Scene Classification with a Sparse Set of Salient Regions
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Abstract— This work proposes an approach for scene classi-
fication by extracting and matching visual features only at the
focuses of visual attention instead of the entire scene. Analysis
over a database of natural scenes demonstrates that regions
proposed by the saliency-based model of visual attention are
robust to image transformations. Using a nearest neighbor
classifier and a distance measure defined over the salient
regions, we obtained 97.35% and 78.28% classification rates
with SIFT and C2 features from the HMAX model at 5 salient
regions covering at most 31% of the image. Classification with
features extracted from the entire image results in 99.3% and
82.32% using SIFT and C2 features, respectively. Comparing
attentional and adhoc approaches shows that classification rate
of the first approach is 0.95 of the second. Overall, our results
prove that efficient scene classification, in terms of reducing the
complexity of feature extraction is possible without a significant
drop in performance.

I. INTRODUCTION

Scene classification is a fundamental problem in image
understanding. Automatic techniques for associating scenes
with semantic labels have a high potential for improving the
performance of other computer vision applications such as
browsing, retrieval and object recognition. To do robust scene
classification, two steps are necessary. The first one concerns
the scene representation, that is, how to efficiently extract
effective representations from visual input whereas second
step focuses on algorithms and classifiers to process these
representations. Regarding the first step, it is much desired
to develop highly robust features with least computational
complexity.

Many approaches for scene classification have been de-
veloped which can be classified into the following three
categories. 1) Low-level feature based schemes: which rep-
resent scenes by global visual information [7], including
color, texture, and shape have been successfully utilized
in indoor/outdoor, city/landscape and forest/mountain appli-
cations. 2) Local feature based schemes: represent scene
images with detected interest points (or regions) based on
some descriptors [33] [11] [5]. Local-global features [6]
based schemes utilize both the global spatial information
and the local descriptors of interest points (or regions) to
represent scene images to achieve robust classification. 3)
Biologically inspired feature based schemes: classify scenes
by mimicking the process of visual cortex in recognition
tasks. Recent reports from both neuroscience and computer
vision have demonstrated that biologically plausible features
[20] are attractive in visual recognition. In [21] [13], authors
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Fig. 1. An example image with its saliency map overlaid (bottom) (derived
from basic saliency model [18]).

have proposed scene classification methods based on the idea
of “gist which is exquisite ability of humans at instantly
recognizing a scene; for example, following a presentation
of a photograph for just a fraction of a second, an observer
correctly report that it is an indoor kitchen scene with
numerous colorful objects on the countertop.

Our work in this paper falls in the third category and aims
to apply the inherent capability of human brain known as
attention to outdoor scene classification. Visual attention is
the capability of biological vision systems by which humans
and animals select most salient regions of a scene to later
concentrate higher vision tasks on those areas. This explains
to some extent high efficiency of humans in every day
detection and recognition tasks. Saliency means that a subset
of image regions conveys more information for a biological
creature, to optimize its behavior (see Fig. I). Saliency
can be determined by bottom-up, image-based characteristics
which are mainly derived by the early visual areas like V1
and V2 and also top-down task-driven cues from higher areas
like LIP, V4 and PFC.

From a theoretical perspective, attention is a solution for
the problem of information overloading and computational
complexity. This problem has attracted many concerns in



computer vision and cognitive robotics where large amount
of data has to be processed efficiently to guarantee a limited
response time. It is also of interest to produce human-like
behavior in human-computer interaction applications [2].

While a large body of research has been focused on
understanding biological underpinnings of visual attention
and modeling it, only recently applications have started to
emerge in computer vision and robotics. Attention has been
incorporated to solve complex visual tasks like 3D recon-
struction [32], robot navigation and localization [22] [23],
scene [13], object and face recognition [12] [11], image
rendering [25], image thumbnailing [27][28], video shot
detection [29] and attention-based object detection where
saliency has been extensively used to improve efficiency
[35] [36] [37].

Several computational implementations of models of vi-
sual saliency have been published in last decade [23]. Exam-
ple are AIM (Attention based on Information Maximization)
[15], Incremental Coding Length (ICL) model [16], Surprise
model [30], Saliency Using Natural statistics (SUN) model
[31], Extended saliency (E-Saliency) model [26]. However,
little research has been reported in investigating benefits of
saliency concept for scene and object classification in natural
environments [24]. In this paper, applicability of saliency-
based model of visual attention is examined for scene clas-
sification. We first investigate to what extent images contain
similar visual content at salient regions. We furthermore aim
to demonstrate how this repeatability can be utilized for
outdoor scene classification.

Repeatability of a different class of saliency, discriminative
saliency, defined by Gao et al. was studied in [4]. They
speculate that saliency serves to maximize recognition. Us-
ing SVM classification, they have shown that discriminate
saliency detector (DSD) leads to higher recognition rate
than Scale Saliency Detector (SSD) [1] and Harris Saliency
Detector (HSD) over face, motorbike and airplane datasets.
They have also compared the repeatability of DSD with
Hessian-Laplace (HesLap) [9] and Maximally Stable Exter-
mal (MSER) [10] detectors.

Local image descriptors have become a very powerful
representation of images in categorization and recognition
tasks. Much of their success is due to their distinctiveness
and to the fact, that this type of image representation is
robust to occlusions and affine transformations. While in
some applications like 3D reconstruction a large number of
local features is needed, in some others only a few suffices. In
many real-world applications where computational resources
are limited, a small number of descriptors are preferred
because it greatly reduces the complexity of matching al-
gorithms. Walther et al. [24] have proposed a method for
multiple object recognition in cluttered scenes using SIFT
features. First a salient region is detected using the basic
saliency model and then a patch is grown to fit the object
extent. SIFT feature extraction is done at this patch for
matching the object to the learned objects. Similar to this
work, we also extract SIFT features at some salient spatial
region but for the purpose of scene recognition.

From another perspective the proposed algorithm reduces
the computational complexity of SIFT feature extraction
algorithm. The SIFT algorithm generates a large number of
features, e.g., about 2000 for a 500x500 image, which is
very time consuming. There have been attempts to speed up
this process by modifying the way features are calculated [3].
We claim that it is possible to extract SIFT features at a sub-
set of spatial locations without a major drop in performance.
Instead of feature extraction over the whole image, features
are extracted over some moderately stable salient regions and
are then matched.

Our scene classification algorithm consists of three inte-
grated modules 1) a saliency detector for selecting a subset
of scene regions 2) a matching algorithm which matches
image content at the salient regions and returns a distance
value between two images and 3) a classifier for class
label prediction. All these stages to some extent agree with
biological findings.

A. Saliency-based Model of Visual Attention

Several studies in computer vision have previously in-
vestigated the paradigm of visual attention and now there
is an accepted model known as the basic saliency-based
model [18] which copes with known biological concepts
to some extent. This model generates a 2D topographical
map that encodes stimulus conspicuity or saliency at every
scene location. Saliency map is constructed as follows. The
input image I is sub-sampled into a Gaussian pyramid [14],
and each pyramid level is decomposed into channels for red
(R), green (G), blue (B), yellow (Y), intensity (I), and
local orientation (Op), then R = r — (g + b)/2), G =
g—(r+b)/2,B=b—(r+g)/2,and Y = r+g—2(|r—g|+b)
(negative values are set to zero). Local orientations (Og) are
obtained by applying steerable filters to the images in the
intensity pyramid I. From these channels, center surround
“feature maps” are constructed and normalized:

Fres= N(M[(c)© Mi(s)]), I = {I}
Fc.es = N(|Mc(c) © Mo(s)|),C = {RG, BY'}
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Where © denotes the across-scale difference between two
maps at the center (c) and the surround (s) levels of the
respective feature pyramids. N(.) is an iterative normaliza-
tion operator (refer to [19] for details). The feature maps are
summed over the center-surround combinations using across-
scale addition (X) and the sums are normalized again:
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For the general features color and orientation, the contri-
butions of the feature dimensions are linearly summed and
normalized once more to yield “conspicuity” maps:
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All conspicuity maps are combined into a final saliency
map: S = 33 4e(1.c.0y Ck-

Maxima of the final saliency map are the focuses of atten-
tion. Despite the main model where maxima are sequentially
detected to generate a sequential attention behavior, we use
a simple max operation to speed up the process. For a
640x480 image, it takes about 80ms to extract 5 salient
points on average. Salient regions around local salient points
are used for feature extraction and scene classification.

II. REPEATABILITY OF SALIENT REGIONS

In this section, we explore to what degree salient points
repeat in different instances of the same scene class. To this
purpose, we calculate the similarity of scene regions at the
focuses of attention. This is indirectly in accordance with
the repeatability criteria used to evaluate the quality of local
feature detectors.

A. Features

In our approach, a within fixation processing extracts
features at focuses of attention for scene representation.
While any kind of features could be used, we employ two
types of features, SIFT [11] and C2 features from the HMAX
model [20], to compare Geometry-based and Appearance-
based features for attentional classification.

SIFT features are distinctive features useful for reliable
matching between different views of a scene or an object.
They are invariant to image scaling and rotation, and are
partially invariant to changes in illumination and 3D camera
viewpoint. SIFT algorithm uses a Gaussian pyramid built
from the original image to extract local features (keypoints)
at the extreme points of difference between pyramid levels.
Then, a descriptor is derived from the surrounding region of
a keypoint using the histogram of edge responses.

C2 features are introduced by Serre ef al. in [20]. They
have developed a computational model based on the hierar-
chical organization of the visual ventral stream where shape,
object, face and scene recognition is performed. Simply in
these models, low-level features with high position and scale
specificity are combined in a hierarchy to produce complex
invariant features. This model starts with an image layer
of gray-level pixels and builds simple (S) and complex (C)
layers alternatively. Neurons in S layers convolve the image
with a set of local filters to extract features and S units pool
their inputs from previous layer to increase invariancy. (e.g.
max operation). In this paper, we use the modified HMAX
model [34] which learns a dictionary of prototype patches in
the S2 layer from a set of sample images. Number of learned
patches determines the dimensionality of the C2 feature
vector. C2 features provide rich structural information useful
for recognition and matching and incorporating them with
visual attention may give insights of interaction of visual
attention and object recognition in human visual system [24].

B. Distance Measures

Regarding the second step in scene classification, distance
or a similarity measure between two images is necessary to
construct a classifier. We define distance measures for each
type of the above-mentioned features. Given a set of n images
I={6,I,...,I,}, abag of features representation for the
ith image with ¢ SIFT features is:

Fy = {fi, fizs -, fig}s fij = (®i5, vij) 4)

where z;; is the value of the jth SIFT feature (a 128D
vector) and y;; is the position of this feature in image
coordinate frame. The idea behind the state-of-the-art algo-
rithms for matching and recognition, is that they measure the
similarities between all local features within the compared
images. Consider the following distance measure which is
the average of the best matches for all features of ith and
jth images:

D(Fi, F5) = 3 (d(Fs, Fy) + d(F;, Fy)

1 &
d(Fy, F,) = — min norm(fu — fut) 5)
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where norm is the Euclidean distance between two SIFT

features and n, and n, are the number of SIFT features of
images u and v, respectively. Above distance measure does
not consider the fact that features remain at spatial vicinity
of each other most of the time when transformed. Adhering
this constraint distance measure in eq. (6) enhances feature
matching and hopefully recognition.

1 Ny .
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In eq. (6), H is a large number, here 1000. For im-
ages represented by C2 feature vectors, the distance mea-
sure is simply the Euclidean norm of their difference as
D(C2;,C2;) = norm(C2; — C2;)

The above definitions are for feature extraction over entire
image. We now define distance of two images based on their
features at salient regions. Assume S; = (S;1, Si2, "+ , Sib)s
saliencys,; > saliencys,. , be the vector of salient points
generated by a saliency detector ordered by their saliency
value. Let

D(Si1,S51) D(Si1, Sjp)
J= Lo : )
D(Sip, Sj1) D(Siv, Sjv)
be the matrix of pairs of salient regions with D(s;1, s1)
as the distance between the first salient regions of the ith
and jth images. In order to reduce the above distance matrix

into a scalar, we need to match the salient regions. One
way is to choose the minimum distance or the best match



TABLE I
ATTENTIVE SCENE CLASSIFICATION WITH KNN

1. Find salient regions for all images in the database
2. Extract features for all images at salient regions
3. Randomly split images in each scene class into P for train and
remaining Q for test
4. For each test image
a. For each train image
i. Calculate the similarity matrix of salient regions of the
test image to salient regions of this train image using
the similarity measures in (6) or (7)
ii. Calculate the overall similarity between two images
by matching the salient regions using Hungarian algorithm
b. Find the k nearest neighbors to this test image
c. Assign the class label of this image as the label of the most
frequent class
5. Calculate the correct classification rate

between salient regions, as was done for matching SIFT
features in eq. (5) or eq. (6) by considering their pixel
distances in the images. Here we use the optimal Hungarian
method [38], which takes as input a distance matrix and
returns a distance measure as well as the best match. This
is a combinatorial optimization algorithm with the benefit of
solving the assignment problem in polynomial time. A better
match between two images means lower distance and hence
higher similarity.

C. Repeatability Measure

Repeatability indicates how often features repeat in the
transformed versions of an image. Inverse of above distances
could be used for calculating similarity or repeatability of
two images. Repeatability of a set of images (I) is the mean
of repeatability of subsequent images (frames) and is defined
as (also called tracking repeatability):

n—1
-1
>oicy D(Ii, Iija)
where D is one of distance measures defined in the
previous section. Variable n is the number of images in a

scene class. We compare the repeatability of saliency detector
patches for increasing number of salient regions.

Ry(I) =

®)

III. ATTENTIVE SCENE CLASSIFICATION

Having features and distance measures defined we are now
ready to design a classifier. The k-nearest neighbor (KNN)
algorithm is used in two cases when features are extracted 1)
over the entire image or 2) only at salient regions. Since kNN
is simple for the first case, we show how it could be used
for classifying scenes in the second case. Attentive scene
classification is shown in the pseudo code of Table I.

IV. EXPERIMENTAL RESULTS

Results of repeatability and attentive scene classification
are shown in this section over a database of natural scenes.
This database contains 44 classes each containing 24 scenes
of size 640x480 with large viewpoint changes from locations
in a university campus [39]. We restrict number of salient

points to 5 since the concept of visual saliency is restricted
to few features per image by definition.

A. Repeatability Results

Eight first instances of the seven first classes of the
database in [39] with their salient regions marked with
rectangles are shown in Fig. 2. As this figure shows, in
many cases salient regions are nearly in the same regions
in subsequent images but their orders differ. This shows
the significance of region matching in attentional scene
classification. Features are derived in a window of size W
around each salient point. Tracking repeatability for salient
regions for these classes using both features are shown in
Fig. 3 (top row). Repeatability increases in each class as
the number of salient points increases, for both SIFT and
C2 features.

B. Classification Results

In the experiments in this section, we investigate how
attention affects learning and recognition of cluttered scenes.
Eighteen (P=18) images from each scene class were used for
training and the remaining ones (Q=6) for testing. Results of
attentive scene classification using C2 and SIFT features are
shown in Fig. 3 (bottom row) using the distance measure in
eq. (5) for different numbers of salient regions and different
attention window sizes.

As shown in Fig. 3, recognition rate increases in all cases
with the number of salient points. This is in accordance
with the increase in repeatability with increasing the number
of salient points. Larger window sizes result in higher
recognition rates. To control whether high recognition rate is
due to repeatability of salient regions or overlap in images,
we also performed recognition using random and fixed image
regions. Random patches were selected in random for every
frame of a class. Fixed image patches had the same positions
in image coordinates for all images of all classes. Fig. 4,
left panel compares the classification results using different
detectors with window size of 60 and different number
of salient regions. As it shows saliency works better than
random and fixed patches in all conditions over all 44 classes.
It also shows that fixed patches work better than random
patches in all cases. Table II, shows the classification results
using KNN classifier with distance measure in eq. (6) and
SIFT features for different values of ¢. Results shows that o
equal to 3 leads to higher recognition in all cases but nothing
can be said in general on setting this parameter.

We also performed classification when feature extraction
was done over the entire scene. Classification results using
the distance measure in (6) leads to 99.34+0.3 %, 82.32+2.1
% and 77.9+1.2 % recognition rates using SIFT, C2(|C2| =
4096) and C2(|C2| = 256) features, respectively.

C. Computational Complexity

In this section, we analyze to what degree attention
reduces computational complexity of classification. Assume
an image of size mxn then using b SIFT windows of size
W, the ratio of feature extraction over salient regions to



Fig. 2. Salient regions of 7 natural scenes. Each row is for a different class. Order of salient points is coded by colors: pink, yellow, blue, red and black.
Narrowest rectangle is the first and so on. Window size (W) is equal to 60 pixels.

TABLE 11
ATTENTIVE SCENE CLASSIFICATION USING SIFT AND THE SECOND
DISTANCE MEASURE

o 0 1 2 3 10
Rec(%) | 95.59 | 97.1 | 96.77 98.1 93.8
Std(%) (23) | (1.1) | (1.4) | (0.37) | (3.6)

. . . 2 . .
entire image is C = W= Since W is usually small
mXn

compared to m and n this leads to significant computational
saving. Fig. 4, right panel shows computational saving
versus recognition rates. The vertical axis shows the ratios
of recognition and computational complexity in attentional
and without-attention cases. This diagram is plotted for SIFT
and C2 features for only first salient region as well as all of
them for different window sizes. For example it shows that
with a window size of 140 and 5 salient regions 95% of
the recognition rate obtained in the without-attention case
(processing the entire scene) can be achieved while only
extracting features over 31% of the image.

Increasing attention window size results in higher recog-
nition rate and higher computational complexity. An opti-
mal value for window size depends on application and on
available computational resources and minimum recognition
rate needed. This analysis can also help determine minimum
computation necessary to achieve a recognition rate.

V. DISCUSSION AND CONCLUSIONS

This paper has studied the problem of defining and es-
timating descriptive and compact visual models of scene
classes for efficient scene recognition. In accordance with
human recognition behavior first a fast, parallel and pre-
attentive mechanism processes the entire image and selects
some salient regions and then a complex and slow mecha-
nism is restricted on these areas to extract more details and
match them with a database of learned representatives. In the
proposed approach, to overcome the information overloading
bottleneck, feature extraction and matching is performed at
few spatial locations proposed by visual attention which acts
as a front-end to accelerate speed and reduce complexity.

Results show that salient regions have high repeatability
over image transformations. Higher classification results of
salient regions compared with random and fixed salient
regions mean that it is not the overlap among regions which
is responsible for discrimination, but it is because salient
regions are at nearly the same locations. However, since
rank of saliency points differs it is necessary to match them.
As window size increases, similarity and hence recognition
rate over both feature types increase. SIFT features are more
successful in average for scene classification from our results.
Compared with the situation when features are extracted over
the entire image, we were able to achieve nearly the same
recognition rates with much fewer computations.
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We showed that high scene recognition rates are still
possible without processing the entire images. The saliency
model is purely data-driven and simply selects some spatial
regions without using any feedback mechanism or top-down
gains.

Modifying attentional systems to generate robust salient
points when viewpoints change is a future research area.
For example adding top-down extensions to the saliency
model restricts it to select the same spatial areas over
transformed images and therefore leads to higher feature
stability in images. It is worth checking that other saliency
measures as the first step of our approach in this paper.
For example, while [4] has compared its saliency measure
against Harris, MSER and SSD and has showed that it is
more stable, it may results to better recognition results than
basic saliency model. Applying this approach to robot control
is also another interesting area since in robotic applications
viewpoints change gradually and this may lead to higher
repeatability of salient regions. Repeatability of salient points
under different image transformations and other databases
should also be considered in future works in this direction.
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