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Abstract

Despite significant recent progress, the best available vi-

sual saliency models still lag behind human performance

in predicting eye fixations in free-viewing of natural scenes.

Majority of models are based on low-level visual features

and the importance of top-down factors has not yet been

fully explored or modeled. Here, we combine low-level fea-

tures such as orientation, color, intensity, saliency maps of

previous best bottom-up models with top-down cognitive vi-

sual features (e.g., faces, humans, cars, etc.) and learn a

direct mapping from those features to eye fixations using

Regression, SVM, and AdaBoost classifiers. By extensive

experimenting over three benchmark eye-tracking datasets

using three popular evaluation scores, we show that our

boosting model outperforms 27 state-of-the-art models and

is so far the closest model to the accuracy of human model

for fixation prediction. Furthermore, our model success-

fully detects the most salient object in a scene without so-

phisticated image processings such as region segmentation.

1. Introduction

Visual attention is a cognitive process that helps humans

and primates rapidly select the highly relevant information

from a scene. This information is then processed finer by

high-level visual processes such as scene understanding and

object recognition. The notion of relevance is determined

by two factors. The first one, often referred as bottom-up

visual saliency, is a task-independent component based on

only low-level and image-based outliers and conspicuities.

The second component is based on volitionally-controlled

mechanisms that determine the importance of scene regions

in daily-life tasks such as driving.

The process of visual attention has been the subject of

numerous studies in psychology, neurosciences, and com-

puter vision. Correspondingly, several computational mod-

els of attention have been proposed in machine learning,

computer vision, and robotics. Several applications have

also been proposed and have further raised interest in this
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Figure 1. Human fixation map for sample images from the MIT [1]

dataset. Top-down concepts including people, social interactions, animals,

cars, signs, faces, and text attract human attention.

field including: image thumb-nailing [7], automatic collage

creation [5], foveated image/video compression [6][9], non-

photorealistic rendering [8], and advertisement design [10].

Models of bottom-up saliency have often been evaluated

against predicting human fixations in free-viewing task. To-

day, many saliency models based on variety of techniques

with compelling performance exist and still each year new

models are introduced. Yet, there is a large gap between

models and the human Inter-Observer (IO) model for pre-

dicting eye fixations. The IO “model“ outputs, for a given

stimulus, a map built by integrating eye fixations from other

subjects than the one under test while they watched that

stimulus. This model is expected to provide an upper bound

on prediction accuracy of models to the extent that, differ-

ent humans may be the best predictors of each other. The

mentioned gap between models and human is largely due to

the role of top-down factors (See Fig. 1).

It is believed that at early stages of free viewing (first few

hundred milliseconds), mainly image-based conspicuities

guide attention and later on, high-level factors (e.g., ac-

tions and events) direct eye movements [53][39]. These

high-level factors may not necessarily translate to bottom-

up saliency (e.g., based on color, intensity, or orientation)

and should be taken into account separately. For instance, a

human’s head may not stand out from the rest of the scene

but may attract attention. Thus, combining high-level con-

cepts and low-level features seems inevitable to scale up

current models and reach the human performance.
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Some top-down factors in free-viewing are already

known although active investigation still continues to dis-

cover more semantic factors. For instance, Einhäuser et

al. [11] proposed that objects are better predictors of fix-

ations than bottom-up saliency. Cerf et al. [14] showed

that faces and text attract human gaze. Elazary and Itti [12]

showed that interesting objects (annotations from LabelMe

dataset [46]) are more salient. Subramanian et al. [13], by

recording eye fixations over a large affective image dataset,

observed that fixations are directed toward emotional and

action stimuli and duration of fixations are longer on such

stimuli. Similarly, Judd et al. [1], by plotting image re-

gions at the top salient locations of the human saliency map

(made of fixations), observed that humans, faces, cars, text,

and animals attract human gaze probably because they con-

vey more information in a scene. Alongside, some personal

characteristics such as experience, age, and culture change

the way humans look at images [54].

Inspired by [1], we propose three contributions to

saliency learning. First, we combine the best of the two

worlds: bottom-up and top-down factors. By comparing

29 saliency models, we consolidate features that the best

bottom-up models have found predictive of human fixations

with top-down factors such as faces, humans, cars, etc. We

train several linear and non-linear classifiers from these fea-

tures to fixations. Second, we emphasize more on internal

parts of attention grabbing objects (e.g., top parts of hu-

mans) for more accurate saliency detection. Through ex-

tensive experiments, we show that our combined approach,

outperforms previous saliency learning methods ([1][48])

as well as other state-of-the-art works over 3 datasets using

3 evaluation scores. Third, we show that our model is able

to detect the most salient object in a scene close to perfor-

mances of the mainstream salient region detection schemes.

Related work. Saliency models in general can be cat-

egorized as cognitive (biological) or computational (math-

ematical) while some happen in between. Several models

are based on the bottom-up saliency model by Itti et al. [4].

This model is the first implementation of the Koch and Ull-

man’s computational architecture [15] based on the Feature

Integration Theory [16]. In this theory, an image is decom-

posed into low-level attributes such as color, intensity, and

orientation across several spatial scales which are then lin-

early or non-linearly normalized and combined to form a

master saliency map. An important element of this theory is

the idea of center-surround that defines saliency as distinc-

tiveness of an image region to its immediate surroundings.

This model also proposes a suitable framework for adapta-

tion of visual search theories and object detection models

(e.g., [18]). Based on the idea of decorrelation of neural

responses, Diaz et al. [29] proposed an effective model of

saliency known as Adaptive Whitening Saliency (AWS). Le

Meur et al. [33], Marat et al. [36], and Kootstra et al. [17]

are other models guided by cognitive findings.

Another class of models are based on probabilistic for-

mulation. Torralba [32] proposed a Bayesian framework

for visual search which is also applicable for saliency de-

tection. Bottom-up saliency is derived from their formu-

lation as: 1
p(F |G) where F represents a global feature that

summarizes the probability density of presence of the target

object in the scene, based on analysis of the scene gist (G).

Similarly, Zhang et al. [38] proposed SUN (Saliency Us-

ing Natural statistics) model in which bottom-up saliency

emerges naturally as the self-information of visual features.

Mancas [25] proposed local (small local neighborhood) and

global (entire scene) rarities as saliency measures. Itti and

Baldi [22] defined surprising stimuli as those that signifi-

cantly change beliefs of an observer by computing the KL

distance between posterior and prior beliefs. Graph based

Visual Saliency (GBVS) [20] and E-saliency [26] are two

other methods based on Bayesian and graphical models.

Decision theoretic interpretation of saliency states that

attention is driven optimality with respect to the end task.

Gao and Vasconcelos [35] argued that for recognition,

salient features are those that best distinguish a class of in-

terest from all other classes. Given some set of features

X = {X1, · · · , Xd}, a location l and a class label Y with

Yl = 0 corresponding to samples drawn from the surround

(Yl = 1 for center region at l), saliency is then a measure of

mutual information (usually KL divergence), computed as

I(X,Y ) =
∑d

i=1 I(Xi, Y ).

Frequency domain models are another class. Hou and

Zhang [23] proposed Spectral Residual Model (SRM) by

relating spectral residual features in spectral domain to the

spatial domain. In [27], Phase spectrum of Quaternion

Fourier Transform (PQFT) is utilized for saliency computa-

tion which is applicable for both static and dynamic stimuli.

Our proposed approaches are related to those models that

learn mappings from image features to eye fixations using

machine learning techniques. Kienzle et al. [2], Judd et

al. [1], and Peters and Itti [47], used image patches, a vector

of several features at each pixel, and scene gist, respectively

for learning saliency. Zhao and Koch [48][49] learned opti-

mal weights for saliency channel combination separately for

each eye-tracking dataset. While they show tunning weights

for each dataset results in high accuracies, learned weights

sometimes do not agree over datasets. It is also unclear how

this approach generalizes to unseen images. Here, we ex-

ploit more informative features and assess the capability of

stronger classifiers for eye fixation prediction.

In addition to above models, some other models address

salient region detection (e.g., Achanta et al. [44] and

Cheng et al. [41]). The main goal of these models is to find

and segment the most salient object or region in a scene.

In principle, saliency detection and estimation (for fixation

prediction) techniques are applicable interchangeably.
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Figure 2. Illustration of our learning approach. A set of low-level and high-level visual features are extracted from some training images. Feature vectors

corresponding to the top 20% (bottom 40%) of the human heatmap are assigned +1(-1) labels. Then a classifier is trained from these features and is used for

predicting fixations on a test image. Finally, model performance is evaluated using an evaluation metric (see text).

2. Learning a model of visual saliency

In contrast to manually designed measures of saliency,

we follow a learning approach by training classifiers di-

rectly from human eye tracking data. The basic idea is

that a weighted combination of features, where weights are

learned from a large repository of eye movements over nat-

ural images, can enhance saliency detection compared with

unadjusted combination of feature maps. A learning ap-

proach has also the benefit of being easily applicable to vi-

sual search by enhancing feature weights of a target object.

In the following, we propose a Naive Bayesian formula-

tion for saliency estimation. Let s be a binary variable de-

noting saliency of an image pixel at location x = (x, y) with

feature vector f, where “s equal 1“ indicates that this pixel

is salient (i.e., it can attract human eye) and zero, otherwise.

The probability of pixel x being salient can be written as:

p(s|f, x) =
p(f|s)p(s|x)

p(f|x)
=

p(f|s)p(s|x)

p(f)
(1)

=
p(s|f)p(s|x)

p(s)
∝ p(s|f)p(s|x)

Above formula is based on the assumption that features can

appear in all spatial locations (i.e., x and f are independent

from each other thus p(f|x) = p(f)). We further assume

that prior probabilities over s (i.e., a location being salient

or not) are equal. The first term on the right side of Eq. 1

measures saliency due to features at an image pixel, while

the second term measures saliency only based on the spa-

tial location of a pixel. We learn p(s|f) in a discriminative

approach using classifiers from annotated data (fixated lo-

cations). We estimate p(s|x) by:

p(s|x) ∝ 1− d(x, xo) (2)

where d(x, xo) is the normalized distance of the pixel x from

the center pixel xo. This resembles a Gaussian pdf that has

been shown to explain fixations in free-viewing well [39].

2.1. Visual features

Low-level (bottom-up) features. Traditionally, inten-

sity, orientation, and color have been used for saliency

derivation over static images. Over dynamic scenes

(videos), flicker and motion features have been added [55].

Several other low-level features have also been employed

(e.g., size, depth, and optical flow) [56]. Here, we first

resize each image to 200 × 200 pixels and then extract a

set of features for every pixel. Similar to [1], we use low-

level features as they have already been shown to correlate

with visual attention and have underlying biological plausi-

bility [16][15]. Low-level features are listed below:

• 13 local energy of the steerable pyramid filters in 4

orientations and 3 scales.

• 3 intensity, orientation, and color (Red/Green and

Blue/Yellow) contrast channels as calculated by Itti

and Koch’s saliency method [4].

• 3 values of the red, green, and blue color channels

as well as 3 features corresponding to probabilities of

each of these color channels.

• 5 probabilities of above color channels as computed

from 3D color histograms of the image filtered with a

median filter at 6 different scales.

• 3 saliency maps of Torralba [32], AWS [29], and

GBVS [20] bottom-up saliency models.

This results in 30 low-level features. Note that, center-

surround operation is directly applied over maps of some

features (e.g., Itti feature maps). Although in practice, it

is possible to use any bottom-up model as a feature, here

we utilize Torralba [32], AWS [29], and GBVS [20] models

because these models have high fixation prediction power1,

employ radically different saliency mechanisms, are fast,

and can be calculated from the other low-level features. Ex-

perimenting with other models did not help our results but

we don’t completely rule out such possibility. AWS model

uses the Lab color space and decorrelates the feature maps

while GBVS employs a measure of dissimilarity over image

pixels to calculate saliency over a graph. Here, we exploit

linear features. Our framework allows addition of other

1GBVS model performs higher than other models over AUC, CC, and NSS scores

later shown in Fig. 5, and Fig. ??. AWS model has the best shuffled AUC score which

is a variant of AUC designed to tackle center bias by emphasizing more off-center

fixations [38]. Please see supplement.
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Car: # 80 People: # 365 Face: # 266 Car: 35.99 x 59.52

People: 68.22 x 30.22

Face: 42.15 x 37.17

Figure 3. Left: mean position of object locations, Right: mean fixation locations

over objects (Data from MIT dataset [1]).

non-linear features such as corners, to account for outliers

due to changes in texture (famous egg in the nest or birthday

candle images [38]). Extracted features for a sample image

are illustrated in Fig. 2.

High-level (top-down) features. High-level features

such as faces and text [14], people and cars [1], symme-

try [17], and signs have been suggested to direct attention.

These are prior knowledge that are learned through a hu-

man’s life time. One challenge is detecting affective (emo-

tional) features and semantic (high-level knowledge) scene

properties, such as causality and action-influence, which

are believed to be important in guiding attention. These

factors influence both eye fixation locations and their du-

rations [13]. High-level features that we include into our

feature set are as follows:

• The horizontal line due to tendency of photographers

to frame images and objects horizontally.

• Person and car detectors implemented by Felzen-

szwalb’s Deformable Part Model (DPM) [50].

• Face detector using the Viola and Jone’s code [51].

From annotated data, we noticed that certain regions in

objects attract more attention, for example top-part of hu-

mans (head area) and face components (eyes, nose, and

mouth)(see Fig. 3). To enhance saliency of those regions,

we multiplied an object’s detected region with the learned

mean saliency map for that object (learned from training

data). In general, performance of saliency detection by

adding object detectors is highly dependent on the false pos-

itive rates of the employed detectors. For instance, if a face

detector generates many false alarms for an image with no

face then it dramatically reduces the evaluation scores. Un-

fortunately, despite high importance of text features in guid-

ing gaze, to date, there is no reliable approach that can de-

tect text in natural scenes.

Another important feature is the center prior based on

the finding that majority of fixations happen near the center

of the image (i.e., center-bias [39]). For fair comparison of

classifiers with baseline approaches (AWS and GBVS mod-

els), here we treat the center feature separately. According

to Eq. 2, we multiply saliency map of each model with

p(s|x), the distance of each pixel from the center.

Eventually, all features are augmented in a 34D (30

bottom-up + 4 top-down) vector (excluding center) and are

fed to classifiers explained in the next section. Each feature

map is resized into a 200×200 map which is then linearized

into a 1× 4000 vector (similarly for class labels).

2.2. Classifiers

We investigate the ability of linear and non-linear clas-

sifiers for fixation prediction. Linear classifiers are usually

fast to compute via matrix operations and learned weights

are easier to interpret. On the other hand, non-linear mod-

els are usually slower but more powerful. Fig. 2 shows a

schematic illustration of our saliency learning method. We

compile a large training set by sampling images at fixations.

Each sample contains features at one point along with a

+1/−1 label. Positive samples are taken from the top p per-

cent salient pixels of the human fixation map (smoothed by

convolving with a small Gaussian filter) and negative sam-

ples are taken from the bottom q percent. We chose samples

from the top 20% and bottom 40% in order to have samples

that were strongly positive and strongly negative. Training

feature vectors were normalized to have zero mean and unit

standard deviation and the same parameters were used to

normalize test data. To evaluate our models, we followed a

cross-validation approach. The whole dataset was divided

into K parts, each with M images. Each time we trained

the model from K−1 parts and tested it over the remaining

part. Results are then averaged over all partitions.

Regression. Assuming a linear relationship between

feature vector f and saliency s, we solve the equation

F × W = S where F and S are matrices of f and s
over training data. The solution is: W = F+ × S, where

F+ is the least-square pseudo-inverse of matrix F through

SVD decomposition. To avoid numerical instability, those

eigenvectors whose eigenvalues were less than half of the

largest eigenvalue were discarded during computation of the

pseudo-inverse. For a test image, features are first extracted

and then the learned mapping was applied to generate a vec-

tor which is then resized to a 200× 200 saliency map.

SVM. Using liblinear support vector machine2., a pub-

licly available Matlab version of SVM, we also trained a

SVM classifier. We adopted linear kernels as they are faster

and perform as well as non-linear polynomial and RBF ker-

nels for fixation prediction [1]. In testing, similar to Regres-

sion, instead of predicted labels (i.e., +1/ − 1), we use the

value of WT f + b where W and b are learned parameters.

Boosting. To investigate a non-linear mapping of fea-

tures to saliency, we used AdaBoost algorithm [52], which

has many appealing theoretical properties with applications

in scene classification and object recognition. Given N
labeled training examples (ui, vi) with viǫ{−1,+1} and

uiǫU , AdaBoost combines a number of weak classifiers ht

to learn a strong classifier H(u) = sign(f(u)); f(u) =
∑T

t=1 αtht(u) where αt is the weight of the t-th classifier.

Here, we set the number of weak classifiers, T , to 10 which

resulted in high accuracy and reasonable speed. Instead of

the class label, we consider the real value of H(u) to create

2Libsvm: http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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a saliency map (i.e., f(u)). Final map is first smoothed by

convolving with a small Gaussian kernel and is then passed

through an exponential function for better illustration. We

used the publicly available software for Gentle AdaBoost3.

3. Experimental setup

A thorough evaluation of classifiers and features is pre-

sented in this section. Here, along with evaluation of our

model, we also compare several models for future refer-

ences. We were able to run 27 saliency models4. In ad-

dition, we also implemented two other simple yet powerful

models: Gaussian Blob (Gauss) and Human inter-observer

model. Gaussian blob is simply a 2D Gaussian shape drawn

at the center of the image; it is expected to predict human

gaze well if such gaze is strongly clustered around the im-

age center. The inter-observer model outputs, for a given

stimulus, a map built by integrating eye fixations from other

subjects than the one under test while they watched that

stimulus. Models maps were resized to the size of the origi-

nal images onto which eye movements have been recorded.

3.1. Eye movement datasets

Since available eye movement datasets have different

statistics, types of stimuli, and numbers of subjects, here we

exploit 3 benchmark datasets for fair model comparison.

The first dataset, MIT [1]5, contains 1003 images col-

lected from Flicker and LabelMe [46] datasets. The longest

dimension of images is 1024 with other dimension ranging

from 405 to 1024. There are 779 landscape and 228 por-

trait images. Fifteen human subjects viewed images. Im-

ages are shown for 3 seconds with 1 second gray screen be-

tween each two. The second dataset, Toronto [21]6, is the

most widely-used dataset for saliency model evaluation. It

contains 120 color images from indoor and outdoor scenes.

Images are presented at random for 4 seconds with 2 sec-

onds gray mask in between, to 20 subjects. NUSEF7 is a

recently introduced dataset with 758 images containing af-

fective scenes/objects such as expressive faces, nudes, un-

pleasant concepts, and semantic concepts (action/cause). In

total, 75 subjects freely viewed part of the image set for 5

second each (on average 25 subjects per image).

3.2. Evaluation metrics

Since there is no consensus over a unique scores for

saliency model evaluation, we report results over three. A

3http://graphics.cs.msu.ru/en/science/research/

machinelearning/adaboosttoolbox
4Some models were available online. Some authors, either sent us

codes/executables or saliency maps. Compared models include: Variance and En-

tropy, Itti et al. [4] (CIO channels), Surprise [22], VOCUS [19], Torralba [32],

AIM [21], Saliency Toolbox (STB) [37], Le Meur et al. [33], GBVS [20], SRM [23],

Marat et al. [36], Local and Global Rarity models [25], ICL [24], Kootstra et al. [17],

SUN [38], PQFT [27], Yin Li et al. [30], SDSR [34], Judd et al. [1], Bian et al. [28],

E-Saliency [26], Yan et al. [31], Li et al. [3], Tavakoli [40], and AWS [29].
5http://people.csail.mit.edu/tjudd/

WherePeopleLook/index.html
6www-sop.inria.fr/members/Neil.Bruce
7http://mmas.comp.nus.edu.sg/NUSEF.html

MIT [1] Toronto [21] NUSEF [13]

Model - C + C - C + C - C + C

Reg 0.775 0.820 0.787 0.826 0.754 0.784

SVM 0.773 0.835 0.789 0.837 0.758 0.806

Boost 0.806 0.836 0.805 0.838 0.781 0.815

AWS 0.75 0.824 0.770 0.832 0.731 0.790

GBVS 0.815 0.836 0.827 0.834 0.801 0.816

Reg (All) 0.805 0.832 0.815 0.834 0.779 0.796

SVM (All) 0.820 0.848 0.829 0.839 0.797 0.812

Boost (All) 0.835 0.852 0.834 0.847 0.812 0.821

Gaussian 0.810 0.798 0.795

Human 0.912 0.887 0.868

Table 1. AUC scores of models using 32 features over three datasets (average over

10 runs for MIT dataset). - C : without center prior; +C : with center. All: means

34 basic features are used (with AWS and GBVS features). Maximum among mod-

els in each column is shown in bold and black. Boosting outperforms linear SVM,

regression classifiers as well as AWS and GBVS models when all features are added.

model that performs well should be good over all scores.

- Area Under the ROC Curve (AUC): Using this score, the

model’s saliency map is treated as a binary classifier on ev-

ery pixel in the image; pixels with larger saliency values

than a threshold are classified as fixated while the rest of

pixels are classified as non-fixated [21]. Human fixations

are used as ground truth. By varying the threshold, the ROC

curve is drawn as the false positive rate vs. true positive

rate, and the area under this curve indicates how well the

saliency map predicts actual human eye fixations.

- Normalized Scanpath Saliency (NSS) [47]: NSS is the

response value at the human eye position, (xh, yh), in a

model’s predicted gaze map that has been normalized to

have zero mean and unit standard deviation: NSS =
1
σS

(S(xh, yh)− µS). For an image, NSS is computed once

for each saccade, and subsequently the mean and standard

error are computed across the set of NSS scores.

- Linear Correlation Coefficient (CC): The linear correla-

tion coefficient measures the strength of a linear relation-

ship between human fixation map (h) and saliency map (s)

as: CC(h,s) = cov(h,s)

σhσs
where µ and σ are the mean and the

standard deviation of a map, respectively.

4. Model comparison and results

We validate our model by applying it to two problems: 1)

eye movement prediction and 2) segmentation of the most

salient object/region in a scene.

4.1. Fixation prediction

We trained and tested classifiers over the MIT dataset

following cross-validation in Sec. 2.2 (K = 10, M = 100
except the last one containing 103). A trained model over

all images from the MIT dataset was then applied to other

datasets. Table 1 shows AUC scores of models.

Using 32 features (except AWS and GBVS features),

boosting outperformed the other two classifiers. Results

were enhanced with multiplying center-bias feature. Scores

were higher than AWS model and slightly below GBVS.

When adding center-bias, however, the difference between

boosting and GBVS is smaller, sometimes boosting wins.
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Figure 4. Model Comparison

of 29 saliency models over 3

datasets and 3 scores. Only

412 images from NUSEF

dataset were used due to copy-

right concerns. Note that all

models are compared with-

out adding center-bias. Er-

ror bars indicate standard er-

ror of the mean: σ
√

N
where

σ is the standard devision.

Judd model is the result of

SVM with no center feature

(2nd row in Table 1). Over

the MIT dataset, our boost-

ing model scores the best us-

ing 3 evaluation scores fol-

lowed by GBVS and Gaus-

sian models. Over the Toronto

dataset, Tavakoli et al. [40],

achieves the highest scores

and is followed by our model

and GBVS. Over the NUSEF

dataset, boosting outperforms

all models over three scores

(after Gauss using CC).
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Subramanian et al. (N = 412)

Gaussian

Average fixation map

Each circle shows 

10% increase in raduis.

The interpretation behind this is that GBVS is a good

model but has intrinsic center-bias in a way that multiplying

center-bias does not change its performance much (com-

pared when multiplying center-bias with other models).

When we added AWS and GBVS as bottom-up features

to our feature set, performances of our boosting and SVM

classifiers, outperformed GBVS consistently in all cases

with and without center-bias (except SVM over NUSEF).

Results over NSS and CC scores without multiplying

center-bias are shown in Fig. ??. Boosting (no center but

with AWS and GBVS as features) wins over GBVS and

AWS in almost all cases. Overall, this figure shows that

while many models score less than Gaussian model, our

boosting model stands on top of Gaussian and is the best

in majority of cases over 3 datasets and 3 scores. There

is larger gap between models and IO model over NUSEF

and MIT datasets because there are more stimuli with con-

ceptual and top-down factors in these datasets. Tavakoli et

al. [40] performed the best over Toronto dataset where lack

of much top-down factors on images of this dataset, ranks

boosting the second. Removing emphasize on internal parts

of objects reduced AUC of Boosting (32D case in Table 1)

over MIT dataset from 0.806 to 0.792.

Fig. 5 shows ROC curves of models in Table. 1 and the

learned weight vector W of Regression and SVM classifiers

over the MIT dataset. The most important features include:

ROC
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Figure 5. Comparison of our models (All features) with AWS and GBVS

models. ROC curves are for the “+center“ feature case.

horizontal line, GBVS, AWS, and Torralba saliency maps,

as well as face and human detectors.

For our models, it takes 21.5 seconds to extract all neces-

sary features ([0.25 0.54 10.2 0.19 0.31 4.4 3.6 2] seconds

in order for Subband, Itti, Color, Torralba, Horizon, Ob-

jects, AWS, and GBVS maps) and 0.4 seconds to calculate

saliency for a 200 × 200 image. A personal computer run-

ning Linux Ubuntu with 5.8 GB RAM and 12 Core 3.2 GHz

Intel i7 CPU was used. The most expensive channel is color

but it can be removed to make our model faster as it not a

very important channel (See Fig. 5). Sample saliency maps

for our classifiers and 5 best models are shown in Fig. 6.
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Figure 6. Visual comparison of saliency maps for sample images from

MIT dataset [1] along with predictions of several models using AUC.

4.2. Application to salient object detection

Almost all salient region detection approaches utilize a

saliency operator, where from there they start to segment

the most salient object. Here, we show that our approach

could provide a good such starting point. Promising results

here is another evidence toward effectiveness of our model.

We evaluated the results of our approach on the publicly

available dataset, known as ASD, provided by Achanta et

al. [44] which contains 1000 images of manually annotated

objects. We compared our Boosting approach with 11 state-

of-the-art salient object detection methods: IT [4], SR [23],

GB [20] (GBVS), AC [42], FT [44], CA [43], MZ [45],

HC, LC and RC [41], and G [39] which is a Gaussian at the

center of the image. All bottom-up and top-down features

including center prior were used.

We calculate precision and recall curves by binarizing

the saliency map using every possible fixed threshold, sim-

ilar to the fixed thresholding experiment in [44]. As seen

from the comparison (Fig. 7), our saliency model outper-

forms several models while competing with the state-of-the-

art models tailored for this task [44][41]. As there are many

objects at the center, a trivial Gaussian model works better

than several models.
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Figure 7. Precision-recall curves for naive thresholding of saliency maps

using 1000 publicly available benchmark images [44].

Fig. 8 shows examples with human annotations and pre-

dictions of our model. As it can be seen our boosting model

is able to successfully detect the most salient object, even in

the condition that the salient object is not near the center.

Figure 8. Sample images from ASD dataset [44] with human annotations

and unnormalized saliency map of our model.

5. Discussions and conclusions

We learned several models of visual saliency by integrat-

ing bottom-up and top-down features and compared their

accuracy over the same data and scores. Our approach al-

lows adding more features such as saliency maps of other

bottom-up models or other top-down features. Among clas-

sifiers, AdaBoost has the best prediction accuracy followed

by SVM and Regression. It outperforms majority of ex-

isting models and is thus far the closest model to human

performance which can enhance performance of several ap-

proaches in computer vision. It has also competing perfor-

mance for detecting the most salient object in a scene. An

advantage of our approach is its generalization in a way that

a classifier trained on one dataset performs well on the other

datasets as opposed to training and testing for each dataset

separately (as opposed to [48]). Our exhaustive comparison

of the state-of-the-art models shows that although model

rankings differ across datasets and scores, some models

(GBVS [20], Judd et al. [1], Yan et al. [31], AWS [29],

ICL [24], and Tavakoli et al.[40]) are better than the others.

One application of our method is conducting behavioral

studies by comparing model parameters (W ) across popula-

tions of human subjects for their differences in attention, for

instance young vs. elderly or male vs. female. Although de-

veloping more effective bottom-up models based on purely

low-level features is always welcomed, it is very impor-

tant to discover and add more top-down factors for build-
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ing more predictive models. As models are based on dif-

ferent saliency mechanisms, combining them may enhance

the results thus helping to close the gap between humans

and models in free-viewing of natural scenes.

References

[1] T. Judd, K. Ehinger, F. Durand and, A. Torralba. Learning to predict

where humans look, ICCV, 2009. 1, 2, 3, 4, 5, 7

[2] W., Kienzle, A. F., Wichmann, B., Scholkopf, and M. O. Franz. A

nonparametric approach to bottom-up visual saliency. NIPS, 2007. 2

[3] J. Li, Y. Tian, T. Huang, and W. Gao, Probabilistic multi-task learn-

ing for visual saliency estimation in video, IJCV, 2010. 5

[4] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual

attention for rapid scene analysis. IEEE Transactions PAMI, 20(11),

1998. 2, 3, 5, 7

[5] J. Wang, J. Sun, L. Quan, X. Tang, and H.Y Shum. Picture collage.

CVPR, 2006. 1

[6] L. Itti. Automatic foveation for video compression using a neurobio-

logical model of visual attention. IEEE T. Image Proc, 2004. 1

[7] L. Marchesotti, C. Cifarelli, and G. Csurka. ICCV, 2009. 1

[8] D. DeCarlo and A. Santella. Stylization and abstraction of pho-

tographs. ACM Transactions on Graphics, 2002. 1

[9] S. Marat, M. Guironnet et, and D. Pellerin. Video summary using a

visual attention model. EUSIPCO, 2007. 1

[10] R. Rosenholtz, A. Dorai, and R. Freeman. Do predictions of visual

perception aid design? ACM Trans on Applied Perception, 2011. 1
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