
- Visual attention is a key function for both machine and bio-
logical vision systems.

- Research efforts in computer vision have mostly been fo-
cused on modeling bottom-up saliency. Strong influences on 
attention and eye movements, however, come from instanta-
neous task demands. 

- Our models estimate the state of a human subject perform-
ing a task (here, playing video games), and map that state to 
an eye position. Factors influencing state come from scene 
gist, physical actions, events, and bottom-up saliency. Pro-
posed models fall into two categories. In the first category, we 
use classical discriminative classifiers, including Regression, 
kNN and SVM. In the second category, we use Bayesian Net-
works to combine all the multi-modal factors in a unified 
framework. Our approaches significantly outperform 15 com-
peting bottom-up and top-down attention models in predicting 
future eye fixations on 18,000 and 75,000 video frames and 
eye movement samples from a driving and a flight combat 
video game, respectively. 
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- This study demonstrates that it is possible to develop computational models which are 
capable of estimating state and predicting task-dependent future eye movements and 
actions of humans engaged in complex interactive tasks.

- Scene context is an effective estimator of the subject’s mental state and a good predic-
tor of fixations. 

- Taking advantage of temporal information leads to higher eye movement prediction 
accuracies and is a roadmap for future research.
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Conc lusions & References

Sample Predicted Maps

Proposed models for prediction of the next 
action: a) using employed features (here we 
also used 2D eye position as a feature), a Re-
gression classifier was able to predict actions 
(22D vector of action) better than a model that
is the average of actions (similar to MEP for eye positions) in terms of NSS 
score. BU map and Gist scene descriptors performed better than other features. 
b) shows an upper bound on NSS score when fixations of previous frames were 
considered as predictors for the current frame (averaged across subjects for 
each game). This is the score of an optimal model that could consider subjectiv-
ity, noise and task demands, and it provides an interesting comparison point for 
our computational models.

We also propose a generative model based on Bayesian Networks to systematically 
learn relationships between variables and eye position. To accommodate features for 
use of Bayes Net, we clustered the high-dimensional Gist vector using k-means to r clus-
ters (here r = 20). Continuous wheel and pedal positions were discretized to 8 values. 
Number of events were 9. Due to high complexity of these games a manually-designed 
Bayes Net is less likely to produce good results (We systematically experimented with 
several network topologies). Thus, we used a variant of Markov Chain Monte Carlo 
(MCMC) algorithm called Metropolis-Hastings (MH) to search the space of all DAGs in a 
network that has all variables (Gist (G), BU map (B), Wheel(W), Pedal(P) and Event (E)) 
connected to eye position (X). See above figure for results.

Regression(REG): Assuming a linear relationship between feature vectors M and eye fixations N [3], we solve the equation M ×W = N. The solu-
tion is: W = M+ ×N, where M+ is the (least-squares) pseudo-inverse of matrix M. We used SVD to find the pseudo inverse of matrix M.

kNN: We look into training data and find similar neighborhoods to the current test frame and then make attention maps from the associated eye 
fixations. This resembles a local MEP model, where we make a map with 1’s at fixated locations and zeros elsewhere. Then to generate an atten-
tion map, we convolve this map with a Gaussian filter.

SVM: To use SVM, we first reduced the high-dimensional feature vector using PCA to preserve 95% of variance. Then a linear multi-class SVM 
was trained from other subjects with 300 output classes. Experimenting over a subset of the data with low-resolution eye fixation maps (4 × 3 and 
8 × 6 hence number of classes 12 and 48) and with polynomial and RBF kernels did not improve the results.

Mean eye position (MEP): Mean of the distribution of all 
human fixated locations

Gist (G): A very rough representation of a scene and does 
not contain much details about individual objects or seman-
tics but can provide sufficient information for coarse scene 
discrimination (e.g., indoor vs. outdoor or category of the 
scene). The pyramid- based feature vector (pfx) [1] was 
used for scene representation.

Bottom-up saliency map (BU ): We used the original 
bottom-up saliency map both as a signature of the scene 
and a saliency predictor [2].

Physical actions (A): In the driving experiment, action is a 
22D feature vector containing wheel positions, pedals 
(brake and gas), left and right signals, mirrors and left and 
right views, gear change, etc which are wheel buttons that 
subjects used for driving. 

Labeled events (E): Each frame of games was manually 
labeled as belonging to one of different events such as {left 
turn, right turn, going straight, red light, adjusting left, ad-
justing right, stop sign, traffic check and error frames due to 
unexpected events that terminate the games like hitting 
other cars}. 

a) NSS scores over three video games for different amounts of data, b)���)�L�[�D�W�L�R�Q���P�D�S�V���Z�L�W�K���.�����R�I���G�D�W�D���G�L�V�F�D�U�G�H�G��
and c) Average NSS over saliency levels (left) and NSS score over all fixations (i.e 0% case) for classifiers.

a) NSS and b) ROC curves over driving games with the best learned Bayes Net.

a) NSS and 
b) ROC curves over driving games with the 
best learned Bayes Net.

Ten subjects aged 18-25 with valid driving license and at 
least 2 years driving experience were asked to play 3 
games (3DDS, 18WoS, and TDU) with the rig above. 
Subjects were placed 130cm from the screen with field of 
view 43º x 25º. There was a 5-min training and 5-min test 
sessions for each game. Video frames (30Hz), Eye fixa-
tions (240Hz), and Actions (62Hz) were recorded result-
ing in total 2.5 hours recordings, 156GB of data, 192,000 
frames, 1,536,000 fixations, and 10,518 saccades.

Leave-one-out training across subjects.

3DDS: 3D Driving School
TG: Top Gun
18WoS: 18 Wheels of Steel
TDU: Test Drive Unlimited

Top: Sample frames along with corresponding saliency maps 
of models. Bottom: AUC scores (chance level is 0.5, higher 
scores indicate better models) and NSS scores (chance level 
is 0.0, higher is better) of 14 saliency models over 3D Driv- 
ing School and Top Gun games. Some models are able to 
detect the traffic light sign as salient, which happens to be 
task-related in the sample shown image. Overall performance 
of models is very poor compared to the inter-observer model.

- Computational 
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