Quantifying the relative influence of photographer bias and viewing strategy on scene viewing

http://ilab.usc.edu/publications/doc/ Borji_elat11vss.pdf

Supported by the National Science Foundation, the General Motors Corporation, and the Army Research Office

(1) Introduction & Motivation

Saccade distributions while observers freely view natural scenes and videos are often found to be highly biased toward the image center (center-bias effect) [1]. Two main sources of center-bias are: 1) photographer bias (natural tendency of photographers to place objects of interest near the center) and 2) viewing strategy (tendency of subjects to look at the center to extract more information) [2]. Our quantitative comparison of 30 saliency models over three standard datasets of still images (Bruce & Tsotsos 2006 [4], Kootstra et al., 2008 [5] and Judd et al., 2009 [6]), shows that model rankings do not agree [3]. Interestingly, a trivial central Gaussian blob saliency model outperforms many models in regard to predicting where humans look.

Here, we measure the relative influence of center-bias causes and introduce a less center-biased dataset as a benchmark for fair evaluation of saliency models.

(2) Experimental Procedure

Method, Stimuli & Subjects: Stimuli were selected from four datasets and were shown to new subjects to remove variability.

Overall, eye movements were recorded over 165 rbg images (out of 1250) (~15% from various categories).

Bruce & Tsotsos 2006 [4]
Kootstra et al., 2008 [5]
Judd et al., 2009 [6]
Le Mour et al., 2007 [7]

Center-bias threshold (cb < 0.7)

Eye Tracking: Stimuli were presented on a monitor (60 Hz refresh rate), full HD 1024 x 1280 pixels (corresponding to 43.6" x 28" field of view). Participants' heads were stabilized with a chin rest. Eye position was tracked by an EyeLink camera (SR Research), with 1 Hz and gaze position accuracy of 0.5" average from participants right eye. Eye tracking was calibrated with 5 point calibration at the beginning of the experiment. An image was presented for the subject for 3 seconds followed by a 2 second blank screen in between. Stimuli were rgb images with resolution of 1024 x 1280. Mean screen luminance was 30 cd/m2. Overall, 46429 saccades were recorded.

(3) Evaluated Data Sets

Bruce & Tsotsos [4]
Stimuli: 120 (mural and auditor)
Subjects: 20
Resolution: 681 x 511
Viewing distance: 75 cm
Presentation time: 4 s

Kootstra et al. [5]
Stimuli: 99 (12 Animals, 12 Auto-vans, 14 Buildings, 20 Flowers, 41 natural scenes)
Subjects: 31 (15, 16m)
Resolution: 1024 x 768
Viewing distance: 70 cm

Judd et al. [6]
Stimuli: 1003 (770 landscapes and 233 natural images)
Subjects: 15
Resolution: 1280 x 1024
Viewing distance: 61 cm
Presentation time: 3 s

Le Mour et al. [7]
Selected Images
Durs

All saccades
All saccades – 1st saccade – Gaussian Blob

(4) Average Heat Maps

Average heat map of accepted, total and rejected images. The density map of accepted images has a wider spread. Rejected images have a very high center-bias.

Bruce & Tsotsos [4]
Kootstra et al. [5]
Judd et al. [6]
Le Mour et al. [7]

(5) Results

Center-bias (cb) index: The sum and count of heat map values are calculated in growing disks (5 pixel increments) from center to the image border. The cb index was the sum of mean map values of disks with radii smaller than or equal to a threshold divided by sum of all mean maps of all disks:

\[\text{cb} = \frac{\sum_{r=0}^{R} \sum_{x,y} C_{r}(x,y) \text{ where } (x,y) = (r \times \text{radius})}{\sum_{r=0}^{R} \sum_{x,y} C_{r}(x,y)} \]

where \(r \) is in the saliency of point \((x,y)\) in the heat map of an image. \(C_{r} \) is the set size (operator R) is the set of (x,y) coordinates that fall in a disk centered at image center with radius \(r \). We chose to be 40% of the distance from center to the center of image.

The average center-bias index of four datasets, accepted images and recorded eye movements over accepted images.

(6) Final Selected Stimuli

The center-bias index for recorded eye movements over selected images and the Judd dataset were 0.73 and 0.88, respectively. After removing the first saccade, these values dropped to 0.68 and to 0.84. Sample images with fixations of all subjects overlaid

Conclusions & References

1) Selected images have less image content/interesting objects at the center. This caused a significant drop in center-bias index. Removing the first saccade further reduces the index. Evaluating the images where fixations were at the center, we noticed that there was an object at the center or there was not much difference between image center and the rest of the scene (e.g. some scenes from nature). Overall, based on our results we conclude that photographer bias is more important than viewing strategy.

2) Widely used datasets are center-biased, while our collected data shows less bias which makes it a suitable benchmark dataset for eye fixation prediction evaluation.