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Abstract Humans are very efficient in recognizing alpha-
numeric characters, even in the presence of significant image
distortions. Recent advances in visual neuroscience have led
to a solid model of object and shape recognition in the visual
ventral stream which competes with the state-of-the-art com-
puter vision systems on some standard recognition tasks.
A modification of this model is also proposed by adding more
biologically inspired properties such as sparsification of fea-
tures, lateral inhibition and feature localization to enhance
its performance. In this study, we show that using features
proposed by the modified model results in higher handwrit-
ten digit recognition rates compared with the original model
over English and Farsi handwritten digit datasets. Our analy-
ses also demonstrate higher invariance of the modified model
to various image distortions.
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1 Introduction

Object recognition is one of the advanced tasks of the visual
cortex and is very crucial for primates. While it has attracted
a lot of attention in computer vision, its underlying neural
mechanisms and computational processes in the visual cor-
tex are not yet completely understood.

Based on a large number of experimental studies on mon-
key and human visual system, it is thought that object rec-
ognition is mediated by the ventral visual pathway [1]. This
pathway starts from primary visual cortex, V1, and goes to
cortical areas V2 and V4. It then goes to inferotemporal cor-
tex (ITC)—a center for face and object processing—and pre-
frontal cortex (PFC) which plays an important role in linking
perception to memory. Visual ventral stream has a hierarchi-
cal structure which shows sensitivity to increasing complex-
ity of the preferred stimuli from simple cells in V1 to complex
cells in V4 and IT.

A model of object recognition based on experimental find-
ings from neuroscience known as Hierarchical Model and X
(HMAX)1 has been proposed by Reisenhuber and Poggio
[2]. This model has provided some valuable explanations for
neuroscientific phenomena in the visual cortex [3]. A version
of HMAX exists which reflects physiological data and per-
forms at the level of humans on some visual tasks [4]. It has
been claimed that HMAX has desirable properties such as
significant degree of translation and scale invariance [2] and
competes with some of the state-of-the-art computer vision
systems for applications such as object and face recognition,
scene interpretation, etc., [5].

The high efficiency of HMAX is due to considering struc-
tural features and their configurations for recognition. Char-
acters and digits are special forms of objects, so there is a hope

1 http://riesenhuberlab.neuro.georgetown.edu/hmax.html.
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that features employed by this model may also show high
performance over digit and character recognition. We aim to
investigate the applicability of these features for handwritten
digit recognition. We also systematically analyze invariance
properties of features mediated by HMAX which has not
been studied before over this problem.

The study of handwritten recognition covers a broad field
dealing with numerous aspects of this very complex task. It
involves research concepts from several disciplines such as
experimental psychology, neuroscience, computer science,
anthropology and education. Handwritten digit recognition
is a subclass of handwritten recognition problem and has
been very successful in the recent years. Applications such
as postal mail sorting, recognizing address blocks on tax
forms, reading general text, bank checking processing and
form data entry have been widely adopted [6,7]. Due to
various practical conditions, robust handwritten digit recog-
nition techniques in terms of stability to common types of
image noise and distortions are still desirable. Before hand-
written digits can be recognized, they have to be processed
in many steps: scanning to grayscale image, converting to
binary image, feature extraction, classification and then post-
decision making. Selection of a feature extraction method
is critical in getting high handwritten recognition rate. Sev-
eral methods have been proposed such as: direct matching
[8], zoning [9], geometric moment invariants [10], Fourier
descriptors [11], boundary-based features [12] and Zernike
moments [13]. Each of these methods has its own advanta-
ges in one or more applications. For a comprehensive review
of the recent handwritten digit recognition approaches over
English and Farsi languages, the interested reader is referred
to [14–19] and [20–23], respectively.

Gabor filters as models of V1 neurons [24] have received
considerable attention in image processing for applications
such as texture analysis [25], iris [26] and fingerprint recog-
nition [27]. They have also been used for handwritten digit
recognition [15]. While Gabor functions extract simple ori-
entation features, HMAX and models based on it derive
complex structural features built upon simple Gabor filters.
Therefore, these features might have better performance than
Gabor filters for handwritten digit recognition which we stu-
dy in this paper over standard English and Farsi datasets. We
also compare invariance properties of features derived by two
variations of the HMAX model, Serre et al. [28] and Mutch
et al. [29] over translation, rotation and scaling distortions.
Robustness of these models to Gaussian and Salt & Pepper
noises is also investigated.

The rest of this paper is organized as follows. A brief
literature of object recognition models based on HMAX is
reviewed in Sect. 2. Modified C2 feature model is explained
in Sect. 3. It then describes experiments carried out to test
and compare these models under different image transfor-

mations and distortions in Sect. 4. Results are discussed and
concluded in Sect. 5.

2 Object recognition models based on HMAX

Modeling response properties of neurons in early visual areas
has resulted to several applications in image processing and
computer vision. For example, Gabor filters [24] have been
widely used for edge detection and texture processing. In
spite of the great familiarity with processes in the early visual
areas, less abstract information is yet available on the func-
tionality of higher vision which seems to be more useful for
doing higher cognitive tasks. This work is intended to investi-
gate the applicability of complex operations in higher visual
areas for handwritten digit recognition.

Biologically inspired object recognition models mimic
similar organization of the visual cortex, originally discov-
ered by Hubel and Wiesel in the 1950s [24,30]. They found
separate populations of simple and complex cells in pri-
mary visual cortex (V1), of which some cells (classified as
“simple”) exhibited strong phase dependence, whereas oth-
ers (classified as “complex”) did not. Hubel and Wiesel pro-
posed that the invariance of complex cells can be formed by
pooling simple cells with similar selectivities but with trans-
lated receptive fields. Perrett and Oram in 1993 [31] proposed
a similar mechanism within IT to achieve invariance to any
transformation by pooling afferents tuned to transformed ver-
sions of the same stimuli.

Based on these hypotheses, Fukushima presented the Neo-
cognitron [32] which consists of a series of S and C lay-
ers mimicking simple and complex cell types, with shared
weights for a set of local receptive fields and a competitive
Hebbian learning rule. While it was originally invented for
handwritten character recognition, it has also been used for
other two-dimensional (2D) pattern classification tasks [33].

In 1998, LeCun et al. [34] introduced Convolutional Net-
works that generates local feature descriptors through back-
propagation. Convolutional Networks has the same structure
as Neoconitrons, but its basic operation in S layers is convo-
lution. An S layer is generated by convolving the previous
layer with d local filters, while each feature map of a “C”
layer is generated from the corresponding map in the pre-
vious “S” layer via convolution with a fixed local filter. It
has been applied to commercial-level character recognition,
speech recognition, and face/object recognition.

In 1999, Riesenhuber and Poggio [2] formulated the “stan-
dard model” of object recognition in cortex which has been
a basis for subsequent models. This model is composed of a
hierarchy of feed-forward layers of neuron-like units,
performing either a tuning computation, to increase feature
complexity or a nonlinear pooling operation based on a
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maximum operation to achieve invariance to translation and
scaling. They also created a quantitative model [2], later
called “HMAX”, which was designed to account for tuning
and invariance properties of neurons in IT cortex.

In its simplest form, the standard HMAX model consists of
four layers of computational units, labeled as S1, C1, S2, and
C2, where simple “S” units alternate with complex “C” units.
The S units use convolution with local filters to compute
higher-order features by combining different types of units
in the previous layer (combine their inputs with Gaussian-
like tuning to increase object selectivity). The C units pool
their inputs through a maximum operation, thereby intro-
ducing invariance to scaling and translation. Complex “C”
layers increase invariance by pooling units of the same type
in the previous layer over limited ranges. At the same time,
the number of units is reduced by sub-sampling. Thus, the
HMAX model performs a series of weighted-sum template-
matching operations in the S layers and maximum-pooling
operations in C layers to progressively build up feature com-
plexity and invariance to scaling and translation.

The HMAX model, in its original form, generates a fixed
set of features at the C2 layer which are insufficiently com-
plex or distinct for object recognition tasks. No learning
mechanism is employed in layers of this model. Later, Serre
et al. [28] revised the model and applied it to a number of chal-
lenging recognition tasks. They proposed a new model for
image categorization by adding to the HMAX a mechanism
for learning intermediate-level shared features and changing
the original Gaussian derivative filter bank by a Gabor filter
bank. They argue that the Gabor filter is much more suitable
in order to detect local features. In a recent study, Mutch et al.
[29] proposed a modified model based on Serre’s model by
adding more biologically plausible operations to it such as
sparsification of features, lateral inhibition and localization
which are explained in detail in the next section.

3 Modified C2 feature model

The overall structure of a classifier for handwritten character
recognition using modified C2 features is illustrated in Fig. 1.
Input images are reduced to feature vectors, which are then
used to train and test a classifier.

For building modified C2 feature model at first a base
model, which performs at the level of the model described

in [28], is created and then some improvements using spar-
sification of features and a form of lateral inhibition is added
to the base model. We first discuss the base model and its
differences from Serre’s model. Then several changes to the
base model which improve its performance are described.

3.1 Base model

Base model is constructed from one initial image layer and
four alternating simple and complex cell layers. These four
layers are built from alternating template matching and max-
imum pooling operations. Structure of the base model is
shown in Fig. 2. Details of each layer of the model are briefly
discussed as follows.

3.1.1 Image layer

In this layer an input image is transformed into an image-
pyramid with ten scales. For creating the pyramid, the input
image is converted to grayscale and the shorter edge is scaled
to 140 pixels while maintaining the aspect ratio, then using
bicubic interpolation, an image pyramid of ten scales, each
a factor of 21/4 smaller than the previous is created.

One of the differences between the base model and Serre’s
model [28] is that in base model an image pyramid is created
and image width is always scaled to 140, but in Serre’s model
a pyramid approach is not used.

3.1.2 S1 layer

This layer corresponds to V1 simple cells in visual cortex and
is computed from the image layer by centering 2D Gabor fil-
ters with full range of orientations at each possible position
and scale. Like the image layer, S1 layer has three-dimen-
sional (3D) pyramid shape, but each position and scale has
multiple orientation units, so S1 layer is a four-dimensional
structure. Each unit represents the activation of a particular
Gabor filter centered at that position/scale. Gabor filter is
described by Eq. (1):

G (x, y) = exp

(
x2 + γ 2Y 2

2σ 2

)
× cos

(
2π

λ
X

)
(1)

where X = x cos θ + y sin θ and y = −x sin θ + y cos θ .
Parameters γ (aspect ratio), σ (effective width), and λ

Fig. 1 Schematic view of the
proposed handwritten digit
recognition system. Test and
train images are reduced to C2
feature vectors and are then
classified by a SVM classifier
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Fig. 2 Architecture of the base
model. It contains five layers.
Each layer is derived from its
previous layer by applying
template matching or max
pooling filters and has 3D
spatial dimensions at each of the
locations. In image layer there is
only one value at each location,
but other layers have more than
one value at each location
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(wavelength) are all taken from [29] and are set to 0.3, 4.5,
and 5.6, respectively. Components of each filter are normal-
ized to zero mean. Response of a patch of pixels X to a
particular S1 filter G is given by Eq. (2):

R (X, G) =
∣∣∣∣∣
∑

Xi Gi ×
√∑

X2
i

−1
∣∣∣∣∣ (2)

where Xi and Gi are i th pixels of patches X and G, respec-
tively and their product implement a pixel-wise multiplica-
tion.

In spite of Serre’s model which applies different-sized S1
Gabor filters to full-scale image, base model applies only
one Gabor filter of size (11 × 11) for all scales. Therefore, it
results in lower computational complexity.

3.1.3 C1 layer

This layer provides a model for V1 complex cells in visual
cortex. In this layer, a max-like pooling is used which builds
position and scale tolerant C1 units and reduces number of
units by sub-sampling. For each orientation, S1 pyramid is
convolved with a 3D max filter, m×m units across in position
and n units deep in scale, with m and n being parameters of
the model. The max filter is moved around the S1 pyramid
in steps of 5 pixels in position and value of C1 unit is sim-
ply obtained by taking the maximum of values of S1 units
that fall within the max filter. Resulting pyramid is spatially
smaller than the pyramid in S1 layer but number of features
per position is still the same.

In spite of the Serre’s model which C1 sub-sampling ran-
ges do not overlap in scale, in the base model C1 sub-sam-
pling overlaps with factor 2 in both position and scale.

3.1.4 Feature learning stage

The learning process corresponds to selecting d prototypes
for next layer (S2) units. This is done using a sampling pro-
cess, such that only during training, a large pool of d patches
of various sizes at random positions and scales are extracted
from the C1 layers of random training images. Values of all
C1 units within that patch are read out and stored as a dense

prototype. For a n × n patch, this means n2 different posi-
tions, but for each position, there are units representing each
of four orientations.

3.1.5 Intermediate feature (S2) layer

This layer is intended to correspond to cortical areas V4 or
posterior IT. Values of S2 units are calculated by performing
template matching using normalized RBF functions between
patch of C1 units centered at that position/scale and d proto-
type patches. As mentioned in the learning stage, each proto-
type patch is sampled from the C1 layer of a training image at
random positions and scales. S2 pyramid has the same num-
ber of positions/scales as C1 pyramid, but has d types of units
at each position/scale, each one representing the response
of the corresponding C1 patch to a specific prototype patch
(Fig. 2).

A normalized Gaussian kernel (radial basis) function is
used for measuring the response of a patch of C1 units X to
a particular S2 prototype P:

R (X, P) = exp

(
−‖X − P‖2

2σ 2αυ

)
(3)

The standard deviation σ is set to 1 in all experiments. Both X
and P have dimensionality nυ×nυ×4 where n = 4, 8, 12, 16
and v = 1, 2, 3, 4. Parameter αυ = ( nυ

min(nυ)
)2 is a normal-

izing factor which is used for different patch sizes to reduce
weighs of extra dimensions [29].

3.1.6 Global invariance (C2) layer

The final layer of the model corresponds to the IT area in
visual cortex. In this layer a “bag of features” with d dimen-
sions is generated by taking global maximum over all scales
and positions for each S2 map.

3.1.7 SVM classification

After C2 feature vectors of test and train images are obtained,
first they are normalized to zero for the mean and one for
the variance and then they are classified using an all-pairs
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Fig. 3 a An illustration of the difference between dense and sparse S2
features. Sparse S2 prototypes are sensitive only to a particular orienta-
tion at each position, whereas dense S2 prototypes are all orientations of
C1 units at each position. b The schematic view of inhibition in S1/C1.
Before inhibition, the circled unit in the prototype patch is getting some

response to its desired orientation; despite the fact other orientations
dominate. Inhibition increases the distance to prototype patches looking
for non-dominant orientations. A 4×4 S2 feature for a four-orientation
model is shown here with stronger unit responses shown darker

multi-class linear SVM. Training images are first used to
build the SVM and then the test images are assigned to digit
classes using the majority-voting method.

3.2 Improvements to the base model

Modified C2 feature model has incorporated several enhance-
ments to the base model to improve its performance. They
are briefly described in the following section.

3.2.1 Sparsification

To increase the sparsity among inputs of a S2 unit, Mutch
et al., selected fewer number of features from C1 layer by
choosing the most dominant response in each position instead
of using all four (number of orientations) responses. This
is in accordance with the fact that neurons in visual cortex
are more selective to a subset of their inputs. This results in
reducing number of features from 4n2 to n2. Since number of
features is reduced, information containing combinations of
different filter responses are lost. To recover the loss, number
of orientations is increased from 4 to 12, having finer gradient
over specificity (see Fig. 3a).

3.2.2 Lateral inhibition

Lateral inhibition means that cells in visual cortex inhibit
their less-active neighbors in a winner-take-all competition.
This modification is intended to correspond to this concept. It
ignores non-dominant orientations and focuses on suppress-
ing S1 and C1 outputs. Different orientations at the same
position and scale in S1/C1units are encoded. These units
compete to describe the dominant orientation at their loca-
tion. To model this, at each location minimum and maximum
responses, Rmin and Rmax, over all orientations are computed
and for each response R, if R < Rmin +h(Rmax − Rmin) then
it is set to zero. Variable h is a global parameter to define the

inhibition level, which represents the fraction of the response
range that is suppressed (see Fig. 3b).

3.2.3 Limited C2 position/scale invariance

Serre’s model suffers from co-occurrence of features from
different objects and/or background clutter. Modified model,
retains some geometric information above the S2 level. This
is inspired by the finding that neurons in V4 and IT do not
exhibit full invariance and are known to have receptive fields
limited to only a portion of the visual field and range of scales
[35]. Similarly, this model restricts the region of the visual
field in which a given S2 feature can be found, relative to its
location in the image from which it was originally sampled,
to ±tp% of image size and ±ts% scales, where tp and ts are
model parameters [29].

3.2.4 SVM weighting

This modification eliminates useless S2 features that contain
background and convey no information about a digit in order
to improve classification performance. In the training phase,
all S2 vectors of all images are classified by SVM classifier.
During constructing all-pairs multi-class linear SVM, the S2
features with low weight are dropped.

4 Experiments and results

To assess the performance of the modified C2 feature model
for isolated handwritten digit recognition, in this section we
apply it to standard English and Farsi datasets. For Farsi, we
conducted our experiments over a recently developed stan-
dard Farsi corpus [36]. For English, we used the most inter-
esting dataset: the MNIST handwritten digit corpus which is
widely used in the literature [34].
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Fig. 4 Sample handwritten digits from MNIST (top) and Farsi (bot-
tom) digit datasets

In all the experiments, we compared the performance of
modified C2 feature model with the HMAX model of Serre
et al. [28]. We used MATLAB® implementations of HMAX2

and modified C2 features.3

4.1 Datasets

Khosravi et al. [36] have introduced a very large corpus of
Persian handwritten digits.4 This dataset contains 102,352
binary image digits which are scanned at 200 dpi resolu-
tion in 24-bit color format. From the whole number of digit
images, 60,000 images were selected for train and 20,000 for
test. Modified NIST (MNIST) dataset [34], contains 60,000
train and 10,000 test patterns.5 Digits in the MNIST dataset
are stored in images of 28 × 28 pixels and have intensities
between 0 and 255. Figure 4 shows sample handwritten dig-
its from MNIST and Farsi datasets. Distributions of digits in
train and test sets of both datasets are shown in Table 1.

4.2 Classification results

In preprocessing step, all images of the Farsi dataset were
converted to 64 × 64 pixels which is the size of the largest
digit in this dataset. To resize an image, it was placed in center
of a 64 × 64 black frame without scaling. Images of MNIST
dataset are of size 28 × 28. To use the largest Gabor filter

2 Implementation of HMAX model could be downloaded from http://
resionhuberlab.neuro.georgetown.edu/hmax.html.
3 Implementation of the modified C2 feature model could be down-
loaded from http://www.mit.edu/~jmutch/flib.
4 Contact information for getting this dataset is available at http://www.
modares.ac.ir/eng/kabir.
5 The MNIST dataset is downloadable from http://yann.lencun.com/
exdb/mnist.

Table 1 Distribution of digits in MNIST and Farsi handwritten digit
datasets

Digit MNIST Farsi

Train Test Train Test

0 5,923 980 6,000 2,000

1 6,742 1,135 6,000 2,000

2 5,958 1,032 6,000 2,000

3 6,131 1,010 6,000 2,000

4 5,842 982 6,000 2,000

5 5,421 892 6,000 2,000

6 5,918 958 6,000 2,000

7 6,265 1,028 6,000 2,000

8 5,851 974 6,000 2,000

9 5,949 1,009 6,000 2,000

Total 60,000 10,000 60,000 20,000

size of HMAX model which is 39, all images of this dataset
were converted to 40 × 40 images. In the next preprocess-
ing step, all images from both datasets were filtered using a
3×3 median filter in order to remove high-frequency noises.
Then they were converted to binary images by replacing all
pixels in the input image with luminance greater than thresh-
old level (0.2) to 255 (white) and replacing all other pixels
with 0 (black). Thus, each image in the dataset has a uniform
background with a high-contrast digit. Using both models,
for each input image a feature vector of 4,075 was derived.
In both models Gabor filters in 12 orientations were used.

As in [29], parameters h, ts and tp were set to 0.5,±5
and ±1%, respectively. Patch sizes in S2 layer were 4 × 4,

8 × 8, 12 × 12, and 16 × 16. Size of the 3D max filter was
10 × 10 units across in position and 2 units deep in scale.

After feature vectors were derived with HMAX, they were
linearly normalized to zero mean and standard deviation one
in each feature dimension, and all-pairs multi-class linear
SVM classifier was used for classification. In modified C2
feature model, normalized feature vectors were classified
again by all-pairs multi-class linear SVM. The reason we
used the same classifier is because we want to make a fair
comparison between two feature types. Results of SVM clas-
sification over both datasets are shown in Fig. 5. Results are
for test sets and are averaged over five runs. Since training
data is always fixed, the variability in results is due to random
selection of patches in C1 layer.

As shown in Fig. 5, modified C2 features result in higher
handwritten recognition over both datasets. Results over Farsi
dataset are higher than MNIST using both feature types. This
might be because of rich structural representations of Farsi
digits.
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Fig. 5 Handwritten digit recognition results over Farsi and MNIST
datasets with SVM classification

4.3 Invariance analysis

We conducted some experiments to investigate the stability
of modified C2 features against rotation, scale and transla-
tion distortions. Performance of the model was also analyzed
over Gaussian and Salt & Pepper noises. In experiments of
this section, we used Gabor filters and 12 orientations in S1
layer of the modified C2 feature model. Results are averaged
over five runs with random distortions over Farsi dataset.

4.3.1 Rotation invariance

In this experiment, training was done with original undis-
torted images and then the trained classifier was evaluated
over distorted images. Twelve different degrees of rotation
were tested: −90,−75,−60,−45,−30,−15, 15, 30, 45,

60, 75 and 90. For making a test set, at first each digit image
was rotated and then was placed at the center of 64 × 64
black image. Each time, all test images were rotated the same
degree. Classification results over rotated test datasets are
illustrated in Fig. 6.
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Fig. 6 Comparison between HMAX and modified model over differ-
ent degrees of rotation

Comparing two feature extraction methods, it can be seen
that they both are sensitive to rotations, but in most cases
modified C2 feature model achieves higher performance than
HMAX. As magnitude of rotation changes from 0 to +90 or
−90 degrees, classification performance decreases. Since in
modified C2 feature model a small number of units were part
of the S1 column, a small rotation of the image does not
change the winning unit. This to some extent explains higher
tolerance of this model than HMAX.

4.3.2 Translation invariance

To examine the translation invariance, at first we generated
8 translated test datasets with different positions: −20,−15,

−10,−5, 5, 10, 15, and 20. In each test dataset, every digit
was shifted with the same number of pixels along the horizon-
tal line at the center of the image. Then the generated datasets
were tested using both HMAX and modified C2 feature mod-
els. Modified model was used with four different tp values:
0.05, 0.3, 0.5, and 1%. Results of these tests are shown in
Fig. 7.

Performance of the HMAX model does not change with
translated images. This distortion tolerance has two reasons.
First, in each train/test image digits are surrounded by a
uniform background and second, in C2 layer the maximum
response to each S2 feature is taken simply over all positions
and scales, so results of the MAX operation were almost the
same everywhere in the image.

In modified C2 feature model, performance decreases by
increasing the magnitude of translation. Since in this model
intermediate features (S2) are localized to small regions of an
image, this results in limitation of position and scale invari-
ance. This feature localization is suitable for datasets which
contain background clutter or multiple objects. Images in the
digit datasets contain uniform background, so it is better to
decrease the feature localization. It can be done by setting
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parameter tp. Parameter tp shows the percentage of posi-
tions used for taking maximum response to each S2 feature.
In general, tp shows the amount of the limitation of transla-
tion invariance. When the value of tp is low, more geometric
information retained and feature localization is increased. On
the other hand when tp has a high value, modified C2 feature
model has more translation invariance.

Since in HMAX information about the exact spatial origin
of the features is discarded in C layers it is not sensitive to
translations. In contrast, modified C2 feature model is sensi-
tive to rotations. As shown in Fig. 7, the tp which indicates
the amount of ignoring spatial locations increases, modified
C2 features show increasing tolerance to translations. There-
fore, it is appropriate to set a higher value (1%) for tp for both
feature types. This behavior depends on the background of
the image dataset. If the images in the dataset have a cluttered
background, it will be helpful to have more localization.

4.3.3 Scale invariance

In this section, scale invariance of both models is analyzed
over five different scaled test datasets with scales as 0.25,
0.5, 0.75, 1.5 and 2.5. Comparison of results of two models
is illustrated in Fig. 8. As it shows, performances of both
models decrease by decreasing or increasing the scale. In all

scales modified C2 features achieve higher performance than
HMAX.

4.3.4 Analysis of robustness to noise

To evaluate the robustness to Gaussian and Salt & pepper
noises, each time one type of noise was added to all images
in the test dataset and like the previous experiments the train
set was left unchanged.

For adding Salt & Pepper noise to images, seven noise
densities were used: 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, and 0.7.
Results of both HMAX and modified C2 feature models over
the dataset corrupted with Salt & Pepper noise are illustrated
in Fig. 9. Modified C2 feature model has high recognition
rate with small densities of Salt & Pepper noise, but loses its
performance when noise density increases.

We also tested the robustness of HMAX and modified
C2 feature models over 25 different Gaussian noises. These
noises were generated at five different means (0, 0.05, 0.1,
0.5, and 0.7) and five different variances (0, 0.1, 0.25, 0.5,
and 0.7). Figure 10 shows a sample image corrupted with
Gaussian noises.

Classification rates of both models to Gaussian noise are
shown in Fig. 11. As shown in this figure, classification per-
formances decrease with increasing the mean and variance
of Gaussian noise.

Comparing performances both feature types over Salt &
Pepper and Gaussian noises show that modified C2 feature
model is more robust than HMAX in almost all cases.

5 Discussions and conclusions

In this study, modified C2 feature model and HMAX were
used for English and Farsi handwritten digit recognition.
A set of scale—and translation—invariant C2 features was
first extracted from a training set of digit images. A classi-
fier was then constructed over these data and was evaluated
over a separate test set. High handwritten digit recognition
proves appropriateness of these features for the mentioned

Fig. 9 Comparison between
HMAX and modified model
over images corrupted with Salt
& Pepper noise
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m=0 

m=0.0

m=0.1 

m=0.5 

m=0.7 

v=0 v=0.1 v=0.25 v=0.5 v=0.75

Fig. 10 A sample digit image corrupted with Gaussian noise. Rows
show means and columns show variances of the noise

task. Robustness analysis over Farsi dataset suggests high
solidity of these features to common image distortions and
noises. In most of the experiments, modified C2 features
achieved better performance than HMAX.

Table 2 compares classification errors over MNIST dataset
using modified C2 features and some leading previous meth-
ods in the literature. Our method has higher classification
error compared with later methods but higher than famous
LeNet-4. Compared with our previous study [23], here, we
achieved lower recognition error using a single classifier over
MNIST dataset.

In a similar study [37], authors have proposed a model with
the same basics as the HMAX model and have incorporated a
learning mechanism into it. By evaluating their method over
MNIST dataset, they have achieved 94.2% recognition rate
which is lower than our results. In [36], authors have used
a multiple classifier system consisting of four MLP classi-
fiers for digit recognition over the Farsi dataset used in this
work. Using a modified gradient technique over 15,000 train
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Fig. 11 Comparison of HMAX and modified model over images cor-
rupted with Gaussian noise

and 5,000 test digits, they achieved 98.8% recognition rate
which is below the 99.1% recognition rate we achieved using
modified C2 features.

Table 2 Comparison on different methods for handwritten digit recognition over MNIST dataset

Method Current study Borji et al. [23] Ranzato et al. Keysers et al. LeCun et al. Belongie et al.
C2 features [38] [39] [34] [40]

Features Modified C2
features
(all-pair
multiclass
SVM
classifier)

Single classifier
(SVM
polynomial
kernel)

Cascade
classifier (SVM
polynomial
kernel)

Large conv. net
(random
features)

Non-linear
deformation
(kNN)

Conv. net
LeNet-4
(local
learning in
last layer)

Shape context
matching
(kNN)

Recognition 1.27 3.5 1.1 0.89 0.54 1.4 0.63

error (%)
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Application of C2 features for character and digit
recognition over other languages such as Chinese and Japa-
nese is an interesting research area. Characters in these lan-
guages contain complex structural features which make these
models appropriate for classifying them. One might also con-
sider use of these features for biometric applications such as
person identification based on palm-print, iris or finger-print
biometrics.
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