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Abstract² Similar to humans and primates, artificial 

creatures like robots are limited in terms of allocation of their 

resources to huge sensory and perceptual information. Serial 

processing mechanisms used in the design of such creatures 

demands engineering attentional control mechanisms. In this 

paper, we present a new algorithm for learning top-down 

sequential visual attention control for agents acting in 

interactive environments. Our method is based on the key idea, 

that attention can be learned best in concert with visual 

representations   through automatic construction and 

discretization of the visual state space. The tree representing 

the top-down attention is incrementally refined whenever 

aliasing occurs by selecting the most appropriate saccadic 

direction. The proposed approach is evaluated on action-based 

object recognition and urban navigation tasks, where obtained 

results support applicability and usefulness of developed 

saccade movement method for robotics.  

I. INTRODUCTION 

uge sensory space, limited response time, dynamicity of 

the perceptual space and the environment, accuracy and 

reliability of sensors cause a bounded rationality for a 

robotic agent. Attention enhances the rationality of the agent 

by implementing a bottleneck which allows only relevant 

information to pass to higher level cognitive components 

like object recognition, scene interpretation, decision making 

and memory for further processing. 

From a large body of existing literature in neuroscience 

including neurophysiology, psychophysics and modeling 

studies, it is now known that attention is controlled both by a 

bottom-up, fast, open-loop, automatic and objective 

mechanism and also a top-down mechanism which is late, 

task-driven, closed-loop and subjective. In visual modality 

bottom-up component is solely determined by low-level 

image characteristics like color and luminance and is mainly 

processed by the early visual areas.  On the other hand, top- 

down attention is influenced by the task demands, emotions, 

expectations, etc. which mainly come from higher cognitive 

brain areas like prefrontal cortex, LIP, etc [1]. Interactions of 

these two mechanisms control our attentional behavior. 
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Although we have a good understanding of the bottom-up 

mechanisms by a broad range of behavioral and modeling 

studies, to date much less is known in essence and neural 

mechanisms of the top-down component of visual attention. 

It is also believed that visual attention is selective to both 

spatial locations and objects [2]. Not only individual spatial 

regions are important in terms of the value of information 

they convey, but also their relationships are significant in 

deriving attention [3]. Visual attention can also be directed 

to particular features such as color, orientation and direction 

of motion [4].  

Hand design of control strategies assumes embedding 

predefined representations in the brain of a mobile robot. 

Although applicable, such methods are prone to impose 

overheads in computational complexity and response time. 

Actually an agent situated in an environment might be able 

to discover simpler and more efficient representations 

interactively while having the same efficiency in performing 

the same tasks. Shaping visual representations dynamically 

helps the agent to automatically adapt himself to new 

environmental conditions.   

Learning, decision making and attention control are 

interleaved cognitive processes. It has been shown that eye 

movements are context-based and task-driven [5]. Previous 

experiences also influence attentional behaviors which 

indicate that attention control can be learned [6]. In [7], 

authors have shown that attention is also affected by 

decision behaviors. Other studies have proposed that our 

brain may follow a need-based approach for representing the 

desired scenes or objects [8]. Considering the above 

information, semi-supervised approaches in AI and specially 

RL techniques seem to be the most appropriate tools for 

learning visual representations and attention control 

mechanisms. The agent must learn an optimal decision 

policy along with how to control its attention while 

interacting with the environment. Such a learning 

mechanism should help the agent to discover and adopt 

attention control strategies which are suitable for its needs in 

a dynamic, complicated and nondeterministic environment. 

In other words, it should enable the artificial agent to learn 

to control its visual attention purposefully using top-down 

attentional signals.  

The main contribution of this work is to propose a 

scalable approach for learning top-down and task-based 

visual attention control in natural interactive environments 

by dynamically discretizing visual space whenever aliasing 

occurs. In order to recognize a scene only a few spatial 

locations are processed instead of the entire image. 
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Particularly, informative visual features are only extracted 

and examined at the focus of attention. Our method for 

learning top-down task-driven visual attention control is 

computationally efficient and biologically plausible.  

The rest of this paper is organized as follows. In section 

two, some related works are reviewed. Our proposed 

algorithm for saccade learning is proposed in section three. 

Experiments and results are shown in section four. Finally, 

section five concludes the paper.  

II. RELATED LITERATURE 

Reinforcement learning has previously been used for 

learning visual attention control in robotics especially for 

applications like robot navigation and localization.  

In [9, 10], a 3 step architecture is proposed for an object 

recognition task. First, it extracts potential focuses of interest 

(FOI) according to an information theoretic saliency 

measure. Then it generates some weak object hypotheses by 

matching the information at WKH�)2,¶V�ZLWK�FRGHERRNV��7KH�

final step is done using Q-learning with the goal of finding 

the best perceptual action according to the search task.  

In [11], two approaches are proposed in a robotic platform 

with neck, eyes and arms for attention control. The first 

approach is a simple feedforward method which uses back-

propagation learning algorithm while the second one uses 

reinforcement learning and a finite state machine for state 

space representation. The robot has 3 types of actions: 

attention shift, visual improvement and haptic improvement. 

Their results confirm that the second approach generates a 

better performance in terms of finding previously observed 

objects even with fewer movements in head and neck and 

also in attention center shift. In [12], another robotic 

platform containing articulated stereo-head with 4 degrees of 

freedom is presented which can select the region of interest, 

perform attention shift with saccadic movements, build a 

map out of the environment and update it according to 

current observation. In [12], attention control has two steps: 

first, coarse eye movements and then more precise iterative 

adjustments around the first points. The termination 

condition of this process is to reach a maximum correlation 

among what it finds and what it expects.  

An RL approach for learning gaze control for a mobile 

robot performing a visual search task is proposed in [13]. 

This model is implemented using a fixed pan-tilt-zoom 

camera in a visually cluttered lab environment which 

samples the environment at discrete time steps. The agent 

has to decide where to fixate next, merely based on visual 

information, in order to reach the region where a target 

object is most likely to be found. The model consists of two 

interacting modules. In the first module, RL learns a policy 

on a set of regions in the room for reaching the target object, 

using an objective function which is the expected value of 

sum of discounted rewards. By selecting an appropriate gaze 

direction at each step, this module provides top-down 

control in the selection of the next fixation point. The second 

PRGXOH� SHUIRUPV� ³ZLWKLQ IL[DWLRQ´� SURFHVVLQJ�� EDVHG�

exclusively on visual information.  

In [14], a context-based outdoor scene recognition 

algorithm for mobile robotic applications is proposed based 

RQ�WKH�LGHD�RI�³JLVW´�RQ�WRS�RI�WKH�VDOLHQF\�PRGHO [15]. This 

method is claimed to have low computational complexity 

while being biologically plausible.  

In [16], Jodogne et al. have proposed an approach for 

learning action-based image classification known as 

Reinforcement Learning of Visual Classes (RLVC). RLVC 

consists of two interleaved learning processes. An RL unit 

which learns image to action mappings and an image 

classifier which incrementally learns to distinguish visual 

classes. RLVC is a feature based attention method in which 

the entire image is processed to find out whether a specific 

visual feature exists or not in order to move in a binary 

decision tree. Like RLVC, our approach also extends the U-

TREE [17] to visual domain. The main idea behind the U-

TREE algorithm is that aliased states are incrementally 

refined. Our approach tackles this weakness of RLVC, the 

exhaustive search for a SIFT feature over the entire image, 

by computing and searching SIFTs at few locations.  

III. PROPOSED LEARNING METHOD 

In our method, attention is directed toward spatial circular 

regions. An attention tree (saccade tree or S-TREE) is 

incrementally built from the incoming visual inputs. In each 

node of the saccade tree, visual content at the focus of 

attention (FOA) is inspected. Visual content in our method is 

the class of the nearest SIFT feature to the center of FOA. 

Before learning, features are clustered into some groups. 

A. Clustering Local Descriptors (SIFTs)  

Sequential attention in our method shifts the focus of 

attention toward the most informative visual regions. Final 

output of the algorithm is a scanpath of eye movements for 

each image.  There is no need to represent the pattern at each 

FOA in fine detail, but an approximate characterization 

suffices to discriminate among objects and scenes. FOA is a 

circular region with fixed radius r. In order to derive a rough 

local descriptor representation, SIFT features [18] of some 

random images 3 = {M1,M2,å , M|3|} were extracted and then 

clustered using standard k-means algorithm. Therefore a set 

of |T| clusters 6 = {ì1, ì2,å , ì|6|}, hereafter referred to as 

codebooks, were generated. At each FOA, the codebook, d, 

of the nearest SIFT feature, k, is considered as the visual 

content at FOA:  
 

            @ = =NCIEJF  |SIFT(1# ,G F ìF |,  

G is index of the nearest SIFT to center of FOA     (1) 
 

Fig. 1 shows SIFT features of sample objects from the 

COIL100 object dataset, used in experiment I. Agent can 

saccade to one of the eight directions relative to the end of 

the current position as shown in fig. 1b. 

 
Fig. 1. a) Sample objects from the COIL100 dataset with extracted SIFT 

features. b) Discretization of angle into eight saccadic directions with fixed 

saccade length for encoding of the VDFFDGLF�PRYHPHQWV��û.� ���o).  
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B. Learning Saccade Tree (S-TREE) 

An efficient way to implement attention and state space 

construction is by means of tree data structures. Such 

structures are interesting because they allow simultaneous 

learning of representations and attention control.  

Visual discretization is performed via attention tree or 

saccade tree (S-TREE) whenever aliasing occurs. Such 

refinement is performed to increase cumulative reward of 

the agent. Each internal node of the S-TREE proposes a 

single saccade toward one of the eight possible directions. 

Edges below each node test the codebook seen at the end of 

the saccade vector in a circular area with radius r (FOA). 

First saccadic position is selected in random and is the same 

for all images (e.g., center of the image). Based on the 

observed codebook at the end of the saccade, next saccade is 

initiated until a leaf node is reached in the tree. Leaves of the 

tree point to states in the Q-table. Since tree is constructed in 

a greedy manner, it is prone to overfitting. Solutions should 

be anticipated to overcome this problem by either periodic 

tree restructuring or pruning, for instance by merging the 

nodes with the same best actions or replacing nodes with all 

their leaves having the same best actions. 

While traversing the tree some cases might happen when a 

codebook seen at the end of the saccade does not exist below 

a node. In such cases a new child is created with this 

codebook as its edge label. Such nodes might be noises 

therefore after some steps they are checked to be removed or 

finalized based on the number of patterns beneath them. 

S-TREE is incrementally built in a quasi-static manner in 

two phases: 1) RL-fixed phase and 2) Tree-fixed phase. The 

algorithm starts with one node in the Tree-fixed phase. In 

each phase of the algorithm external feedback of the critic, 

in the form of a scalar reward or punishment, is used to 

alternatively update the Q-table or refine the attention tree. 

Initially a tree with a single node is created and all images 

are mapped to that node. Evidently, such a single state is not 

enough and aliasing occurs. Then, the algorithm breaks the 

node to a number of leaves based on some gathered 

experiences under the node. In each Tree-fixed phase, RL 

algorithm is executed for a number of episodes by following 

an 0-greedy or soft-max action selection policy. In this 

phase, tree is hold fixed and the derived quadruples (st, at, 

rt+1, st+1) are only used for Q-table update according to Q-

learning update rule (2). 
 

3:OP ,=P; = :1 F Ù;3:OP ,=P; + Ù:NP + ÛI=T= 3:OP+1, =;;   (2)  
 

Attention control and state discretization occur in the RL-

fixed phase. An important point here is that the agent only 

accesses the environment through its visual sensor (e.g. its 

CCD camera), therefore in order to determine its state, it has 

to traverse its saccade tree from the root node down to a leaf, 

which determines its state st at time t. In the current state, the 

agent performs an action according to its learned policy. At 

this point, based on the received reward and the next 

captured image, which leads to state st+1, the agent updates 

the Q value for the state st. 

After each RL-fixed phase, memory items of leaf nodes 

are deleted. Leaf nodes without memory are removed from 

the tree too.  

C. Measuring Aliasing 

In RL-fixed phase, learned tree is modified to refine leaves 

with perceptual aliasing. In order to estimate a measure of 

aliasing, some experiences should be accumulated under a 

leaf node. This is done by the agent performing some 

episodes running the current policy learned at the previous 

Tree-fixed phase. An image is captured, saccade tree is 

traversed (traverseTree() function in table I) in order to find 

the perceptual state, appropriate action is performed and a 

reward is received. A good measure of perceptual aliasing in 

a state (leaf node) is the TD error (¿P) and can be derived 

from the Q-learning formula as in (3). 

3:OP ,=P; = :1 F Ù;3:OP ,=P; + Ù:NP+1 + ÛI=T= 3:OP+1,=;;         
  = Ù FNP+1 + ÛI=T

=
3:OP+1,=;F 3:OP , =P;G+ 3:OP , =P; 

           = Ù¿P  + 3:OP , =P;                                                                 (3) 
 

In order to detect aliasing, all patterns under a node are 

clustered according to their physical actions and then if any 

of these clusters has variance in ¿P¶V greater than a threshold 

(aliasingThreshold), then that node has aliasing at least with 

respect to one action. Therefore, ¿P  reduces to (4), because 

the third term of ¿P  in (3), is the same for all clustered 

patterns under a node.  
 

¿P= NP+1 + ÛI=T= 3:OP+1, =;                          (4) 
 

¿P¶V converge to zero as the RL algorithm converges when 

there is no further perceptual aliasing. Therefore, in each 

step of RL, ¿P  is a measure of perceptual aliasing in a state s 

with respect to an action a (checkAliasing() in table I). 

D. Tree Refinement 

When an aliased class is detected, a saccade direction 

should be selected in order to maximally separate patterns 

under this class. In order to find the best saccade direction an 

anticipatory mechanism is needed. When an image ends in 

state st, codebooks along the next eight saccade directions, 

¿P  measure of aliasing and performed action are saved as a 

memory item (gatherMem()in table I).  

Whenever size of the memory under a state passes a 

threshold (maxThreshold) and it has aliasing, then tree is 

refined in order to remove aliasing.  Tree refinement is then 

done by selecting the saccade direction which mostly 

reduces the variance in ¿P  of patterns in memory according 

to (5).  

>LÛ  =Û? = =NCIEJL ,=  LR=N(.) F  Í |.= ,L ,? |

�.= �
R=N(.= ,L ,?)

|6|

?=1

M      

               = =NCI=TL ,=  @ Ã
|.= ,L ,? |

�.= �
R=N(.= ,L ,?)

|6|
?=1 A                    (5) 

 

In the above formula, L is the set of ¿PµV� RI� all items in 

memory, La is the set of ¿PµV�RI�memory items with action a. 

La,p,c is the set of ¿PµV�RI�items with action a, direction p and 

codebook c.  |U| and var(U) are the size and variance of the 

set U. LÛ and =Û are the saccadic direction and the action 

which reduce variance the most, respectively. The whole 

process of learning saccade tree is summarized in the 

pseudocode of table I. 
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TABLE I 

PSEUDOCODE OF THE S-TREE ALGORITHM 

 

main (void) 

  tree = Create a tree with a single node    

 Repeat  

 

        for  i = 1 to maxEpizodes          // RL- fixed phase                                

             It   = take an image 

             st  = traverseTree(tree, It)�                  

       [st+1 rt+1  at] = selectAction(st)          

              ût  = calcDelta (st, st+1, rt+1, at)                   

       mem = gatherMem(at, It, ût) 

        end                                                             

        for j=1 to size(tree.leaves)         // Refining states with aliasing     

           if  size(mem(sj)) >  memTreshold              

                if  checkAliasing(sj)                     

                       tree = modifyTree(tree, sj) 

        end            

                                                   

       pruneTree(tree)                           // Periodic tree pruning 

 

       for  i = 1 to maxEpizodes          // Tree- fixed phase    

              It = take an image 

              st = traverseTree(tree, It) 

  [st+1  rt+1   at] = selectAction(st) 

  Q-table = updatePolicy(Q-table, st) 

       end 

 

   Until (no more aliasing) or (maximum iterations is reached) 

 

traverseTree (node,It) 

    if node.childSize > 0 

        codebook = getCodeBook(node, I) 

        child =  findChild(node, codebook)��� 

        node = traverseTree (child, It) 

    end 

��  return node 

 

checkAliasing(st) 

   for action a  Ð  A                          // A is the set of physical actions             

        mem(a) = all memory items with action  a  under st 

        var(a) = calcVariance (mem(a))                                               

        if  var(a) > aliasingThreshold  

                    return true; 

        end                                                                                 

   return false; 

 

modifyTree(tree, st) 

    for action a  Ð  A                  // A  is the set of all actions 

        mem(a) = all memory items with action  a  under st 

        for  direction d  Ð  D        // D  is the set of saccade directions 

             calc the conditional variance in (5) and choose the direction  

             which reduces variance the most and then break the leaf node  

             into a number of new leaves. Also delete the previous state        

             associated with this leaf and create new states for new leaves in  

             the Q-table         

       end                                                                           

    end                                                                               

IV. EXPERIMENTAL RESULTS 

In order to evaluate our algorithm, we have applied it to 

two visual navigation tasks which capture the main 

characteristics of real world scenarios. The first task is 

navigation in a visual gridworld with obstacles and a goal 

state and the second one is an urban navigation task. In both 

experiments, 5 SIFT clusters derived from sample images 

from that database were used to encode the visual contents at 

FOA¶V.   

A. Navigation in the Visual Gridworld 

The aim in this task is to reach the goal state in the upper 

right corner of the grid shown with red G. The gent has a set 

of 4 physical actions: move up, right, left and down and has 

no DFFHVV�WR�LWV�SRVLWLRQ�LQ�WKH�JULG��$JHQW¶V�RQO\�SHUFHSWLRQ�

of the world is through an image of the object underneath his 

foot. Any movement taking the agent to an obstacle cell or 

outside the gird brings it a -1 punishment. When it reaches 

the goal state, it is rewarded a +1 signal.  Each cell of the 

grid is carpeted with a 128×128 image of the COIL 100 

object database which is available at [19]. As shown in fig. 

2, S-TREE has managed to recognize all the objects as well 

as a valid policy by creating 7 distinct perceptual classes 

after two turns.  

 
Fig. 2. Performance of the S-TREE algorithm on a 3×3 visual navigation 

gridworld. The derived policy is shown at the upper-left panel. Numbers in 

the upper-left and the bottom-right corners of the images determine labels 

of the tree leaves and grid positions respectively. aliasingThreshold was set 

to 0.3 and size of the saccade vector length was set to 20 pixels. 

maxEpizodes was 200. . and � were both 0.9. Radius of the circle at the 

FOA was 10. maxThreshold was 40. Arrows inside the internal nodes and 

numbers on edges are saccadic directions and codebooks, respectively. 

When same objects are assigned to two different locations 

in the grid, bottom-left and upper-left positions in fig. 3, S-

TREE derives 6 states. That is because the best actions for 

these two positions are the same and therefore there is no 

need for further refinement. This clearly shows how action-

based scene classification differs from ordinary scene 

classification methods. The latter case also resulted in the 

optimal policy.  

Fig. 3. Generated attention tree (right) for the 3×3 visual gridworld at the 

left. Parameters of the S-TREE were the same as in fig. 2.  
Experimenting with another more complex 6×6 

gridworld, shown in figure 4, S-TREE succeeded to derive 

the optimal policy after 10 iterations (phases). Number of 

generated visual classes was 28 equal to the number of the 

non-obstacle non-goal positions in the grid. 
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Fig. 4. The 6×6 visual gridworld in experiment I. maxEpizodes was 400. 

Other parameters were the same as in fig. 2. Learned best actions are shown 

in bottom-right of the images.  

B. Invariancy Analysis 

To evaluate the generalization capacity of the S-TREE, we 

performed an experiment over a 4×4 gridworld with the 

difference that in each cell, the agent can take a random 

view of an object. From the total of 16 grid positions, two 

cells were obstacles and one state was goal. Thirteen objects 

from COIL100 dataset and 5 views from each one in the 

range between 0o and 20o degrees are assigned to grid 

positions: therefore, 13×5 = 65 states are possible.  

   
Fig. 5. Parameters for this experiment were as follows: maxEpizodes = 40, 

iterations = 26, aliasingThreshold = 0.6. Other parameters were the same as 

in fig. 2. 
S-TREE succeeded to find an optimal policy for this grid 

in 16 iterations. Generated S-TREE in this case had 31 

perceptual states. This number is greater than the number of 

gird cells and still less than the possible perceptual states. 

This shows that S-TREE is to some extent invariant to in-

depth rotations. Optimal policy of 100% was achieved. As 

shown in fig. 5, scanpath of eye movements remained the 

same for some views with minor rotations. 

Fig. 6 shows the distribution of the object views in the 

perceptual classes for each object. As can be seen, some 

views of an object are classified in the same perceptual state 

while others are classified under other states.  

 
Fig. 6. Distribution of object views in perceptual states. 

C. Urban Navigation 

We applied the S-TREE algorithm to an urban navigation 

task, in which the agent is faced with images of natural 

scenes. This task demonstrates the interactive environments 

in which the agent has to derive visual states as well as their 

associated physical actions. The way the agent discriminates 

the scenes is by looking at special spatial positions. The 

dataset used in this experiment is freely available at [20]. 

Fig. 7 shows the map of the environment. This Map 

FRQVLVWV� RI� ��� ORFDWLRQV�� $JHQW¶V� ERG\� FDQ� RULHQW� LQ� 4 

possible directions: North, South, West and East. The agent 

can perform three physical actions: turn left, turn right and 

go forward and has to enter a goal state which brings it a 

reward of +100. Each turn brings a punishment of -5 for the 

agent. Moving forward induces a penalty of -10. In each 

possible location and head direction, the agent captures a 

1024×768 image. The agent must learn to associate scenes to 

physical actions in order to achieve the task. That way, agent 

has total number of 11×4 states. S-TREE generated 44 

perceptual classes in 24 episodes. Optimal policy was also 

learned. Generated saccadic eye movements for some 

sample images are shown in fig. 8.    

 
Fig. 7. Map of the environment in the experiment II with the optimal policy. 

Saccade vector length=150, maxEpizodes=60, aliasingThreshold=0.4, r=40, 

memThreshold=30, iterations=12, . = 0.8, � = 0.9.  

 
Fig. 8. Sample scenes with learned saccadic eye movements. 
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Average reward per episode in Tree-fixed phases, number 

of tree nodes and leaves, average depth of the tree and the 

number of checks for aliasing in RL-fixed iterations are 

shown in fig. 9. It shows the number of times patterns in 

nodes exceeded memThreshold and thus demanded checking 

aliasing. Final generated tree had 62 nodes with 44 of them 

being leaf nodes and the final average depth of 3.0930. This 

means that instead of extracting SIFT features in a 1024×768 

area they were only calculated at a 3.0930 × è × 402 pixels 

area on average. 

 
Fig 9. Smoothed average reward (W = 50), number of tree nodes and 

leaves, average tree depth and checks for aliasing in the second experiment. 

V. CONCLUSIONS AND DISCUSSIONS 

A method for learning top-down visual attention control 

in interactive environments was presented through 

dynamically discretizing the visual state space. Compared 

with the approach in [16], S-Tree algorithm produces trees 

with smaller depth, making it more suitable for real time 

applications. 

The main contribution of our algorithm is in generating 

saccade trees which only needs calculating the SIFT features 

at few spatial locations of the image. It is also in accordance 

with some behavioral attention mechanisms and is 

categorized under the space based models of attention. 

Actually, saliency of the image locations is determined by 

the expected reward they convey in an interactive task. 

Obtained results point toward the fact that active 

perception together with active movements may play an 

important role in the mechanisms that the brain uses for 

representing the world. Therefore in this study we avoided 

using detailed complex camera-like representations for the 

environment and instead incorporated attentions and motor 

actions to form the internal representations. An interesting 

observation is that, representations are learned interactively 

and are expanded or shrank adaptively based on the DJHQW¶V�

needs. They are also as compact as possible and encode the 

information at a necessary level without unnecessary details. 

For instance, for recognizing a scene, it would be very 

efficient and conclusive to attend to important spatial 

locations. Therefore global image representation approaches 

although might propose more accurate solutions in some 

cases, seem not to be the best solutions where information 

bottlenecks exist.   

In accordance with these views, our method discretizes 

the visual world when it is needed and when it helps the 

agent to perform more accurately by removing perceptual 

aliasing.  

It remains to investigate other visual features and saliency 

maps [15] as candidate locations for the S-TREE algorithm. 

Such approaches might help to merge need-based capability 

of the S-TREE with the bottom-up cues of visual attention 

and may make the algorithm more robust to image 

transformations. Also extending this approach to continuous 

action spaces and concurrent clustering of saccadic 

perceptions along with previous physical actions in a single 

tree helps the agent to act in POMDP environments.  
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