

�

Abstract² Similar to humans and primates, artificial

creatures like robots are limited in terms of allocation of their

resources to huge sensory and perceptual information. Serial

processing mechanisms used in the design of such creatures

demands engineering attentional control mechanisms. In this

paper, we present a new algorithm for learning top-down

sequential visual attention control for agents acting in

interactive environments. Our method is based on the key idea,

that attention can be learned best in concert with visual

representations through automatic construction and

discretization of the visual state space. The tree representing

the top-down attention is incrementally refined whenever

aliasing occurs by selecting the most appropriate saccadic

direction. The proposed approach is evaluated on action-based

object recognition and urban navigation tasks, where obtained

results support applicability and usefulness of developed

saccade movement method for robotics.

I. INTRODUCTION

uge sensory space, limited response time, dynamicity of

the perceptual space and the environment, accuracy and

reliability of sensors cause a bounded rationality for a

robotic agent. Attention enhances the rationality of the agent

by implementing a bottleneck which allows only relevant

information to pass to higher level cognitive components

like object recognition, scene interpretation, decision making

and memory for further processing.

From a large body of existing literature in neuroscience

including neurophysiology, psychophysics and modeling

studies, it is now known that attention is controlled both by a

bottom-up, fast, open-loop, automatic and objective

mechanism and also a top-down mechanism which is late,

task-driven, closed-loop and subjective. In visual modality

bottom-up component is solely determined by low-level

image characteristics like color and luminance and is mainly

processed by the early visual areas. On the other hand, top-

down attention is influenced by the task demands, emotions,

expectations, etc. which mainly come from higher cognitive

brain areas like prefrontal cortex, LIP, etc [1]. Interactions of

these two mechanisms control our attentional behavior.

This work was supported by the School of Cognitive Sciences, Institute

for Research in Fundamental Sciences, Tehran, IRAN.

Ali Borji is with the School of Cognitive Sciences, Institute for Research

in Fundamental Sciences, Niavaran Bldg., P.O. Box 19395-5746, Tehran,

IRAN (corresponding author. phone: +98 21-22294035; fax: +98 21-

22280352; e-mail: borji@ipm.ir).

Majid Nili Ahmadabadi and Babak Nadjar Araabi are both with the

School of Electrical and Computer Engineering, University of Tehran and

School of Cognitive Sciences, Institute for Research in Fundamental

Sciences, Tehran, IRAN (e-mails: {mnili@ut.ac.ir, araabi@ut.ac.ir}).

Although we have a good understanding of the bottom-up

mechanisms by a broad range of behavioral and modeling

studies, to date much less is known in essence and neural

mechanisms of the top-down component of visual attention.

It is also believed that visual attention is selective to both

spatial locations and objects [2]. Not only individual spatial

regions are important in terms of the value of information

they convey, but also their relationships are significant in

deriving attention [3]. Visual attention can also be directed

to particular features such as color, orientation and direction

of motion [4].

Hand design of control strategies assumes embedding

predefined representations in the brain of a mobile robot.

Although applicable, such methods are prone to impose

overheads in computational complexity and response time.

Actually an agent situated in an environment might be able

to discover simpler and more efficient representations

interactively while having the same efficiency in performing

the same tasks. Shaping visual representations dynamically

helps the agent to automatically adapt himself to new

environmental conditions.

Learning, decision making and attention control are

interleaved cognitive processes. It has been shown that eye

movements are context-based and task-driven [5]. Previous

experiences also influence attentional behaviors which

indicate that attention control can be learned [6]. In [7],

authors have shown that attention is also affected by

decision behaviors. Other studies have proposed that our

brain may follow a need-based approach for representing the

desired scenes or objects [8]. Considering the above

information, semi-supervised approaches in AI and specially

RL techniques seem to be the most appropriate tools for

learning visual representations and attention control

mechanisms. The agent must learn an optimal decision

policy along with how to control its attention while

interacting with the environment. Such a learning

mechanism should help the agent to discover and adopt

attention control strategies which are suitable for its needs in

a dynamic, complicated and nondeterministic environment.

In other words, it should enable the artificial agent to learn

to control its visual attention purposefully using top-down

attentional signals.

The main contribution of this work is to propose a

scalable approach for learning top-down and task-based

visual attention control in natural interactive environments

by dynamically discretizing visual space whenever aliasing

occurs. In order to recognize a scene only a few spatial

locations are processed instead of the entire image.

Learning Sequential Visual Attention Control through

Dynamic State Space Discretization

Ali Borji, Majid N. Ahmadabadi, and Babak N. Araabi

H

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 2258

Authorized licensed use limited to: Universitat Bonn. Downloaded on November 4, 2009 at 10:13 from IEEE Xplore. Restrictions apply.

Particularly, informative visual features are only extracted

and examined at the focus of attention. Our method for

learning top-down task-driven visual attention control is

computationally efficient and biologically plausible.

The rest of this paper is organized as follows. In section

two, some related works are reviewed. Our proposed

algorithm for saccade learning is proposed in section three.

Experiments and results are shown in section four. Finally,

section five concludes the paper.

II. RELATED LITERATURE

Reinforcement learning has previously been used for

learning visual attention control in robotics especially for

applications like robot navigation and localization.

In [9, 10], a 3 step architecture is proposed for an object

recognition task. First, it extracts potential focuses of interest

(FOI) according to an information theoretic saliency

measure. Then it generates some weak object hypotheses by

matching the information at WKH�)2,¶V�ZLWK�FRGHERRNV��7KH�

final step is done using Q-learning with the goal of finding

the best perceptual action according to the search task.

In [11], two approaches are proposed in a robotic platform

with neck, eyes and arms for attention control. The first

approach is a simple feedforward method which uses back-

propagation learning algorithm while the second one uses

reinforcement learning and a finite state machine for state

space representation. The robot has 3 types of actions:

attention shift, visual improvement and haptic improvement.

Their results confirm that the second approach generates a

better performance in terms of finding previously observed

objects even with fewer movements in head and neck and

also in attention center shift. In [12], another robotic

platform containing articulated stereo-head with 4 degrees of

freedom is presented which can select the region of interest,

perform attention shift with saccadic movements, build a

map out of the environment and update it according to

current observation. In [12], attention control has two steps:

first, coarse eye movements and then more precise iterative

adjustments around the first points. The termination

condition of this process is to reach a maximum correlation

among what it finds and what it expects.

An RL approach for learning gaze control for a mobile

robot performing a visual search task is proposed in [13].

This model is implemented using a fixed pan-tilt-zoom

camera in a visually cluttered lab environment which

samples the environment at discrete time steps. The agent

has to decide where to fixate next, merely based on visual

information, in order to reach the region where a target

object is most likely to be found. The model consists of two

interacting modules. In the first module, RL learns a policy

on a set of regions in the room for reaching the target object,

using an objective function which is the expected value of

sum of discounted rewards. By selecting an appropriate gaze

direction at each step, this module provides top-down

control in the selection of the next fixation point. The second

PRGXOH� SHUIRUPV� ³ZLWKLQ IL[DWLRQ´� SURFHVVLQJ�� EDVHG�

exclusively on visual information.

In [14], a context-based outdoor scene recognition

algorithm for mobile robotic applications is proposed based

RQ�WKH�LGHD�RI�³JLVW´�RQ�WRS�RI�WKH�VDOLHQF\�PRGHO [15]. This

method is claimed to have low computational complexity

while being biologically plausible.

In [16], Jodogne et al. have proposed an approach for

learning action-based image classification known as

Reinforcement Learning of Visual Classes (RLVC). RLVC

consists of two interleaved learning processes. An RL unit

which learns image to action mappings and an image

classifier which incrementally learns to distinguish visual

classes. RLVC is a feature based attention method in which

the entire image is processed to find out whether a specific

visual feature exists or not in order to move in a binary

decision tree. Like RLVC, our approach also extends the U-

TREE [17] to visual domain. The main idea behind the U-

TREE algorithm is that aliased states are incrementally

refined. Our approach tackles this weakness of RLVC, the

exhaustive search for a SIFT feature over the entire image,

by computing and searching SIFTs at few locations.

III. PROPOSED LEARNING METHOD

In our method, attention is directed toward spatial circular

regions. An attention tree (saccade tree or S-TREE) is

incrementally built from the incoming visual inputs. In each

node of the saccade tree, visual content at the focus of

attention (FOA) is inspected. Visual content in our method is

the class of the nearest SIFT feature to the center of FOA.

Before learning, features are clustered into some groups.

A. Clustering Local Descriptors (SIFTs)

Sequential attention in our method shifts the focus of

attention toward the most informative visual regions. Final

output of the algorithm is a scanpath of eye movements for

each image. There is no need to represent the pattern at each

FOA in fine detail, but an approximate characterization

suffices to discriminate among objects and scenes. FOA is a

circular region with fixed radius r. In order to derive a rough

local descriptor representation, SIFT features [18] of some

random images 3 = {M1,M2,å , M|3|} were extracted and then

clustered using standard k-means algorithm. Therefore a set

of |T| clusters 6 = {ì1, ì2,å , ì|6|}, hereafter referred to as

codebooks, were generated. At each FOA, the codebook, d,

of the nearest SIFT feature, k, is considered as the visual

content at FOA:

 @ = =NCIEJF |SIFT(1# ,G F ìF |,

G is index of the nearest SIFT to center of FOA (1)

Fig. 1 shows SIFT features of sample objects from the

COIL100 object dataset, used in experiment I. Agent can

saccade to one of the eight directions relative to the end of

the current position as shown in fig. 1b.

Fig. 1. a) Sample objects from the COIL100 dataset with extracted SIFT

features. b) Discretization of angle into eight saccadic directions with fixed

saccade length for encoding of the VDFFDGLF�PRYHPHQWV��û.� ���o).

2259

Authorized licensed use limited to: Universitat Bonn. Downloaded on November 4, 2009 at 10:13 from IEEE Xplore. Restrictions apply.

B. Learning Saccade Tree (S-TREE)

An efficient way to implement attention and state space

construction is by means of tree data structures. Such

structures are interesting because they allow simultaneous

learning of representations and attention control.

Visual discretization is performed via attention tree or

saccade tree (S-TREE) whenever aliasing occurs. Such

refinement is performed to increase cumulative reward of

the agent. Each internal node of the S-TREE proposes a

single saccade toward one of the eight possible directions.

Edges below each node test the codebook seen at the end of

the saccade vector in a circular area with radius r (FOA).

First saccadic position is selected in random and is the same

for all images (e.g., center of the image). Based on the

observed codebook at the end of the saccade, next saccade is

initiated until a leaf node is reached in the tree. Leaves of the

tree point to states in the Q-table. Since tree is constructed in

a greedy manner, it is prone to overfitting. Solutions should

be anticipated to overcome this problem by either periodic

tree restructuring or pruning, for instance by merging the

nodes with the same best actions or replacing nodes with all

their leaves having the same best actions.

While traversing the tree some cases might happen when a

codebook seen at the end of the saccade does not exist below

a node. In such cases a new child is created with this

codebook as its edge label. Such nodes might be noises

therefore after some steps they are checked to be removed or

finalized based on the number of patterns beneath them.

S-TREE is incrementally built in a quasi-static manner in

two phases: 1) RL-fixed phase and 2) Tree-fixed phase. The

algorithm starts with one node in the Tree-fixed phase. In

each phase of the algorithm external feedback of the critic,

in the form of a scalar reward or punishment, is used to

alternatively update the Q-table or refine the attention tree.

Initially a tree with a single node is created and all images

are mapped to that node. Evidently, such a single state is not

enough and aliasing occurs. Then, the algorithm breaks the

node to a number of leaves based on some gathered

experiences under the node. In each Tree-fixed phase, RL

algorithm is executed for a number of episodes by following

an 0-greedy or soft-max action selection policy. In this

phase, tree is hold fixed and the derived quadruples (st, at,

rt+1, st+1) are only used for Q-table update according to Q-

learning update rule (2).

3:OP ,=P; = :1 F Ù;3:OP ,=P; + Ù:NP + ÛI=T= 3:OP+1, =;; (2)

Attention control and state discretization occur in the RL-

fixed phase. An important point here is that the agent only

accesses the environment through its visual sensor (e.g. its

CCD camera), therefore in order to determine its state, it has

to traverse its saccade tree from the root node down to a leaf,

which determines its state st at time t. In the current state, the

agent performs an action according to its learned policy. At

this point, based on the received reward and the next

captured image, which leads to state st+1, the agent updates

the Q value for the state st.

After each RL-fixed phase, memory items of leaf nodes

are deleted. Leaf nodes without memory are removed from

the tree too.

C. Measuring Aliasing

In RL-fixed phase, learned tree is modified to refine leaves

with perceptual aliasing. In order to estimate a measure of

aliasing, some experiences should be accumulated under a

leaf node. This is done by the agent performing some

episodes running the current policy learned at the previous

Tree-fixed phase. An image is captured, saccade tree is

traversed (traverseTree() function in table I) in order to find

the perceptual state, appropriate action is performed and a

reward is received. A good measure of perceptual aliasing in

a state (leaf node) is the TD error (¿P) and can be derived

from the Q-learning formula as in (3).

3:OP ,=P; = :1 F Ù;3:OP ,=P; + Ù:NP+1 + ÛI=T= 3:OP+1,=;;
 = Ù FNP+1 + ÛI=T

=
3:OP+1,=;F 3:OP , =P;G+ 3:OP , =P;

 = Ù¿P + 3:OP , =P; (3)

In order to detect aliasing, all patterns under a node are

clustered according to their physical actions and then if any

of these clusters has variance in ¿P¶V greater than a threshold

(aliasingThreshold), then that node has aliasing at least with

respect to one action. Therefore, ¿P reduces to (4), because

the third term of ¿P in (3), is the same for all clustered

patterns under a node.

¿P= NP+1 + ÛI=T= 3:OP+1, =; (4)

¿P¶V converge to zero as the RL algorithm converges when

there is no further perceptual aliasing. Therefore, in each

step of RL, ¿P is a measure of perceptual aliasing in a state s

with respect to an action a (checkAliasing() in table I).

D. Tree Refinement

When an aliased class is detected, a saccade direction

should be selected in order to maximally separate patterns

under this class. In order to find the best saccade direction an

anticipatory mechanism is needed. When an image ends in

state st, codebooks along the next eight saccade directions,

¿P measure of aliasing and performed action are saved as a

memory item (gatherMem()in table I).

Whenever size of the memory under a state passes a

threshold (maxThreshold) and it has aliasing, then tree is

refined in order to remove aliasing. Tree refinement is then

done by selecting the saccade direction which mostly

reduces the variance in ¿P of patterns in memory according

to (5).

>LÛ =Û? = =NCIEJL ,= LR=N(.) F Í |.= ,L ,? |

�.= �
R=N(.= ,L ,?)

|6|

?=1

M

 = =NCI=TL ,= @ Ã
|.= ,L ,? |

�.= �
R=N(.= ,L ,?)

|6|
?=1 A (5)

In the above formula, L is the set of ¿PµV� RI� all items in

memory, La is the set of ¿PµV�RI�memory items with action a.

La,p,c is the set of ¿PµV�RI�items with action a, direction p and

codebook c. |U| and var(U) are the size and variance of the

set U. LÛ and =Û are the saccadic direction and the action

which reduce variance the most, respectively. The whole

process of learning saccade tree is summarized in the

pseudocode of table I.

2260

Authorized licensed use limited to: Universitat Bonn. Downloaded on November 4, 2009 at 10:13 from IEEE Xplore. Restrictions apply.

TABLE I

PSEUDOCODE OF THE S-TREE ALGORITHM

main (void)

 tree = Create a tree with a single node

 Repeat

 for i = 1 to maxEpizodes // RL- fixed phase

 It = take an image

 st = traverseTree(tree, It)�

 [st+1 rt+1 at] = selectAction(st)

 ût = calcDelta (st, st+1, rt+1, at)

 mem = gatherMem(at, It, ût)

 end

 for j=1 to size(tree.leaves) // Refining states with aliasing

 if size(mem(sj)) > memTreshold

 if checkAliasing(sj)

 tree = modifyTree(tree, sj)

 end

 pruneTree(tree) // Periodic tree pruning

 for i = 1 to maxEpizodes // Tree- fixed phase

 It = take an image

 st = traverseTree(tree, It)

 [st+1 rt+1 at] = selectAction(st)

 Q-table = updatePolicy(Q-table, st)

 end

 Until (no more aliasing) or (maximum iterations is reached)

traverseTree (node,It)

 if node.childSize > 0

 codebook = getCodeBook(node, I)

 child = findChild(node, codebook)���

 node = traverseTree (child, It)

 end

�� return node

checkAliasing(st)

 for action a Ð A // A is the set of physical actions

 mem(a) = all memory items with action a under st

 var(a) = calcVariance (mem(a))

 if var(a) > aliasingThreshold

 return true;

 end

 return false;

modifyTree(tree, st)

 for action a Ð A // A is the set of all actions

 mem(a) = all memory items with action a under st

 for direction d Ð D // D is the set of saccade directions

 calc the conditional variance in (5) and choose the direction

 which reduces variance the most and then break the leaf node

 into a number of new leaves. Also delete the previous state

 associated with this leaf and create new states for new leaves in

 the Q-table

 end

 end

IV. EXPERIMENTAL RESULTS

In order to evaluate our algorithm, we have applied it to

two visual navigation tasks which capture the main

characteristics of real world scenarios. The first task is

navigation in a visual gridworld with obstacles and a goal

state and the second one is an urban navigation task. In both

experiments, 5 SIFT clusters derived from sample images

from that database were used to encode the visual contents at

FOA¶V.

A. Navigation in the Visual Gridworld

The aim in this task is to reach the goal state in the upper

right corner of the grid shown with red G. The gent has a set

of 4 physical actions: move up, right, left and down and has

no DFFHVV�WR�LWV�SRVLWLRQ�LQ�WKH�JULG��$JHQW¶V�RQO\�SHUFHSWLRQ�

of the world is through an image of the object underneath his

foot. Any movement taking the agent to an obstacle cell or

outside the gird brings it a -1 punishment. When it reaches

the goal state, it is rewarded a +1 signal. Each cell of the

grid is carpeted with a 128×128 image of the COIL 100

object database which is available at [19]. As shown in fig.

2, S-TREE has managed to recognize all the objects as well

as a valid policy by creating 7 distinct perceptual classes

after two turns.

Fig. 2. Performance of the S-TREE algorithm on a 3×3 visual navigation

gridworld. The derived policy is shown at the upper-left panel. Numbers in

the upper-left and the bottom-right corners of the images determine labels

of the tree leaves and grid positions respectively. aliasingThreshold was set

to 0.3 and size of the saccade vector length was set to 20 pixels.

maxEpizodes was 200. . and � were both 0.9. Radius of the circle at the

FOA was 10. maxThreshold was 40. Arrows inside the internal nodes and

numbers on edges are saccadic directions and codebooks, respectively.

When same objects are assigned to two different locations

in the grid, bottom-left and upper-left positions in fig. 3, S-

TREE derives 6 states. That is because the best actions for

these two positions are the same and therefore there is no

need for further refinement. This clearly shows how action-

based scene classification differs from ordinary scene

classification methods. The latter case also resulted in the

optimal policy.

Fig. 3. Generated attention tree (right) for the 3×3 visual gridworld at the

left. Parameters of the S-TREE were the same as in fig. 2.
Experimenting with another more complex 6×6

gridworld, shown in figure 4, S-TREE succeeded to derive

the optimal policy after 10 iterations (phases). Number of

generated visual classes was 28 equal to the number of the

non-obstacle non-goal positions in the grid.

2261

Authorized licensed use limited to: Universitat Bonn. Downloaded on November 4, 2009 at 10:13 from IEEE Xplore. Restrictions apply.

Fig. 4. The 6×6 visual gridworld in experiment I. maxEpizodes was 400.

Other parameters were the same as in fig. 2. Learned best actions are shown

in bottom-right of the images.

B. Invariancy Analysis

To evaluate the generalization capacity of the S-TREE, we

performed an experiment over a 4×4 gridworld with the

difference that in each cell, the agent can take a random

view of an object. From the total of 16 grid positions, two

cells were obstacles and one state was goal. Thirteen objects

from COIL100 dataset and 5 views from each one in the

range between 0o and 20o degrees are assigned to grid

positions: therefore, 13×5 = 65 states are possible.

Fig. 5. Parameters for this experiment were as follows: maxEpizodes = 40,

iterations = 26, aliasingThreshold = 0.6. Other parameters were the same as

in fig. 2.
S-TREE succeeded to find an optimal policy for this grid

in 16 iterations. Generated S-TREE in this case had 31

perceptual states. This number is greater than the number of

gird cells and still less than the possible perceptual states.

This shows that S-TREE is to some extent invariant to in-

depth rotations. Optimal policy of 100% was achieved. As

shown in fig. 5, scanpath of eye movements remained the

same for some views with minor rotations.

Fig. 6 shows the distribution of the object views in the

perceptual classes for each object. As can be seen, some

views of an object are classified in the same perceptual state

while others are classified under other states.

Fig. 6. Distribution of object views in perceptual states.

C. Urban Navigation

We applied the S-TREE algorithm to an urban navigation

task, in which the agent is faced with images of natural

scenes. This task demonstrates the interactive environments

in which the agent has to derive visual states as well as their

associated physical actions. The way the agent discriminates

the scenes is by looking at special spatial positions. The

dataset used in this experiment is freely available at [20].

Fig. 7 shows the map of the environment. This Map

FRQVLVWV� RI� ��� ORFDWLRQV�� $JHQW¶V� ERG\� FDQ� RULHQW� LQ� 4

possible directions: North, South, West and East. The agent

can perform three physical actions: turn left, turn right and

go forward and has to enter a goal state which brings it a

reward of +100. Each turn brings a punishment of -5 for the

agent. Moving forward induces a penalty of -10. In each

possible location and head direction, the agent captures a

1024×768 image. The agent must learn to associate scenes to

physical actions in order to achieve the task. That way, agent

has total number of 11×4 states. S-TREE generated 44

perceptual classes in 24 episodes. Optimal policy was also

learned. Generated saccadic eye movements for some

sample images are shown in fig. 8.

Fig. 7. Map of the environment in the experiment II with the optimal policy.

Saccade vector length=150, maxEpizodes=60, aliasingThreshold=0.4, r=40,

memThreshold=30, iterations=12, . = 0.8, � = 0.9.

Fig. 8. Sample scenes with learned saccadic eye movements.

2262

Authorized licensed use limited to: Universitat Bonn. Downloaded on November 4, 2009 at 10:13 from IEEE Xplore. Restrictions apply.

Average reward per episode in Tree-fixed phases, number

of tree nodes and leaves, average depth of the tree and the

number of checks for aliasing in RL-fixed iterations are

shown in fig. 9. It shows the number of times patterns in

nodes exceeded memThreshold and thus demanded checking

aliasing. Final generated tree had 62 nodes with 44 of them

being leaf nodes and the final average depth of 3.0930. This

means that instead of extracting SIFT features in a 1024×768

area they were only calculated at a 3.0930 × è × 402 pixels

area on average.

Fig 9. Smoothed average reward (W = 50), number of tree nodes and

leaves, average tree depth and checks for aliasing in the second experiment.

V. CONCLUSIONS AND DISCUSSIONS

A method for learning top-down visual attention control

in interactive environments was presented through

dynamically discretizing the visual state space. Compared

with the approach in [16], S-Tree algorithm produces trees

with smaller depth, making it more suitable for real time

applications.

The main contribution of our algorithm is in generating

saccade trees which only needs calculating the SIFT features

at few spatial locations of the image. It is also in accordance

with some behavioral attention mechanisms and is

categorized under the space based models of attention.

Actually, saliency of the image locations is determined by

the expected reward they convey in an interactive task.

Obtained results point toward the fact that active

perception together with active movements may play an

important role in the mechanisms that the brain uses for

representing the world. Therefore in this study we avoided

using detailed complex camera-like representations for the

environment and instead incorporated attentions and motor

actions to form the internal representations. An interesting

observation is that, representations are learned interactively

and are expanded or shrank adaptively based on the DJHQW¶V�

needs. They are also as compact as possible and encode the

information at a necessary level without unnecessary details.

For instance, for recognizing a scene, it would be very

efficient and conclusive to attend to important spatial

locations. Therefore global image representation approaches

although might propose more accurate solutions in some

cases, seem not to be the best solutions where information

bottlenecks exist.

In accordance with these views, our method discretizes

the visual world when it is needed and when it helps the

agent to perform more accurately by removing perceptual

aliasing.

It remains to investigate other visual features and saliency

maps [15] as candidate locations for the S-TREE algorithm.

Such approaches might help to merge need-based capability

of the S-TREE with the bottom-up cues of visual attention

and may make the algorithm more robust to image

transformations. Also extending this approach to continuous

action spaces and concurrent clustering of saccadic

perceptions along with previous physical actions in a single

tree helps the agent to act in POMDP environments.

REFERENCES

[1] M. Corbetta, and G. L. Shulman, ³Control of goal-directed and

stimulus-driven attention in the brain�´ Nature Reviews�Neuroscience,

vol. 3, no.3, pp. 201-215, 2002.

[2] M. I. Posner, and Y. Cohen, ³Components of visual orienting,´ in

Attention and Performance X, edited by Bouma H and Bouwhuis D.

Hillsdale: Erlbaum, pp, 531±556. 1984.

[3] N. Endo, and Y. Takeda, ³Selective learning of spatial configuration

and object identity in visual search�´ Perception & Psychophysics,

vol. 66, no. 2, pp.293-302, 2004.

[4] J. H. Maunsell, and S. Treue, ³Feature-based attention in visual

cortex,´ Trends in Neurosciences, vol. 29, pp. 317-322, 2006.

[5] A. L. Yarbus, ³Eye movements during perception of complex

objects�´ in Eye Movements and Vision, ed. L. A. Riggs, Plenum

Press, New York, ch. 7, pp. 171±196� 1967.

[6] V. Maljkovic, and K. Nakayama, ³Priming of pop-out: I. Role of

features�´ Mem. & Cognition, vol. 22, pp. 657-672, 1994.

[7] W. D. Gray, (Ed.), ³Integrated models of cognitive systems,´ New

York: Oxford University Press, 2007.

[8] J. Triesch, D. H. Ballard, M. M. Hayhoe and B. T. Sullivan, ³What

you see is what you need�´ Journal of Vision, vol. 3, no. 86±94, 2003.

[9] *��)ULW]�� &�� 6HLIHUW�� /�� 3DOHWWD�� DQG� +�� %LVFKRI�� ³$WWHQWLYH� 2EMHFW�

'HWHFWLRQ� 8VLQJ� DQ� ,QIRUPDWLRQ� 7KHRUHWLF� 6DOLHQF\� 0HDVXUH´��

WAPCV, pp. 29-41, 2004.

[10] /��3DOHWWD��*��)ULW]��DQG�&��6HLIHUW��³&DVFDGHG�6HTXHQWLDO�$WWHQWLRQ�IRU�

Object Recognition with Informative Local Descriptors and Q-

OHDUQLQJ�RI�*URXSLQJ�6WUDWHJLHV´��CVPR 2005.

[11] L. M. G. Gonic, G. A. Giraldi, A. AF. Oliveira, and P.A. Grupen,

³Learning Policies for Attentional Control,´ IEEE International

Symposium on Computational Intelligence in Robotics and

Automation, pp. 294 ± 299, 1999.

[12] L. M. G. Gonic, A. Antonio, A. AF. Oliveira, and P.A. Grupen, ³A

Framework for Attention and Object Categorization Using a Stereo

Head Robot,´ XII Brazilian Symposium on Computer Graphics and

Image Processing, pp. 143-152, 1999.

[13] S. Minut, and S. Mahadevan, ³A Reinforcement Learning Model of

Selective Visual Attention,´ Fifth International Conference on

Autonomous Agents, Montreal, 2001.

[14] C. Siagian and L. Itti, ³Rapid biologically-inspired scene classification

using features shared with visual attention,´ IEEE Trans. PAMI, vol.

29, no. 2, pp. 300-312, 2007.

[15] L. Itti, C. Koch, E. Niebur, ³A Model of Saliency-Based Visual

Attention for Rapid Scene Analysis, IEEE Trans. PAMI, vol. 20, no.

11, pp. 1254-1259, 1998.

[16] S. Jodogne, and J. H. Piater, ³Closed-Loop Learning of Visual Control

3ROLFLHV�´ Journal of Artificial Intelligence Research, vol. 28, pp. 349-

391, 2007.

[17] A. McCallum, ³Reinforcement learning with selective attention and

hidden state,´ PhD thesis, Computer Science Dept, Univ. of Rochester.

1995.

[18] D. Lowe, ³Distinctive image features from scale-invariant keypoints�´

International Journal of Computer Vision, vol. 60, no. 2, pp. 91±110,

2004.

[19] http://www.cs.columbia.edu/CAVE/coil-100.html.

[20] http://www.montefiore.ulg.ac.be/~jodogne/phd-database.

0 500 1000 1500
5

10

15

1 2 3 4 5 6 7 8 9 10 11 12
0

50

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

1 2 3 4 5 6 7 8 9 10 11 12
0

500

2263

Authorized licensed use limited to: Universitat Bonn. Downloaded on November 4, 2009 at 10:13 from IEEE Xplore. Restrictions apply.

