A critic assigns a reinforcement signal which evaluates the actions. Dashed lines in the 
figure are not implemented yet.  
 

4.4 Mathematical Formulation  
Top-down attention is represented as a vector of n elements: 
 

തതതതതതܶܶܣ ൌ ሼܽݐݐതതതതଵ, ,തതതതଶݐݐܽ …  തതതത௡ሽ                                         ሺ4.1ሻݐݐܽ
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with each ܽݐݐതതതത௜ being the parameter vector of the bottom-up visual attention system. In general 
extracting area of interest (attended area) is a function f which takes an image I and a top-down 
attention ܶܶܣതതതതതത and outputs a salient region: 
  

തതതതതܫܱܣ ൌ ݂ሺܫ,  തതതതതതതതതതതതത ሻ                                                  ሺ4.2ሻ݊݋ଓݐ݊݁ݐݐܣ
 
Higher level processing is modeled as a function g which takes attended area (AOI) and GIST as 
input and outputs a state S (higher visual information and information about scene):  

ܵ ൌ ݃ሺܫܱܣതതതതത, ,ܶܵܫܩ  ሻ                                                      ሺ4.3ሻܫ
 
S is a cognitive representation of the scene rich enough to help the agent make decisions. If 
necessary the scene representation should be transformed into a state by another mapping. After 
these steps, an RL unit produces an augmented action a, which is composed of a motor action m 
and a perceptual action b. This attention vector biases the bottom up model of attention. This 
command, could act as an explicit spatial shift toward an object or a position with high value in 
the saliency map, a shift in weightings of different features or modalities, modulation of a region 
in the visual field, etc. State of the agent is its subjective representation of the external world and 
itself at every decision making point. This representation should be rich enough to support 
bounded rational decision making.  

In learning component (RL), attention control and motor responses are optimized gradually 
and interactively. This module is responsible for learning optimal decisions at each state S. The 
optimal decision is found using an RL method which seeks a decision making strategy (policy) at 
each state that maximizes agent’s expected return. In our model we use discounted expected 
reward as expected return and Q-learning because of its biological plausibility.  
A(s) is the set of all possible actions in each state, M(s) is the set of motor actions and B(s) is the 
set of perceptual actions. Null is added to both types of actions because in some situations no 
action or attention is needed.  
 

ሻݏሺܣ ൌ ሼܯሺܵሻ ׫  ሽ݈݈ݑܰ ൈ ሼܤሺܵሻ ׫   ሽ                                  ሺ4.4ሻ݈݈ݑܰ
 

For agent to find its optimum action selection policy π(s, a) to maximize the expected value 
of the reward signals r it receives, uses a Q-learning algorithm. The value of taking action a in 
state s under a policy π is denoted by Q(s, a) and is updated in each time stec 
p according to following equation:  
 

ܳሺܵ௧, ܽ௧ሻ ൌ ሺ1 െ ,ሻܳሺܵ௧ߙ ܽ௧ሻ ൅ ߙ ቀݎ௧ ൅ ߛ ݔܽ݉
௔

ܳሺܵ௧ିଵ, ܽሻቁ              ሺ4.5ሻ 

 
in above formula, α is the learning rate and γ is the discount factor, π(s,a) (probability of taking 
action a given state s) is then determined by the values of Qπ(s,a) in a softmax or ε-greedy 
manner. Algorithm of the discussed attention control system is summarized in table 1. 
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Table 4.1 Algorithm for learning top-down visual attention control 
 

Algorithm 
1 Get a visual image from the visual sensor I 
2 Apply the top-down attention signal b over the input image (bias the bottom up model) and report 

the attended area AOI 
3 Perform a higher cognitive processing over the attended area and derive a state s. 
4 Based on policy π(s), select an action a = (m, b), m ε M, b ε B. 
5 Get a reward r from the critic. 
6 Update the current policy π(s) by updating the value of Q(s, a) by equation x. 
7 If learning is not converged go to step one 
8 Stop. 

 
4.5 Experiments and Results 
In order investigate the efficiency of the proposed method, we applied it to a simulated driving 
experiment. In this experiment, agent tries to discover rules and spatial locations of interest of an 
unknown environment by performing actions and attentions until it learn a set of best actions and 
attentions in each state. A mobile robot with a limited field of view (FOV) is supposed to learn 
how to drive in a simulated driving site and extract the rules which are set by the designer in 
advance. Environment is a simulated driving world with crosses, three ways, turns, etc. Like real 
world situation some rules for driving are imposed in this environment which if driving agent 
ignores them will receive punishments. In Figure 4.2 visual field of view of the agent is shown. 
Visual sensor of the agent captures a scene from this field. The set of location that agent (its field 
view) sees at any moment are:  
 

തതതതതതܸܱܨ ൌ ሼ݂ݐ݂݈݁ ݀ݎܽݓݎ݋ ሺܮܨሻ, ,ሻܨܨሺ ݀ݎܽݓݎ݋݂ ݎ݂ܽ                  ,ሻܴܨሺ ݐ݄݃݅ݎ ݀ݎܽݓݎ݋݂
,ሻܮሺ ݐ݂݈݁ ,ሻܨሺ݀ݎܽݓݎ݋݂  ሺܴሻሽ                                         ሺ4.6ሻݐ݄݃݅ݎ

 
This large set of visual data makes an attention mechanism more necessary and useful. As it 

is assumed that one location could be attended in any moment because of agent’s limited 
processing power. Attention and motor actions the agent could perform are as follows:  

തതതതതതതതതതതതത݊݋ଓݐ݊݁ݐݐܣ ൌ ሼܮܨ, ,ܨܨ ,ܴܨ ,ܮ ,ܨ ܴ,  ሽ  ሺ7ሻ݈݈ݑܰ
 

തതതതതതതതത݊݋ଓݐܿܣ ൌ ሼ݃݀ݎܽݓݎ݋݂ ݋ሺܨሻ, ,ሺܴܶሻݐ݄݃݅ݎ ݊ݎݑݐ ,ሻܮሺܶ ݐ݂݈݁ ݊ݎݑݐ  ሽ               ሺ4.7ሻ݈݈ݑܰ
 

Each cell in the grid is represented by ‘0’ if it is open (white cell making the way) and ‘1’ if it 
is occupied. A state is represented by the contents of the cells it observes augmented by another 
value which is the content of the cell (value of the sign) at the attended location.  
 

തതതതതതത݁ݐܽݐܵ ൌ ሼܮܨ, ,ܨܨ ,ܴܨ ,ܮ ,ܨ ܴ,  ሽ           ሺ4.8ሻ݊݋݅ݐܽܿ݋݈ ݀݁݀݊݁ݐݐܽ ݐܽ ݁ݑ݈ܽݒ ݊݃݅ݏ
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Figure 4.2 Motor actions of the agent are shown at the left. Agent at any moment could choose to either 
turn left or right, go ahead or stay at its current position. Turning moves the agent one block to the direction 
of turn. At right is shown field of view of robot (FOV). Agent sees all locations in its visual field but could 
only attend to one location because of limited processing power. Right side shows the states of the agent 
behind a cross represented at table 2. In four sides of the cross are signs which alarm the status of the sign. 
Agent must learn to attend to the sign at its forward right and perform the right action in each situation. 
Signs are randomly changed in our simulation to generate all possible of states.  
 

A ‘9’ at the end of a state means the value of the sign is not relevant and does not change the 
state of the agent. For example, consider the situation of the robot behind a cross shown in the 
right side of Figure 4.2. Moving from position one to position two, agent’s state changes to 
1010004 provided that attention is FR and light is red which is coded here by a ‘4’ and 1010005 
if attention is FR and light is green. Driver must attend to the light in its forward right position 
and stay behind the cross if the light is red and pass if it gets green.  
 
Table 4.2 States of the robot behind the cross and their right actions and attentions that must be performed 
as well as their associated rewards at Figure 4.2. Agents was also punished (r=-2) whenever it went off-
road. ‘Rep.’ stands for ‘Representation’.  
 

Rule Representation Action Attention Reward Comment 

1 0001019 F FR +3 Position 1 behind cross 

2 1010002 N FR +3 Position 2 behind cross, red light 

3 1010003 F N +2 Position 2 behind cross, green light 

4 1011012 F N +2 Position 3 in cross, red light 

5 1011013 F N +2 Position 3 in cross, green light 
 
Some of the simulated driving environments are illustrated in Figure 4.3. Figure 4.4 shows the 
learning curves of a sample run.  
 
4.6 Conclusions 
In this paper, we proposed top-down model of attention control that is in cross roads of 
neuroscience and engineering. For that, we considered findings from both artificial intelligence 
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Figure 4.3 Examples of simulated driving environments from simple to complex (a to d). Environment 
could have crosses, turns, three ways etc. Rules for attention and action are associated with each state. 
Agent has to learn such rules in order to gain maximum reward. Lights were randomly changed in 
simulation in order to produce all combinations of states. Agent could learn in simple environments and 
later benefit from that knowledge in more complex ones by transferring its knowledge or it could start by 
learning in the complex environments.  

 
Figure 4.4 Learning curves associated with the driving environment c in Figure 4.3. An ε-greedy algorithm 
was used for action selection. Top row shows the average reward in each learning episode and the bottom 
row shows the average of the top row in a 50 iterations window. Parameters of the Q-value updating 
formula were α= 0.3 and γ=0.9.  
 
and neuroscience. From AI point of view, many previous works (like RL, planning, probabilistic 
frameworks, etc) has tried to propose methods for performing complex tasks. “How complex 
tasks could be learned?” has been the question of the past research in AI. Now we state this 
question as “How complex tasks could be learned when an agent has bounded rationality because 
of bounded sensory power and how does it affect its behavior?”.  

Our proposed solution is in abstract form. Next step will be to apply it to visual complex 
tasks where agent has to perform a richer set of physical actions in natural or synthetic visual 
interactive environments. Another extension is to implement the units of the model presented at 
Figure 4.1 like GIST extractor. Fortunately recently in (Oliva & Torallba, 2006) a fast approach 
has been proposed for that purpose. It also remains to define and implement higher cognitive 
processes in higher visual processing unit of the model.  
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Abstract. A biologically-inspired model of visual attention known as basic saliency model is 
biased for object detection. It is possible to make this model faster by inhibiting computation of 
features or scales which are less important for detection of an object. To this end, we revise this 
model by implementing a new scale-wise surround inhibition. Each feature channel and scale is 
associated with a weight and a processing cost. Then a global optimization algorithm is used to 
find a weight vector with maximum detection rate and minimum processing cost. This allows 
achieving maximum object detection rate for real time tasks when maximum processing time is 
limited. A heuristic is also proposed for learning top-down spatial attention control to further 
limit the saliency computation. Comparing over five objects, our approach has 85.4% and 92.2% 
average detection rates with and without cost respectively which are above 80% of the basic 
saliency model. Our approach has 33.3 average processing cost compared with 52 processing cost 
of the basic model. We achieved lower average hit numbers compared with NVT but slightly 
higher than VOCUS attentional systems. 
 
Keywords Selective perception, Top-down attention, Bottom-up attention, Basic saliency model, 
Object detection 
 
5.1 Introduction 
Both machine vision and biological vision systems are faced with the problem of processing 
enormous amount of visual information they receive at any given time. Attentional selection 
provides an efficient solution to this problem by proposing a small set of scene regions worthy 
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further analysis to higher-level and cognitive processes like scene interpretation, object 
recognition, decision making, etc.  

From a large body of literature in neurosciences and psychology, it is now known that 
attention is the process of selecting and gating visual information based on the saliency in the 
image itself (bottom-up) and on the prior knowledge about the scene (top-down). While bottom-
up visual attention is solely determined by the basic and low-level physical characteristics of a 
scene- like luminance contrast, color contrast, orientation and motion- top-down attention on the 
other hand is influenced by the task demands, emotions, expectations, etc. Bottom-up component 
of the visual attention is mainly examined by the early visual areas of the brain like LGN, V1 and 
V2 (Desimone & Duncan, 1995, Li, 2002). Top-down attentional signals are largely derived from 
a network of parietal and frontal areas like frontal eye field (FEF), supplementary eye field (SEF) 
and lateral parietal cortex (Corbetta & Shulman, 2002). In daily life, these two mechanisms 
interact together to direct our attentional behaviors. Rather than acting in spatial domain (Posner, 
1980, Posner & Cohen, 1984), visual attention could also be directed to particular features 
(Maunsell & Treue, 2006) and objects (Kanwisher & Driver, 1992). 

As in biology, solutions in machine vision and robotics are limited in terms of processing 
huge amount of visual sensory information which is very time consuming. That is mainly because 
of the serial processing mechanisms used in the design of such creatures. This limitation 
necessitates engineering attentional control mechanisms in the brain of agents especially when 
they are supposed to act in real-world situations, which means to guarantee a limited response 
time. Some of the applications of attention in computer vision and robotics are object recognition, 
image compression, image matching, image segmentation, object tracking, active vision and 
human-robot interaction in addition to robot navigation and localization.  

So far most experimental studies have addressed understanding bottom-up mechanisms of 
visual attention. That is probably because these mechanisms are mainly objective. On the other 
hand, top-down mechanisms show subject-to-subject variability which makes them difficult to 
tackle (Yarbus, 1967). As a result, computational studies have been concentrated more on 
modeling bottom-up mechanisms due to lack of abstract knowledge on top-down component of 
visual attention. In our work, we propose an approach for learning top-down attentional 
modulations without explicit mathematical formulation of impact of an object or its surrounding 
in saliency.  

From a behavioral perspective, some of the human behaviors are learned by exposing them to 
a set of offline data. For example for learning to drive, a person familiarizes himself with traffic 
signs and their associated meanings and then uses this knowledge when doing real-time driving. 
Merging these two learning phases- offline learning of rules and signs and learning to apply them 
interactively and online- seems to be the best approach for doing this complicated task. 
According to this logic, our attention system could be considered as a basic component of a larger 
system which provides top-down signals when requested by a higher cognitive layer. 

We consider attention control as an optimization problem in which an artificial agent has to 
devote its limited processing power to the most relevant items or dimensions of the sensory space. 
The basic idea is that an agent is looking for an object of its interest in the scene and therefore has 
to bias its bottom-up attention system in order to detect that object efficiently and fast. We follow 
a data-driven approach for learning top-down attention, where top-down attentional signals are 
learned from a set of training images containing an object in clutter. This knowledge can later be 
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used when an agent is doing a task online and needs to attend to different objects in different 
situations. The result of optimization will be ignoring some features (sensors) in addition to 
finding their relative importance in construction of a final saliency map.  

Our approach is an extension of the basic saliency model (Itti et al., 1998), which is based on 
the idea of saliency map, an explicit two-dimensional topographical map that encodes stimulus 
conspicuity or saliency at every scene location. Saliency model is purely data-driven and simply 
selects some spatial locations without using any feedback mechanism or top-down gains. In 
particular, we introduce two contributions. First, the basic saliency model is revised in a way 
which allows selection and weighting of different scales. Then an evolutionary algorithm is used 
for biasing this model toward specific objects in cluttered scenes while considering the costs of 
operations of the saliency model. This allows an agent to use its certain limited processing 
resources efficiently in terms of achieving maximum object detection rate. In our second 
contribution, we propose a method to reduce saliency computation and therefore faster object 
search in natural scenes. It is based on the observation that, in some tasks objects appear in 
specific spatial locations with respect to the observer. For example in driving, traffic signs mostly 
appear in the right visual field of the driver. In addition to these, performances of our approach, 
basic saliency model as well as a general benchmarking approach for object detection are 
compared over disrupted images with several types of noises. 

The rest of this chapter is organized as follows. In Sect. 2 related works for learning top-
down attention control and traffic sign detection are reviewed. Basics of our method for learning 
top-down feature-based and spatial attention control are presented in Sect. 3. Experiments and 
results are shown in Sect. 4. Sect. 5 discusses the results and finally, Sect. 6 summarizes and 
concludes the paper.  

 
5.2 Related works 
A broad range of modeling works is reported in the literature of visual attention, however little 
research is reported on learning and development of attention control. In this section we review 
some studies which are directly related to ours, mainly those focused on learning aspects of visual 
attention control. In order to situate our work among previous works on traffic sign detection, 
some successful studies from this domain are also reviewed.  
 
5.2.1 Learning top-down attention control 
Evidence toward the idea that attention could be learned by biological mechanisms is proposed in 
(Nakayama et al., 2004). In a behavioral task, authors showed that a short memory system is 
responsible for rapid deployment of visual attention. They suggest that fast and transient 
component of visual attention is flexible and capable of learning simple relationships (Nakayama, 
1989) and is dependent on the previous experiences of the subjects (Kristjansson & Nakayama, 
2003). Human subjects were supposed to answer a question about a feature of a specific visual 
item in a synthetic search array. Subjects had lower reaction times when this feature remained the 
same throughout successive trials (Maljkovic & Nakayama, 1994). 

In (Rybak et al., 1998), it is postulated that human eyes move and successively fixate at the 
most salient parts of an image during visual perception and recognition. These parts are then 
processed with the highest resolution. Simultaneously, the mechanism of visual attention chooses 
the next eye position using information extracted from the retinal periphery (Klein, 2000). Eye 
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movement behavior has been shown to be task-specific and context-dependent in humans 
(Yarbus, 1967). In a behavioral task, human subjects were asked a question about a scene 
presented to them and their saccadic eye movements were recorded. Depending on the question, 
subjects had different eye movement patterns. For example when asking to judge about age of 
persons in a scene, eye movements were mainly focused on faces. This experiment points toward 
another evidence that top-down attention can be learned.  

One of the outstanding works on visual attention, known as the basic saliency model, is 
proposed by Itti et al. (Itti et al., 1998) which is an extension and implementation of an earlier 
model of visual attention by Koch and Ullman (Koch & Ullman, 1985). Simplicity and little 
processing time are two main advantages of this model. It has been used to explain behavioral 
data on simple synthetic and static search arrays and also dynamic natural stimuli like movies and 
games (Peters & Itti, 2008). To add top-down capabilities to this model, a task-driven model of 
visual attention is proposed in (Navalpakkam & Itti, 2005) 0. Given a task definition in the form 
of keywords, this model first determines and stores task-relevant entities in working memory 
using prior knowledge stored in a long-term memory. It then attempts to detect the most relevant 
entity by biasing its visual attention system with the entity's learned low-level features. It attends 
to the most salient location in the scene and attempts to recognize the attended object through 
hierarchical matching against object representations stored in the long-term memory. It updates 
its working memory with the task relevance of the recognized entity and updates a topographic 
task relevance map with the location and relevance of that entity. In this study, we aim to build 
our top-down attention system upon the basic saliency model and bias it for detection of different 
objects in natural scenes. 

In (Frintrop, 2006), Frintrop et al. have introduced a new computational attention system 
known as VOCUS for efficient and robust detection of regions of interest in images. In their 
approach, the selection of an image region is determined by two kinds of influences: bottom-up 
and top-down cues. Bottom-up cues are determined by local contrasts and by uniqueness of a 
feature. Top-down cues depend on the features of a pre-specified target. Bottom-up and top-down 
down saliency maps are then linearly added and weighted to form a final saliency map. They 
have shown that VOCUS is robust and applicable to real-world scenes.  

Basic saliency model concentrates on computing bottom-up attention. Recently, 
Navalpakkam and Itti (Navalpakkam & Itti, 2006) have introduced a newer version of the basic 
model by adding top-down capabilities to it. The idea is to learn feature values of a target object 
from a training image in which the target is indicated by a binary mask.  By considering the target 
region as well as a region in its close surrounding, their system learns feature values from 
different feature maps. During object detection, this feature vector is used to bias the feature maps 
by multiplying each map with the corresponding weight. Thereby, exciting and inhibiting as well 
as bottom-up and top-down cues are mixed and directly fused into the resulting saliency map. 

In contrast to the above mentioned two techniques (Frintrop, 2006, Navalpakkam & Itti, 
2006), instead of only finding the appropriate weights, we also incorporate processing costs of the 
feature channels to force an optimization process to choose the feature vectors with high detection 
rate and low cost. Basic saliency model does not allow scale selection because center-surround 
inhibition in this model is implemented by subtraction of scales from each other. We revise the 
basic model by implementing surround inhibition in each scale independent of others. This not 
only allows scale weighing but also allows selection among scales for saliency detection. 
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Inhibition of those scales which are not important in detection of an object results in faster object 
detection and less computation. Furthermore associating costs to operations of the basic saliency 
model allows optimal use of computational resources of the agent. For example when an agent 
has a certain amount of computation power, it must efficiently select/weight features and scales 
of the saliency model in order to achieve the maximum detection rate. Our approach in this paper 
provides such a capability.   
 
5.2.2 Traffic sign detection and recognition  
Traffic sign recognition (TSR) can be considered as part of the bigger problem of autonomous 
driving. An autonomous driver system relies on vision-based recognition of surrounding area in 
order to make driving system function as the feedback provider for control of steering wheel, 
accelerator, brake, etc. Besides the application of TSR in autonomous vehicles, it can also serve 
as an assistant driver to notify the driver about approaching a traffic sign or his risky behavior 
(like driving above speed limit). Driving is the best example of a complex task which involves 
many cognitive behaviors and most importantly attention. Due to this, we consider visual 
attention as a part of a TSR system for fast detection of traffic signs. 

Many researchers have developed various techniques for automatic road traffic sign 
recognition. Regarding the detection problem, different approaches have been proposed. A few 
approaches rely solely on gray-scale data. Gavrila (Gavrila, 1999) employs a template-based 
approach in combination with a distance transform. Barnes and Zelinsky (Barnes & Zelinsky, 
2004) utilize a measure of radial symmetry and apply it as a pre-segmentation within their 
framework. Since radial symmetry corresponds to a simplified (i.e., fast) circular Hough 
transform, it is particularly applicable for detecting possible occurrences of circular signs. The 
majority of recently published sign detection approaches make use of color information (de la 
Escalera et al., 2003, Paclik et al., 2000, Gomez & Fuentes, 2007). They share a common two-
step strategy. First, a pre-segmentation is employed by a thresholding operation on a color 
representation. Some authors perform this directly in RGB space, others apply its linear or 
nonlinear transformations. Subsequently, a final detection decision is obtained from shape based 
features like corners or edge features, applied only to the pre-segmented regions. The most 
discriminating colors for traffic signs include red, orange, yellow, green, blue, violet, brown and 
achromatic (Gomez & Fuentes, 2007). A joint treatment of color and shape has been proposed by 
Fang et al. (Fang et al., 2003). The authors compute a feature map of the entire image frame, 
based on color and gradient information, while incorporating a geometry model of signs. 
Detection of traffic signs in only a single image has three problems (de la Escalera & Moreno, 
1997): (1) information about positions and size of traffic signs, which is useful to reduce the 
computation time, is not available (2) it is difficult to detect a traffic sign correctly when 
temporary occlusion occurs and (3) correctness of the detection is hard to verify. In order to 
handle these issues tracking techniques have been developed for traffic sign detection. In (de la 
Escalera & Moreno, 1997), image sequences are utilized for recognition of traffic signs. 

Discriminating shape and colors of traffic signs make them easily recognizable by humans. 
Same factors bring the idea of applying the basic saliency model for detection of traffic signs 
which we follow in this work. Not only we analyze the capability of the saliency model for 
detecting traffic signs, but also we evaluate its efficiency for natural object detection.  
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The main reason why we propose the basic saliency model of visual attention as a subsystem 
of a typical TSR system for detection of traffic signs is because of its fast computation time. This 
does not necessarily mean that it could outperform above mentioned methods for detection of 
traffic signs. There are two reasons for this. First, basic saliency model is based on abstract 
biological findings from human vision and is designed in a way to be fast like human visual 
attention. It is a general purpose system for detection of salient image regions. Second, basic 
saliency model in its current form does not consider structure and shape of objects. This weakness 
makes it inferior (bus faster) to single purpose solutions for detection of specific objects like faces 
or traffic signs. Adding learning capabilities to the basic saliency model for enabling it to also 
consider shape of different objects demands more research and goes beyond the scope of this 
paper.  
 
5.3 Learning top-down attentional modulations 
In this section we present our goal-directed visual attention system. Top-down influences play an 
important role in human visual attention rather than bottom-up cues. Top-down sources of visual 
attention are mainly determined by the experiences, motivations, emotions, expectations and 
goals. For example a hungry person is focused on foods.  

Saliency model without biasing selects a spatial location in a feed-forward manner. Saliencies 
in feature dimensions- intensity, orientation and color- are computed independently and are fused 
into a single final saliency map. The top-down extension in our model includes a search phase to 
learn feature weights to determine which features to enhance and which ones to inhibit. The 
weighted features contribute to modulate the bottom-up saliency map highlighting regions with 
target-relevant features. Instead of only finding the appropriate weights, we also incorporate 
processing costs of the feature channels to force the optimization process to choose the feature 
vectors with high detection rate and low cost. When an agent has a certain amount of processing 
resources it could bypass computation of irrelevant feature channels or scales of the basic 
saliency model. This is actually a constrained optimization problem which we solve by global 
optimization techniques.  
 
5.3.1 Revised saliency-based model of visual attention  
To furnish the basic saliency model for our purpose, i.e biasing it for object detection, a Gaussian 
pyramid (Burt & Adelson, 1983) with 6 scales (s0 .. s5) is built in each feature channel of the 
image by successively filtering the image with a Gaussian low-pass filter (GLF) that is then 
subsampled, i.e si+1 has half the width and height of si. Three features are considered; intensity, 
orientation and color. A surround inhibition operation is then applied to all scales of each pyramid 
to enhance those parts of the image which are different from their surroundings. To implement 
surround inhibition, basic saliency model (Itti et al., 1998) subtracts coarser scales from finer 
ones. Since we would like to select scales rather than weighting them, we dissociate scales and 
then apply the surround inhibition over each scale separately. This is not possible in the basic 
model because scales are dependent to each other and hence cannot be inhibited or selected. 
Surround modulated images in each scale of a pyramid are upsampled to a predetermined scale 
(here the largest scale, s0) and are then added. To accomplish surround inhibition (SI), we 
designed a nonlinear filter which compares the similarity of each pixel with the average of its 
surrounding window and then inhibits the center pixel as: 
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ᇱ݉ܫ ൌ  ሻ,                                                                                                                  ሺ5.1ሻ݉ܫሺܫܵ 

,ݔᇱሺ݉ܫ ሻݕ ൌ max ൬0, ,ݔሺ݉ܫ ሻݕ െ ݉݁ܽ݊ ቀ݀݊ݑ݋ݎݎݑݏ൫݉ܫሺݔ, ሻ൯ቁ൰ݕ ,ݔ ׊ , א ݕ         ݉ܫ

 
where surround is a spatial n×n mask around pixel Im(x,y). Im'(x,y) is the new value of the pixel. 
Fig. 1 demonstrates application of the surround inhibition operation on some test images. Here, 
all scales of the intensity pyramid are surround inhibited and then added to form the saliency map 
at the intensity channel. As Fig. 1 shows, this operation has resulted in marking the salient areas 
with respect to the rest of each image.  
 

 
 
Figure 5.1 Surround inhibition operation using (1). Top row shows five test images and bottom row shows 
the detected salient regions with surround window sizes (n) from left to right as 7, 7, 3, 7 and 5. Red circles 
illustrate the most salient locations. 

  
We used a MATLAB® implementation of the basic saliency model and revised it for our 

purpose1. The whole revised saliency model is shown in Fig. 5.2.  
 

                                                 
1 Saliency toolbox homepage. http://www.saliencytoolbox.net/ 
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Figure 5.2 Proposed top-down saliency model. Input image is decomposed to several feature channels and 
dimensions within each feature channel. Here, 1 dimension for intensity channel, 2 red/green and 
yellow/blue dimensions for color channel and 4 dimensions for orientation channel are used. Image 
pyramids are built in each feature dimension by successively low-pass filtering and subsampling the image. 
Surround inhibition operation (1) is applied to all scales of a channel. In the next step, maps across scales 
are weighted and summed to form feature maps (2,3). Then, feature maps are normalized, weighted and 
summed again to form conspicuity maps (4). Final saliency map is derived by normalizing, weighting and 
summing these conspicuity maps (5). Maximums at the final map determine the focus of attention (FOA). 
After a time constant, the most salient location is inhibited to allow other locations grab attention (IOR). 
Contributions of scales in dimensions, dimensions in feature channels and feature channels in the final 
saliency map are determined by a learned weight vector ( ഥ߱).  
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The input image to the system is decomposed into 3 feature channels: Intensity (I), Color (C) and 
Orientation (O). Color channels are calculated as follows. If r, g and b are the red, green and blue 
dimensions in RGB color space, then I = (r + g + b)/3, R = r - (g + b)/2, G = g - (r + b)/2, B = b 
- (r + g)/2, and Y = r + g - 2 (|r - g| + b) (negative values are set to zero).  Local orientations (Oθ) 
are obtained by applying Gabor filters to the images in the intensity pyramid I. These operations 
are shown in (2). Ps is the feature at scale s. P could be intensity (I), Red (R), Green (G), Blue (B), 
Yellow (Y) or orientation (O). ܱఏ,௦ is the orientation channel at orientation θ and scale s. 

 
ூ,௦ܨ ൌ  ௦ሻ                                                                            ሺ5.2ሻܫሺܫܵ

ோீ,ௌܨ ൌ ሺܴ௦ܫܵ െ            ௦ሻܩ
஻௒,௦ܨ ൌ ௦ܤሺܫܵ െ ௦ܻሻ  
ఏ,௦ܨ ൌ                                        ൫ܱఏ,௦൯ܫܵ

 
In (2), ܨூ,௦, ,ோீ,௦ܨ  ఏ,௦ are the intensity, red/green, yellow/blue and orientation channelsܨ ஻௒,௦ andܨ 
in scale s, respectively. SI is the surround inhabitation operation in (1). These feature maps are 
summed over and sums are normalized again: 
 

௟ܨ ൌ ܰሺ ∑ ሺ߱ݏሻ௦. ௟,௦௦ܨ  ሻ  with  ݈ ߳  ܮூ ׫ ஼ܮ  ׫   ை                                                     ሺ5.3ሻܮ 
                                  

      and  ܮூ ൌ ሼܫሽ, ஼ܮ ൌ ሼܴܩ, ,ሽܻܤ ைܮ ൌ ሼ0଴, 45଴, 90଴, 135଴ሽ                                                        
 
where (sω)s is the weight of scale s. ܰሺ. ሻ is an iterative, nonlinear normalization operator, 
simulating local competitions between neighboring salient locations  0. In each feature channel, 
feature dimensions contribute to the conspicuity maps by weighting and normalizing once again 
(4). 
 

௣ܥ ൌ ܰ ቌ ෍ ሺ݀߱ሻ௣.
௟ఢ ௅೛

௟ ቍܨ , ,ܫሼ ߳ ݌ ,ܥ ܱሽ                                                  ሺ5.4ሻ 

 
Variable (dω)p in (4) determines weight of a dimension within feature channel p. All conspicuity 
maps are weighted and combined at this stage into a final saliency map (5). 
 

ܯܵ ൌ ෍ሺܿ߱ሻ௞.
௞

, ௞ܥ ݇ ߳ ሼܫ, ,ܥ ܱሽ                                                            ሺ5.5ሻ 

 
(cω)k in (5) weights the influences of feature channels in the final saliency map. The locations in 
the saliency map compete for the highest saliency value by means of a Winner-Take-All (WTA) 
network of integrate and fire neurons (Itti & Koch, 2001). The winning location of this process is 
attended to and the saliency map is inhibited at this location. Continuing WTA competition, next 
most salient location is attended to and so on to form a scanpath of successive overt attentions.  
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5.3.2 Offline learning of top-down attentional modulations 
Real-world systems have limited amount of computational resources due to serial processing 
mechanisms used in their designs. Therefore it is necessary to optimize use of these resources. 
For the agent to make optimum use of its processing resources, in addition to a weight, a cost is 
also associated to each feature channel and image resolution. Weight and cost vectors are 
represented by ഥ߱ and ܥҧ, respectively in (6). Weight vector determines weights of feature 
channels, dimensions within channels and also scales in image pyramids respectively. Elements 
in the cost vector correspond to the associated feature or scale determined by the weight vector. 
 

     ഥ߱ ൌ ൫ܿ߱തതതത, ݀߱തതതത, ,തതതത൯߱ݏ | ഥ߱| ൌ 16, |ܿ߱തതതത| ൌ 3, ห݀߱തതതതห ൌ 7, |തതതത߱ݏ| ൌ 6                         ሺ5.6ሻ 
 ݀߱തതതത ൌ ൫݀߱ܫതതതതത, ,തതതതതതܥ߱݀ ܱ݀߱തതതതതത൯, ห݀߱ܫതതതതതห ൌ 1, തതതതതതതหൌܥ߱݀| 2, |ܱ݀߱തതതതതതതห ൌ 4                 
ҧܥ ൌ ሺܿଵ, ܿଶ, … , ܿଵ଺ሻ                                                                                         

 
In (6), ܿ߱തതതത, ݀߱തതതത,  തതതത are weight vectors for feature channels, dimensions within channels and߱ݏ

scales, respectively. ݀߱ܫതതതതത, ,തതതതതതܥ߱݀ ܱ݀߱തതതതതത are weight vectors for intensity, color (red/green and 
yellow/blue) and orientation (0o, 45o, 90o and 135o) dimensions. Our aim is to find a vector of 
weights (ωഥ) determining the contributions of features and image resolutions to detect a specific 
object in a set of images while taking into account their costs (ܥҧ). Thus, the optimum weight 
vector must satisfy these two objectives (1) It must enable the saliency model to detect an object 
of interest correctly (maximum detection rate)  and (2) Its associated feature vector, must have the 
least computation (minimum processing cost). For this purpose, we follow a data-driven 
approach. First, optimal weight vector is sought to satisfy the above two objectives over a training 
image dataset and is then evaluated over a separate test set of images. Assume that training set 
contains M images with an object of interest tagged in them as: 

 
ܶ ൌ ሼ݉ܫଵ, ,ଶ݉ܫ … ,  ெሽ                                                         ሺ5.7ሻ݉ܫ

 
An example fitness function which satisfies the above mentioned two objectives is shown in 

(8). 
 

݂ሺ ഥ߱ሻ ൌ ଵ
ெ

൫∑ norm൫Saliency൫݉ܫ௜, ሺݎ ഥ߱ሻ൯ െ ௜൯ெݐ
௜ୀଵ ൯ሺݑ( ഥ߱ሻ ·  ҧሻ                  ሺ5.8ሻܥ

௜ሻ߱)ݎ ൌ  ቄ
߱௜,          ߱௜ ൐ ߙ
0,    otherwise ௜ሻ߱)ݑ   ,       ൌ  ൜1,          ߱௜ ൐ ߙ

0,  otherwise  

 
In (8), M is the size of the train set, norm(.) is the Euclidean distance between two points in 

an image. Saliency is a function which takes an image and a vector of weights as input and 
determines the most salient location in the image. ti is the location of the target object in the i-th 
image. u(.) is the step function and is 1 when a feature channel or resolution is used. r(.) is the 
ramp function and zeros its input when it is smaller than a threshold. Operator · is the dot product. 
Since we are going to compare the saliency detection with and without costs, results are also 
reported using the fitness function of (9) when costs are ignored and the single objective is to 
maximize the detection rate.  
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݂ሺ ഥ߱ሻ ൌ
1
ܯ ൭෍ normሺSaliencyሺ݉ܫ௜, ሺݎ ഥ߱ሻሻ െ ௜ሻݐ

ெ

௜ୀଵ

൱                                  ሺ5.9ሻ 

 
We also consider a case when the agent has a limited computational power and has to select 

those feature channels or scales of the basic saliency model when the accumulated cost does not 
exceed a cost limit (ܳ). This is a constrained optimization problem in which goal is to maximize 
detection rate but with a constraint which is the cost limit: 
 

݂ሺ ഥ߱ሻ ൌ ଵ
ெ

൫∑ norm൫Saliency൫݉ܫ௜, ሺݎ ഥ߱ሻ൯ െ ௜൯ெݐ
௜ୀଵ ൯                                  ሺ5.10ሻ     

)ݑ       ഥ߱ሻ · ҧܥ  ൑ ܳ                                                                                                                   
 

Note that, a lower fitness value for the above functions means that it has better performance. 
For minimizing fitness functions, an algorithm known as comprehensive learning particle swarm 
optimization (CLPSO (Liang et al., 2006)) is used. CLPSO is simple, easy to implement and has 
been applied to a wide range of optimization problems. Its fast convergence and better 
performance over multi modal functions are the reasons why we chose this optimization 
algorithm. First, particles of CLPSO (each particle is a 16D weight vector) are randomly 
initialized in the range [0 6]. Salient locations are detected by applying each particle to the 
saliency model to calculate its fitness. Then, through CLPSO operations, particles are evolved in 
order to minimize the fitness values. In cost-limited case (10) when an individual violated the 
constraint condition, its fitness was assigned a very large positive number. Table 1 shows 
parameters of CLPSO used in the experiments. 
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Table 5.1 Parameters of CLPSO used in experiments 

 
parameter value 

particles 300 
max iterations 40 
dimensions 16 
[min(xi)  max(xi)] [0 6] 
refreshing gap 5 
[ω c pc vmax] [0.9 1.5 0.3 5] 

 
5.4 Experiments and results   
Humans have the capability to attend to features or dimensions of perceptual space or could select 
the spatial locations which usually contain objects  0. The same capability is highly desired for 
artificial systems. In this section by means of 4 experiments we show how our algorithm can be 
used for both feature-based and spatial attention control. 
 
5.4.1 Learning top-down feature based attention control 
Three experiments demonstrate the strength of our algorithm for feature-based attention control. 
First 2 experiments are pop-out and conjunction search tasks (Wolfe, 1998) and object detection 
in natural scenes. Search performance (percentage of detection rate), average hit number and cost 
of our method are compared with the basic saliency model in both without-cost (9) and with-cost 
(8) cases. In the third experiment, performance of our method is compared with the basic saliency 
model as well as Template Matching (TM) approach over noisy images. 

In with-cost case, feature costs were defined based on relative computational costs of feature 
channels and image resolutions as ܥҧ ൌ ሾ3 1 4, 3 3, 1, 4 4 4 4, 6 5 4 3 2 1ሿ. For example, a color 
channel needs more computation than an intensity channel but less compared to an orientation 
channel. Or computation of surround inhibition in scale s0 is more expensive than those of other 
scales in the Gaussian pyramid. 
 
Experiment I. Pop-out and conjunction search tasks In a pop-out or conjunction search task, a 
search array is presented to the system. It has to determine which item in the search array is 
different from other items. Then its reaction time is measured. Items in the search array differ in 
one dimension only in a pop-out task, while in a conjunction search task, items differ in more 
than one dimension which makes the task harder. Psychological data have shown that reaction 
times (RT’s) of human subjects remain constant with increasing the number of items in the search 
array. In contrast, in a conjunction search task, reaction times increase linearly with size of the 
search array. 

Revised saliency model was trained using CLPSO for known saliency detection over 2 pop-
out and 3 conjunction search arrays shown in Fig. 3. Fig. 4 shows biasing weights over the 
synthetic search arrays in both without-cost and with-cost cases after CLPSO convergence. 
CLPSO is trained 5 times and averages are shown. In this experiment, size of the surround 
inhibition window was 5. In all search arrays target was successfully detected in first fixation. 



60 
 

 

 
Figure 5.3 Synthetic search arrays used in experiment I. Two left arrays are pop-out and 3 right ones are 
conjunction search tasks. Target item is shown with red ellipse. Blue rectangle in the fifth array is the first 
saccade of the basic saliency model. 

 
Figure 5.4 Learned weights after CLPSO convergence over synthetic search arrays. Left column shows the 
weights learned in without-cost case and right column shows with-cost case. Blue horizontal lines in the 
right column show lines α=1 (threshold parameter in (8)). Employed features are: Color, Intensity, 
Orientation, Red/Green and Yellow/Blue dimensions within color channel, a single intensity dimension, 4 
orientation dimensions within orientation channel and 6 scales. 
 

As Fig. 4 shows, in the first search array with white dot among black dots, intensity channel 
has the highest weight in both cases. In with-cost case of this array, only intensity channel and 
scales s0 and s3 are selected resulting in mean total cost of 11. Since orientation is not important in 
saliency of the target it is ignored by CLPSO. In the second array with vertical bar among oblique 
bars, in without-cost case, orientation channel and two dimensions (45o and 90o) have the highest 
weights. In with-cost case other channels except orientation are suppressed to reduce cost from 41 
to 17. Intensity channel is ignored because intensities of target and distracters are the same. Since 
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the target in the third array is the yellow bar, yellow/blue color dimension have the highest 
weight. For this array scales s0 to s4 are more important. In the forth array, color channel and 
yellow/blue dimension have the highest weights. In with-cost of this array only yellow/blue, 0o 
and 90o dimensions are selected. While in the first two pop-out search arrays, the basic saliency 
model can also detect the target, in the conjunction search arrays, CLPSO was trained to 
selectively attend to a target which is not necessarily the attended item by the basic saliency 
model. For example, while in the last synthetic image, the basic saliency model selects the bar in 
the rectangle, we purposefully chose the blue bar to become salient. Since there are several colors 
available in this array, both dimensions within the color channel have got high weights. Weights 
for intensity channel and orientations (45o and 135o) are very low. In with-cost case of this array, 
intensity, orientation and scales (s0 to s3) which are not discriminating the target object are not 
selected by the evolutionary process. 
 
Experiment II. Natural object and traffic sign detection Proposed method was also evaluated 
for natural object and traffic sign detection on cluttered scenes2. We used 3 traffic signs (bike, 
crossing and pedestrian) and 2 objects (coke and triangle). Number of images for bike, crossing, 
pedestrian, triangle and coke were 70, 45, 55, 69 and 42, respectively. Sizes of images were 
360×270 pixels. Fig. 5 illustrates sample signs and objects in natural scenes. 
 

 
Figure 5.5 Sample objects used in experiment II. From left to right: bike, crossing, pedestrian, coke and 
triangle. Target is shown by the yellow circle. 

 
CLPSO was trained over 10 random images for each object and then the best weight vector 

was tested over the remaining images of that object. Results are reported over 5 runs with random 
train images. Fig. 6 shows fitness values for both without-cost and with-cost cases during CLPSO 
convergence over training sets. Derived weight vectors in both cases are shown in Fig. 7. Window 
size of surround inhibition was 7.  
 

                                                 
2 Images for this experiment were selected from databases available at http://ilab.usc.edu/imgdbs and 
http://www.cs.rug.nl/~imaging/databases/traffic_sign_database/traffic_sign_database.html. 
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Figure 5.6 CLPSO convergence for traffic signs and natural objects in experiment II in both without-cost 
(top) and with-cost (bottom) cases. 
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Figure 5.7 Learned weights after CLPSO convergence over traffic signs and objects. Left column shows 
the weights learned in without-cost case and right column in with-cost case. Blue horizontal line in right 
column shows the line α=1 (threshold parameter in (8)). Values below this line are considered zero to 
evaluate the detection rates. 
 

For bike, in without-cost case, color (yellow/blue) and orientation (45o and 135o) channels 
have the highest weights. Middle scales (s1 to s3) are more informative for detection of this object. 
In with-cost case, the optimization process has decreased the contribution of intensity and 
horizontal orientation. For crossing, again color channel is selected in without-cost case. For this 
sign, red/green channel has higher weight. Orientation dimensions (0o, 45o and 135o) which 
appear in shape of the crossing sign have higher weights. Since almost in all images of this sign, 
triangle is toward up, these orientations are stable features and have got higher weights than other 
orientation dimensions. In with-cost case of this sign, color and orientation channels have 
survived in the evolutionary process. In this case, the largest scale s0 has the highest weight. For 
pedestrian sign, color (yellow/blue) and orientation channels are selected in both cases. Important 
orientations for this sign are 45o and 90o. 

For the coke object, color (red/green) channel, orientation 135o and scale s1 have higher 
weights in without-cost case. In both cases orientations 90o and 135o are important for detection of 
this object. For triangle object as in crossing sign in both cases, 0o, 45o and 135o orientations have 
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higher values again showing importance of these features in discrimination of triangular objects. 
Among color channels, red/green dimension has the highest weight.  

Tables 2 and 3 show the average values of detection rates and average hit numbers using 
fitness functions in (8) and (9). An object was considered detected if a salient point was generated 
in a vicinity of 30 pixels around ti.  For detection of an object rather than the most salient point, 2 
other locations generated by WTA were also considered. Hit number of an image Imi for a known 
target ti is the rank of the focus that hits the target in order of saliency. For example, if the second 
focus is on the target then its hit number is 2. Images with targets not detected in max fixations 
are not included in the averages. The average hit number for an image set is the mean of hit 
numbers of all images. A search method with lower average hit number is favored.  

 
Table 5.2 Detection performances of biased saliency model in without-cost case and the basic saliency 
model over natural objects and traffic signs with max fixations equal to 3. Results are averaged over 5 runs 
with random training and test sets. Performance of the basic saliency model is over the test sets. Numbers 
in parentheses are standard deviations. 
 

target 

biased saliency model 
basic saliency 

model 
train test 

detection 
rate %  

avg. hit 
number detection 

rate % 
avg. hit 
number 

fitness 
# test 

images 
detection 

rate % 
avg. hit 
number 

bike 92.3(2.1) 1.4(0.4) 22.3(9.2) 60 90.2(2) 1.6(0.1) 81.8(0.6) 2.2(0.2) 

crossing 96.7(1.2) 1.5(0.7) 18.1(5.4) 35 93.8(0.9) 1.5(0.2) 78.2(1.4) 2.5(0.3) 

pedestrian 98.2(1) 1.2(0.2) 14.4(6.1) 45 94.2(1.1) 1.3(0.7) 83.3(1) 1.7(0.1) 

coke 95.2(1.4) 1.3(0.3) 13.2(8) 59 92.2(2) 1.5(0.5) 80.9(0.4) 1.9(0.5) 

triangle 92.5(2.3) 1.7(0.9) 27.8(11.4) 32 91(1.6) 1.8(0.4) 76.5(0.8) 2.2(0.2) 

 
Table 5.3 Detection performance over natural objects and traffic signs in with-cost case with max fixations 
equal to 3.  
 

target 
train test 

detection 
rate % 

avg. hit 
number 

fitness 
# test 

images 
detection 

rate % 
avg. hit 
number 

computation 
cost 

bike 87.8(1.2) 1.7(0.3) 421.9(25.6) 60 85.8(1.5) 1.8(0.2) 25.5(4.2) 

crossing 84.2(1.9) 1.5(0.7) 302.1(47.1) 35 78.2(2.1) 2(0.3) 40.5(5.8) 

pedestrian 91.6(1) 1.5(0.4) 531.9(54.3) 45 90.6(2) 1.7(0.4) 35.6(5.2) 

coke 87.3(2.7) 1.8(0.6) 730(34.4) 59 87.1(1.1) 1.9(0.1) 32.2(7.3) 

triangle 89.6(2.1) 1.4(0.2) 512.2(27.7) 32 85.6(1.2) 2.1(0.2) 32.7(6.1) 

 
The basic bottom-up saliency model has always total cost of 52, since it uses all the channels 

and resolutions. On the other hand, biased model has the average cost of 33.3 over signs and 
objects, which is less than the cost of the basic saliency model. Average detection rate with 3 hits 
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of the basic saliency model is 80% while we achieved 92.2% without cost and 85.4% with cost. 
Results prove that biasing leads to higher recognition rate and lower cost than the basic saliency 
method. Average hit numbers of our approach are 1.54 (without-cost) and 1.9 (with-cost) while 
the basic saliency model has average hit number of 2.1. Performance of our model without 
biasing is nearly the same as the basic saliency model. Variance in the costs shows that cost is 
sensitive to train and test data. 

Fig. 8 shows detection rate of cost-limited case (10) for several values of cost. As the cost 
limit increases, detection rate also increases. In this case the best individual learned with a certain 
amount of cost is applied to the test set. This figure helps an agent to assign its processing power 
to reach the accuracy level it needs. For example in order to reach 80% for bike detection, the 
agent should at least have 20 computational resources or costs. Or with 40 processing cost the 
agent could not achieve more than 89% for detection of coke using the biased saliency model. For 
analysis of the data difference in fitness functions and standard deviations should be noted. 
 

 
Figure 5.8 Mean detection of cost-limited case for traffic signs and objects over test sets. 

 
Three first salient points generated by the biased saliency model (using the best individual in 

the final population in without-cost case) over 3 sample images of each object are shown in Fig. 
5.9. 
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Figure 5.9 Three first attended locations of the biased saliency model over traffic signs and the objects. 
Numbers indicate the order of attended locations. Columns from left to right are for bike, crossing, 
pedestrian, coke and triangle objects. 
 
Experiment III. Detection performance over disrupted images In this experiment, we 
compare the biased saliency model in without-cost case against basic saliency model and 
template matching which is a basic benchmarking method for object detection over disrupted 
images with several types of noises. In template matching, a window containing an instance of an 
object is slided over the image and correlation (or convolution) of each image region with the 
object is calculated. Template matching is very sensitive to image distortions like in-plane 
rotation and also to template selection. Gaussian, salt & pepper, speckle and motion blurred 
noises were selected because they simulate rainy and snowy weathers and movements in driving 
situations.  

Achieved weights after CLPSO training in experiment II are used in this experiment over 
noisy test images. Three salient locations were proposed by each method as the most probable 
locations containing signs. Fig. 10 illustrates a sample image under typical noises and 3 locations 
proposed by the biased saliency model. Table 4 compares detection rates of the biased saliency 
model with template matching and basic saliency model. 
 

 
 
Figure 5.10 Pedestrian sign detection over noisy images with biased saliency model. From left to right: 
Gaussian noise (μ = 0, σ = 0.5), salt & pepper noise (d=0.6), speckle noise with density d=0.5, motion 
blurred with a 20×30 window and correlation map over original noiseless image in template matching. 
White circle illustrates the most salient location and other 2 circles show less similar ones.  
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As results in Table 4 show biased saliency model performs better than the basic saliency 
model over all noises and have near the same computation time as it. While template matching 
has lower detection rates compared with biased saliency model, it is very sensitive to Gaussian 
noise and is more stable over other noises. However its computation time is much more than 
other two approaches. Template matching needs 3.5 times computation time more than the basic 
saliency model on average (3 times more than biased saliency model) on a computer with 1.4 
GHZ Intel cpu and 512 MB ram memory.  
 
Table 5.4 Mean detection rates and computation times of traffic signs over test images with 5 runs. 
Computation time is for detection of targets without noise. Numbers in parentheses are standard deviations. 

 

 
Without 

noise 
Gaussian 

Salt & 
pepper 

Speckle 
Motion 

 blurring 
Computation 

time 

Method - 
(μ=0, σ = 

0.5) 
(d = 0.6) (d = 0.5) 

window size 
(20× 30) 

(ms) 

Bike 
TM 74.8(1.1) 31.5(2.1) 58.5(3.3) 79.5(2.3) 63.7(5) 292.1(20.4) 
Basic Saliency 81.8(2.5) 63(4.3) 68.8(6.2) 83(5.5) 60.1(3.8) 86.23(12.2) 
Biased Saliency 90.2(2.4) 78.1(3.1) 70.9(4.2) 86.1(5) 77.6(3) 98.4(10.5) 
Crossing 
TM 75.5(1.6) 37.9(2.2) 64.2(2.7) 72.4(3) 75(1.9) 319.8(12.1) 
Basic Saliency 78.2(1.8) 39.2(3.4) 59.2(4.9) 80.8(4.3) 86.4(3.3) 92.66(10.1) 
Biased Saliency 95.8(2.7) 48.2(3.4) 62.2(4) 88.3(5.6) 93.1(3.2) 102.7(15.4) 
Pedestrian 
TM 75.2(2.9) 25.5(2.7) 47.1(4.1) 75(3.9) 75.5(4.3) 315.5(14.3) 
Basic Saliency 83.3(1.5) 51.7(4) 59.4(3.9) 71(6.1) 74.5(5.9) 90.27(12.5) 
Biased Saliency 94.2(1.5) 77.1(2.5) 70.9(3.5) 85(3.5) 75.7(5.3) 106.9(14.2) 
Average 
TM 75.1(0.3) 31.6(6.2) 56.6(8.7) 75.6(3.5) 71.4(6.6) 309.1(14.9) 
Basic Saliency 81.1(2.6) 51.3(11.9) 62.4(5.4) 78.2(6.3) 73.6(13.1) 89.7(3.2) 
Biased Saliency 93.4(2.8) 67.8(16.9) 68(5) 86.4(1.6) 82.1(9.5) 102(4.2) 

 
 
5.4.2 Learning top-down spatial attention control 
In many tasks, humans are biased (from their past experiences) toward specific spatial locations 
of their environment. For example when asking a person to look for a clock in a room, he will 
probably search on walls first instead of ceil. In this section, we propose a simple heuristic to 
reduce the saliency computation of the biased saliency model by using historical knowledge of 
the agent.  
 
Experiment IV. Offline learning of task-relevance saliency map (TSM) Road traffic signs are 
typically placed either by the roadside or above roads. They provide important information for 
guiding, warning, or regulating the behaviors of drivers in order to make driving safer and easier. 
In this experiment, we used the priori assumptions on image formation like when signs are 
photographed from a driver’s position or assuming that road is approximately straight. This leads 
to ignoring large portions of the image when looking for signs. Motivated by these restrictions, 
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we build a top-down task relevance map to consider such selectivity in space. Three salient 
locations were generated using biased saliency model for all training images for each traffic sign. 
A Gaussian mask was applied on each salient location to weight center locations more than 
surrounds. Then all maps were normalized and summed to form the final task-relevant spatial 
map shown in Fig. 11.  
 

 
 
Figure 5.11 Task-relevant saliency map (TSM). Top row shows offline learned biased saliency map 
averaged for all images in the train set for pedestrian, crossing and bike signs from left to right. Three 
FOA’s were generated for building this map. Bottom row shows the same but with salient locations 
computed with template matching method. As could be seen both maps seem to have high correlation but 
making such a map with template matching takes about 3 times more computation. Rectangles show the 
areas that saliencies were computed for detection of a sign. 
 

An advantage of such offline top-down task-relevance saliency map is that saliency 
computation and object detection could be started first from spatial areas which have higher 
probability to contain an object and then to other areas. In order to use TSM for sign detection, 
saliency computation was limited in rectangular areas of Fig. 11. Over test sets of all three traffic 
signs, we were able to achieve the detection rates as before (Table 2), but about 3 times faster. 
 
5.5 Discussions 
The focus of this paper is on the learning phase of visual attention, where relevant feature values 
for a target are learned using several training images. Here the system automatically determines 
which features to attend in order to best separate a target from its surroundings.  

An issue in revised saliency model is setting window size (n). In our experiments in this 
paper, we set values for this parameter experimentally based on extent of an object in scenes. We 
are looking for systematic determination of it. In general any fast surround inhibition operation 
which acts on a single scale can be used. 

Our results show that color information has higher importance and information for 
discrimination of objects. Orientation features which have rough information about structure of 
objects are in the second rank. Intensity does not seem to have high information for object 
detection. Overall, it is hard to judge which scales are important in saliency detection from our 
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results. However, it seems that it depends on the size of the target object relative to the image 
size. With small number of training images, our biased system was able to detect objects in large 
number of unseen test images. As Table 2 shows our system has higher detection rates than the 
basic saliency model in without-cost case. In with-cost case while our system has higher detection 
rates compared to the basic saliency model it has lower cost. Over noisy images, our model 
performed better than template matching and basic saliency model. Its computation time is lower 
than that of template matching and slightly above the basic saliency model. 

We also compared our attention system with two recent computational attention systems 
known as Neuromorphic Vision Toolkit (NVT) (Navalpakkam & Itti, 2006) and VOCUS 
(Frintrop, 2006). These systems were chosen to be compared with because they are the most 
similar models to ours and are both based on the basic saliency model. Average hit numbers of 
our method and these approaches are shown in Table 5 in terms of the parameters that has been 
reported in (Frintrop, 2006). 
 

Table 5.5 Average hit numbers of our biasing approach versus two other biasing approaches 
 

 

target 
# train 
images 

# train 
images in 
VOCUS 

# test 
images 

avg. hit number 

 
our method 

NVT  
(Navalpakkam 
& Itti, 2006) 

VOCUS 
(Frintrop, 

2006)  

campus 
map 

9 2 7 1 1.2 1 

fire 
hydrant 

8 2 8 1 1 1 

coke 45 5 59 1.6 3.8 1.3 
 

As Table 5 shows our biasing method performed the same as VOCUS and NVT for fire 
hydrant detection. It was the same as VOCUS but better than NVT for campus map detection. It 
was better than NVT and slightly worse than VOCUS in detection of coke object. While sizes of 
train and test sets are small for the first 2 objects, it cannot be conclusive to judge which method 
is better than others from these 2 objects. However, since sizes of train and test sets are larger for 
the third object, it proves that our method outperforms NVT and competes with VOCUS. 
Performances reported in Table 5 are derived in without-cost of our algorithm. While 
performance of our approach is slightly lower than VOCUS, it proposes a framework to 
incorporate cost of features in object detection. For example for an agent, it might be acceptable 
to tolerate a lower detection rate but with smaller computation time while performing a real time 
task. In other words, our approach enables an agent with certain computational resources to gain 
maximum detection rate. 
 
5.6 Conclusions and future works  
In this chapter, we introduced a new method for learning top-down attentional control from 
offline training data. Our approach detects targets robustly and quickly in various scenes. It is 
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built over the basic saliency-based model of visual attention and biases it for synthetic saliency 
detection as well as natural object and traffic sign detection in cluttered scenes. It provides a 
method for quickly localizing object candidates to which computationally expensive recognition 
algorithms may be applied. Therefore, it provides a basis for robust and fast object recognition in 
computer vision and robotics. Since all feature channels and scales of the basic saliency model 
are not necessary for detection of an object, we put costs on computation of features of the model. 
The result was that, those channels which were not necessary and had not much effect on 
detection were not selected in the evolutionary process. Performance of our method was 
compared against basic saliency model as well as the template matching approach over noisy 
images.  

A heuristic approach was also proposed for limiting the saliency computation over the most 
probable locations containing an object instead of the entire scene. For this, saliency maps from 
the previous experiences of the agent were added to form a top-down task relevance map. It was 
shown that this map reduces the computation time for traffic sign detection while having the same 
detection rate. 

For our future research, we intend to learn top-down manipulations over the basic saliency 
model interactively and online using a reward and punishment mechanism. That way agent learns 
which objects to attend in each situation and then renders the image based on the top-down 
signals learned offline for that object. It would be also interesting to integrate the system into a 
robot control architecture enabling the detection of salient regions and goal-directed search in 
dynamic environments. In addition to the weights, there are also other parameters in the model 
which can be tuned, for example number of feature channels, number of scales in the image 
pyramid, window size of the surround inhibition operation and number of color and orientation 
channels. Making advanced use of object structure for biasing or modifying the basic saliency 
model can also be an interesting future work.  
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Abstract. In this paper, we propose a biologically-motivated computational model for learning 
task-driven and object-based visual attention control in interactive environments. In order to do a 
task an artificial agent should be able to perform motor and perceptual actions at the same time. 
Our model consists of three layers. First, in the early visual processing layer, basic layout and gist 
of a scene are extracted. The most salient location of the scene is simultaneously derived using 
the biased saliency-based bottom-up model of visual attention. Then a cognitive component in the 
higher visual processing layer performs an application specific operation such as object 
recognition and scene understanding at the focus of attention. From this information, a state is 
derived in the decision making layer. Top-down attention in our model is learned by the U-TREE 
algorithm which successively grows a tree whenever perceptual aliasing occurs. Internal nodes in 
this tree check the existence of a specific object in the scene and its leaves point to states in the Q-
table. Motor actions are associated with leaves. After performing a motor action, the agent 
receives a reinforcement signal from the critic. This signal is alternately used for modifying the 
tree or updating the action selection policy. A long-term memory component holds the bias 
signals of important task-relevant objects of the environment. Basic saliency-based model of 
visual attention is devised to consider processing costs of feature channels and image resolutions. 
To recognize objects, a recent and successful object recognition method, inspired by the 
hierarchical organization of the visual ventral stream, is used. The proposed model is evaluated 
on visual navigation tasks, where obtained results lend support to the applicability and usefulness 
of developed method for robotics. 
 
Keywords: Top-down attention, Saliency-based model, U-TREE algorithm, Task-driven 
attention, Reinforcement learning, Q-learning, State space discretization 
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6.1 Introduction 
Both biological and machine vision systems have to process enormous amount of visual 
information they receive at any given time. Attentional selection provides an efficient solution to 
this information overload problem by proposing a small set of scene regions to higher level and 
more computationally intensive processes like scene interpretation, object recognition, decision 
making, etc. In this regard visual attention acts as a front-end to a more complex vision system. 
Instead of processing all incoming visual information in parallel, the brain has evolved a serial 
strategy which explains its near real time performance in visual interactive environments.  

Several physiological and psychological studies of attentional mechanisms in the brain have 
revealed that visual attention selects and gates visual information based on the saliency in the 
image itself (bottom-up) (Egeth & Yantis, 1997, Connor &  Egeth, 2004) and on the prior 
knowledge about the scene (top-down) (Corbetta & Shulman, 2002, Desimone & Duncan, 1995, 
Chun & Wolfe, 2001). While bottom-up attention is solely determined by the image-based low-
level cues, such as luminance and color contrasts, edge orientation and motion, top-down 
attention on the other hand is influenced by the task demands, prior knowledge of the target and 
the scene, emotions, expectations, etc. Bottom-up component of the visual attention is mainly 
examined by the early visual areas of the brain like LGN and V1 (Koch & Ullman, 1985, Li, 
2001). Top-down attentional signals are largely derived from a network of areas in parietal and 
frontal cortex. Some of the involved areas include the superior parietal lobule (SPL), the frontal 
eye fields (FEF), the supplementary eye field (SEF) and the lateral prefrontal cortex in the region 
of the middle frontal gyrus (MFG). In daily life, these two mechanisms interact to control our 
attentional behaviors (Corbetta & Shulman, 2002, Kastner & Ungerleider, 2001). Besides acting 
in spatial domain by selecting spatial locations (Posner, 1980, Posner & Cohen, 1984), visual 
attention can also be directed to particular features such as color, orientation and direction of 
motion (Maunsell & Treue, 2006). It is also believed that attention selects objects rather than 
spatial locations (Kanwisher, J. Driver, 1992, Duncan, 1984, Kahneman & Henik, 1981). 

Like humans and primates, artificial creatures like robots are limited in terms of allocation of 
their resources to huge sensory and perceptual information. That is mainly because of the serial 
processing mechanisms used in the design of such creatures which allows the processing of only 
a small amount of incoming sensory information. Since they are usually supposed to guarantee a 
short response time, attention is an efficient solution in robotics as in biological systems. In order 
to gain the maximum cumulative reward in the minimum time, agents should be able to perform 
perceptual and physical actions simultaneously. These perceptual actions are available in several 
forms like where and what to look in the visual modality. However, the main concern is how to 
select the relevant information, since relevancy depends on the tasks and the goals. In this study, 
we consider task relevancy of visual information and aim to extract spatial locations or objects 
which help the agent achieve its goals faster.  

It is important that a solution for learning task-based visual attention control take into account 
other relevant and interleaved cognitive processes like learning, decision making, action 
selection, etc. Some evidences in this issue exist in both biology and engineering. It has been 
previously shown that attention and eye movements are context-based and task-dependent 
(Yarbus, 1967). Previous experiences also influence attention behaviors which indicate that 
attentional control mechanisms can be learned (Maljkovic & Nakayama, 1994). Some 
neuropsychological evidences suggest that human beings learn to extract useful information from 
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visual scenes in an interactive fashion without the aid of any external supervisor (Gibson & 
Spelke, 1983, Tarr & Cheng, 2003). In (Gray, 2003), it has been shown that attention is also 
affected by decision behaviors. By evaluating the consequences of our actions on the 
environment, we learn to pay attention to visual cues that are behaviorally important for 
performing a task. These findings are in accordance with a new and pragmatic view in Artificial 
Intelligence (AI) known as embodied and situated intelligence (Clark & Grush, 1999,  Pfeifer & 
Bongard, 2006). It states that intellectual behaviors, representations, decisions, etc. are the 
product of interactions among mind, body, goals and the environment. There are also other 
supporting evidences in psychology claiming that human mind and intelligence have been formed 
interactively through an evolutionary process (Clark, 1999). Instead of attempting to segment, 
identify, represent and maintain detailed memory of all objects in a scene, there are evidences that 
claim our brain may adopt a need-based approach (Triesch et al., 2003), where only desired 
objects are quickly detected in the scene, identified and represented. Considering above 
evidences, in this work, we introduce a model to consider the influences of task, action, learning 
and decision making to control top-down visual attention of an agent.   

In many real world situations, the environment is unfamiliar or not clearly defined. Moreover, 
required information and the optimal responses are not known at the design time. Therefore, fixed 
and predefined design of control strategies in such situations is less useful. Some complicated 
behaviors of humans like reading, writing, driving, etc. which need complex physical actions and 
attentions witness that such behaviors have been developed based on humans interaction with the 
surrounding world. Thus, interactive and semi-supervised approaches, e.g RL (Sutton & Barto, 
1998), seem to be the most suitable techniques for learning top-down visual attention control and 
action selection strategies. Such learning mechanisms have the benefit of adapting the agent to 
dynamic, complicated and non-deterministic environments. In RL, agents learn action-values in 
each state by receiving a reinforcement signal from the critic. Another characteristic of RL 
methods is their ability of online learning which is required for interacting with stochastic and 
slowly changing environments. There are mathematical convergence proofs for these methods 
and they are biologically plausible (Seymour et al., 2004). 

An agent living in an environment perceives information from its sensory inputs, takes 
actions and simultaneously receives reward signals from the environment. Because of the limited 
processing power, the agent must choose only a part of the information to attend. We intend to 
tackle this problem in this paper. Our proposed solution is built upon a sound and widely used 
bottom-up visual attention model proposed in (Itti et al., 1998). This model is based on the idea of 
saliency map, an explicit two-dimensional topographical map that encodes stimulus conspicuity 
or saliency at every location in the visual scene (Itti & Koch, 2001). Saliency in this model 
depends on the visual signal in a spatial location and its surrounding context. Bottom-up model is 
solely data-driven and simply selects some spatial locations without using any feedback 
mechanism or top-down gains. Some researchers have tried to add top-down capabilities to this 
basic model (Navalpakkam & Itti, 2005, Navalpakkam & Itti, 2006, Torralba, 2003), for instance 
by biasing it toward selecting specific objects. While such models are interesting, they have been 
partially successful to handle a limited category of tasks. Modeling top-down task-based 
influences on visual attention is difficult, since a general definition for a task does not yet exist. In 
this study, RL is used by the agent to learn how to select relevant objects and physical actions 
interactively in each state.  
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Particularly, in this work we introduce two contributions. First, we bias the basic saliency 
model of visual attention using a global optimization technique to find weight vectors with high 
discrimination power and low cost. This biased saliency model is used as a front-end to a higher 
vision unit in our model. Second, we use the U-TREE algorithm (McCallum, 1995) to 
dynamically discretize the visual state space when perceptual aliasing occurs. That way a binary 
tree is generated which is used for controlling top-down object-based visual attention control. Our 
model is inspired by the abstract findings from neuroscience and psychology. 

In section 6.2, related researches are reviewed. Our proposed approach for learning task-
driven visual attention control is explained in section 6.3. Experiments and results are shown in 
section 6.4. Section 6.5 brings the discussions and finally, section 6.6 summarizes and concludes 
the paper. 

 
6.2 Related researches 
Studies of visual attention fall into three categories. In the first category, researchers try to 
understand attentional mechanisms based on the psychophysical and behavioral experiments. 
Scan paths of eye movements, reaction times and percentage of correct responses are three 
example evaluation measures in this area. Second category involves neurophysiological studies. 
Single cell recording, fMRI and TMS are some techniques used to infer knowledge about the 
activities of neurons. Third category, involves mathematical modeling of visual attention 
mechanisms. Researchers in this category try to develop models for explaining behavioral and 
neuronal data. Models in this category are divided into two subcategories, known as connectionist 
and filter models. Connectionist models are based on single neuron models. By analyzing single 
neurons in networks, some aspects of complex behaviors could be explained. On the other hand, 
filter models, use higher level more abstract information gathered from experimental studies, such 
as Gabor filters as models of V1 neurons (Gabor, 1946, Hubel & Wiesel, 1965). They have been 
frequently used in machine vision community. The major goal of this area is to inspire from the 
main mechanisms and concepts of visual attention for developing artificial solutions, applications 
and frameworks for demanding problems in machine learning and artificial intelligence. Our 
work falls into this category and aims to propose solutions for real world applications.  

In this section, we review visual attention studies which are directly related to ours, especially 
those which have considered learning aspects of visual attention in concert with decision making. 
First we review some existing hypotheses and viewpoints on visual attention mainly derived from 
behavioral studies and then bring some successful approaches from AI for learning attention 
control. 

An important evidence from biology reported in (Maljkovic & Nakayama, 1994), states that 
attention could be learned by past experience. In a behavioral task, human subjects were supposed 
to answer a question about a quality of a specific visual item in a synthetic visual search scene. 
Subjects had lower reaction times when quality of the object stayed the same during successive 
trials. This study shows that subjects developed a memory during the task. A modeling work 
trying to explain such behavioral data is done in (Mozer et al., 2006). They have proposed an 
optimization framework to minimize an objective function which is a sum over the reaction time 
in each state weighted by the probability of that state to occur. Then using a Bayesian Belief 
Network (BBN), they solved that minimization problem. These results encourage using a learning 
approach for attention control in AI.  
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Some RL studies have previously been proposed for modeling top-down visual attention 
control in humans. Since eye movements have high correlation with overt visual attention, these 
studies have tried to explain eye movement data. Bottom-up models could not explain much of 
that data because they do not consider top-down effects. In (Reichle & Patryk, 2006), RL is used 
for modeling the behavior of an expert reader by predicting where eyes should look and how long 
they should stay there for achieving best comprehension from the text. This work is interesting as 
it models attention as an optimization problem and then uses RL to solve it. Another model of 
human eye movements is proposed in (Sprague & Ballard, 2005) that directly ties eye movements 
to the ongoing demands of behavior. The basic idea is that eye movements serve to reduce 
uncertainty about environmental variables that are task relevant. A value is assigned to an eye 
movement by estimating the expected cost of the uncertainty that will result if the movement is 
not made. If there are several candidate eye movements, the one with the highest expected value 
is chosen. The model is illustrated using a humanoid graphic figure that navigates on a sidewalk 
in a virtual urban environment.  

RL has also been used for deriving visual attention policies for mobile robots. In (Fritz et al., 
2004, Paletta et al., 2005), a 3 step architecture is proposed for an object recognition task. First, it 
extracts potential focuses of interest (FOI) according to an information theoretic saliency 
measure. Then it generates some weak object hypotheses by matching the information at the 
FOI’s with codebooks. The final step is done using Q-learning with the goal of finding the best 
perceptual action according to the search task. In (Gonic et al., 1999.a), two approaches are 
proposed in a robotic platform with neck, eyes and arms for attention control. The first approach 
is a simple feedforward method which uses back-propagation learning algorithm while the second 
one uses reinforcement learning and a finite state machine for state space representation. The 
robot has 3 types of actions: attention shift, visual improvement and haptic improvement. Their 
results confirm that the second approach generates a better performance in terms of finding 
previously observed objects even with fewer movements in head and neck and also in attention 
center shift. In (Gonic et al., 1999.b), another robotic platform containing articulated stereo-head 
with 4 degrees of freedom is presented which can select the region of interest, perform attention 
shift with saccadic movements, build a map out of the environment and update it according to 
current observation. The main characteristic of this approach is that it observes the whole 
environment and selects one region to attend according to its saliency map. In fact, here, attention 
control has two steps: first, coarse eye movements and then more precise iterative adjustments 
around the first points. The termination condition of this process is reaching to a maximum 
correlation among what it finds and what it expects. Due to its simple search application, this 
work has not confronted to many real world challenges.  

An approach for learning gaze control for a mobile robot is proposed in (Minut & 
Mahadevan, 2001), which proposes a model of selective attention for visual search tasks. Their 
model is implemented using a fixed pan-tilt-zoom camera in a visually cluttered lab environment, 
which samples the environment at discrete time steps. The agent has to decide where to fixate 
next merely based on visual information, in order to reach the region where a target object is most 
likely to be found. The model consists of two interacting modules. In the first module, RL learns 
a policy on a set of regions in the room for reaching the target object, using an objective function 
which is the expected value of the sum of discounted rewards. By selecting an appropriate gaze 
direction at each step, this module provides top-down control in the selection of the next fixation 
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point. The second module performs “within fixation” processing, based exclusively on visual 
information. An interesting point with this work is that it has incorporated learning where to look 
in a visual search task. Unfortunately, no suggestions for generalizing this method have been 
made. Another advantage of this work is its implementation on a working robotic agent.  

A bottom-up visual attention model known as saliency-based model which is an extension 
and implementation of an earlier model of visual attention introduced by Koch and Ullman (Koch 
& ullman, 1985) is proposed in (Itti et al., 1998). This model is based on the saliency concept and 
mimics the overall structure of the early visual system for detecting the locations which convey 
more visual signals and are different from their surroundings. For example a red dot is more 
discriminant than a blue dot in a white background containing blue dots. Simplicity and little 
computation are the two main advantages of this model. It has been continuously updated and is 
the basis of the newer models. It has also been used to explain behavioral data on simple synthetic 
and static search arrays to dynamic natural stimuli like movies and games (Peters & Itti, 2008). In 
this study we use this model to build our top-down attention control system upon it. A detailed 
description of this model is shown in section 3.1.1. In (Navalpakkam & Itti, 2005), a task-based 
model of visual attention control is proposed based on the saliency model to add top-down 
capabilities to it. Given a task definition in the form of keywords, this model first determines and 
stores the task-relevant entities in working memory, using prior knowledge stored in a long-term 
memory. It then attempts to detect the most relevant entity by biasing its visual attention system 
with the entity’s learned low-level features. It attends to the most salient location in the scene, and 
attempts to recognize the attended object through hierarchical matching against object 
representations stored in the long-term memory. It updates its working memory with the task-
relevance of the recognized entity and updates a topographic task relevance map with the location 
and relevance of the recognized entity. Instead of a predefined definition in the form of keywords 
or a sentence for a task we would like to learn manipulations over the basic saliency map by 
rewards and punishments that the agent receives. This approach is more general because it allows 
the agent to interact with the environment and to find its own way of achieving a goal. 

In (Jodogne & Piater, 2007), Jodogne et al. have presented a framework known as RLVC 
(reinforcement learning of visual classes) for learning mappings from images to actions by 
interacting with the environment. RLVC consists of two interleaved learning processes: 1) an RL 
unit which learns image to action mappings and 2) a binary image classifier which incrementally 
learns to distinguish visual classes when perceptual aliasing occurs. The classifier acts like an 
attention tree by checking whether a specific SIFT feature is present in the image or not. RLVC is 
the extension of a previous seminal work known as U-TREE algorithm (McCallum, 1995) to 
visual domain. The main idea behind both approaches is that state-space is incrementally 
discretized whenever an aliasing occurs. The main drawback with the RLVC is its exhaustive 
search overall image for computing the SIFT features which contradicts the philosophy of 
existence of visual attention. In our method, like RLVC, an action-based decision tree is 
constructed. We use the basic idea of U-TREE algorithm for refining the representations of the 
agent. Learning representations result in an optimal decision tree, in sense of maximizing the 
reward of the agent, for attention control. 

There are also other computational models of visual attention.  Deco and Schurmann (Deco & 
Schürmann, 2000) modulated the spatial resolution of the image based on a top-down attentional 
control signal.  Tsotsos et al. (Tsotsos et al., 1995) used local winner-take-all networks (WTA) 
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and top-down mechanisms to selectively tune model neurons at the attended location. Making 
extensive use of feedback and long-range cortical connections, Hamker (Hamker, 2005.a, 
Hamker, 2005.b) modeled the interactions of several brain areas involved in processing visual 
attention, which enables them to explain some physiological and behavioral data. Sun and Fisher 
(Sun & Fisher, 2003) have developed a framework for object-based attention using “groupings”. 
Presented with a manually preprocessed input image, their model replicates human viewing 
behavior for artificial and natural scenes. Like this work, attention in our model selects objects 
instead of spatial locations or features.  

Our work extends the previous works in this area by proposing a top-down object model for 
attention control which attends and recognizes to those objects which are important in decision 
making. The running power of our method is the reinforcement signals the agent receives from 
the environment.  
 
6.3 Proposed model 
An agent working in an environment receives information momentarily through its visual sensor. 
It should determine what to look for. For this we use RL to teach the agent simply look for the 
most task-relevant and rewarding entity in the visual scene. Our model consists of three layers: 
early visual processing, higher visual processing and decision making layers as shown in Figure 
6.1. In order to keep the model simple but functional, only important interconnections among 
components are considered. This model is a extension of our earlier model to visual interactive 
environments (Borji et al., 2008.a). 
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Figure 6.1 Proposed model for learning task-driven object-based visual attention control. The model 
consists of three layers, early and higher level visual processing layers and decision making layer. Biased 
saliency model selects a spatial area, higher vision is focused on this area to recognize the object at that 
location and then a state is extracted by traversing the attention tree. A reinforcement signal in response to 
the action elicited at that state is used alternatively for refining the tree or updating the action selection 
policy. Long-term memory component is used to save the offline learned biasing weights of the saliency 
model. Gist component (shown in dashed lines) extracts rough information and is subject to our future 
works. The generated tree has nodes with out-degree either 0 or 2. 
 

An example scenario of the model is as follows; see Figure 6.1. Captured scene of the 
environment through agents’ visual sensor undergoes a biased bottom-up saliency detection 
operation and a focus of attention area is selected. Gist and layout of the image are also extracted 
by the gist/Layout extractor unit at the same time. Both the most salient location and the overall 
sketch of the image are then transferred to the higher vision unit. For reducing the computational 
complexity, higher visual processes (like object recognition) are only targeted at the focus of 
attention (FOA). Next state of the agent is determined by the attention tree. Motor actions are 
associated with the leaves. Outcome of this action over the world is evaluated by a critic who is 
aware of the model of the environment and a reinforcement signal is fed back to the agent to 
update its internal representations (attention tree) and action selection strategy in a quasi-static 
manner. Following subsections discuss each layer of the model in detail.  
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6.3.1 Early visual processing layer 
Two components in this layer process the captured image in parallel: bottom-up visual attention 
and gist/Layout extractor components. The bottom-up attention component first determines the 
saliency of all spatial locations and then selects the most salient location at the FOA. Instead of 
biasing the saliency model online at the time of interaction with the world, here an offline 
approach is adopted. This is mainly because parameters of the model are continuous valued, 
therefore an online mechanism for learning top-down gains greatly degrades the RL convergence 
speed. The image information at the FOA is then transmitted to the higher vision unit for further 
processing. Gist extractor unit in this layer performs a rough categorization of the image (Oliva, 
A. Torralba, 2006). A long-term memory component is used by the bottom-up attention 
component and holds the information of important objects like biasing weights of the saliency 
model. The early vision unit is the artificial counterpart of the V1 and V2 cortical areas in the 
visual cortex. (what / where pathways) 
 
Bottom-up attention component Saliency model in presence of no bias selects a spatial location 
in a feedforward manner. In (Navalpakkam & Itti, 2006), the basic model is biased toward a 
specific object by maximizing the SNR ratio of the object to the whole image. In this section we 
modify the basic model and then use a global optimization technique to learn biasing weights of 
the saliency model offline. Instead of only finding the appropriate weights, we also incorporate 
processing costs of the feature channels to force the optimization process to choose the feature 
vectors with high detection rate and low cost (Borji et al., 2008.a). Revised saliency-based model 
of visual attention was explained in chapter 5. We use the results of biasing for object detection to 
build our top-down attention paper in this chapter. 

 
Gist/Layout extractor component Gist in psychophysical terms is the ability of people to 
roughly describe the type and overall category of an image after only a very brief presentation 
(about 100ms) and to use this information to guide subsequent target searches. It indicates that we 
are not blind outside our focus of attention and information outside the FOA is also processed to 
the extent less than the attended area. Layout extraction is done using basic image processing 
operations like edge and contour detection. Gist in our model could be used by for example 
searching the attention tree more efficiently by bypassing some sub-trees. So, it helps the agent to 
determine its state faster. In other words, gist in our model like as a heuristic which directs 
attention. It is calculated very fast in a bottom-up manner and helps top-down control of attention. 
This information is necessary for complex cognitive operations in the upper layers. The low 
computational cost of extracting gist features facilitates effective usage in applications such as 
content-based image retrieval and robot vision localization. Some models have been previously 
proposed in the literature for calculating the gist of a scene by Oliva and Torralba (2006), 
Reninger and Malik (2004), Siagian and Itti (2007) and Torralba et al. (2003). A comparison of 
these methods is provided in (Siagian and Itti, 2008).  
 
6.3.2 Higher visual processing layer 
This layer acts upon the information extracted by the early visual processing unit. Operations in 
this unit are more sophisticated and give the agent a more cognitive understanding of the 
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image/scene, useful for decision making in the decision making layer. Example operations in this 
unit are object recognition, scene classification, background subtraction, etc. Processes in this unit 
are dependent on the environment and the tasks of the agent. Other processes like emotions, 
expectations, internal states, etc. which have already been proved to be important in deriving 
attention, are also expected. This layer corresponds to cortical areas at the end of visual ventral 
stream like V4, IT and PFC. Theoretically any object recognition method can be used in this 
layer. However to make the model to sound more biologically inspired, we use the standard 
model of object recognition for recognizing objects at the focus of attention.  
 
Standard model of object recognition (HMAX) It is claimed that visual attention and object 
recognition are tightly linked processes in human perception. Our model proposes how object 
recognition mechanism could be implemented over the bottom-up component and is a new way 
of explaining the interaction of these two components. This interaction happens under the 
influence of top-down and task-based control signals. Here, we briefly explain the standard model 
of object recognition, a hierarchical model which closely follows the operations and findings 
from the early and late visual system. It will be used for object recognition in visual navigation 
tasks in the section 4. Note that as in the saliency model HMAX is also trained offline and is used 
online when performing a task. 

The hierarchical model of object recognition in cortex by Riesenhuber, T. Poggio (1999, 
2003) mimics the hierarchical organization of the primate visual ventral stream (the feedforward 
pathway). The model consists of four alternative layers of Simple (S) and Complex (C) units. S1 
units extract local orientation information from the input image by convolution with Gabor filters, 
at 4 orientations at different scales. S1 activity is pooled over local spatial patches and 4 scale 
bands using a maximum operation to arrive at C1 complex cells. In the next stage, activities from 
C1 cells with similar positions but different orientation selectivities are combined in a weighted 
sum to arrive at S2 composite feature cells that are tuned to a dictionary of more complex 
features. The dictionary we use in this section consists of all possible combinations of the four 
cardinal orientations in a 2 × 2 grid of neurons, i.e., (2 × 2)4 = 256 different S2 features. In a final 
non-linear pooling step over all positions and scale bands, activities of S2 cells are combined into 
C2 units using the same maximum operation as used from the S1 to the C1 layer. The activity 
patterns of the 256 C2 cells feed into view-tuned units (VTUs) with connection weights learned 
from exposure to training examples. VTUs are tightly tuned to object identity, rotation in depth, 
illumination, and other object-dependent transformations, but show invariance to translation and 
scaling of their preferred object view. In their selectivity to shape, S1 and C1 layers are 
approximately equivalent to simple and complex cells in areas V1 and V2, S2 to area V4, and C2 
and the VTUs to areas in posterior infero-temporal cortex (PIT) with a spectrum of tuning 
properties ranging from complex features to full object views. C2 features of the model are used 
here for classification. In our experiments we used a MATLAB® implementation of the model3. 
Model parameters used in our experiments are the same as in (Serre et al., 2007). For more 
detailed information on the HMAX model, the interested reader should refer to Serre et al. (2007, 
2004, 2005). HMAX has been successfully applied to some computer vision and pattern 
recognition problems (Serre et al., 2007, Borji et al., 2008). 
                                                 
3 Implementation of the HMAX model could be downloaded from:  
   http://riesenhuberlab.neuro.georgetown.edu/hmax.html. 
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In order to train the standard model, first a binary mask (50×50) is placed at the location of 
the object in the image and then object areas are extracted. For each class a binary SVM classifier 
(Vapnik, 1995) was trained using 20 samples of the target class (positive patterns) and 20 samples 
from each other class (negative patterns). The trained classifier was later tested over the 10 
remaining positive and negative patterns of all classes. Classification using the C2 features 
resulted in 87% (±3.2%), 93% (±2.75%), 91.28% (±2.8%), 94.6% (±1.4%) and 83% (±4.2%) 
recognition rates for pedestrian, crossing, bike and triangle signs and the coke object respectively. 
Reported results are averaged over 5 runs with random training patterns.   
This learned offline knowledge will later be used by the agent in order to recognize an object at 
the focus of attention. 
 
6.3.3 Decision making layer 
The core of our model is the decision making layer where visual attentions and representations 
are learned. This layer controls both top-down visual attention and motor actions. Top-down 
attention is equivalent to overt attention which in humans means that attention is relocated with 
eye movements. The motor actions are executed by the body of the agent and affect the world. 
State extractor unit (attention tree) in this layer, derives the state of the agent based on the 
cognitive information it receives from the higher vision unit. The learning approach is an 
extension of the U-TREE algorithm to visual domain (McCallum, 1995). 

Based on the derived state, the agent must choose to either do a motor action or perform 
another perceptual action which here means looking for another object to clarify its state. The 
agent traverses the attention tree until it reaches a leaf node which determines its state in Q-table. 
Motor and perceptual actions affect the world and the bottom-up visual attention component, 
respectively. An evaluation of the motor action over the world is fed back to the agent by the 
critic in form of a reinforcement signal. This signal is used by the agent for updating its policy. 
Since there are two interleaved parameters in the model, attention tree and action selection policy, 
learning both of them if possible may take a long time. In this study, we adopt a quasi-static 
approach for learning the attention tree and image to action mappings. Each time reinforcement 
signal from the critic is used for either modifying the tree or updating the Q-table. This unit 
corresponds to decision making areas in the brain like LIP and PFC cortices. 
Details of the algorithm for learning top-down attention tree are explained in the next section. 
 
Learning attention tree An efficient method to implement attention and state space construction 
is by means of tree data structures. Such structures are interesting because they allow learning 
representations and attention control at the same time. Visual discretization is achieved via 
expanding the attention tree whenever perceptual aliasing occurs. Such refinement is performed 
to increase the cumulative reward of the agent in each time step t. (equation 6.1).  

ܴ௧ ൌ  ෍ ௜ߛ
∞

௜ୀ଴

ߛ ௧ା௜ାଵ, whereݎ א ሾ0,1ሿ                                           ሺ6.1ሻ 

Each internal node of the tree checks whether a specific object exists in the scene or not. The 
generated tree for attention control is a binary tree, since an object checked in an internal node of 
the tree either exists or not in the scene (Figure 6.2). When an image is presented to the agent, 
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attention tree is sequentially traversed from the root until a leaf node is reached (traverseTree() 
function in table 3).  

 
Figure 6.2 Binary attention tree. Internal nodes of the tree check the existence of a specific object in the 
image. Leaves of the tree represent the world and correspond to states in the Q-table. 
 

Attention tree is incrementally built in a quasi-static manner in two phases (iterations). 1) RL-
fixed phase and 2) Tree-fixed phase. In each phase of the algorithm external feedback of the critic 
(a scalar reward) is used to alternatively update the policy or refine the leaves with aliasing. 

Initially a tree with a single node is created and all the images are mapped to that node. It is 
obvious that such a single state is not enough in many cases and therefore aliasing occurs. Then, 
algorithm breaks that node into two leaves based on some gathered experiences beneath it. 
Algorithm starts with a single node in the RL-fixed phase and then moves to the Tree-Fix phase 
and so on. In each Tree-fixed phase, RL algorithm is executed for a number of episodes according 
to the learned policy from the previous phase by following an ε-greedy action selection strategy. 
In this phase, tree is hold fixed and the derived quadruples (st, at, rt+1, st+1) are only used for 
updating the Q-table according to Q-learning formula (equation 6.2) (Watkins & Dayan, 1995).  
 

ܳሺݏ௧, ܽ௧ሻ ൌ ሺ1 െ ,௧ݏሻܳሺߙ ܽ௧ሻ ൅ ߙ ቀݎ௧ାଵ ൅ ߛ ݔܽ݉
௔

ܳሺݏ௧ାଵ, ܽሻቁ                          ሺ6.2ሻ 

 
where, st is the state of the agent at time t. The agent performs action at , receives reward rt+1 and 
enters state st+1.  

State discretization occurs in the RL-fixed (Tree-update) phase. In this phase, gathered 
experiences by the agent are used to refine leaves of the attention tree with aliasing. An important 
point to be considered here is that the agent only accesses the environment through its visual 
sensor (e.g. its CCD camera). Therefore, in order to determine its state in any position, the agent 
should capture a scene in that position and then traverse its attention tree from the root node down 
to a leaf.  

 
Measuring aliasing After each Tree-fixed (RL-update) phase, the learned tree is refined by 
expanding the states (leaves) with perceptual aliasing. In order to estimate aliasing, a number of 
patterns should be accumulated under a leaf node (gatherMem() function in table 6.1). To have a 
better estimation for aliasing, we only refined those leaves with the memory size greater than a 
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threshold value (memThreshold). Memory is gathered by the agent performing some episodes 
with the learned action selection policy from the previous Tree-fixed phase. An experience under 
a node with state st is ሺሾoଵ, oଶ, … , o୬ሿ, ܽ୲, ∆tሻ, o୧  where o୧ is 1 if object o୧ exists in the ,{1 ,0} א
scene. As in the Tree-fixed phase, an image is captured, attention tree is traversed in order to find 
the perpetual state, appropriate action is performed and a reward is received. A prominent 
measure of perceptual aliasing in a state (leaf node) is the TD error (also known as Bellman 
residual) and is derived from the Q-learning formula as shown in equation 6.3.  
 

ܳሺݏ௧, ܽ௧ሻ ൌ ሺ1 െ ,௧ݏሻܳሺߙ ܽ௧ሻ ൅ ௧ାଵݎሺߙ ൅ ߛ ௔ݔܽ݉ ܳሺݏ௧ାଵ, ܽሻሻ                      ሺ6.3ሻ   

                    ൌ ߙ ቆݎ௧ାଵ ൅ ߛ ݔܽ݉
௔

ܳሺݏ௧ାଵ, ܽሻ െ ܳሺݏ௧, ܽ௧ሻቇ ൅ ܳሺݏ௧, ܽ௧ሻ           

      ൌ ,௧ݏ൅ ܳሺ ݐ∆ߙ ܽ௧ሻ                                                                                               

 
∆t, is the TD error of state st with respect to action at. In order to detect aliasing, all patterns under 
a node are clustered according to their physical actions and then if any of these clusters has a 
variance in ∆t’s greater than a threshold (aliasingThreshold), then that node has aliasing at least 
with respect to one action. Therefore, equation 6.31 reduces to equation 6.4, because ܳሺݏ௧, ܽ௧ሻ, is 
the same for all clustered patterns under a node.  
 

ݐ∆ ൌ ௧ାଵݎ ൅ ߛ ݔܽ݉
௔

ܳሺݏ௧ାଵ, ܽሻ                                      ሺ6.4ሻ 

When the RL algorithm converges, then the Q-values do not change any more and ∆t’s 
vanish and there is no further aliasings.  

 
Tree refinement In order to refine the attention tree, aliased states are expanded into two leaves. 
Tree modification (refinement) is done by selecting the object which mostly reduces the variance 
in Δt of patterns in the memory of a leaf according to equation (6.5).  In (Asadpour et al., 2006), 
splitting measures for U-TREE are compared and is shown that variance is a more effective 
measure in terms of generating tress with smaller number of states and less computation time than 
other measures.  
 

כ݋ ൌ ௢݊݅݉ݎܽ  ቆݎܽݒ ሼݕሽ െ ቀ|௅శ|
|௅| |௔ݕሼݎܽݒ ൅ሽ ൅ |௅ష|

|௅| |௔ݕሼݎܽݒ െሽቁቇ                        ሺ6.5ሻ   

    ൌ ௢ݔܽ݉ݎܽ ൬
|ାܮ|
|ܮ| |௔ݕሼݎܽݒ ൅ሽ ൅  

|ିܮ|
|ܮ| |௔ݕሼݎܽݒ െሽ൰                                               

 
where ya is the set of all memory items with action a, ya|+  (ya|-) is the set of memory items with 
(without) object o and action a. Sizes of these two sets are |L+| and |L-|, respectively.  

Maximization is done over all pairs of objects and actions.  An object which minimizes the 
variance also has to cluster the images under the node into two populations with significantly 
different distributions. Here we used t-test for comparing these two distributions.  If the power of 
the t-test is below 0.05, then two distributions are considered to be significantly different. When 
expanding a node, an object is selected which has not been already used in the path from this 
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node to the root. When a leaf is created, a corresponding state is added to the Q-table (resp. for 
deletion) and the Q-values are uniformly initialized. 
 
Tree pruning Proposed algorithm constructs an attention tree in a greedy manner which usually 
leads to overfitting. Therefore solutions should be designed to overcome overfitting by either 
periodic tree restructuring or pruning. Two heuristics are introduced in the following.  

Consider two types of nodes: 1) nodes having leaves with the same best actions learned for 
them 2) nodes with at least one child with no memory. Leaves of the nodes in the first category 
are removed and their action is assigned to their parent node. A node in the second category is 
removed and its child with memory is substituted with it. These two heuristics are recursively 
done from bottom to top of the tree until no node satisfies one of these conditions.  The whole 
algorithm for learning image-to-action mapping is summarized in the pseudocode of table 6.1. 

 
6.4 Experimental results 
Performance of the proposed model is analyzed in this section over a visual navigation task which 
closely parallels real-world scenarios. First, it is assumed that motor actions are already known 
and only states of the environment should be discovered. This assumption is later relaxed and 
both attentions and motor actions are learned for safe navigation. The agent has no access to its 
(x, y) position and only receives images in each situation (taken by its CCD camera). At each 
state, the agent has three possible motor actions: Forward (F), Turn Left (L) and Turn Right (R). 
It can attend to one of several objects each time. For checking the existence of an object, when 
moving in its attention tree, the agent applies the learned biasing signals for that object to the 
observed scene (Long-term memory component in the model). Then the most salient region of 
this biased saliency map is transferred to the corresponding trained binary SVM classifier 
(associated with the attended object), and based on a positive or negative answer from this 
classifier moves in the attention tree until it reaches a leaf node determining its state. 

6.4.1 Visual navigation task 
In this experiment, the agent is supposed to learn how to navigate safely in a simulated driving 
environment. The agent uses its offline learned knowledge interactively. Map of the route, 
consisting of 4 positions, is shown in Figure 6.3. The agent captures 360 × 270 RGB color 
images. It is assumed that the agent knows which objects are in the scene when it observes it. 
This information is only used for refining the aliased nodes and not for state determinations. 

Optimal policy is not unique in this map. They are shown with red characters {F, R, L} 
besides each state in Figure 6.3. Note that, two actions might be the best for a state. Since there 
are 3 positions (minus Goal) and 4 sides per each one, there are 3×4 =12 states in the 
environment. The agent in each of the 12 states captures a scene containing either one or more 
objects. In each episode of RL, the agent is placed randomly in a position of the map. An example 
assignment of objects (Pedestrian (A), Crossing (B), Bike(C) and triangle (D)) to states is shown 
in figure 6.3. For each combination, we created 5 possible images with positions of objects 
randomly selected. In this experiment, we assumed that the agent is always capable of detecting 
and recognizing the objects in the scenes. Actually, scenes were selected in such a way to give the 
agent a deterministic behavior. It means that when the agent applies the leaned biases for a 
specific object to the bottom-up attention model, it can correctly detect and recognize that object 
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in the scene using only the first saccade. Examples of the natural scenes with embedded traffic 
signs are shown in figure 6.4. Figure 6.5 illustrates a sample image when the agent selectively 
attended to one of two different signs.  

 

 
 

Figure 6.3 Simple navigation map. Goal state is shown with capital letter G. The agent can go forward, 
turn left or right and can only attend to one object in the scene each time. It should reach the goal state as 
fast as possible.  

States of the environment are numbered in this way: (x-1)×4 + y, where x is the position 
number (in the central circle) and y is the head direction of the robot (in the coordinate system at 
the bottom-right of figure 6.3). y = 1, 2, 3 and 4 for North, West, South and East directions, 
respectively. For instance, state number of north side of position 2 is 5 and for its east, it is 8. 
Note that the best actions in the image are with respect to the head direction of the agent. For 
example, when head of the agent is toward east in the map, south lies in its right side.  
 
Motor actions known and fixed Since the navigation task, is a coupled task, it demands learning 
both state representations and motor actions. In this section, we aim to solve the case in which 
motor actions for states are already known. Therefore it only remains to learn the states and their 
associations with the motor actions. Then we relax this assumption and use our model for 
learning both representations and their associated motor actions in next section.  
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Figure 6.4 Sample scenes with embedded objects. Five images for each state were randomly selected. 
Positions of signs were also determined randomly. Images were selected in such a way that both saliency 
model and HMAX could detect and recognize them correctly at the first saccade. 
 

 
Figure 6.5 Selective attention to two different objects in the same scene. Only first attended location is 
shown. 
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Table 6.1. Algorithm for learning top-down object-based attention control 
 

main () 
  tree = Create a tree with a single node    
  Repeat  
 
        RL- Fixed phase                                          
          for  i = 1 to maxEpizodes  
 It   = take an image 
 st = traverseTree(tree, It)                   

[st+1 rt+1  at] = performAction(st)          
 

 Δt  = calcDelta (st, st+1, rt+1, at)                   
mem = gatherMem(at, It, Δt) 

          end                                                             
  
         for j=1 to size(tree.leaves)                          
           if  size(mem) >  memTreshold              
                if  checkAliasing(st)                     
                       tree = modifyTree(tree, st) 
         end                                                              
       pruneTree(tree) 
 
        Tree- Fixed phase                                        
          for i = 1 to maxEpizodes  
 It = take an image 
 st = traverseTree (tree, It) 

[st+1  rt+1   at] = performAction(st) 
Q-table = updatePolicy(Q-table, st) 

          end 
 

   Until (no more aliasing) or (maximum iterations is 
reached) 

 
//all input images are mapped to this single state at 
the start  
 
// in this phase only tree is modified 
 
 
// st  is a leaf node 
// based on an action selection policy choose action 
at,   
   go to state st+1 and get reward rt+1 
// Δt is the TD error according to equation 11. 
// this item is saved for state (node) st 
// end for i 
 
// expand the nodes with aliasing 
 
 
 
// end for j 
// tree is pruned in some intervals (iterations) 
 
// in this phase only Q-table is updated 
 
 
 
 
 
// end for i 
 
// repeat 

traverseTree (tree, It) 
   node = tree.root;  
   while node.childSize > 0 
         flag =  attend and recognize the object at node       
         if  flag  
               node = node.leftChild 
        else  
               node = node.rightChild 
        end         
     end                                                                         
   return node 

 
 
 
 
 
 
 
 
 
// while  

checkAliasing(st) 
   for action a  א  A                                                            
        mem(a) = all mem with action  a  under st 
        var(a) = calcVariance(mem(a))                                       
        if var (a) > aliasingThreshold  
                    return true; 
   end                                                                                 
   return false; 

 
// A  is the set of all motor actions 
 
// of mem(a) 
 
 
// end for action a 
 

modifyTree(tree, st) 
    for action a  א  A       
        mem(a) = all mem with action  a  under st 
        for  object o  א  O                                                     
            choose the object which reduces variance the most 
            according the equation 13 and also partitions the        
            memory into two populations with non-equal 
            distributions  (using t-test ) 
        end                                                                           
    end                                                                               

 
 
 
// O is the set of all possible objects the agent might 
observe in the scene       
 
 
 
// for o 
// for a 
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The agent receives both immediate and delayed rewards. It starts with a single Null state and 
all captured images are mapped to that state.  For a randomly captured image, the agent must 
choose between doing a motor action and attending to another object to clarify its state (to 
increase the chance of correct classification of this image). In the Null state, the agent is only 
allowed to do attentions (and not motor actions), since it is clear that more than one state is 
needed for representing the environment. This causes the algorithm to generate other states. In 
each state, the agent performs either an attention or a motor action using ε-greedy action selection 
policy. If predicted motor action by the agent for this state is optimal (best), it receives a big 
reward of +100 and otherwise it gets -100 punishments. If it attends to an object, it receives a 
punishment which is the cost associated with that object. Then, the agent updates the Q-table 
entry for this state and moves to the next state. If the next state does not exist in the Q-table, then 
it is created and initialized uniformly. This process is repeated for some episodes (maxEpisodes). 
Flowchart of figure 6.6 illustrates this process.  

 
Figure 6.6 Flowchart of the algorithm for learning attention control when motor actions are known in 
advance. State of the agent is determined by the objects it observes. The agent finally learns to do a motor 
action or to attend to another object in each state when it is presented with an image. 
 

Cumulative average rewards and average costs for this experiment are shown in figure 6.7. 
Results are compared with the situation when the agent has the full observation (full attention). In 
this case, the agent checks the existence of (attends at the same time to) all objects in the scene in 
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order to find its state. A ‘1’ means that the attended object exists in the scene and ‘0’ means it 
does not. Since the response for attending to an object is either 1 or 0, state space (with 4 objects) 
in full attention case has 24 states.  

As shown in figure 6.7, both attended and full-observation cases, converged to the same 
average reward in iteration 2000 (bottom panel). The reason why both curves are below +100 is 
because of the punishments the agent receives when performing the task. Top panel of figure 6.7 
shows the average cost of both approaches. When the agent attends to all objects, it always has 
the cost of (-10 = - 4 - 3 - 2 - 1). So, its   average cost is always -10. When it attends to one object 
at a time, it has a higher average cost at first, but as long as it learns to do the task (and to attend), 
its average cost reduces and finally reaches a value above -10. To find whether a specific object is 
available in the scene or not, the agent first applies learned top-down gains for that object to the 
image, then a square area (50 × 50 pixels) is sent to the SVM classifier corresponding to that 
object. The agent was capable to navigate correctly after learning. 

The final behavior of the agent after learning is explained next. When observing an image, it 
starts from the Null state and then follows its learned policy until a motor action is selected. If in a 
state an object should be attended then, the salient region of the image (by applying the 
appropriate bias signals to the image) is transferred to the corresponding SVM classifier to be 
recognized. Then next state is determined and so on. 
A hierarchical representation was formed in mind of the agent. This tree determines the order of 
attending to objects.  

 
Figure 6.7 Top) Average cost, Bottom) Cumulative average reward during episodes. RL parameters: 
maxEpizodes = 2000, α = 0.7, γ = 0.9, ε = 0.9. Costs were defined as = [-4 -3 -2 -1] for objects [A B C D]. 
 
Motor actions unknown In this section, association of physical actions to scenes is not known in 
advance. Therefore, it has to discover both its representations (internal state space) and the best 
image-to–action mappings. The agent starts in the RL-fixed phase with a random position and a 
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random head direction in the map. It then receives an image randomly from 5 images associated 
with each state. To find its state, the agent traverses its attention tree down to a leaf node, 
afterwards it follows an ε-greedy strategy for action selection. Each episode is terminated when 
the agent reaches the goal state or goes off the road (hits the wall). Rewards and punishments are 
defined as in equation 14. Costs of attending to objects are not considered (zero cost). 
 

ܴ ൌ ൞

൅100:  reaching the goal state                                                   
 ‐10:  going forward and hitting a blocked way              

‐5:  turning and observing a blocked way in front  
0:  ordinary forward or turn                                       

              ሺ6.4ሻ 

 
Average reward is the sum of the rewards that the agent receives during an episode 

normalized by the length of that episode. Average tree depth is the average depth of all leaf nodes 
in the attention tree. Figure 6.8, shows the average reward of the agent, statistics of the generated 
tree like number of nodes and leaves and its average depth. It also shows error rate in the policy 
of the agent. 

Final depth of the generated tree is 3.22, which means that the agent could do the task 
perfectly by attending to 3.22 objects in average. This value is below 4 objects in full attention 
case and shows 20% improvement in reducing the processing costs. It could be seen that, when 
perceptual aliasing decreases, average reward increases. As figure 6.8.b shows, average depth of 
the tree increases during learning. Figure 6.8.c shows the percentage of incorrect policy. After 10 
iterations, it converges to zero that means that the agent has learned the optimal image to action 
mapping and there are no further aliasings in the tree. Final generated tree is shown in figure 6.9. 
Nine leaves (states) were generated for handling the task which is smaller than 12 states of the 
environment. Since some states have the same best actions, they were clustered under the same 
leaf nodes (states with plus signs in figure 6.9). 
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b) 

 
c) 

Figure 6.8 a) Smoothed average reward in a window of 200 episodes, b) left: Number of nodes and leaves 
of the learned attention tree, right: Average tree depth, c) percentage of incorrect best action. Parameters: 
maxEpisodes = 200, ε = 0.8, memThreshold: 20, α = 0.9, γ = 0.9, aliasingThreshold=11. (For the map of 
figure 6.3, without pruning) 
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Figure 6.9 Learned attention tree for the map of fig 8 without pruning. Algorithm managed to generate a 
tree with 9 states. Letters inside the blue circles (leaves) are the learned motor actions. This tree resulted in 
100% correct policy but is not efficient since the node marked with * has two children with the same best 
actions. Different states with the same best actions are clustered under the same leaves. 
 

It could be verified from the tree in figure 6.9 that the algorithm generates inefficient trees. In 
its general form, it creates some unnecessary leaf nodes. For example, the node labeled with * in 
this figure has two children with the same best actions. Clearly, such nodes have anomaly and 
could be merged and be replaced with their parent node. Some nodes also do not absorb any 
experiences indicating that they are not necessary. To generate efficient trees, generated trees are 
pruned in some occasions, for instance after d iterations (here after the last operation).  

Generated tree after pruning is shown in figure 6.10. Algorithm in this case succeeded to 
generate a more compact tree by clustering more states with the same best actions under the same 
leaf nodes. Final generated tree again achieved 100% correct policy rate with 6 states and average 
depth of 2.66 which are smaller than 3.22 and 9, average depth and number of states of the un-
pruned tree in figure 6.9. 

 

 
 

Figure 6.10 Learned attention tree for the map in fig 8 with pruning. Twelve states were clustered into 6 
leaves. Algorithm succeeded to achieve the 100% correct policy in this case. Parameters: maxEpisodes = 
200: ε = 0.8, memThreshold= 100, α = 0.9, γ = 0.9, aliasingThreshold= 10.  
 

We also applied our method to a more complex navigation environment. In this task, the 
agent moves between 11 positions of the map in figure 6.11. Neither motor actions nor visual 
representations are known in advance. The state space is of size 11 × 4 = 44. Actions and 
reinforcement signals are as in previous section. The agent has to connect an input image to the 
appropriate reaction without explicitly knowing its geographical localization. 
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Figure 6.11 Complex navigation map. A subset of 5 objects is randomly embedded in each scene. Best 
actions are shown besides each state. In some states two actions are optimal. 
 

Five scenes are associated with each state and there is no error in detection and recognition. 
Objects in the scenes (4 traffic signs plus the coke object) are randomly speared in 2D space and 
are not bound to specific spatial locations. A random assignment of the objects to the states is 
shown in table 4. Note that, the agent observes some same scenes in different states. Since there 
are 44 states in the map, and 31 combinations are possible with 5 objects (minus empty scene), 
therefore aliasing occurs in some states (the agent observes the same scene in different states with 
the same best actions). To avoid such aliasings, no same scenes were assigned to states with 
different optimal actions. 
 

Table 6.2 A random assignment of objects to states of the map in figure 6.11. 
            
1 {B} 9 {A, B, D} 17 {A, C, E} 25 {A, B, C, E} 33 {A, B, D} 41 {A, B, C, D} 
2 {A, B} 10 {A, B, C, E} 18 {B, C, D, E} 26 {D, E} 34 {A, D, E} 42 {A, C, D} 
3 {A, C, D} 11 {A, C, E} 19 {D} 27 {A, D, E} 35 {D, E} 43 {A, C, E} 
4 {A, C} 12 {B, C, D} 20 {A, D, E} 28 {B, D, E} 36 {B, D, E} 44 {B} 
5 {A, B, C, D} 13 {B, D} 21 {A, B, D} 29 {A, D, E} 37 {A, B, C, D}   
6 {A} 14 {A, E} 22 {A} 30 {A, D} 38 {A, C, D}   
7 {A, C} 15 {A, D, E} 23 {A, C, E} 31 {B, C, D, E} 39 {A, C, E}   
8 {B, D, E} 16 {A, D} 24 {B, D} 32 {A, B, D} 40 {B, C, D}   
            

Generated tree for this experiment without pruning and with deterministic observation 
(without uncertainty) has 23 leaves. Algorithm converged to 100% correct policy rate after 55 
iterations (phases). Final tree has the average depth of 4.2 which is smaller than 5 objects (full 
attention). So, the agent attends to 4.2 objects in average while having the same performance. 
However, again this tree is not efficient since there are some nodes with no patterns classified 
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under them. In some situations, leaves below a node have the same best actions which 
evidentially are not necessary and could be merged in their parent node.  

Figure 6.12, shows the average reward of the agent, statistics of the generated tree like 
number of nodes and leaves and its average depth without pruning. It also shows error rate in the 
policy of the agent. Figure 6.13 shows the generated tree after pruning. Algorithm generated 7 
states with average depth of 3. Therefore pruning could extensively help optimizing the trees.  

 

 
a) 

 
b) 

 
c) 

Figure 6.12 a) Smoothed average reward in a window of 200 episodes, b) left: Number of nodes and leaves 
of the learned attention tree, right: Average tree depth, c) percentage of incorrect best actions. Parameters: 
maxEpisodes = 200, ε = 0.8, memThreshold: 700, α = 0.9, γ = 0.9, aliasingThreshold=120.  
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Figure 6.13 Learned attention tree for the map of fig 16 after pruning. Forty four states were clustered into 
7 leaves. 100% correct policy was achieved.  
 
6.4.2 Uncertainty analysis 
An important aspect of decision making in real-world situations is the fact that an intelligent 
system should be able to deal with uncertainty from numerous sources. For instance, a major 
source of uncertainty for a robotic agent is its sensors, which are often noisy and have only a 
limited view of the environment. Since both saliency model and the HMAX have uncertainties, 
this problem also applies to our model.  In this section, we analyze how uncertainty in the 
perception of the agent affects his behavior over the map of the figure 6.3. Each observation of 
the agent is incorrect by probability Pu.  When the agent traverses its attention tree and has to 
attend to an object, it might get an incorrect result with probability Pu. If Pu=0, the agent’s 
observations are always correct. Therefore behavior of the agent is deterministic and it always 
does the same action (policy) for the same observation. However when observations of the agent 
are noisy, then the agent develops a probabilistic action selection strategy. Since no formulation is 
involved, the only way for the agent to discover such probabilities is by maximizing its reward. 
As figure 6.14 shows, low magnitude noise does not degrade the behavior of the agent a lot (for 
Pu = 0 and Pu = 0.03). However when the noise percentage is increased to 0.1 or 0.4, algorithm 
does not converge to a near optimal policy. Increasing the uncertainty resulted in gaining less 
average reward and more faulty policies. 

Therefore, the agent could compensate low magnitude of uncertainty in the saliency model 
and HMAX by optimizing its action selection strategy.  
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Figure 6.14 Top: Cumulative average reward of the agent for different noise levels. Bottom: Cumulative 
percentage of correct policy during learning (For the map of figure 6.3). Results are averaged over 7 runs. 
Analysis was done using pruning and the same parameters as in figure 6.8. 
 
6.4.3 Comparison with decision trees learned with C4.5 algorithm 
The best advantage of interactive learning of action-based representations and top-down visual 
attentions, through discretizing state space when aliasing occurs, is that such learned 
representations are optimal for the behavior of the agent. In this section we compare the tree 
learned with our algorithm for learning object-based visual attention with the tree generated 
offline by the basic C4.5 algorithm (Quinlan, 1993) over the map of figure 6.11. In C4.5, an 
object is selected for a node which maximizes the information gain according to equation 15.  
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In above formula, o* is the selected object, o is the object which is being checked. y is the set of 
all items in a node, y+ is the set of items with object o and y_ is the items without o. |L|, |L+| and |L-

| are the size of these sets respectively.  
For states in the map of figure 6.11, with two best actions, one was selected in random. Leaned 
tree with the C4.5 algorithm is shown in figure 6.15.  
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Figure 6.15 Offline learned decision tree with C4.5 algorithm. Average depth of the tree is 3.6 and the 
correct policy using this tree over the map in fig 16 is 100%.  
 

C4.5 managed to generate a tree with 10 perceptual states (leaves) with the average depth of 
3.6. Percentage of the correct policy using this tree is 100%. This shows that while C4.5 
algorithm, achieved to find an optimal policy, it generated a suboptimal representation.  
 
6.5 Discussions 
In our proposed method, state space is incrementally constructed from a single Null state. In order 
to maximize its cumulative reward, the agent has to continuously create new states and learn the 
best physical actions associated with them. Our method for learning task-based visual attention 
discretizes state space when perceptual aliasing occurs. Aliasing is measured using TD errors 
(Bellman residuals). In RLVC (Jodogne & Piater, 2007), SIFT features are used for building a 
representation tree.  In each internal node of this tree the existence of a specific SIFT feature is 
examined. Learned tree by RLVC is loosely related to visual attention because it always 
calculates the SIFT features over the entire scene. This exhaustive search for a SIFT feature 
brings advantages like partial invariancy to orientation, scaling and translation, but has the 
drawback of high computational complexity. It might be advantageous to extract SIFT features at 
some specific locations (eg. at the focus of attention) to reduce the computational complexity of 
this approach. However remedies should be anticipated to solve the sensitivity of this approach to 
image transformations. In our object-based method only a region of the image is searched for 
checking the existence of an object. This region is selected via the saliency-based model of visual 
attention which is biased toward specific objects. Therefore our method eliminates this 
shortcoming of RLVC.  
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Our results show that the quasi-static learning of actions and attentions over saliency and 
HMAX models could solve complex navigation problems. Instead of detecting and recognizing 
all the objects in a scene, or processing entire image content, the best action associated with that 
scene could be found by only attending to a few objects. For example in the complex map in 
section 4.1.2, 3 numbers of attentions and object recognitions were enough for action-based 
classification of the scenes, instead of recognition of 5 objects. Considering that attention 
windows and scenes were of size 50×50 and 360×270 pixels respectively, on average 0.07 
percent of pixels were analyzed with average 3 saccades. This clearly shows that object-based 
attention could largely save computational resources. Also it was shown that pruning could 
significantly enhance the generated attention trees. Such trees, while being compact, result in 
optimal policies. Generated trees had smaller number of leaves (states) and average tree depths. 
This means that the agent could attend to a smaller number of objects in average to solve a task.  
It was also shown that training RL with noisy data could compensate low-magnitude noises, but 
larger values of noise significantly degrade the RL convergence.  Generated trees with our model 
are more efficient than offline learned trees with the C4.5 algorithm in terms of average tree 
depth. This clearly shows the importance and benefit of action-based and attentive representations 
over hand designed and offline solutions.  

Since online learning of weights of the saliency model is not reasonable due to degrading the 
RL convergence, here we divided learning top-down object-based attention into two parts. First 
saliency model is biased offline and efficiently (in terms of reducing the cost of bottom-up 
attention) toward objects of interest for the agent. These objects are those the agent might observe 
when doing a specific task online. Then RL is used to discover when and how these learned 
signals should be applied interactively. Actually our method proposes a basic framework to use 
the bottom-up saliency model, standard model of object recognition and RL techniques for top-
down attention learning. To solve the remaining problems, solutions from RL approaches can be 
borrowed. For instance, when aliasing occurs, a short term memory component could be used to 
omit the aliasing by remembering previous actions, attentions and observations. 
When gathering memory under a leaf node, it is assumed that the agent knows which objects are 
in the scene. Actually this assumption limits the work since it is not easy to find all the objects in 
a natural scene. To the best of our knowledge, an efficient solution for this problem does not 
exists yet. It will be helpful to start working with large databases of natural scenes containing 
segmented and tagged objects (like LabelMe dataset (Russell et al., 2008)). 

Other efficient and task-specific object detection and recognition methods could be 
substituted with model components. For example for environments when the agent is concerned 
with specific class of objects (like faces, cars, etc.) solutions for detection of such objects might 
lead to more efficient top-down solutions. Clearly such case-based object detection solutions are 
more efficient than a general solution which is assumed to detect any object. For example there 
are successful face detection approaches in the literature. Same thing also applies for object 
recognition. This is mainly because of this shortcoming of the saliency model which does not 
consider the structure of the objects in searching. (A learning mechanism for search will help). A 
recent attempt is done in (Walther & Koch, 2006) by using the idea of proto-objects to help the 
search mechanism. Another study has proposed a Bayesian formulation in order to consider the 
context and the backgrounds that objects might appear in (Torralba, 2003). However, it seems 
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more studies should be done experimentally and computationally to discover the role of object 
structure in visual search tasks. 

From the point of view of robotics, if a method, based on low-level features (like RLVC with 
SIFTs) enables an agent to solve its task adequately and efficiently (low computation), then it is 
sufficient.  Now this question arises: “If a task could be solved with low-level features, what is 
the benefits of working with global representations like objects?”. There are two reasonable 
answers to this question. First, such methods while proposing solutions in robotics are in 
accordance with some previous findings on visual attention like bottom-up and top-down 
attentional mechanisms (object-based and spatial). They might also be useful for understanding 
how high level top-down attention is mediated by different parts in the brain when an agent has to 
interact with its environment and continuously make decisions. Decision making studies have 
previously used RL approaches to understand decision making processes in the brain  but, there 
are not many computational studies trying to explain experimental data of attentional behaviors 
(in conjunction with decision makings) using reinforcement learning. As we mentioned in section 
two, some attempts have been made for modeling eye movements with RL which to some extent 
explains cortical attentional mechanisms. Second reason, why a simple solution which uses low-
level localized visual features while applicable might not be appropriate, is because an 
autonomous agent in order to communicate and interact with its surrounding environments has to 
do a repertoire of tasks. Low-level features might be the best when an agent has to do a limited, 
well-defined single task. Actually the reason why humans deal with objects instead of low-level 
features might be because they have to perform various cognitive tasks. This way, objects help 
the agent to make abstractions in its world which leads to generalizations in its behavior. There 
are also evidences claiming that humans manipulate objects in order to understand a scene, 
instead of dealing with low-level features.  

 
6.6 Summary and conclusions  
In this research, we proposed and partially implemented an overall biologically inspired model 
for top-down object-based visual attention control. In our model, we considered how task 
demands, actions and the bottom-up cues influence attention. Our results support the idea that the 
nature of the bottom-up attention is low-level mechanisms, while top-down attention is more like 
a control or a decision making problem. To solve such problems optimization approaches have 
been followed in engineering literature. 

Rather than scanning the image from top-left to bottom-right, to detect an object in the scene, 
or using global representations (which usually need many computations), our model just looks at 
a small number of spatial locations. The information about what and where to look comes from 
the top-down knowledge learned by RL during learning a task. Links of model components to 
biology were discussed in each section of the paper.  
Our main contributions were proposing a method to find the low-cost weights of the saliency 
model to bias it for object detection and a top-down mechanism for controlling the bottom-up 
saliency model for doing a task. 

Our approach is in accordance with the important biological evidence that brain has adopted a 
need-based approach for visual representations. This means that representations and other 
cognitive capabilities of the agent are altered or refined in order to optimize its behavior and 
interactions with the world it lives in. A minimal solution (representation) is enough and no 
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further detail (over-completeness) is needed. This mechanism is well captured by our model for 
deriving visual representations and top-down task-based attentions. Actually representations and 
attentions are optimized in our model by maximizing cumulative reward of the agent (behavior-
based approach). For gaining maximum reward those states with aliasing are expanded into other 
nodes which then lead to more refiner representations. 

Major next step is to extend the work for continuous interactive visual environments where 
the agent continuously receives visual information from the environment and has to perform 
continuous and complex motor actions.  

Integration of bottom-up and top-down attentional mechanisms has not been studied and 
shown in previous computational models which leaves places for future works. For example, a 
computer operator has learned how and where to move his eyes when working with a computer 
program from his past experience. This shows the task-driven component of visual attention. 
When suddenly he closes a screen which needs something to be saved, suddenly a pop-up 
message box appears and alarms for saving.  Our top-down model could be tried to explain the 
top-down component of this sample task using eye movement data. However, how the bottom-up 
part should be integrated in the model needs further investigation. 

In this paper, we only considered the perceptual aliasings mediated by the insufficient 
observations. If the agent could observe all the necessary data, therefore no aliasing occurs. Some 
aliasings are because of the lack of knowledge of the agent of its previous actions and 
observations. For example when two same scenes, associated with two states with different best 
actions, are presented to the agent, then it could not discover its optimal policy because of the 
contradiction in decision making. Such problems are remedied in RL by equipping the agent with 
a short-term memory that keeps track of the previous actions, attentions and observations of the 
agent to satisfy the Markov property. This idea could be used to extend our model for performing 
tasks with this aliasings.  

We only considered the costs of attending when biasing the saliency model. Costs of objects 
could also be considered for deriving trees with less average cost of attending. This way, for 
example when evaluating an object for expanding a node, its value should be normalized with its 
cost. That might result in choosing low cost and high discriminant objects at higher levels 
(smaller depths) of attention trees.  

It would be interesting to apply the ideas of dynamic and interactive state space discretization 
to behavioral and neurophysiological studies (especially on attention) and analyze their 
applicability for explaining some experimental data. The importance of this topic is better 
understood when we note that previous studies have mainly been focused on simple laboratory 
experiments. That’s because such experiments become complicated when a subject should 
interact with its surrounding environment.  
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Chapter 7 
Saliency Maps for Attentive and Action-
based Scene Classification  

 
Ali Borji, Majid N. Ahmadabadi, Babak N. Araabi 

 
To be submitted. 

 
Abstract. This work proposes an approach for attentive scene classification by extracting and 
matching visual features only at the focuses of visual attention instead of the entire scene. 
Analysis over a database of natural scenes demonstrates that regions proposed by the saliency-
based model of visual attention are robust to image transformations. Using a nearest neighbor 
classifier and a distance measure defined over the salient regions, we obtained 97.35% and 
78.28% classification rates with SIFT and C2 features at five salient regions of size 140. 
Classification with features extracted from the entire image results in 99.3% and 82.32% using 
SIFT and C2 features, respectively. Comparing attentional and adhoc approaches shows that 
classification rate of the first is 0.95 of the second while it needs feature extraction at only 0.31 of 
spatial regions. An approach for simultaneous learning of physical actions and representations 
known as RLVC is also extended by limiting SIFT search and extraction to only salient regions. 
Results prove that RLVC has still the same performance with a huge decrease in computational 
complexity. Overall, our results prove that efficient scene classification, in terms of reducing the 
complexity of feature extraction is possible without a significant drop in performance. 
 
7.1 Introduction 
A large number of approaches for scene classification have been developed which can be 
classified into the following three categories. 1) Low-level feature based schemes: which 
represent scenes by global visual information (Boutell et al., 2002), including color, texture, and 
shape have been successfully utilized in indoor/outdoor, city/landscape and forest/mountain 
applications. 2) Local feature based schemes: represent scene images with detected interest points 
(Harris and M. Stephens, 1988, Lowe, 2004) (or regions) based on some descriptors (Daugman, 
1980, Lowe, 2004). Local-global features (Lazebnik et al., 2006) based schemes utilize both the 
global spatial information and the local descriptors of interest points (or regions) to represent 
scene images to achieve a robust classification. 3) Biologically inspired feature based schemes: 
classify scenes by mimicking the process of visual cortex in recognition tasks. Recent reports 
from both neuroscience and computer vision have demonstrated that biologically plausible 
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features (Oliva & Torralba, 2001, Siagian & Itti, 2007, Serre et al., 2007) are attractive in visual 
recognition.  

Our work in this paper falls in the third category and aims to apply the inherent capability of 
human brain known as attention to outdoor scene classification. Visual attention is the capability 
of biological vision systems by which humans and animals select most salient regions of a scene 
to later concentrate higher vision tasks on those areas. This explains to some extent high 
efficiency of humans in every day detection and recognition tasks. Saliency means that a subset 
of image regions conveys more information for a biological creature, to optimize his behavior. It 
can be determined by bottom-up, image-based characteristics which are mainly derived by early 
visual areas like V1 and V2 and also top-down task-driven cues from higher areas like LIP, V4 
and PFC. 

From a theoretical perspective, attention is a solution for the problem of information 
overloading and computational complexity. This problem has attracted many concerns in 
computer vision and cognitive robotics where large amount of data has to be processed efficiently 
to guarantee a limited response time. It is also of interest to produce human-like behavior in 
human-computer interaction applications.  

While a large body of research has been focused to understand biological underpinnings of 
visual attention and its modeling, it has been only until now that its applications have begun to 
emerge in computer vision and robotics. It has also been incorporated to solve complex visual 
tasks like 3D reconstruction (Pollefeys, et al., 2004), robot navigation and localization (Lowe & 
Little, 2002, Frintrop & Jensfelt, 2008), scene (Siagian & Itti, 2007), object and face recognition 
(Lowe, 2004).  

Several computational implementations of models of visual attention have been published 
(Frintrop et al., ACM 2009) in last decade. However, little work has been done in investigating 
their benefits for scene and object classification in natural environments (Walther & Koch 2006). 
In this paper, applicability of saliency-based model visual attention is examined for scene 
classification. We first investigate whether and to what extent images contain similar visual 
content at salient regions or are repeatable. We furthermore aim to demonstrate how this 
information could be utilized for outdoor scene recognition.  

Repeatability of a different class of saliency, discriminative saliency, defined by Gao et al. 
have been studied in Gao et al. (CVPR 2007). They speculate that saliency serves to maximize 
recognition. Using SVM classification, they have shown that discriminate saliency detector 
(DSD) leads to higher recognition rate than Scale Saliency Detector (SSD) (Kadir & Brady 2001) 
and Harris Saliency Detector (HSD) over face, motorbike and airplane datasets. They have also 
compared the repeatability of DSD with Hessian-Laplace (HesLap) (Mikolajczyk & Schmid, 
2004) and Maximally Stable Extermal (MSER) (Matas et al., 2004) detectors. There are some 
concerns about the idea that recognition is the major goal of saliency. Some biological findings of 
attention contradict this claim. Saliency for recognition means that some feedback mechanisms 
for example in form of projections from higher brain areas modulate the early areas. This is 
despite the facts that bottom-up attention in visual cortex is feed-forward, very fast (80 ms) and 
only based on raw mage characteristics. Furthermore there is no evidence whether this concept of 
saliency matches with human eye movement behaviors or not, while we have evidences that 
bottom-up saliency (Itti et al., 1998) generates scan- paths correlated with saccadic eye 
movements (Ourehani et al., 204, Electronic Letters).  
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Local image descriptors have become a very powerful representation of images in 
categorization and recognition tasks (Schmid & Mohr, 1997, Lowe, 2004). Much of their success 
is due to their distinctiveness and to the fact, that this type of image representation is robust to 
occlusions and affine transformations. While in some applications like 3D reconstruction, a large 
number of local features is needed in some others only a few suffices.  In many real-world 
applications where computational resources are limited, a small number of descriptors are 
preferred because it greatly reduces the complexity of matching algorithms. In (Walther et al. 
2005), Walther et al. have proposed a method for multiple object recognition in cluttered scenes 
using SIFT features. First a salient region is detected using the basic saliency model and then a 
patch is grown to fit an object extent. SIFT feature extraction is done at this patch for matching 
the object at to the learned objects. Similar to this work, we also extract SIFT features at some 
salient spatial region but for scene classification. 

From another perspective the proposed algorithm reduces the computational complexity of 
SIFT feature extraction algorithm. SIFT algorithm generates a large number of features e.g about 
2000 for a 500×500 image (ms per image on average). There have been some attempts to speed 
up this process by modifying the way they are calculated. We claim that it is possible to extract 
SIFT features at a subset of spatial locations without a major drop in performance. Instead of 
feature extraction over the whole image, features are extracted over some moderately stable 
salient regions and are then matched.  

Our scene classification algorithm consists of three integrated modules 1) a saliency detector 
for selecting a subset of scene regions 2) a matching algorithm which matches image content at 
the salient regions and returns a distance value between images and 3) a classifier for class label 
prediction. All these stages to some extent cope with biological findings.  

In contrast with many machine vision applications, in robotics processing resources are 
limited and small response times has to be guaranteed. This makes it necessary to design efficient 
solutions in terms of accuracy and speed for such problems. Human brain as a physical system 
faces the same problem where huge amount of sensory information is received but only a very 
small amount of them has to be processed. Biology has designed a solution known as visual 
attention where some image regions are selected in a task-relevant fashion in order to be 
processed in detail. In this way, attention ants as filter which allows only informative and task-
relevant areas to pass to higher visual brain areas.   

Several researches have been already proposed to model visual attention and benefit from 
them in machine vision and robotics context. Visual attention could act by selecting image image 
regions or objects in both bottom-up and top-down manners. In bottom-up attention, image 
regions are selected only based on physical image characteristics like luminance contrast, color 
contrast, orientation contrast, etc in an open loop manner. In top-down attention selection criteria 
dynamically changes based on task demands, motivations, emotions, etc. While there has been 
lots of efforts to model bottom-up component of visual attention like saliency model (Itti et al., 
1998), much interest has been raised to understand and model top-down component of visual 
attention due to its applicability in many computer vision and robotic tasks. A line of study in 
machine learning known state-space discretization deals with learning top-down attention 
indirectly and in a different fashion from other top-down modeling studies. In these studies, 
representations (states) of the agent are dynamically learned in an interactive fashion (with agent 
acting in the environment) whenever perceptual aliasing. In this way, decisions and actions are 
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learned simultaneously. The structure coding for representation allows directing attentions too. 
This has been generally formulated first in (McCallum, 1995) and has been extended to visual 
domain by Jodogne and Piater (2007).  

RLVC consists of two interleaved learning processes: 1) an RL unit which learns image to 
action mappings and 2) a binary image classifier which incrementally learns to distinguish visual 
classes when perceptual aliasing occurs. The classifier acts like an attention tree by checking 
whether a specific SIFT feature is present in the image or not. The main drawback with the 
RLVC is its exhaustive search over entire image for checking the existence of a specific SIFT 
feature  which could hardly be considered as an attention method since it does not select a subset 
of image regions. In our method, introduced in the second part, like RLVC, an action-based 
decision tree is constructed. We use the basic U-TREE algorithm for refining the internal 
representations of the agent. However, our method solves this shortcoming of RLVC, exhaustive 
search for a specific feature, by extraction and matching visual features only at the focuses of 
attention proposed by the bottom-up saliency-based visual attention model. 

In top-down attention, focuses of attention (saccade locations) has to be learned. Saliency 
could help efficient scene classification and action-based scene classification when actions and 
attention has to be learned in order to perform a real-time task. Two alternative solutions for 
above problems are 1) to learn to process scene sequentially for example by processing regions 
proposed by saliency model like saccadic eye movements  (Or to constrain resources to locations 
to a meaningful and biologically-inspired approach like saliency model) or 2) Process all salient 
regions in parallel and constrain feature extraction to these moderately stable regions. The first 
approach is subject of our other studies (Borji et al., 2009) but in this paper, we follow the second 
approach for scene classification for situation when the goal is to maximize correct classification 
rate and when the goal is to maximize reward or correct policy rate.   

In order to select some salient regions we need a saliency detection approach which has these 
three characteristics 1) be computationally inexpensive and fast 2) produce stable regions through 
image transformations and 3) be a suitable in both biology and engineering in sense of coping 
with biology, computation complexity, applicability , etc. Since saliency model (Itti et al., 1998) 
satisfies these conditions, it is used for saliency detection in this paper.  

The rest of this chapter is organized as follows. In section 7.2, saliency-based model of visual 
attention is briefly explained. Attentional scene classification using saliency concept is presented 
in section 7.3. Section 7.4 extends the RLVC by constraining feature extraction to salient regions.   

 
7.2 Saliency-based model of visual attention 
Several studies in computer vision have previously investigated the paradigm of visual attention 
and now there is an accepted model known as the basic saliency-based model (Itti et al., 1998) 
which copes with biological concepts known to some extent. This model generates a 2-
dimensional topographical map that encodes stimulus conspicuity or saliency at every scene 
location. Saliency map is constructed as follows. 

The input image I is sub-sampled into a Gaussian pyramid (Burt & Adelson, 1983), and each 
pyramid level is decomposed into channels for red ሺܴሻ, green ሺܩሻ, blue ሺܤሻ, yellow ሺܻሻ, intensity 
ሺܫሻ, and local orientation ሺܱఏሻ, then ܴ ൌ ݎ െ ሺ݃ ൅ ܾሻ/2ሻ , ܩ ൌ ݃ െ ሺݎ ൅ ܾሻ/2, ܤ ൌ ܾ െ ሺݎ ൅
݃ሻ/2, and ܻ ൌ ݎ ൅ ݃ െ 2ሺ|ݎ െ ݃| ൅ ܾሻ (negative values are set to sero). Local orientations ሺܱఏሻ 
are obtained by applying steerable filters to the images in the intensity pyramid ܫ (Burt & 
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Adelson, 1983). From these channels, center surround “feature maps” are constructed and 
normalized: 

 
ூ࣠,௖,௦ ൌ ࣨሺ| ூࣧሺܿሻ ٚ ூࣧሺݏሻ|ሻ, ܫ ൌ ሼܫሽ                                      ሺ7.1ሻ 

࣠஼,௖,௦ ൌ ࣨሺ| ஼ࣧሺܿሻ ٚ ஼ࣧሺݏሻ|ሻ, ܥ ൌ ሼܴܩ,                                    ܻܤ
࣠ை,௖,௦ ൌ ࣨሺ| ைࣧሺܿሻ ٚ ைࣧሺݏሻ|ሻ, ܱ ൌ ሼ0ל, ,ל45 ,ל90               ሽל135

 
where ٚ denotes the across-scale difference between two maps at the center (c) and the surround 
(s) levels of the respective feature pyramids. ࣨሺ. ሻ is an iterative normalization operator (see (Itti 
& Koch, 2001) for details ). The feature maps are summed over the center-surround 
combinations using across-scale addition (+) and the sums are normalized again: 

 

௟࣠ ൌ  ࣨ ൭෍ ෍ ௟࣠,௖,௦

௖ାସ

௦ୀ௖ାଶ

ସ

௖ୀଶ

൱ , ݈ ߳ ሼܫ, ,ܥ ܱሽ                                    ሺ7.2ሻ 

 
For the general features color and orientation, the contributions of the features dimensions are 

linearly summed and normalized once more to yield “conspicuity” maps. For  
 

ூܥ ൌ  ூ࣠, ஼ܥ ൌ ࣨ ൭෍ ௟࣠
௟ఢ஼

൱ , ைܥ ൌ ࣨ ൭෍ ௟࣠
௟ఢை

൱                                      ሺ7.3ሻ 

 
All conspicuity maps are combined into once saliency map: ܵ ൌ ଵ

ଷ
 ∑ ௞௞ఢሼூ,஼,ைሽܥ  . 

Maximums of the final saliency map are the focuses of attention (b in our experiments). 
Despite the main model where maximums are sequentially detected using a WTA to generate a 
serial attention behavior, we use a simple max operation to speed up the process and generate a 
parallel attention mechanism. For a 640×480 images, it takes 50 ms to extract 5 salient points on 
average.  

 
7.3 Attentive Scene Classification 
Here is the aim is to construct a classifier for scene classification. Each scene is represented by a 
bag of features at either whole image or salient regions. Then a distance (similarity) measure is 
defined and then a classifier is built and is evaluated over a separate set of images. There is no 
interaction with the environment here and the only goal is to maximize correct classification rate. 
 
7.3.1 Repeatability of Salient Regions 
Here we explore to what degree salient points are repeated in different instances of the same 
scene class. To this purpose, we calculate the similarity of scene regions at the focuses of 
attention. This is indirectly in accordance to the repeatability criteria used to evaluate the quality 
of local feature detectors. 
 
Features In our approach, a within fixation processing extracts features at focuses of attention for 
representing scenes. Two classes of features: SIFT (Lowe, 2004) and C2 features (Serre et al., 



106 
 

2007 PAMI) are employed. The rationale behind selection of these features is comparing a local-
appearance approach based on interest point and local descriptor concepts and another geometry-
based approach to find out which feature type works well with saliency maps. 

Sift features are distinctive features useful for reliable matching between different views of a 
scene or an object. They are invariant to image scaling and rotation, and partially invariant to 
changes in illumination and 3D camera viewpoint. SIFT is a staged approach, the first stage being 
the detection of salient key points. Key-point candidates are detected as local extrema of 
difference-of-Gaussian (DoG) filters in a Gaussian Scale Space of the input image. These 
candidates are then subpixel interpolated. Key points showing low contrast or lying on edges are 
discarded, for they are not stable. Invariance against scale and rotation is achieved by assigning a 
scale (according to the level of the scale space pyramid the key point was detected in) and an 
orientation (according to the principal orientation of gradients in a region around the key point) to 
each key point. Note that, in this step, points may be duplicated with different orientations if the 
local orientation histogram has multiple prominent peaks. Finally, the local image descriptor (i.e., 
the features) is calculated as a collection of smoothed histograms of gradient orientations and 
magnitudes over the local image region. The size of the feature vector depends on the number of 
histograms and the number of bins in each histogram. In Lowe’s original implementation, a 4-by-
4 patch of histograms with 8 bins each is used, yielding a 128-dimensional feature vector. We use 
a MATLAB/C implementation of the SIFT algorithm provided by Vedaldi (Vedaldi, 2006, TR). 

C2 features are introduced by Serre et al. in (Serre et al., 2007). They have developed a 
computational model which based on the hierarchical organization of the visual ventral stream 
where shapes, object, face and scene recognition is performed. Simply in these models, low-level 
features which have high position and scale specificity are combined in a hierarchy to produce 
complex invariant features. This model starts with an image layer of gray-level pixels and builds 
simple (S) and complex (C) layers alternatively. Neurons in S layers convolve the image with a 
set of local filters to extract features and S units pool their inputs from previous layer to increase 
invariancy. (e.g. max operation). In this paper, we used the modified HMAX model (Mucth & 
Lowe, 2005) which learns a dictionary of prototypes patches in the C1 layer from a set of sample 
images. Number of learned patches determines the dimensionality of the learned feature vector. 
C2 feature provide rich structural information useful for recognition and matching and 
incorporating them with visual attention may give insights of interaction of visual attention and 
object recognition in human visual system (Walther & Koch, 2006). 

 
Distance Measures Regarding the second step in scene classification, it is needed to define a 
distance or a similarity measure between two images to construct a classifier. We define distance 
measures for each type of above mentioned features. Given a set of m images ܫ ൌ ሼܫଵ, ,ଶܫ … ,  ௠ሽ, aܫ
bag of features representation for the ith image with q SIFT features is:  
 

௜ܨ ൌ ൛ ௜݂ଵ, ௜݂ଶ, … , ௜݂௤ൟ, ௜݂௝ ൌ ൫ݔ௜௝,  ௜௝൯                                                 ሺ7.5ሻݕ
 
where ݔ௜௝ is the value of the jth SIFT feature (a 128-dimensional vector) and ݕ௜௝ is the position of 
this feature in image coordinate frame. 
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The idea behind the state-of-the-art algorithms for matching and recognition is that they 
measure the similarities between all local features within compared images. We define a distance 
measure which is the average of the best matches for all features of the ith and jth image as:  
 

,௜ܨ൫ܦ  ௝൯ܨ ൌ
1
2

ቀ݀൫ܨ௜, ௝൯ܨ ൅ ݀൫ܨ௝,  ௜൯ቁ                                                   ሺ7.6ሻܨ

݀ሺܨ௨, ௩ሻܨ ൌ
1

݊௨
෍ min

௧ୀଵ..௡ೡ
ሺ݉ݎ݋݊ ௨݂௟ െ ௩݂௧ሻ

௡ೠ

௟ୀଵ

                

 
where ݊݉ݎ݋ is the Euclidean distance between two SIFT features. Above distance measure does 
not consider the fact that features remain at spatial vicinity of each other most of the time with 
image transformations. Following this constraint distance measure in (7.7) may enhance feature 
matching and hopefully recognition.   
 

݀ሺܨ௨, ௩ሻܨ ൌ
1

݊௨
෍ min

௧ୀଵ..௡ೡ
ሺ݉ݎ݋݊ ௨݂௟ െ ௩݂௧ሻ

௡ೠ

௟ୀଵ

. ሺܪ െ ݁ீሻ                 ሺ7.7ሻ           

ܩ ൌ െ
1

ଶߪ2 ቀ݊݉ݎ݋൫ݔ௨௞ െ                                                                          ௩௣൯ଶቁݔ

 
H in (7) is a large positive number (= 1000) therefore ሺܪ െ ݁ீሻ is small when distance between 
features is small and hence results in small distance.  

For images represented by C2 feature vectors, distance measure is simply the Euclidean norm 
of their difference: 
 

,2௜ܥ൫ܦ 2௝൯ܥ ൌ 2௜ܥ൫݉ݎ݋݊ െ  2௝൯                                                   ሺ7.8ሻܥ
 

Above definitions are for feature extraction over the entire images. We now define distance 
of two images based on their feature at salient regions. Assume ௜ܵ ൌ ሺݏ௜ଵ, ,௜ଶݏ … ,  ,௜௕ሻݏ
௦೔ೕ ൐ݕ݈ܿ݊݁݅ܽݏ  ௦೔ೕశభ be the vector of salient points generated by the saliency detectorݕ݈ܿ݊݁݅ܽݏ 
ordered by their saliency value. Let, 
 

௜ܹ௝ ൌ ቎
,௜ଵݏሺܦ ௝ଵሻݏ ڮ ,௜ଵݏሺܦ ௝௕ሻݏ

ڭ ڰ ڭ
,௜௕ݏሺܦ ௝ଵሻݏ ڮ ,௜௕ݏሺܦ ௝௕ሻݏ

቏                                     ሺ7.9ሻ 

 
be the matrix of pairs of salient regions with ܦሺݏ௜ଵ,  ௝ଵሻ as the distance between the first salientݏ
regions of the ith and jth images. In order to reduce the above distance matrix into a scalar, we 
need to match the salient regions. One way is to pick the minim distance or the best match 
between salient regions same as doing to match SIFT features in (7.7) or (7.8) by considering 
their pixel distances in the images. A more common algorithm is the Hungarian algorithm which 
takes as input a distance matrix and returns a distance measure as well as the best match. This is a 
combinatorial optimization algorithm with the benefit of solving the assignment problem in 
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polynomial time. A better match between two images means lower distance and hence higher 
similarity. 
 
Repeatability Measure Repeatability indicates how often features repeat in the transformed 
versions of an image. Inverse of above distances could be used for calculating similarity or 
repeatability of two images. Repeatability of a set of images is the mean of repeatability of 
subsequent images (frames) and is defined as (also called tracking repeatability): 
 

்ܴሺܫሻ ൌ
݊ െ 1

∑ ௜ାଵ൯௡ିଵܫ,௜ܫ൫ܦ
௜ୀଵ

                                                           ሺ7.10ሻ 

 
where D is one of distance measures defined in section 7.3.1. N is the number of images in a 
scene class. We compare the repeatability of saliency detector patches at fixed locations over all 
images and random locations in each image. 
 
7.3.2 Repeatability Results 
Results of repeatability and attentive scene classification are shown in this section over a database 
of natural scenes. This database contains 44 classes each with 24 scenes with large viewpoint 
changes from locations in a university campus (Jodogne & Piater, 2007). We restrict number of 
salient points to five (b=5) since the concept of visual saliency is restricted to few features per 
image by definition. Eight first instances of the seven first classes of the above database with their 
salient regions marked with rectangles are shown in figure 7.1. As this figure shows, in many 
cases salient regions are in the same regions in subsequent images but their saliency rank differ. 
This shows the significance of region matching in attentional scene classification. Features are 
derived in a window of size (W) around each salient point. Tracking repeatabilities for salient 
regions for these classes using both features are shown in Table 7.1. As Table 7.1 shows 
repeatability increases in each class as the number of salient points increase using both SIFT and 
C2 features.   
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Figure 7.1 Salient regions of 7 natural scenes. Each row is for a different class. Order of salient points is 
coded by colors: pink, yellow, blue, red and black. Narrowest rectangle is the first and so on. Window size 
(W) is equal to 60. 
 
Table 7.1 Tracking repeatability of scene classes in Figure 7.1 for different number of salient points. Top 
and bottom numbers in each row are repeat abilities for SIFT and C2 features, respectively. W is 60 and 
dimensionality of C2 vector (|C2|) is equal to 4096. 
 

Class 
No 1 1:2 1:3 1:4 1:5 

1 1.35 1.41 1.71 2.27 2.27 
3.24 4.48 5.88 8.05 9.18 

2 1.37 1.45 1.62 1.86 1.87 
3.33 4.56 5.64 7.03 8.40 

3 1.37 1.44 1.56 1.72 1.77 
3.44 4.70 5.61 6.61 7.50 

4 1.36 1.50 1.69 1.89 1.95 
3.23 4.41 5.48 6.43 7.49 

5 1.37 1.51 1.67 1.83 1.88 
3.31 4.43 5.53 6.41 7.37 

6 1.37 1.50 1.64 1.77 1.82 
3.23 4.38 5.46 6.30 7.14 

7 1.36 1.52 1.65 1.76 1.81 
3.29 4.40 5.47 6.22 7.06 
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7.3.3 Classification Results 
Having features and distance measures defined, we are now ready to design the classifier. Here, 
kNN algorithm is used in two cases when features are extracted 1) over the entire scene or 2) only 
at salient regions. Since using kNN is straightforward for the first case, we show how it could be 
used for classifying scenes in the second case. Attentive scene classification is shown in the 
pseudo code of Table 7.2. 
 

Table 7.2 Attentive scene classification with kNN 
 

1. Find salient regions for all images in the database. 
2. Extract features for all images at salient regions 
3. Randomly split images in each class to P for train and remaining Q for test 
4. For each test image 

a. For each train image 
i. Calculate the similarity matrix of each salient region of this image to 

salient regions of a train image using the similarity measures in (x) or (2) 
ii. Calculate the overall similarity between two images by matching the 

salient regions using Hungarian algorithm  
b. Find the k nearest neighbors to this test image 
c. Assign the class label of this image as the label of the most frequent class 

5. Calculate the correct classification rate 

 
In the experiments of this section, we investigate how attention affects learning and 

recognition of cluttered scenes. Eighteen (p=18) images from each scene class was used for 
training and the remaining ones (Q = 6) for test. Results of attentive scene classification using 
SIFT features is shown in Table 3 using distance measure of (7.6) for different number of salient 
regions and attention window sizes. Classification results using C2 features with dimensionalities 
256 and 4096 are shown in Tables 4 and 5 using distance measure in (7.6), respectively. 
 
Table 7.3 Attentive scene Classification using SIFTS with the distance measure in (7.6). Numbers in 
parentheses are standard deviations over five executions. 
 

W 
Number of Salient Points 
1 1:2 1:3 1:4 1:5 

40 
15 
(1.3) 

17.4 
(3.2) 

16.6 
(4.1) 

16.2 
(1.8) 

19 
(2.5) 

60 
29.67 
(5.1) 

37.75 
(3.6) 

42 
(1.09) 

47.6
(2.4) 

53.40 
(2.4) 

100 
51.13 
(4.2) 

74.74 
(3.15) 

78.25 
(3.1) 

81.9 
(3.5) 

85.6 
(2) 

140 
67.67 
(1.7) 

85.47 
(0.5) 

90.1 
(2.5) 

94.5 
(1.4) 

97.35 
(.9) 
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Table 7.4 Attentive scene Classification using C2 with distance measure in (7.6). Numbers in parentheses 
are standard deviations over five executions. (|C2| = 256) 
 

W 
Number of Salient Points 
1 1:2 1:3 1:4 1:5 

40 
13.93 
(1.5) 

13.18 
(.81) 

19.01 
(1.1) 

20.22 
(1.9) 

21.74 
(2.1) 

60 
25.22 
(3.39) 

22.95 
(2.05) 

28.25
(2.5) 

31.74 
(1.76) 

38.48 
(2.65) 

100 
34.46 
(2.8) 

36.74 
(2.6) 

48.61 
(2.4) 

53.40 
(2.8) 

58.71 
(1.7) 

140 
37.24 
(.95) 

44.06 
(.7) 

50.25
(4.4) 

58.83 
(4.01) 

65.27 
(2.4) 

 
Table 7.5 Attentive scene Classification using C2 with distance measure in (1). Numbers in parentheses are 
standard deviations over five executions. (|C2| = 4096) 
 

W 
Number of Salient Points 
1 1:2 1:3 1:4 1:5 

40 
17.80 
(1) 

14.26
(2.2) 

23.10 
(1.65) 

25.25 
(3) 

24.87
(2.1) 

60 
27.52 
(1.3) 

26.76
(1.7) 

30.93 
(1.2) 

35.1 
(1.9) 

43.7 
(2.1) 

100 
40.909
(2.2) 

41.7 
(3.1) 

54.9 
(1.8) 

60.6 
(3) 

69.4 
(1.1) 

140 
44.82 
(3.2) 

53.9 
(0.78) 

62.75 
(1) 

70.7 
(2.8) 

78.28
(2) 

 
As it can be seen from tables 7.3, 7.4 and 7.5, recognition rates increase in all cases when 

number salient regions increase. This is in accordance with increase in repeatability when raising 
the number of salient points. We also did recognition using random and fixed regions. Random 
points were considered to check if high recognition rate is due to overlap in image locations or 
that is because salient regions repeat in transformed images. Fixed regions were considered to see 
if salient points are class specific or not. Figure 7.2 compares the classification results using 
different detectors for window size equal to 60 and different number of salient regions. As its 
shows saliency works better than random and fixed regions in all conditions over all 44 classes. 
 



112 
 

 
Figure 7.2 Comparison of recognition rate of salient regions as well as other detectors. W = 60 and 
|C2|=256. 
 

Table 7.6, shows the classification results using KNN with distance measure in (7.7) and 
SIFTs for different values of parameter σ. 
 

Table 7.6 Classification using distance measure in (7.7) and SIFT features 
 

σ 0 1 2 3 10 
Rec. 
(%) 

95.59 
(2.1) 

97.1 
(6.1)

96.77 
(2.1) 

98.1 
(0.37)

93.8 
(1.6)

 
Results are not conclusive for different values of σ. It shows that σ equal to 3 leads to better 

results in all cases but nothing general can be said on setting this parameter since it shows no 
trend. Figure 7.3 shows the classification results using KNN with C2 features extracted from the 
entire image.  
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Figure 7.3 Classification results using C2 features with different dimensionalities. 

 

Figure 7.3 shows that increasing the number of C2 features, which means that more detailed 
and complex structures are extracted from images, significantly enhances the classification result. 
From the results it can be seen that SIFT features result in higher classification rate compared 
with C2 features. We also performed classification when feature extraction was done over the 
entire scene. Classification results using the distance measure in (6) leads to 99.3(.3)%, 
82.32(2.1)% and 77.9% recognition rates using SIFT, C2(|C2=4096|) and C2(|C2=256|) features, 
respectively. 
 
7.4 Attentive and Action-based Scene Classification 
Recent trend in robotics is toward developing robots capable of acting autonomously in unknown, 
stochastic and partially observable environments. This desired quality makes interactive and 
online learning of visual representations and control policies an essential element. Such dynamic 
methods result in flexible solutions with less complexity and lower computational power. For a 
robotic agent to be able to act in a visual environment, it should map its visual perceptual space 
into physical actions also called visiomotor coordination, vision for action or purposive vision. In 
contrast with machine vision solutions which assume predefined and rich visual representations in 
mind of an agent, necessary representations could be learned while the agent performs physical 
actions for achieving a goal. In this regard vision is formed for the purpose of achieving agent’s 
goals. This is also in alignment of need-based approach theories of visual learning in human brain 
which states vision is formed to the extent that could handle needs of an agent. 

In this regard learning top-down attention is highly coupled with learning representations. 
Therefore the best way to derive visual attention mechanisms is to learn them in concert with 
visual representations. Two active but independent research areas have previously been focused 
on this problem. In first area, purposive vision or vision for action, it has been tried to learn visual 
representations along with physical actions through automatic state space discretization in 
reinforcement learning framework. Computational modeling of visual attention and its 
applications in robotic tasks is the second research area. It serves near the same purpose as above 
by motivating from attentional mechanisms implemented in humans and animal visual systems. 
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In this paper, we aim to combine bests of these two worlds to propose efficient algorithms for 
concurrent learning of representations and actions. 
 
7.4 RLVC 
Jodogne et al. (2007) have proposed an approach for learning action-based image classification 
known as Reinforcement Learning of Visual Classes (RLVC). RLVC consists of two interleaved 
learning processes: an RL unit which learns image to action mappings and an image classifier 
which incrementally learns to distinguish visual classes. RLVC could be regarded as a feature 
based attention method in which the entire image has to be processed to find out whether a 
specific visual feature exists or not in order to move in a binary decision tree. Like RLVC, our 
approach also extends the U-Tree to visual domain. Our approach tackles this weakness of the 
RLVC, the exhaustive search for a local descriptor over the entire image, by computing and 
searching local descriptors at few spatial locations. Once aliasing is detected a SIFT features is 
selected which reduces the perceptual aliasing the most. This local visual processing results in 
very fast scene recognition because features are extracted in small regions and there is no need for 
exhaustive search for a feature. 

The approach that has been followed by RLVC is dividing the visual space when it is 
necessary. While in ordinary scene classification aim is to achieve maximum classification rate in 
action-based scene classification aim is to get the highest correct policy rate or reward. Therefore, 
in this case minimizing the aliasing (equation 2) results in highest correct policy rate (percentage 
of correct elicited actions by the agent). Aliasing is removed by checking the existence of a 
learned visual feature each time into two partitions: Those which exhibit that and those which do 
not. Distinctive visual feature are derived by defining a visual feature and a distance threshold on 
that. The most widely used visual feature is SIFT features. High dimensionality of SIFT features 
makes them distinctive, but leads to high complexity in computation which makes it challenging 
for real world applications like robot navigation.  

RLVC generates a binary decision tree in which internal nodes check the existence of a 
specific SIFT feature in the scene and leaves are states. Employing binary features has the 
advantages of simplicity and high invariance to image transformations. But require a large 
number of distinctive features, very high computation to find whether a specific feature exists or 
not in a scene.  For detailed information on RLVC, the reader should refer to Jodogne et al. 
(2007). 

Initially a tree with a single node is created and all the images are mapped to that node. 
Evidently, such a single state is not enough and aliasing occurs. In each stage of the algorithm, 
RL is executed for a number of episodes by following a ε-greedy or soft-max action selection 
policy. Quadruples ሺݏ௧, ܽ௧, ,௧ାଵݎ  ௧ାଵሻ are only used for Q-table update according to Q-learningݏ
update rule:  
 

ܳሺݏ௧, ܽ௧ሻ ൌ ሺ1 െ ,௧ݏሻܳሺߙ ܽ௧ሻ ൅ ߙ ቀݎ௧ାଵ ൅ ߛ ݔܽ݉
௔

ܳሺݏ௧ାଵ, ܽሻቁ                ሺ7.11ሻ 

 
While interacting with the environment based on its current policy agent gathers some 
experiences in each of its leaves. Each memory item under a leaf node could be represented as: 
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ܤ ൌ  ሾܾଵ, ܾଶ, … , ܾ௭ሿ, ܾ௜ א ሼ0,1ሽ,                                                                       ሺ7.12ሻ 
ܨ ൌ  ሾ ଵ݂, ଶ݂, … , ௭݂ ሿ                                                                                                                                         

 
with z as the number of distinct visual features (SIFTs). 

Therefore memory is a binary matrix with its columns representing distinctive visual features 
and rows showing experiences or memory items (captured scene). A “1” in the ijth element of the 
matrix show that the ith memory item has the jth visual feature (SIFT). 
Aliasing in each tree leaf is measured for each memory item  and could be derived from the Q-
learning formula as: 
 

ܳሺݏ௧, ܽ௧ሻ ൌ ߙ ቆݎ௧ାଵ ൅ ߛ ݔܽ݉
௔

ܳሺݏ௧ାଵ, ܽሻ െ ܳሺݏ௧, ܽ௧ሻቇ ൅ ܳሺݏ௧, ܽ௧ሻ             

                 ൌ ,௧ݏ௧ + ܳሺ∆ߙ  ܽ௧ሻ                                                                    ሺ7.13ሻ  
 
Each state with ∆࢚൐  ߬ has aliasing and has to be refined (discretized) in order to remove aliasing. 
Tree refinement or selecting the SIFT feature that mostly reduces the perceptual aliasing is a bit 
different. The most discriminant feature is calculated as follows: 
 

כ݂                      ൌ ௙݊݅݉ݎܽ  ൭ݎܽݒ ሼݕሽ െ ൬
|ାܮ|
|ܮ| |௔ݕሼݎܽݒ ൅ሽ ൅  

|ିܮ|
|ܮ| |௔ݕሼݎܽݒ െሽ൰൱                    

ൌ ௙ݔܽ݉ݎܽ ൬
|ାܮ|
|ܮ| |௔ݕሼݎܽݒ ൅ሽ ൅  

|ିܮ|
|ܮ| |௔ݕሼݎܽݒ െሽ൰                                ሺ7.14ሻ 

 
where ࢇ࢟ is the set of all memory items with action a, ݕ௔| ൅  (ࢇ࢟| െ) is the set of memory items 
with (without) feature f and action a. Sizes of these two sets are |ܮା| and |ିܮ|, respectively.  

Maximization is done over all pairs of features and actions.  A feature which minimizes the 
variance also has to cluster the images under the node into two populations with significantly 
different distributions. In our implementation of this case, we used t-test for comparing these two 
distributions.  If the power of the t-test is below 0.05, then two distributions are considered to be 
significantly different. 
 
7.4 RLVC with Saliency 
Since RLVC checks entire image to find out whether a specific feature exists or not, it could 
hardly be considered as an attention method (or attentional). In this contribution we propose that 
instead of all image locations, features could be extracted and searched only in a subset of image 
locations. These spatial locations should be stable regions. Here we show that regions proposed 
by the saliency based model of visual attention are nearly stable and result in the same 
performance as RLVC with the advantage of less computational complexity. 

At first, SIFT features of some random images were extracted and then clustered to find 
distinctive SIFT features. This was done with modified basic sequential clustering algorithm 
(MBSCA) with different thresholds. Each threshold results in different number of distinctive 
SIFT features. Threshold is over the Euclidean distance between SIFT features. Here 651 
distinctive SIFT feature derived by putting a threshold of 0.8 on the Euclidean distance. 
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Experiments were done over a 6×6 visual grid (Fig 4) with the goal at position [6 6] and 
obstacles at [3 3; 3 4; 4  4; 5 2]. In each position agent could observe one image and has not 
access to it (x,y) position. Size of each image is 640×480 pixels. 
 

 
Figure 7.4 Visual Navigation Task 6×6 

 

 

 
                 iteration                                      iteration 

              a)                                     b) 
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                c)                                  d) 

Figure 7.5 RLVC Saliency results a)   average reward and average variance in ∆࢚ per iteration b) Tree size, 
number of perceptual states and average tree depth c)   percentage of correct policy rate d) Number of state 
of each grid cell. 
 
Figure 7.5 shows the results of resolving the visual grid in figure 7.4 when only one view was 
shown to the agent in each grid position. Agent gets a reward of +10 when it reaches the goal and 
-1 when it hits the obstacle or escapes from the grid. Any other move bring a 0 reward for the 
agent. In all experiment alpha = 0.7 and gamma = 0.8, epsilon = 0.7. ߬ ൌ  0.01. In each grid cell 
agent could do one of four actions {up, down, left, right} 

Increase in reward in Fig. 5.a shows that agent incrementally learns to do the task. And 
reducing variance of ∆࢚ means that aliasing is removed until it reaches to 0 which means there is 
no further aliasing. Shown by Fig.5.b RLVC with saliency generated a binary tree with 54 nodes 
of which 28 are leaves. This means that 31 distinct scenes are clustered into 28 classes. This 
clearly shows that for solving action-based recognition it is not necessary to discriminate among 
all perceptual classes or scenes. For example cells 21 and 25 are classified under the state 33 and 
because the best action associated for them is the same (down), there is not necessary to 
discriminate future among these two because there is no aliasing. Fig. 7.5.b. also show that after 
learning the average tree depth is 7.1 which means that for doing this task it is only necessary to 
check the existence of 7.1 SIFT features on average only at salient regions.  

Correct policy rate in Fig 5.c reaches to 100% when algorithm is finished. A value of 74% at 
the start is because at first when there is only one node action down is learned by chance which is 
correct in 74% cases. Assignment of grid cells to leaves of the generated tree is shown in Fig. 5.d. 

To compare RLVC and RLVC with saliency we performed the same grid task with the 
difference that here agent captures of five scenes randomly in each grid cell. These five scenes 
are from the same class. Both methods successfully solved the task. Assignments of views to 
states in both approaches are shown in Figure 7.6.  
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a) 

b) 
Figure 7.6 Assignment of views to states   a) RLVC   b) RLVC with saliency. 

 
Detailed comparisons of trees that these two approaches generate are shown in Table 7. To 

measure the generalization power an index know as state reduction index is defined as:  

ܫܴܵ ൌ
1
ܰ ෍

ଶ ൫ܸሺ݊ሻ൯ߪ
݉݁ܽ݊൫ܸሺ݊ሻ൯

 
ே

௡ୀଵ

,         

ܸሺ݊ሻ ൌ ሾݒଵሺ݊ሻ, ,ଶሺ݊ሻݒ … ,  ହሺ݊ሻሿ                                    ሺ7.15ሻݒ
 

In above formula, ܸሺ݊ሻ is the vector of leaf numbers for view of a cell and N is the number of 
grid cells. Numbering is done at the level order when tree is built. Zero value for SRI means that 
all samples of a scene are classified under the same leaf. SRI means high generalization power.   
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Table 7.7 Comparison of basic RLVC and RLVC with saliency over five view for each grid position and 
five salient regions.  
 

Window size (w) 40 60 100 140 [640×480] 
Number of states 121.5(6.3) 133(7) 125.5(6.3) 113(1.4) 112(8.4) 
Number of nodes 242 (12.7) 265(14.1) 250(12.7) 225(2.8) 223(16) 
Avg. tree size 11(0.8) 9.8(0.37) 9.6(0.5) 9.2(0.84) 10.3(0.4) 
SRI 0.37(0.1) 0.39(0.1) 0.33(0.08) 0.31(0.004) 0.39(0.2) 

 
As table 7.7 shows as the salient window size grows number of states, nodes, Avg. tree depth 

as well as SRI reduces which means increasing window size enhances the results. Shown in the 
last column of Table 7 these values are not much different for both RLVC and RLVC with 
saliency. This result shows that RLVC with saliency has very much lower computation compared 
with basic RLVC while having the same performance. This is in accordance with the scene 
classification result in section 3. 

Table 8 compares the effect of increasing the number of salient regions on result. As it shows 
increasing the number of salient regions only generate trees with lower Avg. tree depth.  

 
Table 7.8 Comparing number of salient regions on trees generated by RLVC with saliency over 2 views for 
each cell and W = 100. 
 

Salient regions 1 1:2 1:3 1:4 1:5 
Number of states 48 (9.8) 49(5.6) 50.5(2.1) 55(4.2) 50.3(3.5) 
Number of nodes 95(19.7) 97(11.3) 100(4.2) 109(8.4) 99.6(7) 
Avg. tree size 10.3(2.6) 7.1(0.5) 7.4(0.35) 7.5(0.98) 6.9(0.6) 
SRI 0.23(0.004) 0.29(0.01) 0.23(0.04) 0.27(0.02) 0.27(0.05) 

 
7.5 Discussions 

In this section, we analyze to what degree attention reduces computations needed for 
classification. We investigate the computational complexity from two aspects 1) complexity of 
feature extraction and 2) complexity of feature matching 

5.1 Complexity of feature extraction 

Assume an image of size m×n, SIFT window of size W and b salient points leads to 

computational complexity of ܥ ൌ  ௕ൈௐమ

௠ൈ௡
 feature extraction. ܥ is the ratio of feature extraction at 

the salient points to the overall image. Since ܹ is usually small compared to m and n, this leads 
to huge computational saving. Figure 7.7, shows computational saving of feature extraction 
versus recognition rates for different values of W. Vertical axis shows the ratios of recognition 
and computational complexity in attentional and without-attention cases. This diagram is plotted 
for SIFT and C2 features for only first salient region as well as all of them for different window 
sizes. For example it shows that with a window size of 140 and 5 salient regions, 95% of the 
recognition in without-attention case (processing entire scene) can be achieved while only 
extracting features at 31% of the image. Increasing attention window size results in higher 
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recognition rate and higher computational complexity. An optimal value for window size depends 
on application and on available computational resources and minimum recognition rate needed. 
This analysis can also help to determine minimum computational necessary to achieve a 
maximum recognition rate. 

 
Figure 7.7 Computational complexity vs. recognition rate 

5.2 Complexity of feature matching 

Restricting feature extraction to a subset of image regions not only reduces the complexity of 
feature extraction algorithm but it also reduces the complexity of feature matching between two 

images as we show in this section. Let ߙ ൌ ௐమ

௠ൈ௡
 , be the fraction of image area at a single 

attention window to the whole image and ܲ be the average number of features per image. As 
equation (6) shows with ܲ features the complexity of feature matching between two images is ܲଶ. 
Assuming uniform distribution of features in images, number of features in a single patch is ܲߙ. 
Therefore, according to equation (9) calculating the distance measures among b salient regions of 
two images (all combinations) and then deriving an overall distance (ܥᇱ), needs ܾଶሺܲߙሻଶ ൅  ᇱܥ 
computations. Since ܥᇱ is usually small, (matching a few scalars), we could ignore it, thus 

 ݇ ൌ  ௕మሺఈ௉ሻమା ஼ᇲ

௉మ  ؄  ௕మሺఈ௉ሻమ

௉మ  ؄  ܾଶߙଶ                                                      ሺ16ሻ 

is the ratio of complexity when features are matched at salient regions versus when they are 
matched over entire images. Since usually a small value is chosen for b (by definition saliency is 
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limited to a few salient regions), and ߙ is much smaller than one, then ܾଶߙଶ is smaller than one. 
This means that proposed scene classification approach not only reduces complexity of feature 
extraction but also it reduces complexity of feature matching.  
 
7.6 Conclusions 

This paper has studied the problem of defining and estimating descriptive and compact visual 
models of scene classes for efficient scene recognition. In accordance with human recognition 
behavior first a fast, parallel and pre-attentive mechanism processes the entire image and selects 
some salient regions and then a complex and slow mechanism is restricted on these areas to 
extract more details and do matching with a database of learned representatives. In the proposed 
approach, to overcome the bottleneck feature extraction and matching is performed at few spatial 
locations proposed by visual attention which acts as a front-end to accelerate speed and reduce 
complexity. 

Results show that salient regions have higher repeatability compared with fixed and random 
patches in instances of a scene class. This means that it is not the overlap among regions which is 
responsible for similarity between two images, rather it is because the positions are at near the 
same areas but with their ranks misplaced. As window size increase similarity and hence 
recognition rate over both feature types. SIFT features seem to more successful in average. 
Compared with the situation when features are extracted over all images, we were able to achieve 
near and sometimes higher recognition rate with smaller amount of computation.  

We aimed to show that high recognition is still possible without processing the entire image 
at salient points. Saliency model is purely data-driven and simply selects some spatial locations 
without using any feedback mechanism or top-down gains. Modifying the attention systems to 
generate robust salient points when viewpoints change is a future research area. For example 
adding top-down capabilities to the model biases it to select the same spatial areas in images and 
therefore leads to higher stability in images. This also copes with the saliency for recognition 
hypothesis claimed by Gao et al. (Gao et al., 2007). Applying this approach to robot control 
because viewpoints there change gradually also might lead to great saving in computation]. 
Repeatability of salient points under different image transformations should be analyzed.  
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Abstract. This paper introduces a new method for learning top-down and task-driven visual 
attention control along with physical actions in interactive environments. Our method is based on 
the RLVC algorithm and adapts it for learning spatial visual selection in order to reduce 
computational complexity. Proposed algorithm also addresses aliasings due to not knowing 
previous actions and perceptions. Continuing learning shows our method is robust to 
perturbations in perceptual information. Proposed method also allows object recognition when 
class labels are used instead of physical actions. We have tried to gain maximum generalization 
while performing local processing. Experiments over visual navigation and object recognition 
tasks show that our method is more efficient in terms of computational complexity and is 
biologically more plausible. 
 
Keywords: State space discretization, Top-down attention control, Visual attention, Active 
perception, Spatial configuration, Object recognition, Scene understanding, Reinforcement 
learning 
 
8.1 Introduction 
Similar to humans and animals, artificial creatures like robots are limited in terms of allocating 
their resources to huge perceptual information. That is mainly because of the serial processing 
mechanisms used in the design of such creatures which allows processing of only a small amount 
of incoming sensory information at any given time. Visual attention mechanisms serve to 
implement a bottleneck through which only informative and relevant information are allowed to 
pass to higher level visual processing centers. Since robotic agents are usually supposed to 
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guarantee a limited response time, attention is an efficient solution in this area as in biological 
systems.  

To perform a task, agents should be able to perceive the environment and perform appropriate 
physical actions. Perceptual actions are available in several forms like where and what to look in 
visual modality. The main concern in learning attention is how to select the relevant information, 
since relevancy depends on the tasks and goals. In this study, we consider task relevancy of visual 
attention and aim to extract spatial locations which help the agent to achieve its goals faster.  

It is important that a solution for learning task-based visual attention control to take into 
account other relevant and interleaved cognitive processes like decision making, action selection, 
memory, etc. There are several biological evidences for this. It has been previously shown that 
attention and eye movements are context-dependent and task-specific (Yarbus, 1967). Previous 
experiences also influence attentional behaviors indicating that attention control mechanisms can 
be learned (Maljkovic & Nakayama, 1994). Some neuropsychological evidences suggest that 
human beings learn to extract useful information from visual scenes in an interactive fashion 
without the aid of any external supervisor (Gibson & Spelke, 1983; Tarr & Cheng, 2003). Instead 
of attempting to segment, identify, represent and maintain detailed memory of all objects in a 
scene, there are evidences that claim our brain may adopt a need-based approach (Triesch et al., 
2003), where only desired objects are quickly detected, identified and represented. Considering 
above evidences, we introduce a model to consider the influences of task, action, learning and 
decision making to control top-down visual attention.  

From another perspective learning top-down attention is highly coupled with learning 
representations. Therefore the best way to derive visual attention mechanisms is to learn them in 
concert with visual representations. Two active but independent research areas have previously 
been focused on this problem. In first area, purposive vision or vision for action, it has been tried 
to learn visual representations along with physical actions through automatic state space 
discretization in reinforcement learning framework. Computational modeling of visual attention 
and its applications in robotic tasks is the second research area. It serves near the same purpose as 
above by motivating from attentional mechanisms implemented in humans and animal visual 
systems. In this paper, we aim to combine bests of these two worlds to propose efficient 
algorithms for concurrent learning of representations and actions. 
 
8.1.1 Purposive vision or Vision-for-Action  
Humans are remarkably efficient to act reasonably in an environment based on perceptual 
information they receive. Vision is the most important sensor humans rely on, and that’s the main 
reason of being the most-studied mode of machine perception in artificial intelligence (AI). 
Despite the huge active research in computer vision and robotics, many real-world visumotor 
tasks which are easily performed by humans are still unsolved. Of special interest is designing 
efficient learning algorithms, in terms of high accuracy and low computational complexity, for 
enabling autonomous mobile robots to act in visual interactive environments. This is actually 
much harder to tackle compared with controlled visual environments (e.g. indoor scenes) used in 
robotic laboratories. Example applications of visual learning are vision guided navigation, vision-
based place recognition, grasping and object manipulation. 

Recent trend in robotics is toward developing robots capable of acting autonomously in 
unknown, stochastic and partially observable environments. This desired quality makes 
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interactive and online learning of visual representations and control policies an essential element. 
Such dynamic methods results in flexible solutions with less complexity and lower computational 
power. For a robotic agent to be able to act in a visual environment, it should map its visual 
perceptual space into physical actions also called visiomotor coordination, vision for action or 
purposive vision. In contrast with machine vision solutions which assume predefined and rich 
visual representations in mind of an agent, necessary representations could be learned while the 
agent performs physical actions for achieving a goal. In this regard vision is formed for the 
purpose of achieving agent’s goals. 

A schematic view of our framework for learning vision for action is shown in Fig. 8.1. A 
scene is captured by the visual sensor (eg. CCD camera) of the agent (early vision) and then 
undergoes a number of higher processing and usually computationally intensive processes like 
recognition, segmentation, etc. From this information, state of the agent is derived (higher vision). 
The decision making and attention control module concurrently controls top-down attention and 
motor actions. The attention control signal generated by this module controls physical properties 
of the visual sensor, e.g. shifts the eye to new positions (overt attention) or tune high-level visual 
operations. The motor actions are executed by the body of the agent and affect the world. A critic 
who is aware of the dynamics of the world evaluates the effect of this action on the world and 
generates a scalar reward which is used by the learning system for tuning the decision making 
unit. Actually, this unit performs credit assignment (reward distribution) among top-down 
attention control and decision making modules. Decision making and attention control module, 
change adaptively such that the total received reward is maximized.  
 

                  
Figure 8.1 Schematic view of the learning system for purposive vision through visual attention. FOA 
stands for focus of attention 
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8.1.2 Visual Attention 
Visual attention is the capability of biological visual systems to select a subset of task-relevant 
visual information and gate it to higher level more expensive processing centers. It acts like a 
filter in which some spatial regions are fast and efficiently selected and other expensive 
operations are then focused on these areas. Extending this idea, attention can act as a hierarchy 
where in upper layers of this hierarchy, operations have lower complexity and as we move toward 
the end, operations become more expensive. Selection of a subset of image regions could be 
space-based, object based or feature based. This explanation is illustrated in Fig. 8.2. 
 

 
Figure 8.2 Illustration of visual attention process. Selection criteria gradually become more complex. 
 

For a system to be attentional, it is necessary that the cost (complexity) of selection process 
plus the operations over the final selected regions (ܥ௔) to be less than the operations over the 
entire image (ܥ௕).  

 

௔ܥ ൌ  ෍ ௜ܥ

௡

௜ୀଵ

 ൅  ௘                                                                      ሺ8.1ሻܥ 

 
where ܥ௜  is the cost of selection process in the ith stage and ܥ௘ is the cost of the operations over 
final selected regions by the attentional system. Therefore, ܥ௔ ൏  ௕ is the condition of attentionܥ
provided that both systems could solve the task equally (i.e. they have near the same performance 
over other indices measured by task performance). Selection of image regions could be done in a 
single shot in parallel or sequentially like what happens in human saccade behavior. 
 
8.1.3 Contributions 
Motivated by human saccadic behavior, several contributions are proposed in this paper for 
learning purposive vision strategies. The key idea is that state space is incrementally grown or 
shrank whenever perceptual aliasing occurs by looking at distinctive spatial locations. Details of 
our contributions are reviewed in the following.  
 
Saccade Tree (S-Tree) S-Tree like RLVC (Jodogne et al. (2007)) is built on top of U-Tree 
algorithm. RLVC could be regarded as a feature based attention method in which the entire image 
has to be processed to find out whether a specific visual feature exists or not in order to move in a 
binary decision tree. Our approach tackles this weakness of the RLVC, the exhaustive search for 
a local descriptor over the entire image, by computing and searching local descriptors at few 
spatial locations. Once aliasing is detected a spatial location is selected which reduces the 
perceptual aliasing the most. This local visual processing results in faster scene recognition 

 Cn C1 
.  .  .

C2 
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because features are extracted in small regions and there is no need for exhaustive search for a 
feature.   
 
Handling POMDP cases In real world applications there are situations when perceptual 
information is the same but different actions has to be done. Actually by looking at other sensors 
or other visual areas aliasing could not be overcome because sensors get the same exact 
perceptions in several but different states. In such situations agent has to refer to its previous 
actions or observations. We show that saccade tree algorithm is capable of resolving POMDP 
cases by checking previous actions or observations in internal tree nodes. 
 
Object Recognition and GIST Proposed saccade tree method could be used for object and scene 
recognition. Here the reward is only correct prediction of the object or scene class. Definition of 
aliasing also differs from the aliasing when actions have to be done. GIST is the capability of 
human beings to judge about the category of a visual scene very fast (about 80ms). It means that 
before starting to saccade, a rough estimation of an object or scene class by looking at the whole 
image (but very fast and low complexity) is performed to bias subsequent saccades. The same is 
done in Saccade tree where first a very low complexity operation is done in the root of the tree 
and then in order to classify a scene some spatial locations are investigated. This results in faster 
state determination. 
 
Invariance Analysis The main concern in the proposed approach is its capability to generate less 
number of states or state abstraction. This is the same statement as generalization in context of 
computer vision. In this section we analyze the invariance properties of saccade tree algorithm to 
image transformations and propose solutions to enhance its generalization. Furthermore, 
robustness of the saccade tree is also analyzed with respect to perturbations in perceptions. 
 
8.2 Related Works 
Related works to our approach are reviewed from two perspectives. First subsection reviews 
works based on reinforcement learning dealt with state space abstraction or discretization. Second 
category are approaches for modeling visual attention mainly those concerned with learning 
visual attention control.  
 
8.2.1 State- Space Discretization 
Several approaches for interactive discretization of state space have been proposed. Techniques 
using a non-uniform discretization are referred to as variable resolution techniques (Munos & 
Moore, 2002). The parti-game algorithm (Moore & Atkeson, 1995) is an algorithm for 
automatically generating a variable resolution discretization of a continuous, deterministic 
domain based on observed data. This algorithm uses a greedy local controller and moves within a 
state or between adjacent states in the discretization. When the greedy controller fails, the 
resolution of the discretization is increased in that state. The G algorithm (Chapman & Kaelbling, 
1991), and McCallum’s U-Tree algorithm (1996), are similar algorithms that automatically 
generate a variable resolution discretization by re-discretizing propositional techniques. Like 
parti-game, they both start with the world as a single state and recursively split it when necessary. 
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The continuous U-Tree algorithm described in (Uther & Velso, 1998), extends these algorithms 
to work with continuous state spaces. 
 
U-Tree The U-Tree abstracts the state space incrementally. Each leaf lt of the U-Tree corresponds 
to an abstract state st. Leaves store the action-values ܳሺݏ௧, ܽ௧ሻ for all available actions at. The tree 
is initialized with a single leaf, and new abstract states are added if necessary. Sub-trees of the 
tree represent subtasks of the whole task. Each sub-tree can have other sub-sub-trees that 
correspond to its sub-sub-tasks. The hierarchy breaks down to the leaves that specify the 
primitive sub-tasks. The procedure for construction of the abstraction tree loops through a two 
phase process: sampling and processing. During the sampling phase the algorithm behaves as a 
standard RL, with the added step of using the tree to translate sensory input to an abstract state. A 
history of the transition steps, i.e.  ௧ܶ ൌ ሺݏ௧, ܽ௧, ,௧ݎ  ௧ାଵሻ composed of the current state, theݏ
selected action, the received immediate reward, and the next state is recorded. The sample is 
assigned to a unique leaf based on the value of the current state. Each leaf has a list per action for 
recording the sampled data-points. After some learning episodes the processing phase starts. In 
this phase a value is assigned to each sample: 
 

ܸሺ ௧ܶሻ ൌ ௧ݎ  ൅ ,ҧ௧ାଵሻݏሺܸߛ  ܸሺݏҧ௧ାଵሻ                                                          
ൌ ݔܽ݉

௔
ܳሺݏҧ௧ାଵ, ܽሻ                                                             ሺ8.2ሻ 

 
where ݏҧ௧ାଵ is the abstract state that ݏ௧ାଵ belongs to. If a significant difference among the 
distribution of sample-values within a leaf is found, the leaf is broken up to two leaves. To find 
the best split point, the algorithm loops over the features. The samples within a leaf are sorted 
according to a feature, and a trial split is virtually added between consecutive pairs of the feature 
values. This split divides the abstract state into two sub-sets. A splitting criterion compares the 
two sub-sets, and returns a number indicating the difference between their distributions. If the 
largest difference among all features is bigger than a confidence threshold, then the split is 
introduced.  
 
RLVC RLVC shares the same theoretical basis as the original U-Tree algorithm. It iteratively 
builds a series of classifiers ܥ ൌ ሼܥଵ, ,ଶܥ … ,  ௞ሽ that discretizes the perceptual space P into aܥ
finite set of perceptual classes by testing the presence of features in the percepts. After k 
refinement steps, the classifier denoted by Ck, partitions the visual perceptual space P into a finite 
number mk of visual classes ሼݒଵ

௞, … , ௠ೖݒ
௞ ሽ. Ck is a binary decision tree, each internal node of 

which tests the presence of a given visual feature, and each leaf of which corresponds to a visual 
class. In iteration k, a visual class, ݒ௜

௞, is refined if it has perceptual aliasing meaning that optimal 
decisions cannot be always made since different percepts requiring different actions are grouped 
together. In order to reduce aliasing, visual classes with aliasing are expanded by checking the 
existence of a feature. To detect nodes with aliasing Bellman’s Residual or TD-error is measured 
for all experiences under a visual class which is defined as: 
 

,ݏ௞ሺܤ ܽሻ ൌ ࣬ሺݏ, ܽሻ ൅ ߛ ݔܽ݉
௔ᇲఢ஺

ܳ௞
ᇱכ൫ܥ௞൫࣮ሺݏ, ܽሻ൯, ܽᇱ൯ െ ܳ௞

ᇱכሺܥ௞ሺݏሻ, ܽሻ         ሺ8.3ሻ 
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where ܳ௞
ᇱכ and ܤ௞ are the estimation of the optimal Q function using Ck and the residual at state s, 

respectively. A non-zero ܤ௞ሺݏ, ܽሻ for some time stamp t indicates the presence of aliasing in the 
visual class Ck (s) with respect to the action a. After aliasing is detected a SIFT feature (Lowe, 
2004) from the percepts in Ck (s) is selected which mostly reduces the variance of Bellman 
residuals and also results in two significantly different distributions. 
 
8.2.2 Attentional Studies 
A large number of computational models of visual attention or their applications in computer 
vision or robotics have already been proposed. Some studies have tried to model bottom-up task-
independent component of visual attention by proposing hypotheses by them human vision might 
select visual information like saliency or entropy, etc. Other methods have tried to model top-
down task specific component of visual attention. Here we also try to derive a top-down closed 
loop attention model in an interactive fashion. Some models have been based on neural models 
which are not the focus of this paper. Since our approach is based on reinforcement learning we 
first review attentional models based on RL and then some other relevant studies. 
 
Approaches based on RL Reinforcement learning has previously been used for learning visual 
attention control in robotics and machine vision especially for applications like scene 
classification and robot localization. In (Fritz et al., 2004, Paletta et al., 2005), a 3-step 
architecture is proposed for an object recognition task. First, it extracts potential focuses of 
interest (FOI) according to an information theoretic saliency measure. Then it generates some 
weak object hypotheses by matching the information at the FOI’s with codebooks. The final step 
is done using Q-learning with the goal of finding the best perceptual action according to the 
search task. In (Gonic et al., 1999.a), two approaches are proposed in a robotic platform with 
neck, eyes and arms for attention control. The first approach is a simple feedforward method 
which uses back-propagation learning algorithm while the second one uses reinforcement 
learning and a finite state machine for state space representation. The robot has 3 types of actions: 
attention shift, visual improvement and haptic improvement. Their results confirm that the second 
approach generates a better performance in terms of finding previously observed objects even 
with fewer movements in head and neck and also in attention center shift. In (Gonic et al., 
1999.b), another robotic platform containing articulated stereo-head with 4 degrees of freedom is 
presented which can select the region of interest, perform attention shift with saccadic 
movements, build a map out of the environment and update it according to current observation. In 
(Gonic et al., 1999.b), attention control has two steps: first, coarse eye movements and then more 
precise iterative adjustments around the first points. The termination condition of this process is 
to reach a maximum correlation among what it finds and what it expects.  

An RL approach for learning gaze control for a mobile robot performing a visual search task 
is proposed in (Minut & Mahadaven, 2001). This model is implemented using a fixed pan-tilt-
zoom camera in a visually cluttered lab environment which samples the environment at discrete 
time steps. The agent has to decide where to fixate next, merely based on visual information, in 
order to reach the region where a target object is most likely to be found. The model consists of 
two interacting modules. In the first module, RL learns a policy on a set of regions in the room 
for reaching the target object, using an objective function which is the expected value of sum of 
discounted rewards. By selecting an appropriate gaze direction at each step, this module provides 
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top-down control in the selection of the next fixation point. The second module performs “within 
fixation” processing, based exclusively on visual information.  

In (Reichle & Patryk, 2006), RL is used for modeling the behavior of an expert reader by 
predicting where eyes should look and how long they should stay there for achieving best 
comprehension from the text. This work is interesting as it models attention as an optimization 
problem and then uses RL to solve it. 
 
Other studies An important evidence from biology reported in (Maljkovic & Nakayama, 1994),  
states that attention could be learned by past experience. In a behavioral task, human subjects 
were supposed to answer a question about a quality of a specific visual item in a synthetic visual 
search scene. Subjects had lower reaction times when quality of the object stayed the same during 
successive trials. This study shows that subjects developed a memory during the task. A modeling 
work trying to explain such behavioral data is done in (Mozer et al., 2006). They have proposed 
an optimization framework to minimize an objective function which is a sum over reaction time 
in each state weighted by the probability of that state to occur. Then using a Bayesian Belief 
Network (BBN), they solved that minimization problem. These results encourage using a learning 
approach for attention control in AI.  

Many models of visual attention in AI are based on the saliency-based model (Itti et al., 
1998) which is an extension and implementation of an earlier model of visual attention introduced 
by Koch and Ullman (Koch & Ullman, 1985). This model is based on the saliency concept and 
mimics the overall structure of the early visual system for detecting the locations which convey 
more visual signals and are different from their surroundings. For example a red dot is more 
discriminant than a blue dot in a white background containing blue dots. Simplicity and little 
computation are the two main advantages of this model. It has been continuously updated and is 
the basis of the newer models. It has also been used to explain behavioral data on simple synthetic 
and static search arrays to dynamic natural stimuli like movies and games (Peters & Itti, 2008). 
Navalpakkam and Itti (2005) have proposed a model for how a specific task at hand can influence 
attention, and try to address how the top-down signals can be learned in a supervised manner. 
They hypothesize that a top-down task-relevance map may be encoded in the brain additional to 
the visual saliency map, and the final eye movements may be generated by integrating 
information across theses two saliency maps to form an attention guidance map. In their model, a 
vector of feature weights (one weight per feature) is learned from images containing the target. 
This way, task-driven saliency is computed and combined with visual saliency to deploy 
attentional shifts. Unlike Navalpakkam and Itti (2005), our approach considers top-down 
influences of visual attention interactively which could be applied to a wider range of tasks rather 
than simple string matching and supervised learning. This approach is more general because it 
allows the agent to interact with the environment and to find its own way of achieving a goal. 

In (Walther & Koch, 2006), Walther at al. have proposed an approach for learning and 
recognition of multiple objects in cluttered scenes using the saliency-based model of visual 
attention. They have modified the saliency model to find spatial salient regions which are more 
likely to contain an object. That way, the modified model could consider the extent of the objects 
at the focus of attention. Then they have used the SIFT features (Lowe, 2004) for recognition of 
multiple objects in the scene. By comparing the performance of David Lowe’s recognition 
algorithm, with and without attention, they have shown that their approach can enable one shot 
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learning of multiple objects from complex scenes, and that it can strongly improve learning and 
recognition performance in the presence of large amounts of clutter. 

In (Siagian & Itti, 2008), a context-based outdoor scene recognition algorithm for mobile 
robotic applications is proposed based on the idea of “gist” on top of the saliency model. This 
method is claimed to have low computational complexity while being biologically plausible.  

There are also other computational models of visual attention.  Deco and Schurmann (Deco & 
Schürmann, 2000) modulated the spatial resolution of the image based on a top-down attentional 
control signal.  Tsotsos et al. (Tsotsos et al., 1995) used local winner-take-all networks (WTA) 
and top-down mechanisms to selectively tune model neurons at the attended location. Making 
extensive use of feedback and long-range cortical connections, Hamker (Hamker, 2005.a, 
Hamker, 2005.b) modeled the interactions of several brain areas involved in processing visual 
attention, which enables them to explain some physiological and behavioral data. Sun and Fisher 
(Sun & Fisher, 2003) have developed a framework for object-based attention using “groupings”. 
Presented with a manually preprocessed input image, their model replicates human viewing 
behavior for artificial and natural scenes.  
 
8.3 Learning top-down space-based visual attention control 
Our proposed model for learning sequential visual attention control is explained in this section. 
Agent operates in an environment and has access to it only through its embedded camera. It 
affects the world by performing a set of physical actions. Agent’s main aim is to learn vision to 
action mapping though interacting with the environment. To this end, agent builds a tree structure 
which allows forming visual representations and deriving attention. Visual attention implements a 
fast mechanism for the agent to find its states. In multimodal case, attention interprets as the order 
of turning the sensors on sequentially. If agent has a single sensor, like camera, attention is 
interpreted as selecting a subset of information captured by that sensor.  
 
8.3.1 Basic Method 
An example scenario of the proposed model is as follows. Agent captures a visual stimulus. An 
early vision unit, which is equivalent to early visual cortical areas V1 and V2, processes the 
image in order to detect its salient locations or extracting visual features. This unit only processes 
the image at a small subset of spatial locations instead of a holistic processing. Output of this unit 
is the visual content at the focus of attention (FOA). Information at the FOA is then transmitted to 
a higher cognitive area which corresponds to higher visual system areas like V4, IT, PFC, etc. 
Processing at this stage could be identifying an object, returning the cluster of a visual feature, 
etc. This is in accordance with space-based theories of visual attention (Posner & Cohen, 1984). 
These two stages perform local processing and ignore global content of the image. Another top-
down component is the “GIST extractor ” which in psychophysical terms is the ability of people 
to roughly describe the type and overall layout of an image after only a very brief presentation, 
and to use this information to guide subsequent target searches (Oliva & Torallba, 2006). Higher 
cognitive processes which are believed to occur in higher visual areas V4/IT perform a variety of 
cognitive visual processes like scene understanding, object recognition, etc. Figure 8.3 shows the 
overall system structure for learning top-down attention. 

With each eye movement, agent moves one step down in the attention tree. Agent 
successively attends to spatial locations until it reaches to a leaf in the tree.  (The loop among 
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saliency detector, codebook database and attention tree in the Fig 8.3). GIST extractor unit 
performs a fast global operation over the image and acts like a heuristic to reduce the number of 
internal tree nodes that should be examined by focusing the search over a subtree. It’s important 
to note that information extracted from the GIST extractor unit is not rich enough to determine 
the exact category of the image and it only gives rough cue toward that. This is equivalent to 
overt attention and eye movements in context of behavioral studies.  

Agent performs a physical action according to its current learned policy. Agent should learn 
building attention tree (forming visual representations) and learning percepts to actions in 
parallel. A simplification is to decouple these parameters and follow a quasi-static approach to 
solve the whole problem. Each time, for a period of iterations, one component is hold fixed and 
the other one is updated until attention tree is fixed and RL policy is learned.  

  
Figure 8.3 Overall architecture for learning concurrent spatial visual attention and physical actions 

 
8.3.2 Visual Representations 
Only few portions of an image contain relevant information for the task to be done.   An efficient 
approach in interactive vision systems would be to extract visual features or spatial regions that 
convey the informative content of the raw images. Visual features lead to a mid-level 
representation of the images that is halfway between the raw images and a more semantic 
representation of the observed objects. A visual feature is a vector of real numbers that represents 
some essential, discriminant and meaningful portion of an image. Visual features have a much 
smaller dimensionality than the image space, targeting a compact representation that improves 
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and speeds up the image analysis. Furthermore, though it is not strictly required, visual features 
often add some invariance to viewpoint or illumination changes, with respect to the raw pixels of 
the original image.  

Methods for representation of images can be divided into two broad categories: Global 
appearance and local appearance methods. Global appearance methods consider the entire set of 
image pixels. Some global features are normalized images, Eigen-Patches and Histograms 
(Histogram-based approaches). On the other hand, local appearance methods identify statistically 
or structurally significant portions of the images then represent each selected image portion as a 
vector of real numbers that is known as a local descriptor. The problem of matching images is 
consequently reduced to that of matching the local descriptors. Advantages of local-appearance 
methods over global appearance methods are 1) There is no need for 2D or 3D models of objects 
2) Local-appearance is robust to partial occlusions and 3) No segmentation is required. Local-
appearance methods have been used in a broad class of computer vision problems, such as image 
classification and categorization, object detection and recognition, camera calibration, 
stereovision, structure from motion, robot localization and tracking (Mikolajczyk & Schmid, 
2005). 

In practice, local-appearance methods involve two elements: The interest point detector 
selects the most informative and reliable portions of an image and then local descriptor generator 
converts the selected portions to a vector of real numbers that characterize the appearance of 
these portions. The portions selected by the interest point detector are centered on a so-called 
interest point in the image, and the portion itself is called the neighborhood of the interest point. 
The most widespread descriptors (Mikolajczyk & Schmid, 2005) are Filter banks (Like gabors 
and Wavelets, textures, etc), SIFTs, Gradient Moment Invariants, Spin Image, Complex Filters 
and Cross Correlation. Visual tasks like image classification using these features can be achieved 
through at least two distinct approaches: by matching the visual features, or by learning a 
predictive model. Here we follow local appearance based a feature matching approaches. 

A more efficient method which leads to fewer if conditions (i.e tree depth) is to build trees in 
which more than two branches exist in internal tree nodes. Compared with binary trees employed 
by RLVC, these trees lead to lower computation by looking at specific spatial locations, match 
with biology and saccadic eye movements but have lower generalization. 

Sequential attention in our method shifts the focus of attention toward the discriminant spatial 
locations. Final output of the algorithm is a scanpath of eye movements.  There is no need that the 
pattern at each FOA to be represented in fine detail, but an approximate characterization also 
suffices to discriminate among objects or scenes. Let ݂: ܲ ՜ ܶ be a mapping from the set of 
focuses of attention P to a discrete set of features T. Here, f returns the class of a specific SIFT 
feature or a set of features at a member of P which is a circular or rectangular region. In order to 
derive a rough local descriptor representation, SIFT features of some random images ܳ ൌ
ሼݍଵ, ,ଶݍ … ,  .ொ|ሽ are extracted and then clustered using standard k-means clustering algorithm|ݍ
Therefore a set of |ܶ| clusters ܶ ൌ ሼ߬ଵ, ߬ଶ, … , ߬|்|ሽ hereafter called codebooks are generated. The 
specific feature that f returns its codebook could be the closest SIFT to the center of FOA, f1, or 
the SIFT feature with highest magnitude among SIFT features at FOA, f2. Another possibility is 
to cluster the histogram of SIFT features at the attended locations. In this case, some sample 
histograms could be clustered at the start of the algorithm to create codebooks or incrementally 
through learning the tree from memories under a node. Since this is a complex operation and our 
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experiments showed that it does not enhance the results (generalization invariance), we only use 
the above two functions for visual representation. An example of the visual attention tree is 
shown in figure 8.4. 

ଵ݂ ൌ ௝݊݅݉݃ݎܽ צ ܨܫܵ ிܶை஺,௞ െ ߬௝ ,צ ݇ is the closest SIFT feature to the center of FOA  

ଶ݂ ൌ ௝݊݅݉݃ݎܽ צ ܨܫܵ ிܶை஺,௞ െ ߬௝ ,צ ݇ ൌ ௜ݔܽ݉݃ݎܽ צ  ܨܫܵ ிܶை஺,௜ צ                                   ሺ8.4ሻ 
  

 
Figure 8.4 Visual attention and state space discretization. with multi-valued features employed in this 

paper. Internal nodes check features and leaves are perceptual states. 
 

When growing the tree in order to discriminate among perceptual inputs (i.e to reduce 
perceptual inputs) a next spatial location has to be checked in the tree. Next saccade location can 
be selected relative to the current location or in random. Saccade region could be either circular 
or rectangular. While adopting a circular region seems to be more biologically plausible, here we 
use a rectangular region due to ease of implementation and speed. 

Figure 8.5 shows sample objects form COIL 100 object database along with their SIFT 
features extracted (Link to COIL 100 DB). Eight major saccade directions are shown in fig 8.5.b.  
 

 
Figure 8.5 a) Sample objects from COIL 100 object database with extracted SIFT features. b) 
Discretization of the angle for encoding of saccadic movements (Δα = 45o). 
 
8.3.3 Learning top-down attention tree 
In our method, attention is directed toward spatial regions. An attention tree (saccade tree or S-
Tree) is incrementally built from the incoming visual inputs. In each node of this tree, visual 
content at the focus of attention (FOA) is inspected. To encode the visual content at the focus of 
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attention we use the SIFT descriptors which have shown to be very useful for object and scene 
recognition and image stitching. Before learning S-Tree, SIFT features are grouped into some 
clusters.  

An efficient way to implement attention and state space construction is by means of tree data 
structures. They are readable by humans and are hierarchy structured which makes them a 
suitable mean for deriving state-space abstraction and inclusion of the available knowledge for an 
RL agent.  

Visual discretization is performed via saccade tree whenever aliasing occurs. Such refinement 
is performed to increase the cumulative reward of the agent. Each internal node of the S-Tree 
proposes a single saccade toward a specific spatial location. Edges below a node test the 
codebook of a SIFT feature. Based on the observed codebook, next saccade is initiated until a leaf 
node is reached. Leaves point to states in the Q-table. Pruning is done when algorithm ends for 
instance by merging the nodes with the same best actions or replacing nodes with all their leaves 
having the same best actions.  

S-Tree is incrementally built in a quasi-static manner in two phases: 1) RL-fixed (Tree-
Update) phase and 2) Tree-fixed (RL-Update) phase. The algorithm starts with one node in the 
Tree-fixed phase. In each phase of the algorithm external feedback of the critic, in the form of a 
scalar reward or punishment, is alternatively used to update the Q-table or refine the attention 
tree. Initially a tree with a single node is created and all the images are mapped to that node. 
Evidently, such a single state is not enough and aliasing occurs. Then, the algorithm breaks the 
node into a number of leaves based on some gathered experiences under it. In each Tree-fixed 
phase, RL algorithm is executed for a number of episodes by following a ε-greedy or soft-max 
action selection policy. In this phase, tree is hold fixed and the derived quadruples 
ሺݏ௧, ܽ௧, ,௧ାଵݎ   :௧ାଵሻ are only used for Q-table update according to Q-learning update ruleݏ
 

ܳሺݏ௧, ܽ௧ሻ ൌ ሺ1 െ ,௧ݏሻܳሺߙ ܽ௧ሻ ൅ ߙ ቀݎ௧ାଵ ൅ ߛ ݔܽ݉
௔

ܳሺݏ௧ାଵ, ܽሻቁ                        ሺ8.5ሻ 

 
Attention control and state discretization occur in the RL-fixed phase. An important point 

here is that the agent only accesses the environment through its visual sensor (e.g. its CCD 
camera), therefore in order to determine its state, it has to traverse its saccade tree from the root 
node down to a leaf, which determines its state st at time t. In the current state, the agent performs 
an action according to its learned policy. At this point, based on the received reward and the next 
captured image, which leads to state st+1, the agent calculates perceptual aliasing for this input. 
After each RL-fixed phase, nodes with aliasing are detected and expanded in order to reduce 
aliasing. After expanding aliased states, leaf nodes without patterns in their memory are deleted. 
It is worth noting that memories of leaf nodes after each RL-fixed phase are deleted too. The 
whole process of S-Tree is shown in the algorithm one. 
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Table 8.1 Main algorithm for learning top-down spatial attention control and physical actions 
 
Algorithm 1 S-Tree Main Function 
1: tree ՚ create a tree with a single node   
2: Repeat 
3: for  i = 1 to maxEpizodes do     \\ RL- fixed phase 
4:        It   = takeImage() 
5:        st   = traverseTree(tree, It) 
6:        [st+1 rt+1  at] = selectAction(st) 
7:        Δt  = calcDelta (st , at, st+1 , rt+1) 
8:        mem(st) = gatherMem(tree, It , at , Δt) 
9: end for 
10: for j = 1 to |S| do                        \\ Refining aliased states            
11:      if |mem(sj)| > memTreshold and checkAliasing(sj) 
12:             tree = modifyTree(tree, sj) 
13:      end if  
13: end for 
14: for  i = 1 to maxEpizodes do             \\ Tree- fixed phase 
15:        It = takeImage() 
16:        st = traverseTree(tree, It) 
17:        [st+1  rt+1   at] = selectAction(st) 
18:        Q-table = updatePolicy(Q-table, st, st+1, rt+1, at ) 
19: end for 
20: Until (no aliasing) or (maximum iterations reached) 
21: postPrune (tree) 

 
Measuring Aliasing After each RL-fixed phase, algorithm refines leaves with perceptual 
aliasing. In order to estimate aliasing, a number of items must be accumulated under a leaf node. 
This is done by the agent performing some episodes running the current policy learned at the 
previous Tree-fixed phase. An image is captured, saccade tree is traversed in order to find the 
perceptual state, appropriate action is performed and a reward is received. An efficient measure of 
perceptual aliasing in a state (leaf node) is the TD error and can be derived from Q-learning 
formula as follows:  

                 ܳሺݏ௧, ܽ௧ሻ ൌ ߙ ቆݎ௧ାଵ ൅ ߛ ݔܽ݉
௔

ܳሺݏ௧ାଵ, ܽሻ െ ܳሺݏ௧, ܽ௧ሻቇ ൅ ܳሺݏ௧, ܽ௧ሻ 

                 ൌ ,௧ݏ௧ + ܳሺ∆ߙ  ܽ௧ሻ                                                                                 ሺ8.6ሻ  
In order to detect aliasing, all memory items under a node are clustered according to their 

physical actions and then if any of these clusters has a variance in Δt’s greater than a threshold 
(aliasingThreshold), then that node has aliasing at least with respect to one action. Therefore, Δt 
reduces to (8.7), because the third term in it is the same for all clustered items under a node.  

 
∆௧ൌ ௧ାଵݎ ൅ ߛ ݔܽ݉

௔
ܳሺݏ௧ାଵ, ܽሻ                                                                ሺ8.7ሻ 
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Δt’s converge to zero as the RL algorithm converges when there is no further perceptual aliasing. 
This is when the transition function ࣮ and reward function ࣬ are deterministic which means that 
source of TD error is because of misclassification. Therefore, in each step of RL, Δt is a measure 
of perceptual aliasing in a state s with respect to an action a. The function for detecting aliasing 
(checkAliasing) is shown in algorithm 2.  
 

Table 8.2 Function for detection of aliased perceptual states 
 

Algorithm 2 Aliasing Detector: checkAliasing(st) 
1: for action a  א A do                      \\ A is the set of actions 
2:      mem(a) = all memory items with action a  under st 
3:      var(a) = calcVariance (mem(a)) 
4:      if  var(a) > aliasingThreshold 
5:        return true; 
6:      end if  
7: end for 
8: return false 
 
Tree pruning Proposed algorithm constructs an attention tree in a greedy manner which usually 
leads to overfitting. Therefore solutions should be designed to overcome overfitting by either 
periodic tree restructuring or pruning. Two heuristics are introduced in the following.  

Consider two types of nodes: 1) nodes having leaves with the same best actions learned for 
them 2) nodes with at least one child with no memory. Leaves of the nodes in the first category 
are removed and their action is assigned to their parent node. A node in the second category is 
removed and its child with memory is substituted with it. These two heuristics are recursively 
done from bottom to top of the tree until no node satisfies one of these conditions.  The whole 
algorithm for learning image-to-action mapping is summarized in the pseudocode of table 8.1. 

 
Figure 8.6 Tree pruning 

 
Tree Refinement When an aliased class is detected, a spatial location must be selected to 
dissociate items under this aliased class. In order to find the best location an anticipatory 
mechanism is needed. When an image is classified in state st, codebooks in some spatial regions 
are saved for this node plus the Δt and the elicited action (gatherMem).  
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Assume that ܯ௞ ൌ ሼ݉௞,ଵ, ݉௞,ଶ, … , ݉௞,௤ሽ is the set of q spatial locations for the k-th leaf of the 
tree. Codebooks at these locations are calculated for every image which ends to this node. Let 
 :௞ be the matrix of memory items in the k-th leaf݉݁ܯ
 

௞݉݁ܯ ൌ  ൣ݉݁݉௜,௝൧, ݅ ൌ 1 … ,|௞݉݁ܯ| ݆ ൌ 1 … ݍ ൅ 2                        ሺ8.8ሻ 
 
Each item of this memory is represented as: 
 

݉݁݉௜,௝ ൌ ൣ߬௜,ଵ, ߬௜,ଶ, … , ߬௜,௤, ܽ௧, ∆௧൧                                    ሺ8.9ሻ 
 
where ߬௜,௟ is the codebook of the l-th spatial position  of i-th memory item. Note that when a new 
node is created in the tree, ܯ௞ is initialized in some way for this node. Two possible approaches 
are random selection of spatial locations or some positions relative to the end of saccade at that 
node (for example in some directions). Whatever method for spatial location generation must 
satisfy this condition that FOA’s along the path from each node to the root must not be the same. 

Positions are in the image coordinate frame. If some knowledge about the distribution of 
images in that node is available or could be gained then it might help to generate the set of spatial 
locations.  

Whenever size of the memory under a leaf node exceeds a threshold (memThreshold) and it 
has aliasing, then tree is refined to remove aliasing. Tree refinement is then done by selecting the 
spatial location which mostly reduces the variance in Δt of memory items according to (8.10).  

 ሾכܽ  כ݌ሿ ൌ ௣,௔݊݅݉݃ݎܽ  ቌݎܽݒሺܮሻ െ  ෍
|௔,௣,௖ܮ|

|௔ܮ| ௔,௣,௖ሻܮሺݎܽݒ
|்|

௖ୀଵ

ቍ                     

                 ൌ ௣,௔ݔܽ݉݃ݎܽ  ቌ ෍
|௔,௣,௖ܮ|

|௔ܮ| ௔,௣,௖ሻܮሺݎܽݒ
|்|

௖ୀଵ

ቍ                         ሺ8.10ሻ 

 
In the above formula, L is the set of Δt ‘s of all memory items, La is the set of Δt ‘s of items 

with action a. La,p,c is the set of Δt ‘s of items with action a , spatial location p and codebook c. |U| 
and var(U) are the size and variance of a set U. כ݌ and ܽכ are the location and the action which 
reduces variance the most respectively. The winning spatial location  כ݌ is saved for the node and 
is used for future tree traversals. Tree is expanded based on seen codebooks at location כ݌. Tree 
modification is shown in the pseudocode of algorithm 3. 
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Table 8.3 Tree refinement function 

 
Algorithm 3 Tree Refinement: modifyTree(tree, st) 
1: for action a  א  A do 
2:  mem(a) = all memory items with action  a  under st 
3:     for  location m א M do \\M is the set of spatial locations    
4:           find p* and a* according to equation 9. 
5:     end for 
6: end for 
 
8.4 Experimental results 
In order to evaluate performances of proposed algorithm, we have applied it to two visual 
navigation tasks which capture the main characteristics of real world scenarios. The first task is 
navigation in a visual grid with obstacles and a goal state and the second one in navigation in 
urban area. In both experiments, 5 SIFT clusters, derived from sample images from each database 
were used to encode the visual features.   
 
8.4.1 Navigation in the visual girdworld 
The aim in this task is to reach the goal state in the bottom of the grid marked with letter G 
(Figure 8.7). The agent has a set of 4 physical actions, A = {move up, move right, move left, 
move down} and has no access to its (x,y) position in the grid. Agent’s only perception of the 
world is through an image of the object underneath his foot. Any movement taking the agent to an 
obstacle cell or outside the gird brings it a -1 punishment. When it reaches the goal state, it is 
rewarded a +1 signal.  Each cell of the grid is carpeted with a 128×128 image of the COIL 100 
object database. S-Tree has managed to recognize all the objects in an action-based manner as 
well as a valid policy by creating 8 distinct perceptual classes for 11 objects. Interestingly some 
positions with same best actions are classified under the same leaves.  

 
Figure 8.7 Navigation in the visual gridworld. Top: visual gridworld with learned best actions. Bottom: 
Learned saccade tree. Numbers below leaves indicate the positions in the grid, flashes inside the circles 
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show learned actions and blue numbers on the edges are the codebooks seen at the FOA. Eight spatial 
locations were generated in random i.e. q=8. 

 
Figure 8.8 shows results of action-based object recognition and navigation in a grid with 

obstacles in positions 6 and 11 and goal state in position 16. In such a gird only two best actions 
are used from the set of four physical actions, move right and move down.  

Four conditions are considered:  1) all objects for all positions are unique 2) only three 
positions with the same best actions are assigned the same objects 3) seven positions with the 
same best actions are assigned the same objects and 4) from thirteen non-obstacle, non-goal 
positions, seven with one action and remaining six with the other action as best are assigned the 
same objects. Shown by figure 8.9, as the number of distinct perceptions decrease, the number of 
states and hence the average tree depth also decrease. Tree pruning is shown for a grid shown in 
Fig 8.8. This is because there is no need to further refine the tree when there is no aliasing. 
Interestingly, when there are only two distinct objects in the grid (condition 4), the resultant tree 
has always two nodes with the average tree depth of one. The variances in diagrams are due to 
different initial conditions in each run like the spatial locations selected at the beginning. All 
cases resulted in optimal action selection policy. 
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Figure 8.8 Navigation in the visual gridworld. Top: visual gridworld with learned best actions. Bottom: 
Learned saccade tree. Numbers below leaves indicate the positions in the grid, flashes inside the circles 
show  

 
Figure 8.9 Top: Number of perceptual states Bottom: Average tree depth for a 4×4 gridworld with 
obstacles at positions 6 and 11 and goal at 16.  
 

Experimenting with another more complex 10×10 gridworld shown in fig 8.10, s-tree again 
succeeded to derive the optimal policy after 10 phases. Number of generated visual classes was 
28 equal to the number of the non-obstacle non-goal positions in the grid.   
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Figure 8.10 10×10 visual gridworld, maxEpizodes was 400. Other parameters were the same as in fig 5. 
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a) b) 
Figure 8.11 10×10 visual gridworld, maxEpizodes was 400. Other parameters were the 
same as in fig 5. 

 
Figure 8.12 10×10 visual gridworld, maxEpizodes was 400. Other parameters were the same as in fig 5. 

 
We also compared the traditional RL algorithm with hand designed states space with saccade tree 
algorithm. Here each state is the x-y position of the agent in the visual grid of Fig. 8.8.a. Fig. 
8.13.a shows the instantaneous and smoothed average reward of the agent in 30 episodes. Agent 
was able to solve the task after these episodes. Figure 8.13.b shows the average reward of the 
agent in Tree-fixed iterations of S-Tree. Red horizontal line in this figure is the final average 
reward of the agent derived from Fig 8.8.a. As it can be seen both methods converged to the same 
average reward but traditional RL with 16 states and S-Tree with 7 states. 
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a) b) 
Figure 8.13 Comparison with traditional RL 

 
8.4.3 Handling POMDP Cases 
When same objects are assigned to the positions with different best actions, algorithm does not 
converge. This is because there is no aliasing in perception however another kind of aliasing 
which emanates from not knowing the previous actions and observations exists yet. This has been 
predicted in original U-Tree algorithm but has not been addressed in the RLVC algorithm. It is 
important to note that this kind of aliasing frequently occurs in real-world situations. To remedy 
this, we consider a history for the agent with each item a pair of previous states and actions to a 
certain depth n. Let ݁௧,௝ be the j-th pair of the history: 
 

݁௧,௝ ൌ ൫ܽ௧ି௝, ,௧ି௝൯ݏ ݆ ൌ 1 … ݊, ܽ א ሼܣ ׫ ,ሽ݈݈ݑܰ ݏ א ሼܵ ׫  ሽ                   ሺ8.11ሻ݈݈ݑܰ
 
Then new representation of a memory item becomes: 
 

݉݁݉௜,௝ ൌ ൣ߬௜,ଵ, ߬௜,ଶ, … , ߬௜,௤, ݁௧,ଵ, ݁௧,ଶ … , ݁௧,௡, ܽ௧,  ∆௧൧                         ሺ8.12ሻ 
 

History is treated the same as the spatial locations. This way when splitting a node, the 
history items at that node also competes for reducing aliasing. Applying this new modification, 
now the S-Tree algorithm is able to solve a grid with positions with different best actions having 
the same perceptions. In grid with obstacles at positions 6 and 11 and goal at 16, positions 2, 5, 
12 and 15 were assigned the same object. As Figure 8.14 shows, S-Tree solved this problem by 
checking the previous action in the internal node marked with blue. Edges below this node check 
the previous action leaded to the current node. In the first case, S-Tree achieved to solve the task 
with 13 states and in the second example 9 states were created. 
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Figure 8.14 Handling POMDP cases 
 
8.4.4 Object Recognition  
Object recognition is a fundamental task of biological mechanisms. It allows an agent to abstract 
its knowledge and then be able to derive task independent representations. While above 
experiments showed that S-Tree is capable of visual navigation and action-based object 
classification, this experiment investigates the capability of S-Tree for classical object 
recognition. Basics of the algorithm are the same as before but with the distinction that here 
reward function is a 100×100 matrix with diagonal elements as 1 and off-diagonal values equal to 
-1. Class labels are assigned to the images instead of physical actions and there is no grid here. S-
Tree was achieved 100% recognition rate in this case over 100 objects from the COIL100 
database. Eight random spatial locations and five codebooks were used. 

The only difference in algorithm is definition of the ∆࢚ which here reduces to only r (reward). 
There is no state transition here and agent each time randomly perceives or captures scenes or 
objects. For recognition of 16 objects the reward function is a matrix which has ones in diagonal 
and -1 in off diagonal elements. 

ܴ ൌ  ൥
1 … െ1
ڭ ڰ ڭ

െ1 … 1
൩

ଵ଺ൈଵ଺

                                                       ሺ8.13ሻ 
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Fig. 8.15 shows these 16 objects along with the generated saccade tree. As it shows all 
objects are uniquely assigned with 16 generated leaves of the tree. The same thing could be also 
done for recognition of scenes. 100 object cases generated a scan path like that of Fig. 8.15.  

 

 
Figure 8.15 Object recognition with S-Tree 

 
8.4.5 Invariance and Perturbation Analysis 
Two types of perturbation are considered in this section 1) Perturbation of perceptual input after 
learning attention tree 2) Image distortions and transformations. Detailed analysis of each one is 
presented as follows. 
 
Perturbation Analysis Learning happens all the time in biological creatures. It will be beneficial 
for a learning system to be able to adapt itself to dynamics of the environment and perceptual 
space. In the first experiment in this section, we altered the image at position 15 in the grid used 
in Fig. 8.8.a to a new unseen image after learning and then learning was continued. S-Tree 
expanded node 9 in the gird and created three new states instead as shown by Figure 8.16. 
Pruning removed node 4 which classified image at position 15 earlier.  
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Figure 8.16 When After learning three positions (4 8 12) have made same images. 

In the second experiment, after learning took place in iteration three images at locations 5 and 8 were 
randomly changed. Algorithm converged again we changed the image at location 7 and it converged again. 
Correct policy rate of this event is shown in Fig 8.17. 
 

 
Figure 8.17 Perturbation of perceptual inputs after learning 
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This result shows that S-Tree is to some extent robust to distortions and perturbations in 
perceptual inputs. 
 
Invariance Analysis Previous experiments showed that S-Tree achieved 100% correct policy 
rate or object recognition rate when only a single image per class or position was used. However, 
this is not a right assumption for the perceptual space. A learning system while being able to 
discriminate among samples from different classes (specificity) has to be able to treat all the 
samples within a class equally (generalization). In this experiment we investigate generalization 
power of the S-Tree algorithm.  

A gridworld with obstacles at positions 6 and 11 and the goal at 16 is used. Each position of 
this grid is assigned a natural 640×480 scene4. In each position, the agent captures a scene 
randomly among 5 possible scenes with major transformation (i.e it does not observe the same 
image per position but observes images from the same scene under major translation, scale and 
rotation). The goal here is to learn the correct policy but with minimum number of states or 
leaves. In all cases agent was able to solve the task. To measure the generalization power an 
index know as state reduction index is defined as in (8):  
 

ܫܴܵ ൌ
1
ܰ

 ෍
ଶ ൫ܸሺ݊ሻ൯ߪ

݉݁ܽ݊൫ܸሺ݊ሻ൯
 

ே

௡ୀଵ

,                                                                  

ܸሺ݊ሻ ൌ ሾݒଵሺ݊ሻ, ,ଶሺ݊ሻݒ … ,  ହሺ݊ሻሿ                                            ሺ8.14ሻݒ
 

In above formula, ܸሺ݊ሻ is the vector of leaf numbers and N is tshe number of objects. 
Numbering is done at the level order when tree is built. Zero value for SRI means that all samples 
of a scene are classified under the same leaf. Lower the SRI, means higher generalization power. 
Figure 8.18.a compares the SRI, number of states and average tree depth (average of depths of all 
leaves) for two SIFT selection methods in S-Tree (f1 and f2) and RLVC. As can be seen highest 
magnitude SIFT is more invariant to image transformations than the nearest SIFT feature. RLVC 
has more generalization because it checks the existence of a SIFT feature anywhere in the image 
but with the disadvantage of more computation. Lower SRI means that lower number of states in 
average as Figure 8.18.a shows. Average tree depth of three approaches is nearly the same.  

Figure 8.18.b shows average number of leaves, number of tree nodes and phases (turns) after 
convergence of the S-Tree for recognition of 16 scenes (5 views each), where class labels are 
used instead of actions. Consistent with 6.a, it shows that largest magnitude SIFT leads to more 
generalization. Increasing the number of codebooks leads to lower average tree depth as shown 
by Figure 8.18.c. 
 

                                                 
4Data for this experiment was extracted from: http://www.montefiore.ulg.ac.be/~jodogne/phd-

database. 
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Figure 8.18 Invariance analysis a) comparing S-Tree and RLVC over a visual navigation task with r = 50  
and 5 codebooks, b) object recognition task and  c)  effect of number of codebook clusters on average tree 
depth over a 4×4 grid with random spatial locations and one view per position. 
 
8.5 Discussions 
We used the idea of state-space discretization, to emulate the need-based mechanism that human 
brain has adopted for representation and attention. The mechanism of growing the saccade tree is 
to refine those tree leaves with aliasing by selecting a spatial location among a set of locations 
which reduces aliasing the most according to equation (8.9).  

Results show that S-Tree is able to solve the gridworld and object recognition tasks very fast 
by only extracting SIFT features at small number of image regions. Compared with RLVC which 
has ܱሺ݇݊ଶሻ computational complexity where k is the average tree depth and n is the image size, 
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complexity of S-Tree is ܱሺ݇ᇱݎߨଶሻ where the average tree depth or saccade length is ݇ᇱ and r is 
the radius of FOA. Ignoring the constants, S-Tree is ݊/ݎ times more faster than RLVC. Since, 
this is quite appealing, a shortcoming arises from this local processing and it is lack of 
generalization. Since S-Tree algorithm works in spatial domain instead of feature space, it makes 
the method sensitive to large spatial transformations like translation, rotation and scale. RLVC is 
more robust to these transformations but with the expense of high computation and the fact that 
its behavior seems not to be much correlated with human attentional behavior.  
 
8.6 Conclusions 
The main contribution of our algorithm is generating saccade trees which only needs calculating 
the SIFT features at few spatial locations of the image. It is also in accordance with some 
behavioral attentional mechanisms and is categorized under the space-based theories of visual 
attention. Actually saliency of the image locations is determined by the expected reward they 
convey in an interactive task. 

In this study we avoided using detailed complex camera like representation for world and 
instead incorporated attention, observation and motor action for learning internal representations 
and attentions. Our findings partially point toward the fact that saccadic eye movements and 
active perception control, together with active movements may play a crucial role in the 
mechanisms that the brain uses to represent the world.  
An interesting observation is that representations are learned interactively and are expanded 
adaptively based on the agent’s needs. They are also as compact as possible and encode the 
information at the necessary level without unnecessary details. For example, for recognition of a 
scene, it would be very efficient and conclusive to attend to important spatial locations. 
Therefore, global image representation approaches although might propose more accurate 
solutions in some cases seems not to be the best solutions where information bottlenecks exit.   

In accordance with these views, our method discretizes the visual world when it is needed 
and when it helps the agent to perform better by removing perceptual aliasing. The only 
predefined knowledge supplied to the agent was the clusters of visual features or codebooks. This 
does not put a big constraint on the method because these clusters could also be learned. 

The weakness of S-Tree in generalization is because saccadic movements are initiated in a 
coordinate frame locked to the image. This causes relocation of visual contents at FOA when an 
image is transformed. While we tried to remedy this by considering the codebook of the highest 
magnitude SIFT to some extent, problem still remains to be investigated in future researches. A 
possible solution is by introducing a coordinate frame which is relative to a stable property of the 
image. For example a set of stable landmarks which could be calculated very fast in a pre-
attentive manner would be very desirable. Salient points introduced by the bottom-up saliency 
based model of visual attention (Itti, et al., 1998) could be promising candidates. 
  



150 
 

 
 
Chapter 9 
Conclusions and Perspectives 
 
This chapter gives a summary of the results acquired in this thesis, accompanied by some 
suggestions for future researches. The goal of the thesis was to develop solutions for learning top-
down task-driven visual attention control in visual interactive environments.  
 
9.1 Summary of the Contributions 
 
In our first contribution we were motivated by learning associations between situations to 
attentions. For example drivers often attend to cross light to update their status. These 
associations are present in a large number of our behaviors. For learning such associations we 
used RL, and the reward punishments were given by a critic whenever agent performed the right 
association. However, learning here seems to be supervised than semi-supervised. This type of 
solution is not in contradiction to our other solutions presented in this thesis. One justification 
could be that these associations could be results of higher abstractions of lower-level behaviors 
which could be learned by RL.  

Our second contribution deals with biasing the bottom-up saliency based model of visual 
attention. The key idea here is that some channels and scales of the saliency model are less 
important for detection of an object. To this end, we designed a new center-surround operation 
for making the scales of the model independent of each other. Instead of finding a closed –form 
solution for optimal object detection, we formulated the object detection problem as an 
optimization problem and solved it by global optimization algorithm. The proposed solution was 
able to efficiently in terms of computational complexity to detect synthetic saliencies as well as 
natural objects in cluttered scenes. This forms the basis for our third contribution which is a top-
down object-based attention control mechanism. This model consists of three layers. First, in the 
early visual processing layer, basic layout and gist of a scene are extracted. The most salient 
location of the scene is simultaneously derived using the biased saliency-based bottom-up model 
of visual attention. Then a cognitive component in the higher visual processing layer performs an 
application specific operation such as object recognition and scene understanding at the focus of 
attention. From this information, a state is derived in the decision making layer. Top-down 
attention in our model is learned by the U-TREE algorithm which successively grows a tree 
whenever perceptual aliasing occurs. Internal nodes in this tree check the existence of a specific 
object in the scene and its leaves point to states in the Q-table. Motor actions are associated with 
leaves. After performing a motor action, the agent receives a reinforcement signal from the critic. 
This signal is alternately used for modifying the tree or updating the action selection policy.  
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In this contribution an approach for scene classification was proposed which extracts and 
matches visual features only at the focuses of visual attention instead of the entire scene. Analysis 
over a database of natural scenes demonstrates that regions proposed by the saliency-based model 
of visual attention are robust with image transformations. Classification results show that 
classification rate is nearly the same as when features are extracted over the entire scene but with 
feature extraction at a small fraction of scene regions. An approach for simultaneous learning of 
physical actions and representations known as RLVC is also extended by limiting it’s SIFT 
search and extraction to only salient regions. Results prove that RLVC has still the same 
performance with a huge decrease in computational complexity. Overall, our results prove that 
efficient scene classification, in terms of reducing the complexity of feature extraction is possible 
without a significant drop in performance. 

The fifth contribution introduces an approach for simultaneous and interactive learning of 
space-based visual attention control and physical actions. Our approach is based on the RLVC 
algorithm and adapts it for learning spatial visual selection in order to reduce computational 
complexity. Proposed algorithm also addresses aliasings due to not knowing previous actions and 
perceptions. Continuing learning shows our method is robust to perturbations in perceptual 
information. Proposed method also allows object recognition when class labels are used instead 
of physical actions. We have tried to gain maximum generalization while performing local 
processing. Experiments over visual navigation and object recognition tasks show that our 
method is more efficient in terms of computational complexity and is biologically more plausible. 

 
9.2 Future Work 
Human visual learning and visual attention is very complex task especially we are dealing with 
natural scenes. While much is known on visual structures and functionalities in the brain, there is 
still very little known how these functionalities are formed through development or evolution.  
This is very interesting topic that deserves much research focus. Despite our efforts in this thesis, 
there are still problems in these areas that should be tackled. In this section, we mention some of 
those problems along with other interesting directions for future studies.  
 
Remedy the lack of Generalization  
Throughout this thesis, especially last chapters, we were looking for solutions for processing 
subsets of spatial regions. We wanted to know how spatial attention mechanisms could be 
learned. This is motivated by the spatial attention behavior of humans. The problem in the 
saccade tree is its low generalization power. This arises from the fixed coordinate frame on the 
image. For example our agent supposes to see the same feature at the same spatial location over 
image an transformation which is not true in general. The remedy to this could be using a relative 
reference frame instead of an absolute coordinate frame. One solution could be using the salient 
points to define such a relative frame. Another solution could be employing statistical approaches 
like Bayesian Reinforcement Learning (RL) or Bayesian Belief Networks (BBN). As another 
solution, could be attending to objects rather spaces or a combination of both which seems to be 
the case in humans. Humans attend to both spaces and objects at different situations. Attending to 
objects has this benefit that objects bring the generalization provided that an object based solution 
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is capable of detecting that object in any of its transformations. Whatever solution for this 
problem should have the property of reducing the visual processing while solving the task. 
 
Modeling the Effect of Context and Spatial relationships  
Spatial context has a strong impact on direction of human attention. For example when looking 
for a clock, we simply are oriented toward the walls. It seems that we have a model or memory of 
the visual environment we live and work in. It is less known how these spatial relationships can 
be defined and how they facilitate visual attention. These relations might be essential for spatial 
attention and may help solve the generalization problem. Effect of context could be implemented 
in the saccade tree by directing the search to a subset of subtrees.  
 
Scaling up the Solutions  
Our experiments were designed just to prove the functionality of proposed approaches. It would 
be worth to apply them to larger datasets and cluttered scenes. An interesting direction could be 
applying the s-tree to a dataset of natural scenes in which objects are tagged (Russell et al. 2008 
IJCV). This database is becoming a benchmark for testing the proposed solutions for tackling the 
complex problems like attention which could not be studied unless applying them to large scale 
data.  
 
Implementation on real robots  
Neither we nor Jodogne & Piater (2007), have applied their solutions on real robots dealing with 
natural scenes and complexities of online working with a cluttered environment. One 
disappointing reason stems from this weakness of RL which needs a large number of training 
episodes which usually needs a lot time. In this regard, it would be rewarding to extend the 
purposive and need-based solutions for visual learning for embodied robots. Current solutions 
does not assume a body for agents. It is evident that body form has a great impact on visual 
attention and visual behaviors. For example different animals have different visual capabilities 
due to different tasks they do and their bodies.  
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 چکیده
بینایی . یکی از خصوصیات بارز انسانها کارا بودن آنها در محیطهایی است که اطلاعات حسی زیادی دریافت می کنند

بیشترین مطالعات را در بینایی  این حسمهمترین حسی است که انسانها بر آن تکیه دارند و به همین علت است که 

علیرغم تحقیقات وسیع در بینایی ماشین و رباتیک تعداد . ماشین و هوش مصنوعی به خود اختصاص داده است

بطور خاص طراحی . هنوز حل نشده اند دهند ،حرکتی که در انسانها به سادگی انجام می  –زیادی از اعمال حسی 

بالا و پیچیدگی محاسباتی پایین باشند و رباتهای متحرک خودکار را قادر الگوریتمهای یادگیری که دارای دقت 

در مقایسه با محیط های بینایی کنترل شده .  سازند تا در محیطهای تعاملی بینایی عمل کنند بسیار مورد علاقه است

و بصورت کلی  که اغلب در آزمایشگاه استفاده می شوند، یادگیری رفتارهای بینایی در محیط های کنترل نشده

نمونه های از کاربردهای یادگیری بینایی ، راهبری مبتنی بر بینایی ، تشخیص محل بر . بسیار مشکل ترمی باشد

  . اساس اطلاعات بینایی ، گرفتن و حرکت دادن اشیاء می باشند

بینایی  گرایش اخیر در رباتیک به سمت توسعه ربات هایی است که قادر باشند بصورت خودکار در محیط های

این کیفیت مورد علاقه ، روشهای بر خط و تعاملی را برای یادگیری نمایشهای بینایی و . ناآشنا و تصادفی عمل کنند

این گونه روشهای پویا منتج به راه حل های قابل انعطاف با پیچیدگی کم و . کنترل بسیار مناسب و ضروری می سازد

اتیکی برای اینکه قادر باشد که در محیط های بینایی عمل کند باید یک عامل رب. هزینه محاسباتی پایین می شوند

حرکتی  –این قابلیت ، هماهنگی بینایی . قادر باشد که فضای ادراکی بینایی خود را به اعمال فیزیکی خود متناظر سازد

شین که اغلب نمایشهای بر خلاف راه حل های بینایی ما. ، بینایی مبتنی بر منظور یا بینایی برای عمل نامیده می شود

از قبل تعریف شده و ثابتی در ذهن عامل فرض می کنند ، نمایشهای لازم در بینایی مبتنی بر منظور از تعامل عامل 

  . با محیط پیرامونی ایجاد می شوند

های تعاملی در این رساله ، راه حل هایی برای یادگیری کنترل توجه بینایی بالا به پایین و  مبتنی بر وظیفه در محیط 

عامل باید نمایشهای بینایی داخلی اش را . و هنگامی که تصاویر پیچیده طبیعی باید پردازش شوند ارائه می دهیم

این راه حل ها از ایده های . همزمان با اعمال فیزیکی خود یاد بگیرد تا قادر باشد یک وظیفه پیچیده را انجام کند

بطور مشخص در اینجا ما الگوریتم های یادگیری تقویتی ای . لهام گرفته اندبینایی مبتنی بر وظیفه و توجه بینایی ا

با الهام از نحوه عملکرد بینایی انسان که پردازش های . ارائه می دهیم که قابل اعمال به محیط های بینایی هستند

 های ارائه شده محدودپیچیده بینایی را بر زیر مجموعه ای از اطلاعات بینایی متمرکز می کند ، هدف در راه حل 

تاکید اصلی بر روی یادگیری توجه مکانی همراه با . استخراج ویژگی بر روی تعداد کمی از نواحی تصویر استکردن 

  . اعمال حرکتی می باشد

، توجه   (top-down attention) ، توجه بالا به پایین (purposive vision)بینایی مبتنی بر وظیفه  : کلمات کلیدی

 learning) ، یادگیری کنترل توجه  (bottom-up attention) ، توجه پایین به بالا (visual attention) بینایی

attention control) توجه مبتی بر وظیفه ،(task-driven attention)  یادگیری تقویتی ،(reinforcement 

learning) بینایی ماشین ،(machine vision)   رباتیک شناختی ،(cognitive robotics) 
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 پژوهشگاه دانشهای بنیادی

  )مرکز تحقیقات فیزیک نظری و ریاضیات( 

  پژوهشکده علوم شناختی

  

  پایان نامه دکتری

 گرایش هوش مصنوعی

  

  یادگیری تعاملی کنترل توجه بینایی مبتنی بر وظیفه
  

  

  علی برجی: نویسنده 

  

  : اساتید راهنما 

  بابک نجار اعرابیدکتر 

  مجید نیلی احمدابادیدکتر 

  

  

  

  ١٣٨٨بهار 
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هایی بنام پروردگار دانا  
  

  

  

بار دانش بگیرد    درخت تو گر 
  

  بزیر آوری چرخ نیلوفری را
 


