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 We proposed a unified Bayesian approach that is applicable to 
a large class of everyday tasks where objects are attended se-
quentially.
 Applications: quantitative analysis of differences among popu-
lations of subjects (e.g., young vs. elderly or novices vs. experts) 
in complex tasks such as driving, assistant technologies for de-
manding tasks, prosthetic design, human computer interaction, 
context aware systems, and health care.
 Extraction and addition of subjective factors such as fatigue, 
preference, and experience into our model is an interesting next 
step.

Summary & Conclusions 

+ The idea is to predict the next attended object or 
saccade location when there is a task
 
+ Other than global scene context, physical actions 
and sequential nature of everyday tasks provide rich 
information for gaze prediction

+ Different tasks demand different strategies, but 
many of them have common structures

+ Here we learn a Bayesian model from gaze data

(1) Introduction 
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(2) Data Gathering
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Experimental 
Setup

Subjects aged 20-30 were asked to play 3 games with the rig shown at the top: 
Hot-dog Bush (HDB), 3D Driving School (DS), and Top Gun (TG). Subjects were 
placed at 130cm from the screen subtending a field of view of 43º x 25º. There was 
a 5-min training before the test sessions for each game. Video frames [30Hz], Eye 
fixations [240Hz], and Actions [62Hz] (except TG) were recorded.

 Bottom-up saliency does not account for task-driven eye movements [5].

argmin
W

||M × W − X sacc ||2 Subject to : W ≥ 0.

Linear Regression (REG). This model maps Gist of the scene to the 
eye position [4]: 

where M indicates the matrix of feature vectors and X is the matrix of 
eye positions. The least-squares solution of the above objective func-
tion is: W = M+ × X, where M+ is the pseudo-inverse of the matrix M 
through SVD decomposition. Given vector E = (u, v) as the eye posi-
tion over a 20 × 15 map (i.e., w = 20, h = 15) with u    [1, 20] and 
v    [1, 15], the gaze density map can then be represented by vector 
X = [x1, x2, . . . , x300 ] with xi=1 for i=u+(v-1)×20 and xi=0 otherwise. 

k Nearest Neighbor Classifier (kNN). The attention map for a test frame 
is built from the distribution of fixations of its k most similar frames in the 
training set: 

where Xj is the fixation map of the j−th most similar frame to frame i which 
is weighted according to its similarity to frame i in feature space. 

X i = 1
k

k
j =1 D (F i , F j )− 1X j

Mean Eye Position (MEP) is the average of all saccade positions during 
the time course of a task over all m training frames: 

MEP = 1
m

m
j =1 X j

Central Gaussian filter (Gauss). The rationale behind using this model 
is that humans tend to look at the center of the screen when game play-
ing (center-bias or photographer-bias issue [5]). 

(3) Features
Global context (Gist, G). A quick summary 
of the quintessential characteristics of an 
image. We adopt the gist model of [2]1 as 
it is based on the bottom-up saliency 
model [3].
 
Motor actions (A). Actions and fixations
are tightly linked thus, by knowing a 
performed action, one can tell where to 
look next. We assume that these actions 
correspond to some high-level events in 
the game. We logged actions for driving 
games, from which we only generated a 
2D feature vector from wheel and pedal 
positions. For other games, 2D mouse 
position and joystick buttons were used.

Labeled Events (E). Frames of 3DDS 
game were manually labeled as 
belonging to one of different events: 
{left turn, right turn, going straight, ...}.
Hence this is only a scalar feature.

Object Features (O). Properties of 
objects in the scene. At the simplest
case could be the number of the 
instances from each object type 
of its presence or absence.

1 http://ilab.usc.edu/siagian/Research/Gist/Gist.html
2 http://pascal.inrialpes.fr/soft/olt/
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Game # Sacc. # Subj Dur. (train-test) # Frames (fixs) Size Action
HDB 1569 5 5-5min 35K 26.5GB 5D-Mouse
3DDS 6382 10 10-10 180K 110 2D-Joystick
TG 4602 12 5-5 45K 26 2D-Joystick

Summary statistics of our data including overall number
of saccades, subjects, durations per subject, frames (and hence fix-
ations, one to one relationship), sizes in GB, and action types.

(4) Baseline Models

+ Probability of an object being attended next and gaze position is calculated
 in a Bayesian framework from knowledge of all objects in the scene
+ Need detailed information about the scene and causal task structure
+ Are more descriptive than gist-only representations 

Two cases of our model:
1) Memory-dependent: has access to previous time information
2) Memory-less: only uses the current time information
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• In general we are interested in:
   - No direct access to St+1, therefore estimate if from observables 

• Four modes for modeling attention:
   - Memory-dependent (assumes access to previous gaze and action)  vs. memory-less
   - We consider saccades here

• A pdf over scene objects of being attended:
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Graphical representation of DBN models

Reasoning:

Figure 1: (a) A time series plot of probability of objects being
attended and a sample frame with tagged objects and eye fixation
overlaid. (b) Graphical representation of three DBNs unrolled over
two time-slices. Xt is the current saccade position,Yt is the cur-
rently attended object, andF i

t is the function that describe object
i at the current scene.Ht is the hidden variable in HMM which is
learned using EM algorithm. All variables are discrete (see text).

ject oj and d is the Euclidean distance. Parameterα con-
trols the spatial decay with which an object is considered
as attended for a given gaze location (hereα = 0.1). This
way, closer objects to the gaze position will receive higher
probabilities. These values are then normalized to generate
a pdf: P(oj ) = z(oj ) / ∑ N

i= 1 z(o
i) ; N is the total number of

objects. Figure 1.a shows a sample time line of attended ob-
jects probabilities over HDB for� 1, 000 frames along with
a sample tagged frame. The object under the mouse position
when clicking was considered as the selected object.

We follow a leave-one-out approach, training models
from data ofn− 1 subjects and evaluating them over the
remainingn-th one. The final score is the mean overn cross-
validations. Object-based attention model is developed over
HDB and classifier-based models are over all games.

Proposed Object-based Bayesian Framework
DBN is a generalized extension of Bayesian networks
(BN) to the temporal dimension representing stationary and
Markovian processes. For simplicity, we drop the index of
subject in what follows. LetOt = [ o1t , o

2
t , · · · , o

N
t ] be the vec-

tor of available objects in frame at timet. Usually some
properties (features) of objects within the scene are impor-
tant. Assuming that functionf (o) denotes such property,
an object-level representation of this frame hence will be
Ft = { f i(oj

t ) } wherei is a particular property function andj
is a particular object. In its simplest case,f could be just
the number o� nstances of an object in the scene. More
complex functions would take into account spatial relation-
ships among objects or task-specific object features (For ex-
ample, is ketchup empty or not?). LetY1:T = [Y1,Y2, · · · YT ]
be the sequence of attended objects,X1:T = [ X1, X2, · · · XT ]

location could be directly inferred from that.
We studied three types of general DBNs (Figure 1.b):

1) an HMM with a hidden variable (brain stateHt) con-
nected directly to the attended object and from there to gaze
position; 2) a DBN where the attended object is a�ected
by the previously attended object (i.e.,P(Yt+ 1|Yt) ), hence
prediction is only based on the sequence of attended ob-
jects; and 3) a DBN assuming that the attended object is
influenced by properties of current objects in the scene as
well as the previously attended object (i.e.,P(Yt+ 1|Yt, F 1:N

t+ 1 ).
Given the following conditional independence assumptions:
1) Xt �� F i

t |Yt, 2) F i
t �� F j

t (due to general structure as-
sumption), 3)F i

t+ 1 �� F i
t (happens when there is no uncer-

tainty in case of having tagged data. It is not the case in gen-
eral), and 4) Xt+ 1 �� Xt |Yt+ 1, then the full joint probability
of the third DBN, to be learned, reduces to:

P(X1:T ,Y1:T , F 1:N
1:T ) = P(X1:T ,Y1:T |F 1:N

1:T )P(F 1:N
1:T )

= P(X1:T |Y1:T )P(Y1:T |F 1:N
1:T )P(F 1:N

1:T ) = ( 1)
N

∏
j= 1

P(F j
1 )P(Y1|F

j
1 )P(X1|Y1)

T

∏
t= 2

N

∏
j= 1

P(Yt|F
j
t )P(Yt|Yt− 1)

T

∏
t= 2

P(Xt|Yt)

where F 1:N
1:T = [ F 1:N

1 , F 1:N
2 , · · · F 1:N

T ] is the vector o� unc-
tions representing object properties over time.
Inference and learning. Learning in a DBN is to find two
sets of parameters (m; θ) wherem represents the structure
of the DBN (e.g., the number of hidden and observable
variables, the number of states for each hidden variable,
and the topology of the network) andθ includes the state
transition matrixA (P(Sit|Pa (S

i
t)) ), the observation matrixB

(P(Oi
t|Pa (O

i
t)) ), and a matrixπmodeling the initial state dis-

tribution (P(Si1) ) where Pa (S
i
t) are the parents ofSit (simi-

larly Pa (Oi
t) for observations). Learning is hence to adjust

the model parametersV = ( m; θ) to maximizeP(O|V ) .
Since designing a di�erent network for each task needs

task-specific expert knowledge, to make the problem
tractable, here we assume fixed structures (Figure 1.b) that
could generalize over many tasks. Therefore, the joint pdf
in Eq.1 reduces to predicting next attended object thanks to
independence assumptions. As an example, we derive the
formulation for the third case in Figure 1.b:

P(Yt+ 1|F 1:N
1:t+ 1,Y1:t , X1:t) % given all in f ormation in the past

= P(Yt+ 1|F 1:N
1:t+ 1,Y1:t) % Yt+ 1 �� X1:t

= P(Yt+ 1|F 1:N
t+ 1 ,Yt) % Yt+ 1 Y1:t− 1 (2)

= ΠN
j= 1P(Yt+ 1|F

j
t+ 1) × P(Yt+ 1|Yt) % F i

t+ �� F j
t+ 1, � i = j

Xt is an integer between [1 300] (300 states).P(Y ) is ini-
tialized uniformly over the objects (time 0 and is equal to
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as attended for a given gaze location (hereα = 0.1). This
way, closer objects to the gaze position will receive higher
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objects. Figure 1.a shows a sample time line of attended ob-
jects probabilities over HDB for� 1, 000 frames along with
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when clicking was considered as the selected object.

We follow a leave-one-out approach, training models
from data ofn− 1 subjects and evaluating them over the
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from data ofn− 1 subjects and evaluating them over the
remainingn-th one. The final score is the mean overn cross-
validations. Object-based attention model is developed over
HDB and classifier-based models are over all games.

Proposed Object-based Bayesian Framework
DBN is a generalized extension of Bayesian networks
(BN) to the temporal dimension representing stationary and
Markovian processes. For simplicity, we drop the index of
subject in what follows. LetOt = [ o1t , o

2
t , · · · , o

N
t ] be the vec-

tor of available objects in frame at timet. Usually some
properties (features) of objects within the scene are impor-
tant. Assuming that functionf (o) denotes such property,
an object-level representation of this frame hence will be
Ft = { f i(oj

t ) } wherei is a particular property function andj
is a particular object. In its simplest case,f could be just
the number o� nstances of an object in the scene. More
complex functions would take into account spatial relation-
ships among objects or task-specific object features (For ex-
ample, is ketchup empty or not?). LetY1:T = [Y1,Y2, · · · YT ]
be the sequence of attended objects,X1:T = [ X1, X2, · · · XT ]
be the sequence of attended spatial locations, andC1:T =
[C ,C , · · · C ] be the selected objects by physical actions

location could be directly inferred from that.
We studied three types of general DBNs (Figure 1.b):

1) an HMM with a hidden variable (brain stateHt) con-
nected directly to the attended object and from there to gaze
position; 2) a DBN where the attended object is a�ected
by the previously attended object (i.e.,P(Yt+ 1|Yt) ), hence
prediction is only based on the sequence of attended ob-
jects; and 3) a DBN assuming that the attended object is
influenced by properties of current objects in the scene as
well as the previously attended object (i.e.,P(Yt+ 1|Yt, F 1:N

t+ 1 ).
Given the following conditional independence assumptions:
1) Xt �� F i

t |Yt, 2) F i
t �� F j

t (due to general structure as-
sumption), 3)F i

t+ 1 �� F i
t (happens when there is no uncer-

tainty in case of having tagged data. It is not the case in gen-
eral), and 4) Xt+ 1 �� Xt |Yt+ 1, then the full joint probability
of the third DBN, to be learned, reduces to:

P(X1:T ,Y1:T , F 1:N
1:T ) = P(X1:T ,Y1:T |F 1:N

1:T )P(F 1:N
1:T )

= P(X1:T |Y1:T )P(Y1:T |F 1:N
1:T )P(F 1:N

1:T ) = ( 1)
N

∏
j= 1

P(F j
1 )P(Y1|F

j
1 )P(X1|Y1)

T

∏
t= 2

N

∏
j= 1

P(Yt|F
j
t )P(Yt|Yt− 1)

T

∏
t= 2

P(Xt|Yt)

where F 1:N
1:T = [ F 1:N

1 , F 1:N
2 , · · · F 1:N

T ] is the vector o� unc-
tions representing object properties over time.
Inference and learning. Learning in a DBN is to find two
sets of parameters (m; θ) wherem represents the structure
of the DBN (e.g., the number of hidden and observable
variables, the number of states for each hidden variable,
and the topology of the network) andθ includes the state
transition matrixA (P(Sit|Pa (S

i
t)) ), the observation matrixB

(P(Oi
t|Pa (O

i
t)) ), and a matrixπmodeling the initial state dis-

tribution (P(Si1) ) where Pa (S
i
t) are the parents ofSit (simi-

larly Pa (Oi
t) for observations). Learning is hence to adjust

the model parametersV = ( m; θ) to maximizeP(O|V ) .
Since designing a di�erent network for each task needs

task-specific expert knowledge, to make the problem
tractable, here we assume fixed structures (Figure 1.b) that
could generalize over many tasks. Therefore, the joint pdf
in Eq.1 reduces to predicting next attended object thanks to
independence assumptions. As an example, we derive the
formulation for the third case in Figure 1.b:

P(Yt+ 1|F 1:N
1:t+ 1,Y1:t , X1:t) % given all in f ormation in the past

= P(Yt+ 1|F 1:N
1:t+ 1,Y1:t) % Yt+ 1 �� X1:t

= P(Yt+ 1|F 1:N
t+ 1 ,Yt) % Yt+ 1 �� Y1:t− 1 (2)

= ΠN
j= 1P(Yt+ 1|F

j
t+ 1) × P(Yt+ 1|Yt) % F i

t+ 1 �� F j
t+ 1, � i = j

Xt is an integer between [1 300] (300 states).P(Y ) is ini-
tialized uniformly over the objects (time 0 and is equal to
P(oj ) = 1/N , j = 1 : N , N = 15) and is updated over time.
The HMM model (case 1) has one hidden variable ([1 5])

Further assuming that Yt+1  is independent of Yt
 we end up to a Naive Bayes classifier 
(as a control for temporal model):

Xt is an integer between [1 300] (300 states). P(Y ) is
initialized uniformly over the objects (time 0 and is 
equal to P(oj)=1/N,j=1:N,N=15) and is updated over 
time. 

Accuracy of Classifiers

Uncertainty Analysis

Main Results: Gaze PredictionScores

• Normalized scan-path saliency (NSS)

• 

• Probability of correctly detecting the attended object
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Gaze prediction accuracies for HDB game. a) proba-
bility of correctly attended object in memory-dependent/saccade
mode, b) memoryless/saccade mode. Q [ F t Y t−1]means that model
uses both objects and previous attended object for prediction. c)

and d) MNSS scores for prediction of saccade position in memory-
dependent and memoryless modes. White legends on bars show
the mapping from feature types to gaze position X . For instance,
REG ( Ft Yt Xt) maps object features to the attended object
and then maps this prediction to the attended location using regres-
sion. Property functions f ( .) in HDB indicate whether an object
exists in a scene or not (binary).
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a) MNSS scores of our classifiers over 3DDS and TG
games, b) NSS scores (corresponding to = 0 in MNSS) of BU
models for saccade prediction over 3 games. Almost all BU models
perform lower than MEP and Gaussian, while our models perform
higher (same results using MNSS). Some models are worse than
random (NSS≤ 0) since saccades are top-down driven.
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Analysis of uncertainty over HDB game. a) Average
precision-recall curve over all 15 objects; red for boosting and blue
for DPM, b) Accuracy of correctly predicting the attended object.
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