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1. Introduction

This supplementary material accompanies the paper
“Computer vision vs. human vision: What can be learned?”
submitted to CVPR 2014. It contains the followings:

• Human data gathering protocols on used datasets.

• Edge maps using 6 edge detectors, shown in Fig. 1.

• Sample jumbled scenes, shown in Fig. 2.

• Sample distractor scenes from the Animals dataset,
shown in Fig. 3.

• geo color model performance and confusion Matrix
over the 6-CAT dataset, shown in Fig. 4.

• Model confusion matrices over color images from the
6-CAT dataset, shown in Fig. 5.

• Model confusion matrices over line drawings from the
6-CAT dataset, shown in Fig. 6.

• Human confusion matrix over Sketch images, shown
in Fig. 7.

• Human confusion matrix over SUN dataset, shown in
Fig. 8.

• Feature distributions for the image shown in Fig.5
of the main text and it’s line drawing, shown in
Figs. 9, 11, 13, 12, 15, 16, 10, 18, 17, 19, 14.

• Histogram of black and white pixels across 6 cate-
gories of the 6-CAT dataset, shown in Fig. 20.

• Average similarity rank of models, shown in Fig. 21.

2. Human Data Gathering Protocols

6-CAT: [6]1 Human Behavior Experiment [6]: The proce-
dure was a Six-alternative force choice task in which sub-
jects viewed a blank gray screen (fixating at the central
cross) for 500 ms. This was followed by stimulus presen-
tation (SOA) which was variable and was adjusted for each
subject for him to reach 65% accuracy (stair-case strategy:
i.e., increasing SOA until subject reaches 65% accuracy).
Subjects then were shown a scrambled-phase image for 500
ms and a blank gray mask for 2000 ms. Line drawings and
color photographs were randomly mixed. SOA ranged from
16.67 ms to 86.67 ms for which average accuracy over sub-
jects were 77% over color photographs and 67% over line-
drawings.

Fig. 1 shows sample images from this dataset (line draw-
ings) and their corresponding edge detected maps from
probabilistic edge detection map [7] (shown here as gPb),
Canny, Log, Prewitt, Roberts, and Sobel. Please see the
first figure in the paper for original images.
Animals: [8]2 In this task, Animal- vs. non-animal-
categorization task, four (balanced) classes of stimuli were
used and were manually arranged into four groups (150 im-
ages each) based on the distance of the animal from the
camera: head (close-up), close-body (animal body occupy-
ing the whole image), medium-body (animal in scene con-
text), and far-body (small animal or groups of animals). A
set of matching distractors (Fig. 3) (300 each from natu-
ral and artificial scenes) was selected so as to prevent hu-
man observers and the computational models from relying
on low-level cues.

Experimental Procedure: A stimulus (gray-level image)
was flashed for 20 ms, followed by a blank screen for 30
ms (i.e., SOA of 50 ms), and followed by a mask for 80 ms.
Subjects ended the trial with an answer of ”yes” or ”no” by
pressing one of two keys.

1http://vision.stanford.edu/projects/sceneclassification/index.html
2http://cbcl.mit.edu/software-datasets/serre/SerreOlivaPoggioPNAS07/index.htm
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Jumbled images: [5]3 Data was collected through Mechan-
ical Turk (MT). Each trial contained an image and subjects
were supposed to report the category of the scene (The im-
age was displayed to the subjects along with a list of ra-
dio buttons indicating the categories to select from). There
were no constraints on subjects’ response times. The im-
ages were resized such that the largest dimension was 256
pixels. Jumbled images were created by dividing an image
into n×n non-overlapping blocks (n×n in our paper), and
then randomly shuffling them. Fig. 2 shows sample images
from the four image sets in this dataset.
Sketch images: [4]4 This dataset contains non-expert
sketches of everyday objects such as ’teapot’ or ’car’. There
are 20,000 unique sketches evenly distributed over 250 ob-
ject categories (i.e., 80 images per category). In a perceptual
study [4], humans were able to correctly identify the object
category of a sketch 73.1% of the time (chance is 0.4%).
Experimental method: Given a random sketch, participants
were asked to select the best fitting category from the set of
250 object categories. They had unlimited time, although
they were naturally incentivized to work quickly for greater
pay. To avoid the frustration of scrolling through a list of
250 categories for each query, categories were organized in
an intuitive 3-level hierarchy, containing 6 top-level and 27
second-level categories such as ’animals’, ’buildings’ and
’musical instruments’. There were a total of 5,000 HITs
to MT, each requiring workers to identify 4 sketches from
random categories. Fig. 7 shows human confusion matrices
over sketch images.
SUN: [3]5 Since measuring human classification accuracy
with nearly 400 categories is difficult and to help partic-
ipants know which labels are available, Xiao et al. [3]
grouped the 397 scene categories in a 3-level tree. Partici-
pants navigated through an over complete three-level hier-
archy to arrive at a specific scene type (e.g. ’bedroom’) by
making relatively easy choices (e.g. ’indoor’ versus ’out-
door natural’ versus ’outdoor man-made’ at the first level).

Xiao et al. [3], measured human scene classification ac-
curacy using Amazon’s Mechanical Turk (AMT). For each
SUN category they measured human accuracy on 20 dis-
tinct test scenes, for a total of 397 × 20 = 7, 940 experi-
ments (HITs: Human Intelligence Tasks). Fig. 8 shows hu-
man accuracy and confusion matrices calculated from good
workers.

In our work, we focus on results collected from the ’good
workers’ who performed at least 100 HITs and have accu-
racy greater than 95% on the relatively easy first level of the
hierarchy the leaf-level accuracy rises to 68.5%. These 13
’good workers’ accounted for just over 50% of all HITs.

3http://ttic.uchicago.edu/∼dparikh/publications.htm.
4http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
5http://groups.csail.mit.edu/vision/SUN/

3. geo color Model Performance
Our results showed that geo color model6 achieves the

best correlation with human behavior over line drawings
on the 6-CAT dataset. Here, we analyze the performance
of this model in more detail. Over scrutiny shows similar
feature distributions across color images and line drawings;
more using geo color, denseSIFT, LBP, LBPHF, SSIM,
Texton, geo texton, geo map, ans less using sparseSIFT,
HOG. Fig. 4 shows the confusion matrix of this model.
Note that also the high classification accuracy over line
drawings is not surprising as distributions of black and
white pixels differs dramatically across classes. Further,
high correlation of geo color with humans suggests that
that humans may rely on regional features more than global
scene histograms.

The reason why geo color works well on line drawings
is that categories of 6-CAT dataset are well-separated using
only binary pixel statistics. Fig. 20 shows the histogram of
black regions (black pixels belonging to line drawings) over
images from different categories. As it shows, this simple
feature can distinguish classes to a good extent. Note that
geo color only extracts statistics from the binary image and
there is no other texture or colored pixels in line-drawing
images.

4. Average Similarity Rank of Models
Fig. 21 shows similarity ranks of models on each of the

following tests (plus the average similarity rank over tasks):

• 6-CAT; CP (Color Photographs)

• 6-CAT; LD (Line Drawings)

• SUN

• Animal vs. non-Animal

• Invariance; Animal-180◦

• Invariance; Animal-90◦

• Jumbled Caltech

• Jumbled ISR

• Jumbled OSR

• Sketch

Results are sorted according to the average similarity
rank. Note that the lower the similarity score the better.

6Color histograms are joint histograms of color in CIE Lab color space
(4, 14, and 14 bins, respectively and are calculated over geometric regions;
ground, sky, porous, vertical) [3].



References

[1] J. Vogel, A. Schwaninger, C. Wallraven and H. H. Bülthoff.
Categorization of Natural Scenes: Local vs. Global Informa-
tion. APGV, 2006.

[2] A. Oliva and A. Torralba. Modeling the shape of the scene:
a holistic representation of the spatial envelope, Intl. J. Com-
puter Vision, 2001.

[3] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN
Database: Large-scale Scene Recognition from Abbey to Zoo.
CVPR, 2010.

[4] M. Eitz, J. Hays, and M. Alexa. How Do Humans Sketch Ob-
jects? ACM Transactions on Graphics, Proc. SIGGRAPH,
2012.

[5] D. Parikh. Recognizing Jumbled Images: The Role of Local
and Global Information in Image Classification, ICCV, 2011.

[6] D.B. Walther, B. Chai, E. Caddigan, D.M. Beck, and L. Fei-
Fei. Simple line drawings suffice for functional MRI decod-
ing of natural scene categories. Proceedings of the National
Academy of Sciences (PNAS), 2011.

[7] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour de-
tection and hierarchical image segmentation. IEEE T-PAMI,
2011.

[8] T. Serre, A. Oliva, and T. Poggio. A Feedforward Architecture
Accounts for Rapid Categorization, PNAS, 2007.



gP
b

Ca
nn

y
Lo

g
Pr
ew

itt
Ro

be
rt
s

So
be

l
LD

Figure 1. Line drawings and edge images for some sample images; corresponding to Fig. 1 in the original paper from the 6-CAT dataset.



Jumbled CAL (Caltech)

Jumbled ISR

Jumbled OSR

Figure 2. Sample images from the jumbled images dataset [5].
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Figure 3. Sample distractor scenes corresponding to animal scenes in Fig. 1 of the main text (Test 3).
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Figure 4. Confusion matrix of the geo color model over color images (left) and line drawings (right) over the 6-CAT dataset.



Model Confusion Matrices over Color Images

Figure 5. Confusion matrices of models over original scenes of the 6-CAT dataset.



Model Confusion Matrices over Line Drawings

Figure 6. Confusion matrices of models over line drawings of the 6-CAT dataset.
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Figure 7. Human confusion matrix over sketch dataset [4].
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Figure 8. Left: Human confusion matrix over SUN dataset (only for 13 good workers). Right: Human scene classification accuracy over
SUN dataset for individual workers.
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Figure 9. Histogram of geo colro features for the images shown in Figure 5 of the main text (top: original scene; bottom: it’s line drawing).
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Figure 10. Histogram of denseSIFT features for the images shown in Figure 5 of the main text.
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Figure 11. Histogram of HOG features for the images shown in Figure 5 of the main text.
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Figure 12. Histogram of LBP features for the images shown in Figure 5 of the main text.
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Figure 13. Histogram of LBPHF features for the images shown in Figure 5 of the main text.
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Figure 14. Histogram of sparseSIFT features for the images shown in Figure 5 of the main text.
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Figure 15. Histogram of SSIM features for the images shown in Figure 5 of the main text.
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Figure 16. Histogram of Texton features for the images shown in Figure 5 of the main text.
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Figure 17. Histogram of geo texton features for the images shown in Figure 5 of the main text.
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Figure 18. Histogram of geo map features for the images shown in Figure 5 of the main text.
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Figure 19. Histogram of GIST features for the images shown in Figure 5 of the main text.
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Figure 20. Histogram of ratio of black image regions (in binary line-drawings) over images of the 6-CAT dataset.
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Figure 21. Similarity ranks of models over five tests as well as the average similarity rank over models. The lower the similarity rank, the
better.


