
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Online learning of task-driven object-based visual attention control

Ali Borji a,b,*, Majid Nili Ahmadabadi a,c, Babak Nadjar Araabi a,c, Mandana Hamidi d

a School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Niavaran Bldg., P.O. Box 19395-5746, Tehran, Iran
b Dept. of Computer Science III, University of Bonn, Bonn, Germany
c Control and Intelligent Processing Centre of Excellence, Dept. of Electrical and Computer Eng., University of Tehran, Tehran, Iran
d Italian Institute of Technology (IIT), Via Morego 30, 16163, Genova, Italy

a r t i c l e i n f o

Article history:
Received 5 October 2008
Received in revised form 4 August 2009
Accepted 9 October 2009

Keywords:
Task-driven attention
Object-based attention
Top-down attention
Saliency-based model
Reinforcement learning
State space discretization

a b s t r a c t

We propose a biologically-motivated computational model for learning task-driven and object-based
visual attention control in interactive environments. In this model, top-down attention is learned inter-
actively and is used to search for a desired object in the scene through biasing the bottom-up attention in
order to form a need-based and object-driven state representation of the environment. Our model con-
sists of three layers. First, in the early visual processing layer, most salient location of a scene is derived
using the biased saliency-based bottom-up model of visual attention. Then a cognitive component in the
higher visual processing layer performs an application specific operation like object recognition at the
focus of attention. From this information, a state is derived in the decision making and learning layer.
Top-down attention is learned by the U-TREE algorithm which successively grows an object-based binary
tree. Internal nodes in this tree check the existence of a specific object in the scene by biasing the early
vision and the object recognition parts. Its leaves point to states in the action value table. Motor actions
are associated with the leaves. After performing a motor action, the agent receives a reinforcement signal
from the critic. This signal is alternately used for modifying the tree or updating the action selection pol-
icy. The proposed model is evaluated on visual navigation tasks, where obtained results lend support to
the applicability and usefulness of the developed method for robotics.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Both biological and machine vision systems have to process
enormous amount of visual information they receive at any given
time. Attentional selection provides an efficient solution to this
information overload problem by proposing a small set of scene re-
gions to higher level and more computationally intensive pro-
cesses; like scene interpretation, object recognition, decision
making, etc. In this regard visual attention acts as a front-end to
a more complex vision system. Instead of processing all incoming
visual information in parallel, the brain has evolved a serial strat-
egy which explains its near real time performance in visual inter-
active environments.

Visual attention selects and gates visual information based on
the saliency in the image itself (bottom-up) [1,2] and on the prior
knowledge about the scene (top-down) [3,4]. While bottom-up
attention is solely determined by the image-based low-level cues
– such as luminance and color contrasts, edge orientation and mo-
tion – top-down attention on the other hand is influenced by task

demands, prior knowledge of the target and the scene, emotions,
expectations, etc. Bottom-up component of the visual attention is
mainly examined by the early visual areas of the brain like LGN
and V1 [6]. Top-down attentional signals are largely derived from
a network of areas in parietal and frontal cortex [5]. Some of the
involved areas include the superior parietal lobule (SPL), the fron-
tal eye fields (FEF), the supplementary eye field (SEF) and the lat-
eral prefrontal cortex in the region of the middle frontal gyrus
(MFG). In daily life, these two mechanisms interact to control our
attentional behaviors [3,7]. Besides acting in spatial domain by
selecting spatial locations [8], visual attention can also be directed
to particular features such as color, orientation and direction of
motion [9]. It is also believed that attention selects objects rather
than spatial locations [10,11].

Like humans and primates, artificial creatures (e.g. robots) are
limited in terms of allocation of their resources to huge sensory
and perceptual information. That is mainly because of the serial
processing mechanisms used in the design of such creatures which
allows processing of only a small amount of incoming sensory
information. Since they are usually supposed to guarantee a short
response time, attention is an efficient solution in robotics as in
biological systems. In order to gain the maximum cumulative re-
ward in the minimum time, agents should be able to perform per-
ceptual and physical actions simultaneously. These perceptual

0262-8856/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.imavis.2009.10.006

* Corresponding author. Tel.: +98 21 22294035; fax: +98 21 22280352.
E-mail addresses: borji@iai.uni-bonn.de, borji@ipm.ir (A. Borji), mnili@ut.ac.ir

(M.N. Ahmadabadi), araabi@ut.ac.ir (B.N. Araabi), Mandana.hamidi@iit.it (M.
Hamidi).

Image and Vision Computing 28 (2010) 1130–1145

Contents lists available at ScienceDirect

Image and Vision Computing

journal homepage: www.elsevier .com/locate / imavis

Author's personal copy

actions are available in several forms like where and what to look
in the visual modality. However, the main concern is how to select
the relevant information, since relevancy depends on the tasks and
the goals. In this study, we consider task relevancy of visual infor-
mation and aim to extract objects which help the agent to discover
its state faster for decision making.

It is important that a solution for learning task-based visual
attention control to take into account other relevant and depen-
dent cognitive processes like learning, decision making, action
selection, etc. Some evidences in this regard exist in both biology
and engineering. It has been previously shown that attention and
eye movements are context-based and task-dependent [12]. Previ-
ous experiences also influence attention behaviors which indicate
that attentional control mechanisms can be learned [13]. Some
neuropsychological evidences suggest that human beings learn to
extract useful information from visual scenes in an interactive
fashion without the aid of any external supervisor [14]. In [15], it
has been shown that attention is also affected by decision behav-
iors. These findings are in accordance with a new and pragmatic
view in Artificial Intelligence (AI) known as embodied and situated
intelligence [16]. It states that intellectual behaviors, representa-
tions, decisions, etc. are the product of interactions among brain,
body and environment. In [52], authors have provided their views
for architecture of situated vision systems, how to tackle the design
and analysis of perceptual systems and promising future direc-
tions. In particular they have focused on inspiring from complex vi-
sion systems, like human vision, to build synthetic vision systems
and integrating them with action and learning modules. There are
also other supporting evidences in psychology claiming that hu-
man mind and intelligence have been formed interactively through
an evolutionary process [17]. Instead of attempting to segment,
identify, represent and maintain detailed memory of all objects
in a scene, there are evidences that claim our brain may adopt a
need-based approach [18], where only desired objects are quickly
detected in a scene, identified and represented. Considering the
above evidences, in this work, we introduce a model to consider
the influences of task, action, learning and decision making to con-
trol top-down visual attention of an agent.

In many real-world situations, the environment is unfamiliar or
not clearly defined. Moreover, required information and the opti-
mal responses are not known at the design time. Therefore, fixed
and predefined design of attention control strategies in such situ-
ations is less useful. Some complicated behaviors of humans like
reading, writing, driving, etc. which need complex physical actions
and attentions witness that such behaviors have been developed
based on humans interaction with the surrounding world. Thus,
interactive and semi-supervised approaches, e.g. Reinforcement
Learning (RL) [19], seem to be the most suitable techniques for
learning top-down visual attention control and action selection
strategies. Such learning mechanisms have the benefit of adapting
the agent to dynamic, complicated and non-deterministic environ-
ments. In RL, agents learn action-values in each state by receiving a
reinforcement signal from the critic. Another characteristic of RL
methods is their ability of online learning which is required for
interacting with stochastic and slowly changing environments.
There are mathematical convergence proofs for these methods
and they are biologically plausible [20].

Our proposed top-down visual attention model is built upon a
sound and widely used bottom-up visual attention model pro-
posed in [5,21]. This model is based on the idea of saliency map,
an explicit 2D topographical map that encodes stimulus conspicu-
ity or saliency at every scene location [22]. Bottom-up model in its
original form is solely data-driven and simply selects some spatial
locations without using any feedback mechanism or top-down
gains. Some researchers have tried to add top-down capabilities
to this basic model [23–25], for instance by biasing it toward

selecting specific objects. While such models are interesting, they
have been partially successful to handle a limited category of tasks.
Modeling top-down task-based influences on visual attention is
difficult, since a general definition for a task does not yet exist. In
this study, RL is used by the agent to interactively learn to search
for relevant objects in a scene through biasing the bottom-up
attention and the object recognition part in order to find its state
and to choose physical actions accordingly. In particular, we use
the U-TREE algorithm [26] to dynamically discretize the visual
state space when perceptual aliasing occurs. Aliasing means that
two perceptions demanding different actions are classified under
the same state. That way an object-based binary tree is generated
which is used for controlling top-down object-based visual atten-
tion. Our model is inspired by the abstract findings from neurosci-
ence and psychology.

In Section 2 of this paper, related researches are reviewed. Our
proposed approach is explained in Section 3. Experiments and re-
sults are shown in Section 4 and finally, Section 5 summarizes
and concludes the paper.

2. Related researches

In this section, we review studies which are directly related to
ours, especially those which have considered learning aspects of
visual attention in concert with decision making. First we review
some existing hypotheses and viewpoints on visual attention
mainly derived from behavioral studies and then bring some suc-
cessful approaches from AI for learning attention control.

An important evidence from biology reported in [13], states that
attention could be learned by past experience. In a behavioral task,
human subjects were supposed to answer a question about a qual-
ity of a specific visual item in a synthetic visual search scene. Sub-
jects had lower reaction times when the quality of the object
stayed the same during successive trials. This study shows that
subjects developed a memory during the task. A modeling work
trying to explain such behavioral data is done in [27]. They have
proposed an optimization framework to minimize an objective
function which is a sum over the reaction time in each state
weighted by the probability of that state to occur. Then using a
Bayesian Belief Network (BBN), they solved that minimization
problem. These results encourage using a learning approach for
attention control in AI.

Some RL studies have previously been proposed for modeling
top-down visual attention control in humans. Since eye move-
ments have high correlation with overt visual attention, these
studies have tried to explain eye movement data. In [28], RL is used
for modeling the behavior of an expert reader by predicting where
eyes should look and how long they should stay there for achieving
best comprehension from the text. Another model of human eye
movements is proposed in [29] that directly ties eye movements
to the ongoing demands of behavior.

RL has also been used for deriving visual attention policies for
mobile robots. In [30], a 3-step architecture is proposed for an ob-
ject recognition task. First, it extracts potential focuses of interest
(FOI) according to an information theoretic saliency measure. Then
it generates some weak object hypotheses by matching the infor-
mation at the FOIs with codebooks. The final step is done using
Q-learning with the goal of finding the best perceptual action
according to the search task. In [31], two approaches are proposed
in a robotic platform with neck, eyes and arms for attention con-
trol. The first approach is a simple feedforward method which uses
back-propagation learning algorithm while the second one uses
reinforcement learning and a finite state machine for state space
representation. In [32], another robotic platform containing articu-
lated stereo-head with 4 degrees of freedom is presented which

A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145 1131

Author's personal copy

can select the region of interest, perform attention shift with sacc-
adic movements, build a map out of the environment and update it
according to current observation.

An approach for learning gaze control for a mobile robot is pro-
posed in [33], which proposes a model of selective attention for vi-
sual search tasks. Their model is implemented using a fixed pan-
tilt-zoom camera in a visually cluttered lab environment, which
samples the environment at discrete time steps. The agent has to de-
cide where to fixate next merely based on visual information, in or-
der to reach the region where a target object is most likely to be
found. The model consists of two interacting modules. In the first
module, RL learns a policy on a set of regions in the room for reaching
the target object. By selecting an appropriate gaze direction at each
step, this module provides top-down control in the selection of the
next fixation point. The second module performs ‘‘within fixation”
processing, based exclusively on visual information. An interesting
point with this work is that it has incorporated learning where to
look in a visual search task. Another advantage of this work is its
implementation on a working robotic agent.

A bottom-up visual attention model known as saliency-based
model, which is an extension and implementation of an earlier mod-
el of visual attention introduced by Koch and Ullman [5], is proposed
in [21]. This model is based on the saliency concept and mimics the
overall structure of the early visual system for detecting the loca-
tions which convey more visual signals and are different from their
surroundings. Simplicity and little computation are the two main
advantages of this model. It has been continuously updated and is
the basis of the newer models. It has also been used to explain behav-
ioral data on simple synthetic and static search arrays to dynamic
natural stimuli like movies and games [34]. In this study we use this
model to build our top-down attention control system upon it. In
[23], a task-based model of visual attention control is proposed
based on the saliency model to add top-down capabilities to it. Given
a task definition in the form of keywords, this model first determines
and stores the task-relevant entities in working memory using prior
knowledge stored in a long-term memory. It then attempts to detect
the most relevant entity by biasing its visual attention system with
the entity’s learned low-level features. It attends to the most salient
location in the scene, and attempts to recognize the attended object
through hierarchical matching against object representations stored
in the long-term memory. It updates its working memory with the
task-relevance of the recognized entity and updates a topographic
task relevance map with the location and relevance of the recognized
entity. Instead of a predefined definition in the form of keywords or a
sentence for a task, we would like to learn manipulations over the
basic saliency map by rewards and punishments that the agent re-
ceives. This approach is more general because it allows the agent
to interact with the environment and to find its own way of achiev-
ing an unknown goal in a need-based manner.

In [35], Walther et al. have proposed an approach for learning
and recognition of multiple objects in cluttered scenes using the
saliency-based model of visual attention. They have modified the
saliency model to find spatial salient regions which are more likely
to contain an object. That way, the modified model could consider
the extent of the objects at the focus of attention. Then they have
used the SIFT features [36] for recognition of multiple objects in
the scene. In their approach attention selects the extent of an ob-
ject and then these objects are incrementally learned and added
to a repository of learned objects. By comparing the performance
of David Lowe’s recognition algorithm, with and without attention,
they have shown that their approach can enable one shot learning
of multiple objects from complex scenes. In this regard, our re-
search is an extension of this work in terms of detection and learn-
ing of multiple objects in a scene. The main difference is that
selection of such objects is task specific and is learned interac-
tively. In another work [37], the same authors have combined

the saliency model with the standard model of object recognition.
Their main idea was to consider the shape of the attended object in
order to shape the area of attention. Their main claim has been
based on the experimental findings that attention could be tied
to objects, object parts or groups of objects. It weakens the previ-
ous belief that recognition before attention makes no sense
[11,38]. To model this effect they have introduced a model for
attending to salient proto objects. ‘‘Proto-objects” or ‘‘pre-attentive
objects” are a step above the mere localized features. In fact proto-
objects possess some but not all of the characteristics of objects.
They have utilized the model of object recognition in cortex [39]
to use the proto-objects to recognize multiple objects in the scene.

In [49], Jodogne et al. have presented a framework known as
RLVC (reinforcement learning of visual classes) for learning map-
pings from images to actions by interacting with the environment.
RLVC consists of two interleaved learning processes: (1) an RL unit
which learns image to action mappings and (2) a binary image
classifier which incrementally learns to distinguish visual classes
when perceptual aliasing occurs. The classifier acts like an atten-
tion tree by checking whether a specific SIFT feature is present in
the image or not. RLVC is the extension of a previous seminal work
known as U-TREE algorithm [26] to visual domain. The main idea
behind both approaches is that state-space is incrementally dis-
cretized whenever aliasing occurs. The main drawback with the
RLVC is its exhaustive search over entire image for computing SIFT
features which contradicts the philosophy of existence of visual
attention. In our method, like RLVC, an action-based binary deci-
sion tree is constructed for checking the existence of some objects
in a scene in an attentional framework.

3. Proposed model

An agent working in an environment receives information
momentarily through its visual sensor. It should determine what
to look for in every scene. For this we use RL to teach the agent
to look sequentially for the most task-relevant entities in the visual
scene. Our model consists of three layers: early visual processing,
higher visual processing, and finally decision making and learning
layer as illustrated in Fig. 1. In order to keep the model simple but
functional, only important interconnections among components
are shown. This model is an extension of our earlier model to inter-
active environments when an agent has to perform physical ac-
tions in response to perceived visual information [40].

An example scenario of the model is as follows; see Fig. 1. In the
early vision layer, captured scene of the environment through the
agents’ visual sensor undergoes a biased bottom-up saliency detec-
tion operation and a focus of attention area is selected. For reduc-
ing the computational complexity, higher visual processes (like
object recognition) are targeted only at the focus of attention
(FOA). After the attended object is recognized (i.e. is either present
or not in the scene), then the agent moves in its binary tree in the
decision making and learning layer. This is done repetitively until it
reaches a leaf which determines its state. The best motor action is
this state is performed. Outcome of this action over the world is
evaluated by a critic and a reinforcement signal is fed back to the
agent to update its internal representations (attention tree) and ac-
tion selection strategy in a quasi-static manner. Following subsec-
tions discuss each layer of the model in detail.

3.1. Early visual processing layer

The biased bottom-up attention component in this layer first
determines the saliency of all spatial locations, then selects the most
salient region (FOA), and finally sends it to the higher level vision
for further processing. The biases are selected by the top-down

1132 A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145

Author's personal copy

attention part through attempting to find a desired object in the
scene. As a result, the biases should be learned for each object and
are task independent. Therefore, to keep the online learning resources
for the task dependent parts, an offline method for learning the
biases is adopted and a long-term memory is used by the bottom-
up attention component to store the learned biases for online use.
The early vision unit is the artificial counterpart of the V1 and V2
cortical areas in the visual cortex (what/where pathways).

Saliency model in presence of no bias selects a spatial location
in a feed forward manner. In [24], the basic model is biased toward
a specific object by maximizing the SNR ratio of the object to the
whole image. In [48], we modified the basic model and then used
a global optimization technique to learn biasing weights of the sal-
iency model offline. Instead of only finding the appropriate
weights, we have also incorporated processing costs of the feature
channels to force the optimization process to choose the feature
vectors with high detection rate and low cost. Below we briefly de-
scribe our biasing approach for fast object detection in a scene.

An overall sketch of our modified saliency model is presented in
Fig. 2. The input image to the system is decomposed into 3 feature
channels: Intensity (I), Color (C) and Orientation (O). Color chan-
nels are calculated as follows. If r, g and b are the red, green and
blue dimensions in RGB color space, then I = (r + g + b)/3,
R = r � (g + b)/2, G = g � (r + b)/2, B = b � (r + g)/2, and Y = r + g � 2
(|r � g| + b) (negative values are set to zero). Local orientations
(Oh) are obtained by applying Gabor filters to the images in the
intensity pyramid I. These operations are shown in (1). Ps is the fea-
ture map at scale s. P could be intensity (I), Red (R), Green (G), Blue
(B), Yellow (Y) or orientation (O). oh;s is the orientation channel at
orientation h and scale s:

Fl;s ¼ SIðlsÞ; FRG;s ¼ SIðRs � GsÞ; FBY;s ¼ SIðBs � YsÞ; Fh;s ¼ SIðoh;sÞ ð1Þ

In (2), FI,s, FRG,s, FBY,s and Fh;s are the intensity, red/green, yellow/
blue and orientation channels in scale s, respectively. SI is the sur-
round inhabitation operation; see [48] for details. These feature
maps are summed over scales and the sums are normalized again:

Fl ¼ NðRsðsxÞs � Fl;sÞ with l 2 LI [LC [LO and LI

¼ fIg; LC ¼ fRG;BYg; LO ¼ f0�;45�;90�;135�g ð2Þ

where (sx)s is the weight of scale s. N(.) is an iterative, nonlinear
normalization operator, simulating local competitions between
neighboring salient locations [42]. In each feature channel, feature
dimensions contribute to the conspicuity maps by weighting and
normalizing once again (3):

Cp ¼ N
X
l2Lp

ðdxÞp � Fl

0
@

1
A; p 2 fl; C;Og ð3Þ

Variable (dx)p in (3) determines weight of a dimension within
feature channel p. All conspicuity maps are weighted and com-
bined at this stage into a final saliency map:

SM ¼
X

k

ðcxÞk � Ck; k 2 fI;C;Og ð4Þ

(cx)k in (4) weights the influences of feature channels in the final
saliency map. The locations in the saliency map compete for the
highest saliency value by means of a Winner-Take-All (WTA) net-
work of integrate and fire neurons [5]. The winning location of this
process is attended to and the saliency map is inhibited at this loca-
tion. Continuing WTA competition, the next most salient location is
sequentially attended to form a scanpath of successive overt
attentions.

Fig. 1. Proposed model for learning task-driven object-based visual attention control.

A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145 1133

Author's personal copy

Weight vector ð �xÞ determining weights of the model has to be
learned to make an object of interest salient:

�x ¼ ðcx;dx; sxÞ; j �xj ¼ 16; jcxj ¼ 3; jdxj ¼ 7; jsxj ¼ 6

dx ¼ ðdxI;dxC;dxOÞ; jdxIj ¼ 1; jdxCj ¼ 2; jdxOj ¼ 4
ð5Þ

In (5), cx; dx; and sx are weight vectors for feature channels,
dimensions within channels and scales, respectively.
dxI; dxC; and dxO are weight vectors for intensity, color (red/
green and yellow/blue) and orientation (0�, 45�, 90� and 135�)
dimensions. Our aim is to find a weight vector which maximizes
the object detection rate over a set of M training images in which
the location of the target object is already tagged. For this purpose,
we follow a data-driven approach. First, the optimal weight vector
is sought to satisfy an objective over a training image dataset and is
then evaluated over a separate set of test images. Assume that
training set T contains M images with an object of interest tagged
in them as:

T ¼ fðIm1; t1Þ; ðIm2; t2Þ; . . . ; ðImM ; tMÞg ð6Þ

Then the fitness of a weight vector is defined as:

Fð �xÞ ¼ 1
M

XM

i¼1

normðSaliencyðImi; �xÞ � tiÞ
 !

ð7Þ

In (7), norm (.) is the Euclidean distance between two points in
an image. Saliency is the function which takes as input an image
and a weight vector and returns the most salient location. ti is
the location of target object in the ith image.

Note that, a lower fitness value for the above function means
that it has better performance. For minimizing the fitness function,
an algorithm known as comprehensive learning particle swarm
optimization (CLPSO) is used [43]. CLPSO is simple, easy to imple-
ment and has been applied to a wide range of optimization prob-
lems. Refer to [48] for the details of the implementation.

3.2. Higher visual processing layer

This layer acts upon the information extracted by the early vi-
sual processing layer. In fact, the most salient part of the scene,
highlighted by top-down biasing is processed here. Operations in
this layer are more sophisticated and give the agent a more cogni-
tive understanding of the image/scene; useful for learning and
decision making in the next layer. Example operations could be ob-

Fig. 2. Proposed biased bottom-up saliency model.

1134 A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145

Author's personal copy

ject recognition, scene classification, background subtraction, etc.
Processes in this unit are dependent on the environment and the
tasks of the agent. This layer corresponds to cortical areas at the
end of visual ventral stream like V4, IT and PFC.

Here we use the standard model of object recognition in cortex
for recognizing objects at the focus of attention. Standard model of
object recognition (Hierarchical Model and X (Hmax)) is a hierar-
chical model which closely follows the operations and findings
from the early and late visual system. For more detailed informa-
tion on Hmax, the interested reader should refer to [44–46]. It will
be used for object recognition in visual navigation tasks in Sec-
tion 4. Note that as in the saliency model, Hmax is also trained off-
line and is used online when performing a task.

The Hmax is used in this way; first, C2 features of an object
tagged in a train set of images are extracted and then a binary
SVM classifier is trained with these features and is then evaluated
over a separate set of test images. When operating online, C2 fea-
tures of attended location is derived and passed to the correspond-
ing classifier to check if attended object is the same as expected
object or not. Detailed setup and results of object recognition are
shown in Section 4.2.

3.3. Decision making and learning layer

The core of our model is the decision making and learning layer
where visual attentions and representations are learned. In addi-
tion, this layer controls both top-down object-based attention
and motor actions. Top-down attention is equivalent to overt
attention which in humans means that attention is relocated to dif-
ferent objects with eye movements. The motor actions are exe-
cuted by the body of the agent and affect the world. State
extractor unit (attention tree) in this layer, derives the state of
the agent based on the cognitive information it receives from the
higher vision unit. The learning approach is an extension of the
U-TREE algorithm [26] to visual domain.

Based on the derived state, the agent must choose to either do a
motor action or perform another perceptual action which here
means looking for another object in the scene to further clarify its
state. For example in Fig. 3a it is possible to discriminate two percep-

tions by checking whether object O2 exists in the scene or not but in
Fig. 3b, one further object checking is necessary to find the state.
Looking for another object involves biasing the early vision by using
the associated pre-learned weights (biases) of the saliency model
and running the object recognition part accordingly, see Fig. 1. The
agent continues traversing the attention tree until it finally reaches
a leaf node which determines its state in the Q-table. The agent em-
ploys its Q-table for selecting a motor action. An evaluation of the
motor action over the world is fed back to the agent by the critic in
form of a reinforcement signal. This signal is used by the agent for
updating its Q-table and developing its attention tree.

Since there are two interleaved parameters in the model, atten-
tion tree and the Q-table, we adopted a quasi-static approach for
learning the attention tree and image (state) to action mappings
(Q-table). Each time reinforcement signal from the critic is used
for either modifying the tree or updating the Q-table. This layer
corresponds to decision making areas in the brain like LIP and
PFC cortices.

3.3.1. Learning attention tree
An efficient method to implement attention and state space

construction is by means of tree data structures. Such structures
are interesting because they allow learning representations and
attention control at the same time. Visual discretization is achieved
via expanding the attention tree whenever perceptual aliasing oc-
curs. Such refinement is performed to increase the cumulative dis-
counted reward of the agent in each time step t:

Rt ¼
X1
i¼0

cirtþiþ1;where c 2 ½0;1� ð8Þ

where 0 < c < 1 is the discount factor [19].
Each internal node of the tree checks whether a specific object

exists in the scene or not. The generated tree for attention control
is a binary tree, since an object checked in an internal node of the
tree either exists or not in the scene. When an image is presented
to the agent, attention tree is sequentially traversed from the root
until a leaf node is reached.

Attention tree is incrementally built in a quasi-static manner in
two phases (iterations): (1) Tree-fixed (RL-update) phase and (2) RL-
fixed (Tree-update) phase. In each phase of the algorithm, the feed-
back of the critic (a scalar reward) is used to alternatively update
the policy or refine the leaves with aliasing.

The algorithm starts with a single node (state) in the Tree-fixed
phase and then moves to the RL-fixed phase and so on, see Table 1.
It means all the images are initially mapped to that single node. It
is obvious that such a single state is not enough in many cases and
therefore aliasing occurs. Then, the algorithm breaks that node into
two leaves in the RL-fixed phase based on some gathered experiences
beneath it. In each Tree-fixed phase, RL algorithm is executed for a
number of episodes according to the learned Q-table from the previ-
ous phase by following an e-greedy action selection strategy [19]. In
this phase, the tree is hold fixed. It means, the agent perceives its
state using the fixed attention tree, performs motor action at, re-
ceives reward rt+1 and enters state st+1 where ðst ¼ ½o1; o2; . . . ; on�Þ;
oi 2 f0;1g, and oi is 1 if object oi is detected by the higher vision in
the scene. The derived quadruples st, at, rt+1, st+1 are used for updating
the Q-table according to Q-learning formula [50]:

Qðst; atÞ ¼ ð1� aÞQðst ; atÞ þ a rtþ1 þ cmax
a

Q stþ1; að Þ
� �

ð9Þ

where 0 < a < 1 is the learning rate.
State discretization occurs in the RL-fixed phase. In this phase,

gathered experiences by the agent are used to refine leaves of
the attention tree with aliasing. An important point to be consid-
ered here is that the agent only accesses the environment through
its visual sensor (e.g. its CCD camera). Therefore, in order to

Fig. 3. Resolving aliasing by subsequent object checking: (a) one object checking is
enough to discriminate two scenes which need different actions. (b) Two
subsequent object checking for action-based discrimination of several scenes.

A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145 1135

Author's personal copy

determine its state in any position, the agent should capture a
scene in that position and then traverse its attention tree from
the root node down to a leaf.

3.3.2. Measuring aliasing
After each RL-fixed(Tree-update) phase, attention tree is refined

by expanding the states (leaves) with perceptual aliasing (Table 2).
In order to estimate aliasing, a number of patterns should be accu-
mulated under a leaf node (gatherMem() function in Table 1). To have
a better estimation for aliasing, we only refined those leaves with the
memory size greater than a threshold value (memThreshold). Mem-
ory is updated with adding the last episode to it. An experience under
a node with state st is ð½o1; o2; . . . ; on�; at ;DtÞ; oi 2 f0;1g, where oi is 1 if
object oi exists in the scene. In order to know if object oj is present in
the scene or not agent applies the bias vector of the jth object and
then uses the corresponding SVM classifier for that object. This
way agent could find which objects are in the captured scene. As in
the Tree-fixed phase, an image is captured, attention tree is traversed
in order to find the perpetual state, appropriate action is performed
and a reward is received. A prominent measure of perceptual aliasing
in a state (leaf node) is the TD error (also known as Bellman residual)
and is derived from the Q-learning formula as shown in Eq. (10):

Qðst ; atÞ ¼ a rtþ1 þ c max
a

Qðstþ1;aÞ � Qðst; atÞ
� �

þ Qðst; atÞ

¼ aDt þ Qðst; atÞ ð10Þ

where Dt is the TD-error of state st with respect to action at. In order
to detect aliasing, all patterns under a node are clustered according
to their physical actions and then if any of these clusters has a var-
iance in Dts greater than a threshold (aliasingThreshold), then that
node has aliasing at least with respect to one action. When the RL
algorithm converges, then the Q-values do not change any more
and Dts vanish. It means that the final tree is achieved.

3.3.3. Tree refinement
In order to refine the attention tree, each aliased state is ex-

panded into two leaves. Tree modification (refinement) is done
by selecting the object which mostly reduces the variance in Dt

of patterns in the memory of a leaf according to Eq. (11). In [47],
splitting measures for U-TREE are compared and is shown that var-
iance is a more effective measure in terms of generating tress with
smaller number of states and less computation time than other
measures:

o� ¼ argmino varfyg � jLþj
L

varfyajþg þ
jL�j

L
varfyaj�g

� �� �

¼ argmaxo
jLþj

L
varfyajþg þ

jL�j
L

varfyaj�g
� �

ð11Þ

where y is the set of all memory items under a leaf, ya is the set of all
memory items with action a, yaj þ ðyaj�Þ is the set of memory items
with (without) object o and action a. Sizes of these two sets are jLþj
and jL�j, respectively. o* is the selected object.

Maximization is done over all pairs of objects and actions. An
object which minimizes the variance also has to cluster the images
under the node into two populations with significantly different
distributions for the best separation. Here we used t-test for com-
paring these two distributions. If the power of the t-test is below
0.05, then two distributions are considered to be significantly dif-
ferent. When expanding a node, an object is selected which has not
been already used in the path from this node to the root. When a
leaf is created (deleted) a corresponding state is added to (deleted
from) the Q-table and the Q-values are uniformly initialized. Ta-
ble 3 shows tree refinement function.

Table 1
Algorithm for learning top-down object-based attention control.

main ()
tree = Create a tree with a single node //all input images are mapped to this single state at the beginning
Repeat

Tree-fixed phase // in this phase only Q-table is updated

for i = 1 to maxEpisodes
It = take an image
st = traverseTree (tree, It)
[st+1 rt+1 at] = performAction(st)

Q-table = updatePolicy(Q-table, st)
end // end for i

RL-fixed phase // in this phase only tree is modified

for i = 1 to maxEpisodes
It = take an image
st = traverseTree(tree, It) // st is a leaf node
[st+1 rt+1 at] = performAction(st) // based on an action selection policy choose action at, go to state st+1 and get reward rt+1

Dt = calcDelta (st, st+1, rt+1, at) // Dt is the TD error according to Eq. (10)
mem = gatherMem(at, It, Dt) // this item is saved for state (node) st

end // end for i

for j = 1 to size(tree.leaves) // expand the nodes with aliasing
if size(mem) > memTreshold

if checkAliasing(st)
tree = modifyTree(tree, st)

end // end for j
pruneTree(tree)

Until (no more aliasing) or (maximum iterations is reached) // repeat

Table 2
Function for checking aliasing.

checkAliasing(st) // A is the set of all motor
actions

for action a e A
mem(a) = all memory items with action a

under st

var(a) = calcVariance(mem(a)) // of mem(a)
if var (a) > aliasingThreshold

return true;
end // end for action a
return false;

1136 A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145

Author's personal copy

3.3.4. Tree pruning
Proposed algorithm constructs an attention tree in a greedy

manner which usually leads to overfitting. Therefore solutions
should be designed to overcome overfitting by either periodic tree
restructuring or pruning. Two heuristics are introduced in the
following.

Consider two types of nodes: (1) nodes having leaves with the
same best actions learned for them; (2) nodes with at least one
child with no memory. First case happens when next RL-update
phase assigns same best actions to leaves with the same parent
and second case happens when next Tree-update phase does not
explore part of the state space represented by one leaf. Leaves of
the nodes in the first category are removed and their action is as-
signed to their parent node. A node in the second category is re-
moved and its child with memory is substituted with it. These
two heuristics are recursively done from bottom to top of the tree
until no node satisfies one of these conditions.

4. Experimental results

In this section, we evaluate performance of each part of the
model individually and then put them all together in the overall
model. Performance of the proposed model is analyzed over visual
navigation tasks in which the agent has to learn which object to at-
tend to find its state and then which physical action to do at that
state. First, we train the object detection and recognition parts off-
line (in first and second layers) based on the objects that the agent
will observe when working online.

4.1. Biasing results

In this section results of biasing saliency model in the early vi-
sual processing layer for object detection in natural scenes are
shown. We used 3 traffic signs (bike, crossing and pedestrian)
and two objects (coke and triangle). Number of images for bike,
crossing, pedestrian, triangle and coke were 70, 45, 55, 69 and
42, respectively. Sizes of images were 360�270 pixels. Fig. 4 illus-
trates sample signs and objects in natural scenes.

CLPSO was trained over 10 random images for each object and
then the best weight vector was tested over the remaining images
of that object. Results are reported over five runs with random
train images. Derived weight vectors for detection of bike and
crossing signs after CLPSO convergence are shown in Fig. 5. For
bike, color (yellow/blue) and orientation (45� and 135�) channels
have the highest weights. Middle scales (s1 to s3) are more infor-
mative for detection of this object. For crossing, again color channel
has the highest weight. For this sign, red/green channel is more
important. Orientation dimensions (0�, 45� and 135�) which appear
in shape of the crossing sign have higher weights. Since almost in
all images of this sign, triangle is toward up, these orientations are
stable features and have got higher weights than other orientation
dimensions.

Table 4 shows the average values of detection rates using fitness
function in (7). An object was considered detected if a salient point
was generated in a vicinity of 30 pixels around its center. For
detection of an object rather than the most salient point, 2 other
locations generated by WTA were also considered. It can be seen
from Table 4 that biasing saliency model results in higher object
detection rates compared with basic saliency model over all ob-
jects. Since object detection is not perfect, errors in detection have
to be considered for online learning. For online experiments we
used a subset of data where object detection could be done perfect
and then analyzed behavior of the model in presence of detection
errors. For more comprehensive results of biasing the saliency
model refer to [48].

4.2. Object recognition results

In this section, object recognition component in higher visual
processing layer is evaluated. Object recognition is applied to the
object at the focus of attention to make sure that recognized object
is the attended one. This knowledge helps the agent to move in its
attention tree and to find its state.

Since locations of target objects in the training images used for
biasing the saliency model in early vision layer were already known
we used this information for training the SVM classifiers. First, C2
features from 10 random training images for each object were ex-
tracted in a 50 � 50 window around the center of object in each
scene. This was done for all objects. Then for each object, C2 features
from training images were tagged as positive samples and the C2 fea-
ture vectors from all other objects from their training images were
considered negative. A binary SVM classifier [51] was trained using
all training samples of the target class (positive patterns) and train-
ing samples from other classes (negative patterns). The trained clas-
sifier was later tested over remaining test patterns of the same class
(with positive label) and negative test patterns of all other classes.
Location of the object is just known in offline training. Window is
put around the center of the object and the whole image patch at that
area is used for training the classifier. Process of training a SVM clas-
sifier for the bike sign is shown in Fig. 6.

Classification using the C2 features resulted in 91.28% (±2.8%),
93% (±2.75%), 87% (±3.2%), 83% (±4.2%) and 94.6% (±1.4%) recogni-

Fig. 4. Sample objects in natural scenes. From left to right bike, crossing, pedestrian, coke and triangle. Target is shown by the yellow circle.

Table 3
Function for tree refinement.

modifyTree(tree, st)
for action a e A

mem(a) = all memory items with
action a under st

for object o e O // O is the set of all
possible objects
the agent might observe in
a scene

choose the object which reduces
the variance the most according to
Eq. (11) and also partitions the memory
into two populations with non-equal
distributions (using t-test)

end // for o
end // for a

A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145 1137

Author's personal copy

tion rates for bike, crossing, pedestrian, triangle and coke objects,
respectively. Reported results are averaged over 5 runs with ran-
dom training patterns for each object.

4.3. Visual navigation task

In this experiment, the agent is supposed to learn how to navi-
gate safely to the goal (G) in a simulated driving environment. The
agent uses its offline learned knowledge – biasing weights and the
trained object recognition part – interactively. Map of the route,
consisting of 4 positions (1, 2, 3, G), is shown in Fig. 7. The agent
has no access to its (x, y) position and only receives 360 � 270
RGB color images of natural scenes in each situation. At each state,
the agent has three possible motor actions: Forward (F), Turn Left
(L) and Turn Right (R). It can attend to one of several objects in
the images each time. For checking the existence of an object,
when moving in its attention tree, the agent applies the learned
biasing signals for that object to the observed scene (long-term
memory component in the model). Then the most salient region
of this biased saliency map is transferred to the corresponding
trained binary SVM classifier (associated with the attended object),
and based on a positive or negative answer from this classifier
moves in the attention tree until it reaches a leaf node determining
its state.

Since there are 3 positions (minus Goal) and 4 sides per each
one, there are 3 � 4 = 12 states in the environment. The agent in
each of the 12 states captures a scene containing either one or
more objects. In each episode of RL, the agent is placed randomly
in a position of the map. States of the environment are numbered
in this way: (x � 1) � 4 + y, where x is the position number (in the
central circle) and y is the head direction of the robot (in the coor-
dinate system at the bottom-right of Fig. 7). y = 1, 2, 3 and 4 for
North, West, South and East directions, respectively. For instance,
state number of north side of position 2 is 5 and for its east, it is
8. Note that the best actions in the image are with respect to the
head direction of the agent. For example, when head of the agent
is toward east in the map, south lies in its right side. Note that,

the optimal policy is not unique in this map. It means, more than
one action might be the best for a state. They are shown with
red characters {F, R, L} besides each state in Fig. 7.

An example assignment of sets of objects – pedestrian (A),
crossing (B), bike (C) and triangle (D) – to states is shown in
Fig. 7. For each subset, we captured 5 natural scenes containing
those signs. These scenes could also contain other signs but impor-
tant signs for the agent in this experiment are only the four signs
shown in Fig. 7. Examples of the natural scenes used in this exper-
iment are shown in Fig. 8. Actually, scenes were selected in such a
way to give the agent a deterministic behavior.

In this experiment, we assumed that agent is capable of detect-
ing and recognizing objects in the scenes. It means that when the
agent applies the learned biases for a specific object to the bot-
tom-up attention model, it can correctly detect and recognize that
object in the scene at the first saccade. The reason is that uncer-
tainties due to perceptual errors are not yet studied in U-Tree algo-
rithm and it is not subject of our study.

We solve this problem is two cases. In the first case mapping of
motor actions to states are already known and only states of the
environment should be discovered. This case is a supervised ver-
sion of the problem when associated actions are known by the
supervisor. This assumption is relaxed in the second case and both
attentions and motor actions are learned for safe navigation.

4.3.1. Experiment I: motor actions known and fixed
Navigation task is a coupled task since it demands learning both

state representations and motor actions. In this section, we aim to
solve the case in which motor actions for states are already known.
Therefore it only remains to learn the states and their associations
with motor actions. Then we relax this assumption and use our
model for learning both representations and their associated motor
actions in Section 4.3.2.

The agent starts with a single Null state and all captured images
are mapped to that state. For a randomly captured image, the agent
must choose between doing a motor action and attending to an-
other object to clarify its state (to increase the chance of correct
classification of this image). In the Null state, the agent is only al-
lowed to do attentions (and not motor actions), since it is clear that
more than one state is needed for representing the environment.

Fig. 5. Learned weights after CLPSO convergence over first two traffic signs
averaged over five runs. s0 to s5 are scales in the image pyramid.

Table 4
Comparison of detection performances of biased saliency model and the basic saliency model over natural objects and traffic signs with max fixations equal to 3. Results are
averaged over 5 runs with random training and test sets. Numbers in parentheses are standard deviations.

Target Object

Bike Crossing Pedestrian Coke Triangle

Biased Saliency Model Train 92.3(2.1) 96.7(1.2) 98.2(1) 95.2(1.4) 92.5(2.3)
Test 90.2(2) 93.8(0.9) 94.2(1.1) 92.2(2) 91(1.6)

Basic Saliency model Test 81.8(0.6) 78.2(1.4) 83.3(1) 80.9(0.4) 76.5(0.8)

Fig. 6. Binary SVM training for the bike class. For each object 10 images are selected
in random for training. Here, bike SVM classifier is trained with positive samples
from bike class and negative samples from training images of other classes and then
is tested with positive and negative test images.

1138 A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145

Author's personal copy

This causes the algorithm to generate other states. In each state,
the agent performs either an attention or a motor action using e-
greedy action selection policy. If predicted motor action by the
agent for this state is optimal (best), it receives a big reward of
+100 and otherwise it gets �100 punishments. If it attends to an
object, it receives a punishment which is the cost associated with
looking to that object. Then, the agent updates the Q-table entry
for this state and moves to the next state. If the next state does
not exist in the Q-table, then it is created and initialized uniformly.
This process is repeated for some episodes (maxEpisodes). Flow-
chart of Fig. 9 illustrates this process.

Cumulative average rewards and average costs for this exper-
iment are shown in Fig. 10. Results are compared with the situ-
ation when the agent has the full observation (full attention). In
this case, the agent checks the existence of (attends at the same
time to) all objects in the scene in order to find its state. A ‘1’
means that the attended object exists in the scene and ‘0’ means
it does not. Since the response for attending to an object is
either 1 or 0, state space (with 4 objects) in full attention case
has 24 states.

As shown in Fig. 10, both attended and full-observation cases,
converged to the same average reward in iteration 2000 (bottom
panel). The reason why both curves are below +100 is because of
the punishments the agent receives when performing the task.
Top panel of Fig. 10 shows the average cost of both approaches.
When the agent attends to all objects, it always has the cost of
(�10 = �4 � 3 � 2 � 1). So, its average cost is always �10. When
it attends to one object at a time, it has a higher average cost at
first, but as long as it learns to do the task (and to attend), its aver-
age cost reduces and finally reaches a value above �10. The agent
was capable to navigate correctly after learning.

The final behavior of the agent after learning is explained
next. When observing an image, it starts from the Null state
and then follows its learned policy in the attention tree until a
motor action is selected. If in a state an object should be at-
tended, the agent first applies learned top-down gains for that
object to the image, then a square area around the salient part
(50 � 50 pixels) is sent to the SVM classifier corresponding to
that object. Then next state is determined and so on. If the state
does not exist it is created.

4.3.2. Experiment II: motor actions unknown
In this section, association of physical actions to scenes is not

known in advance. Therefore, the agent has to discover both its
representations (internal state space) and the best image-to–action
mappings. The agent starts in the Tree-fixed phase with a random
position and a random head direction in the map. It then receives
an image randomly from 5 images associated with each state. To
find its state, the agent traverses its attention tree down to a leaf
node and then it follows an e-greedy strategy for action selection.
Each episode is terminated when the agent reaches the goal state
or goes off the road (hits the wall). Rewards and punishments
are defined as:

R

þ100 : reaching the goal state
�10 : going forward and hitting a blocked way
�5 : turning and observing a blocked way in front
0 : ordinary forward or turn

8>>><
>>>:

ð12Þ

Average reward is the sum of the rewards that the agent re-
ceives during an episode normalized by the length of that episode.
Average tree depth is the average depth of all leaf nodes in the
attention tree. Fig. 11 shows the average reward of the agent, sta-
tistics of the generated tree like number of nodes and leaves and its
average depth after running the algorithm in Table 1. It also shows
error rate in the policy of the agent. In this figure each iteration
consists of 35 episodes and in each episode the agent starts from
a random location and moves until it reaches the goal or hits a
wall. Fig. 11 (top-panel) shows the smoothed cumulative reward
in a window of 20 episodes.

Final depth of the generated tree is 3.54, which means that the
agent could do the task perfectly by attending to 3.54 objects in
average. This value is below 4 objects in full attention case and
shows near 12% improvement in reducing the processing costs.
As the attention tree grows, measured by average tree depth, the
correct policy rate increases. As Fig. 11 (middle-panel) shows aver-
age depth of the tree increases during learning. Fig. 11 (bottom-pa-
nel) shows the percentage of correct policy rate. After 12 iterations,
it converges to 100% rate that means the agent has learned the
optimal image to action mapping and there are no further aliasing

Fig. 7. Simple navigation map. Goal state is shown with capital letter G. Best actions are shown in parentheses and objects in the natural scenes associated to states in
brackets. The agent can go forward, turn left or right and can only attend to one object in the scene each time. It should reach the goal state as fast as possible.

A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145 1139

Author's personal copy

in the tree. Final generated tree is shown in Fig. 12. Eleven leaves
(states) were generated for handling the task which is smaller than
12 states of the environment. In fact, since some states have the
same best actions, they were clustered under the same leaf nodes
(state with plus sign in Fig. 12).

It could be verified from the tree in Fig. 12 that the algorithm
generates inefficient trees. In its general form, it creates some
unnecessary leaf nodes. For example, the node labeled with � in
this figure has two children with the same best actions. Clearly,
such nodes have anomaly and could be merged and be replaced
with their parent node. Some nodes also do not absorb any experi-
ences indicating that they are not necessary. To generate compact
trees, generated trees are pruned in some occasions, for instance
after d iterations (here d = 3).

Generated tree in a new run with pruning is shown in Fig. 13.
Algorithm in this case succeeded to generate a more compact tree

by clustering more states with the same best actions under the
same leaf nodes. Final generated tree again achieved 100% correct
policy rate with 6 states and average depth of 2.66 which are smal-
ler than 3.54 and 11, average depth and number of states of the un-
pruned tree in Fig. 12.

We also applied our method to a more complex navigation
environment. In this task, the agent moves between 11 positions
of the map in Fig. 14. Neither motor actions nor visual representa-
tions are known in advance. The state space is of size 11 � 4 = 44.
Actions and reinforcement signals are as in the previous section.
The agent has to connect an input image to the appropriate reac-
tion without explicitly knowing its geographical location.

Five scenes are associated with each state and there is no error
in detection and recognition. Objects in the scenes (4 traffic signs
plus the coke object) are in random locations in 2D space and are
not bound to specific spatial locations. We put the triangle and

Fig. 8. Sample natural scenes with traffic signs. Five images for each state were randomly selected. Co-occurrence of some signs together determines the state of the agent.

1140 A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145

Author's personal copy

coke objects in different natural scenes and then photographed the
image to make different assignments.

A random assignment of the objects to the states is shown in
Table 5. Note that, the agent observes some same scenes in dif-
ferent states. Since there are 44 states in the map, and 31 com-
binations are possible with 5 objects (minus empty scene),

therefore aliasing occurs in some states (the agent observes
the same scene in different states with the same best actions).
To avoid such aliasings, no same scenes were assigned to states
with different optimal actions.

Generated tree for this experiment without pruning and with
deterministic observation (without uncertainty) has 23 leaves.

Fig. 9. Flowchart of the algorithm for learning attention control when motor actions are known in advance. State of the agent is determined by the objects it observes. The
agent finally learns to do a motor action or to attend to another object in each state when it is presented with an image.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

-15

-10

-5

0

Average cost-full observation
Average cost-attention

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-150

-100

-50

0

50

100

Comulative reward-full observation
Comulative reward-attention

episode

episode

Fig. 10. (Top) Average cost, (Bottom) Cumulative average reward during episodes. RL parameters: maxEpisodes = 2000, a = 0.7, c = 0.9, e = 0.9. Costs were defined as
[�4 �3 �2 �1] for objects [A B C D].

A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145 1141

Author's personal copy

Algorithm converged to 100% correct policy rate after 55 iterations
(phases). Final tree has the average depth of 4.2 which is smaller
than 5 objects (full attention). So, the agent attends to 4.2 objects
in average while having the same performance.

Fig. 15 shows the generated tree after pruning. Algorithm gen-
erated 7 states with average depth of 3. Therefore pruning could
extensively help optimizing the trees.

4.4. Experiment III: uncertainty analysis

An important aspect of decision making in real-world situations
is dealing with uncertainty in sensors. For instance, a major source
of uncertainty for a robotic agent is its sensors, which are often
noisy and have only a limited view of the environment. Since both
saliency model and the Hmax have uncertainties, this problem also

Fig. 11. (Top) Smoothed average reward in a window of 20 episodes for RL-Update iterations. (Middle) Number of nodes and leaves of the learned attention tree and average
tree depth. (Bottom) Percentage of the correct policy rate. Parameters: maxEpisodes = 35, e = 0.8, memThreshold = 20, a = 0.9, c = 0.9, aliasingThreshold = 11 (for the map of
Fig. 7, without pruning).

Fig. 12. Learned attention tree for the map of Fig. 7 without pruning. Algorithm managed to generate a tree with 11 states. Letters inside the blue circles (leaves) are the
learned motor actions. Characters inside the internal nodes are names of objects. Numbers below leaves are state numbers. Numbers on the edges determine whether object
has been seen or not. This tree resulted in 100% correct policy but is not efficient since the node marked with � has two children with the same best actions. Different states
with the same best actions are clustered under the same leaves.

1142 A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145

Author's personal copy

applies to our model. In this section, we analyze how uncertainty
in the perception of the agent affects its behavior over the map
of Fig. 7. Each observation of the agent is incorrect by probability
Pu. For example, Pu = 0.03 means that in 3 percent of observations
the agent is not sure that an object is really present in the scene
or not. When the agent traverses its attention tree and has to at-
tend to an object, it gets an incorrect result with probability Pu.
When observations of the agent are noisy, then the agent develops
a probabilistic action selection strategy. Since no formulation is in-
volved, the only way for the agent to discover such probabilities is
by maximizing its reward. Results of re-running experiment in Sec-
tion 4.3.2 with uncertainty in object detection is shown in Fig. 16.

In this experiment, tree generation was stopped after 12 itera-
tions whether algorithm converged or not for comparing the
uncertainty levels. That is why correct policy rate is not 100% in
the bottom panel. As Fig. 16 shows (top and bottom panels), low
magnitude of noise does not degrade the behavior of the agent a
lot (for Pu = 0 and Pu = 0.05). However when the noise uncertainty

is increased to 0.1 or 0.4, algorithm does not converge to a near
optimal policy. Increasing the uncertainty resulted in gaining less
average reward and more faulty policies. Thus, the agent could
compensate low magnitude of uncertainty in the saliency model
and Hmax by optimizing its action selection strategy.

5. Summary and conclusions

In this research, we proposed and implemented an overall bio-
logically inspired model for top-down object-based visual atten-
tion control. In our model, we considered how task demands,
actions and the bottom-up cues influence attention. Our results
support the idea that the nature of the bottom-up attention is
low-level mechanisms, while top-down attention is more like a
control or a decision making problem. To solve such problems opti-
mization approaches have been followed in engineering literature.
Rather than scanning the image from top-left to bottom-right, to
detect an object in the scene, or using global representations
(which usually need many computations), our model just looks
at a small number of spatial locations. The information about what
and where to look comes from the top-down knowledge learned by
RL during learning a task.

Our approach is in accordance with the important biological
evidence that brain has adopted a need-based approach for visual
representations. This means that representations and other cogni-
tive capabilities of the agent are altered or refined in order to opti-
mize its behavior and interactions with the world it lives in. A
minimal solution (representation) is enough and no further detail
(over-completeness) is needed. This mechanism is well captured
by our model for deriving visual representations and top-down
task-based attentions. Actually representations and attentions are
optimized in our model by maximizing cumulative reward of the
agent (behavior-based approach). For gaining maximum reward
those states with aliasing are expanded into further states which
then lead to sufficiently finer representations.

Major next step is to extend the work to continuous interactive
visual environments where the agent continuously receives visual
information from the environment and has to perform continuous

Fig. 14. Complex navigation map. A subset of 5 objects is randomly were present in natural scenes. Best actions are shown besides each state. In some states two actions are
optimal.

Fig. 13. Learned attention tree for the map in Fig. 7 with pruning. Twelve states
were clustered into 6 leaves. Algorithm succeeded to achieve the 100% correct
policy in this case. Parameters: maxEpisodes = 200, e = 0.8, memThreshold = 100,
a = 0.9, c = 0.9, aliasingThreshold = 10.

A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145 1143

Author's personal copy

and complex motor actions. Since the biasing approach is capable
of detecting various objects, it could be applied for tasks where
several objects are important for the agent. Relationships among

objects could be considered in the higher vision layer in order to
increase the set of perceptual states.

Integration of bottom-up and top-down attentional mecha-
nisms has not been studied and shown in previous computational
models which leaves place for future works. For example, a com-
puter operator has learned how and where to move his eyes when
working with a computer program from his past experience. This
shows the task-driven component of visual attention. When sud-
denly he closes a screen which needs something to be saved, sud-
denly a pop-up message box appears and alarms for saving. Our
top-down model could be tried to explain the top-down compo-
nent of this sample task using eye movement data. However,
how the bottom-up part should be integrated in the model needs
further investigation.

For state determination agent learned to sequentially check the
existence of objects in the order of decreasing perceptual aliasing.
In some cases it is not enough to know which objects are present in
the scene to find the state. It is possible that the same set of objects
in a scene convey a different meaning depending to their configu-
ration. We have anticipated this in the higher vision layer of the
model which should be accommodated for different tasks and vi-
sual behaviors. In this regard it is also interesting to add the gist
concept to the model. Gist is the capability of the human to classify
a visual scene in a very short presentation (about 80 ms) [41]. This
could be used for bypassing the successive object checking and
jumping to the lower levels of the tree to increase classification
speed.

Table 5
A random assignment of objects to states of the map in Fig. 14.

1 {B} 9 {A, B, D} 17 {A, C, E} 25 {A, B, C, E} 33 {A, B, D} 41 {A, B, C, D}
2 {A, B} 10 {A, B, C, E} 18 {B, C, D, E} 26 {D, E} 34 {A, D, E} 42 {A, C, D}
3 {A, C, D} 11 {A, C, E} 19 {D} 27 {A, D, E} 35 {D, E} 43 {A, C, E}
4 {A, C} 12 {B, C, D} 20 {A, D, E} 28 {B, D, E} 36 {B, D, E} 44 {B}
5 {A, B, C, D} 13 {B, D} 21 {A, B, D} 29 {A, D, E} 37 {A, B, C, D}
6 {A} 14 {A, E} 22 {A} 30 {A, D} 38 {A, C, D}
7 {A, C} 15 {A, D, E} 23 {A, C, E} 31 {B, C, D, E} 39 {A, C, E}
8 {B, D, E} 16 {A, D} 24 {B, D} 32 {A, B, D} 40 {B, C, D}

Fig. 15. Learned attention tree for the map of Fig. 14Fig. 14 after pruning. Forty-four
states were clustered into 7 leaves. 100% correct policy was achieved.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12
25

35

45

50

65

75

85

zero uncertainity
0.05 uncertainity
0.1 uncertainity
0.4 uncertainity

zero uncertainity
0.05 uncertainity
0.1 uncertainity
0.4 uncertainity

episode

iteration

Fig. 16. (Top) Cumulative average reward of the agent for different noise levels. (Bottom) Cumulative percentage of correct policy during learning (for the map of Fig. 7).
Results are averaged over 7 runs. Analysis was done using pruning and the same parameters as in Fig. 13.

1144 A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145

Author's personal copy

In this paper, we only considered the perceptual aliasings med-
iated by the insufficient observations. If the agent could observe all
the necessary data, therefore no aliasing occurs. Some aliasings are
due to lack of knowledge about previous actions and observations.
For example when two same scenes, associated with two states
with different best actions, are presented to the agent, then it could
not discover its optimal policy because of the contradiction in deci-
sion making. Such problems are remedied in RL by equipping the
agent with a short-term memory that keeps track of the previous
actions, attentions and observations to satisfy the Markov prop-
erty. This idea could be used to extend our model for performing
tasks with this type of aliasing.

References

[1] H.E. Egeth, S. Yantis, Visual attention: control, representation, and time course,
Annual Review of Psychology 48 (1997) 269–297.

[2] C.E. Connor, H.E. Egeth, S. Yantis, Visual attention: bottom-up versus top-
down, Current Biology 14 (2004) 850–852.

[3] M. Corbetta, G.L. Shulman, Control of goal-directed and stimulus-driven
attention in the brain, Nature Reviews 3 (2002) 201–215.

[4] M.M. Chun, J.M. Wolfe, Visual attention, in: E.B. Goldstein (Ed.), Blackwell’s
Handbook of Perception, vol. 9, Blackwell, Oxford, UK, 2001, pp. 272–310.

[5] C. Koch, S. Ullman, Shifts in selective visual attention: towards the underlying
neural circuitry, Human Neurobiology 4 (1985) 219–227.

[6] Z. Li, A saliency map in primary visual cortex, Trends in Cognitive Sciences 6
(2002) 9–16.

[7] S. Kastner, L.G. Ungerleider, The neural basis of biased competition in human
visual cortex, Neuropsychologia 39 (2001) 1263–1276.

[8] M.I. Posner, Orienting of attention, Quarterly Journal of Experimental
Psychology 32 (1980) 3–25.

[9] J.H. Maunsell, S. Treue, Feature-based attention in visual cortex, Trends in
Neurosciences 29 (2006) 317–322 (TINS special issue: The Neural Substrates of
Cognition, 2006).

[10] N. Kanwisher, J. Driver, Objects, attributes, and visual attention: which, what,
and where, Current Directions in Psychological Science 1 (1992) 26–31.

[11] J.H. Duncan, Selective attention and the organization of visual information,
Journal of Experimental Psychology: General 113 (1984) 501–517.

[12] A.L. Yarbus, Eye movements during perception of complex objects, in: L.A.
Riggs (Ed.), Eye Movements and Vision, Plenum Press, New York, 1967, pp.
171–196 (Chapter VII).

[13] V. Maljkovic, K. Nakayama, Priming of pop-out: I. Role of features, Memory &
Cognition 22 (1994) 657–672.

[14] E. Gibson, E. Spelke, The development of perception, Handbook of Child
Psychology vol. iii: Cognitive Development, Wiley, 1983 (Chapter 1).

[15] W.D. Gray (Ed.), Integrated Models of Cognitive Systems, Oxford University
Press, New York, 2007.

[16] R. Pfeifer, J.C. Bongard, How the Body Shapes the Way We Think a New View of
Intelligence, MIT Press, 2006.

[17] A. Clark, Where brain, body, and world collide, Journal of Cognitive Systems
Research 1 (1999) 5–17.

[18] J. Triesch, D.H. Ballard, M.M. Hayhoe, B.T. Sullivan, What you see is what you
need, Journal of Vision 3 (2003) 86–94.

[19] R.S. Sutton, A.G. Barto, Reinforcement Learning, The MIT Press, Cambridge, MA,
1998.

[20] B. Seymour, J.P. O’Doherty, P. Dayan, K. Koltzenburg, A.K. Jones, R.J. Dolan, K.J.
Friston, R.S. Frackowiak, Temporal difference models describe higher order
learning in humans, Nature 429 (2004) 664–667, doi:10.1038/nature02636.

[21] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid
scene analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence
20 (1998) 1254–1259.

[22] L. Itti, C. Koch, Computational modeling of visual attention, Nature Reviews
Neuroscience 2 (2001) 195–203.

[23] V. Navalpakkam, L. Itti, Modeling the influence of task on attention, Vision
Research 45 (2005) 205–231.

[24] V. Navalpakkam, L. Itti, An integrated model of top-down and bottom-up
attention for optimizing detection speed, Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference 2 (2006) 2049–2056.

[25] A. Torralba, Modeling global scene factors in attention, Journal of Optical
Society of America A 20 (2003) 1407–1418 (special issue on Bayesian and
Statistical Approaches to Vision).

[26] A.K. McCallum, Reinforcement learning with selective perception and hidden
state, Doctoral dissertation, Department of Computer Science, University of
Rochester, 1995.

[27] M.C. Mozer, M. Shettel, S.P. Vecera, Top-down of visual attention: a rational
account, in: Y. Weiss, B. Schoelkopf, J. Platt (Eds.), Neural Information
Processing Systems, vol. 18, 2005, pp. 923–930.

[28] E.D. Reichle, P.A. Laurent, Using reinforcement learning to understand the
emergence of intelligent eye-movement behavior during reading,
Psychological Review Copyright 2006 by the American Psychological
Association 113 (2006) 390–408.

[29] N. Sprague, D.H. Ballard, Al. Robinson, Modeling embodied visual behaviors,
ACM Transactions on Applied Perception 4 (2) (2007).

[30] L. Paletta, G. Fritz, C. Seifert, Cascaded sequential attention for object
recognition with informative local descriptors and Q-learning of grouping
strategies, Proceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05).

[31] L.M.G. Gonic, G.A. Giraldi, A.A.F. Oliveira, P.A. Grupen, Learning policies for
attentional control, IEEE International Symposium on Computational
Intelligence in Robotics and Automation (1999) 294–299.

[32] L.M.G. Gonic, A. Antonio, A.A.F. Oliveira, P.A. Grupen, A framework for
attention and object categorization using a stereo head robot, Proceedings
on the XII Brazilian Symposium on Computer Graphics and Image Processing
(1999) 143–152.

[33] S. Minut, S. Mahadevan, A reinforcement learning model of selective visual
attention, Fifth International Conference on Autonomous Agents, Montreal,
2001.

[34] R.J. Peters, L. Itti, Applying computational tools to predict gaze direction in
interactive visual environments, ACM Transactions on Applied Perception 5 (2)
(2008) (Article 8).

[35] D. Walther, U. Rutishauser, C. Koch, P. Perona, Selective visual attention
enables learning and recognition of multiple objects in cluttered scenes,
Computer Vision and Image Understanding 100 (2005) 41–63.

[36] D. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2) (2004) 91–110.

[37] D. Walther, C. Koch, Modeling attention to salient proto-objects, Neural
Networks 19 (2006) 1395–1407.

[38] R. Egly, J. Driver, R.D. Rafal, Shifting visual attention between objects and
locations: evidence from normal and parietal lesion subjects, Journal of
Experimental Psychology General 123 (2) (1994) 161–177.

[39] M. Riesenhuber, T. Poggio, Hierarchical models of object recognition in cortex,
Nature Neuroscience 2 (11) (1999) 1019–1025.

[40] A. Borji, M.N. Ahmadabadi, B.N. Araabi, Interactive learning of top-down
attention control and motor actions, Workshop on From motor to interaction
learning in robots, IROS 2008.

[41] A. Oliva, A. Torralba, Building the gist of a scene: the role of global image
features in recognition, Progress in Brain Research: Visual Perception 155
(2006) 23–36.

[42] L. Itti, C. Koch, Feature combination strategies for saliency-based visual
attention systems, Journal of Electronic Imaging 10 (1) (2001) 161–169.

[43] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions, IEEE
Transactions on Evolutionary Computation 9 (2006) 3.

[44] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio, Object recognition with
cortex-like mechanisms, IEEE Transactions on Pattern Analysis and Machine
Intelligence 29 (3) (2007) 411–426.

[45] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio, A Theory of
Object Recognition: Computations and Circuits in the Feedforward Path of the
Ventral Stream in Primate Visual Cortex, AI Memo 2005-036/CBCL Memo 259,
Massachusetts Institute of Technology, Cambridge, MA, 2005.

[46] A. Borji, M. Hamidi, F. Mahmoudi, Robust handwritten character recognition
with features inspired by visual ventral stream, Neural Processing Letters 8 (2)
(2008) 97–111.

[47] M. Asadpour, M.N. Ahmadabadi, R. Siegwart, Reduction of learning time for
robots using automatic state abstraction, in: H.I. Christensen (Ed.), Proceedings
of the First European Symposium on Robotics, vol. 22, Springer Tracts in
Advanced Robotics, Palermo, Italy, Springer-Verlag, 2006, pp. 79–92.

[48] A. Borji, M.N. Ahmadabadi, B.N. Araabi, Cost-sensitive learning of top-down
modulations for attention control, Machine Vision and Applications,
doi:10.1007/s00138-009-0192-0.

[49] S. Jodogne, J.H. Piater, Closed-loop learning of visual control policies, Journal of
Artificial Intelligence Research 28 (2007) 349–391.

[50] C. Watkins, P. Dayan, Q-learning, Machine Learning 8 (3) (1995) 279–292.
[51] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New

York, 1995.
[52] C. Fermüller, Y. Aloimonos, Vision and action, Image and Vision Computing 13

(10) (1995) 725–744.

A. Borji et al. / Image and Vision Computing 28 (2010) 1130–1145 1145

