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1 Preliminaries and definitions

Computational models of visual attention have become popular over the past decade, we believe primarily
for two reasons: First, models make testable predictions that can be explored by experimentalists as well as
theoreticians; second, models have practical and technological applications of interest to the applied science
and engineering communities. In this chapter, we take a critical look at recent attention modeling efforts.
We focus on computational models of attention as defined by Tsotsos & Rothenstein (2011): Models which
can process any visual stimulus (typically, an image or video clip), which can possibly also be given some task
definition, and which make predictions that can be compared to human or animal behavioral or physiological
responses elicited by the same stimulus and task. Thus, we here place less emphasis on abstract models,
phenomenological models, purely data-driven fitting or extrapolation models, or models specifically designed
for a single task or for a restricted class of stimuli. For theoretical models, we refer the reader to a number
of previous reviews that address attention theories and models more generally (Itti & Koch, 2001a; Paletta
et al., 2005; Frintrop et al., 2010; Rothenstein & Tsotsos, 2008; Gottlieb & Balan, 2010; Toet, 2011; Borji &
Itti, 2012b).

To frame our narrative, we embrace a number of notions that have been popularized in the field, even
though many of them are known to only represent coarse approximations to biophysical or psychological
phenomena. These include the attention spotlight metaphor (Crick, 1984), the role of focal attention in
binding features into coherent representations (Treisman & Gelade, 1980a), and the notions of an attention
bottleneck, a nexus, and an attention hand as embodiments of the attentional selection process (Rensink,
2000; Navalpakkam & Itti, 2005). Further, we cast the problem of modeling attention computationally as
comprising at least three facets: guidance (that is, which computations are involved in deciding where or what
to attend to next?), selection (how is attended information segregated out of other incoming sensory informa-
tion?), and enhancement (how is the information selected by attention processed differently than non-selected
information?). While different theories and models have addressed all three aspects, most computational
models as defined above have focused on the initial and primordial problem of guidance. Thus guidance is
our primary focus, and we refer the reader to previous reviews on selection and enhancement (Allport et al.,
1993; Desimone & Duncan, 1995; Reynolds & Desimone, 1999; Driver & Frith, 2000; Robertson et al., 2003;
Carrasco, 2011). Note that guidance of attention is often thought of as involving pre-attentive computations
to attract the focus of attention to the next most behaviorally relevant location (hence, attention guidance
models might — strictly speaking — be considered pre-attention rather than attention models).

We explore models for exogenous (or bottom-up, stimulus-driven) attention guidance as well as for
endogenous (or top-down, context-driven, or goal-driven) attention guidance. Bottom-up models process
sensory information primarily in a feed-forward manner, typically applying successive transformations to
visual features received over the entire visual field, so as to highlight those locations which contain the most
interesting, important, conspicuous, or so-called salient information (Koch & Ullman, 1985; Itti & Koch,
2001a). Many, but not all, of these bottom-up models embrace the concept of a topographic saliency map,
which is a spatial map where the map value at every location directly represents visual salience, abstracted
from the details of why a location is salient or not (Koch & Ullman, 1985). Under the saliency map hypothesis,
the task of a computational model is then to transform an image into its spatially corresponding saliency
map, possibly also taking into account temporal relations between successive video frames of a movie (Itti
et al., 1998). Many models thus attempt to provide an operational definition of salience in terms of some
image transform or some importance operator that can be applied to an image and that directly returns
salience at every location, as we further examine below.
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By far, the bottom-up, stimulus-driven models of attention have been more developed, probably because
they are task-free, and thus often require no learning, training, or tuning to open-ended task or contextual
information. This makes the definition of a purely bottom-up importance operator tractable. Another
attractive aspect of bottom-up models — and especially saliency map models — is that, once implemented,
they can easily be applied to any image and yield some output that can be tested against human or animal
experimental data. Thus far, the most widely used test to validate predictions of attention models has been
direct comparison between model output and eye movements recorded from humans or animals watching
the same stimuli as given to the models (see, e.g., among many others, (Parkhurst et al., 2002; Itti, 2006;
Le Meur et al., 2006)). Recently, several standard benchmark image and video datasets with corresponding
eye movement recordings from pools of observers have been adopted, which greatly facilitates quantitative
comparisons of computational models (Carmi & Itti, 2006; Judd et al., 2009; Toet, 2011; Li et al., 2011;
Borji et al., 2012b). It is important to note, however, that several alternative measures have been employed
as well (e.g., mouse clicks, search efficiency, reaction time, optimal information gain, scanpath similarity;
see (Eckstein et al., 2009; Borji & Itti, 2012b)). One caveat of metrics that compare model predictions to
eye movements is that the distinction between covert and overt attention is seldom explicitly addressed by
computational models: models usually produce as their final result a saliency map without further concern
of how such map may give rise to an eye movement scanpath (Noton & Stark, 1971) (but see (Itti et al.,
2003; Ma & Deng, 2009; Sun et al., 2012) and active vision/robotics systems like (Orabona et al., 2005;
Frintrop, 2006; Belardinelli et al., 2006; Ajallooeian et al., 2009)). Similarly, biases in datasets, models,
and/or behavior may affect the comparison results (Tatler & Vincent, 2009; Tseng et al., 2009; Bonev et al.,
2012). While these are important for specialist audiences, here we should just remember that quantitative
model evaluation metrics based on eye movements exist and are quite well established, although they remain
approximate and should be used with caution (Tatler et al., 2005). Beyond metric issues, one last important
consideration to ensure a valid direct comparison between model and eye movements is that conditions
should be exactly matched between the model run and the experimental participants, which has not always
been the case in previous work, as we discuss below.

While new bottom-up attention models are constantly proposed which rely on novel ways of analyzing
images to determine the most interesting or salient locations (we list over 50 of them below), several research
efforts have also started to address the more complex problem of building top-down models that are tractable
and can be implemented computationally. In the early days, top-down models have been mostly descriptive
as they operated at the level of conceptual entities (e.g., collections of objects present in a scene, to be
evaluated in terms of a mental model of which objects might be more important to a particular task of
interest (Ballard et al., 1995)), and hence have lacked generalized computational implementations (because,
for example, algorithms that can robustly recognize objects in scenes were not available). As some of these
hurdles have been alleviated by the advent of powerful new theories and algorithms for object recognition,
scene classification, decision making under uncertainty, machine learning, and formal description languages
that can capture task descriptions and background knowledge, exciting new models are beginning to emerge
which significantly surpass purely bottom-up approaches in their ability to predict attention behavior in
complex situations. Implementing complete, autonomous computational models of top-down attention is
particularly important to our theoretical understanding of task and context effects on attention, as these
implementations remind us that some assumptions often made to develop abstract models may not give rise
to tractable computational models (e.g., it is easy to note how humans are able to directly fixate a jar of jam
when it is the next object required to make a sandwich (Land & Hayhoe, 2001) — but how did they know
that a jar is present and where it is located, if not through some previous bottom-up analysis of the visual
environment?). As we further discuss in this chapter, these new computational models also often blur the
somewhat artificial dichotomy between bottom-up and top-down processing, since the so-called top-down
models do rely to a large extent onto a bottom-up flow of incoming information that is merged with goals
and task demands to give rise to the decision of where to attend next.

To frame the concepts exposed so far into a broader picture, we refer to Figure 1 as a possible anchor to
help organize our thoughts and discussions of how different elements of a visual scene understanding system
may work together in the primate brain. In practice, few system-level efforts have included all components
mentioned in Figure 1, and most of our discussion will focus on computational models that implement parts
of such a system.

In what follows, we first examine in more details the key concepts of early bottom-up attention models
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(Section 2), and then provide an overview and comparison of many subsequent models that have provided
new exciting insight into defining and computing bottom-up salience and attention (Section 3). We then
turn to top-down models (Section 4), first motivating them from experimental evidence, and then examining
in turn top-down models that modulate feature gains (Section 4.1), that derive spatial priors from the gist of
the visual scene (Section 4.2), and that implement more complex information foraging and decision making
schemes (Section 4.3). Finally, we discuss in Section 5 lessons learned from these models, including on the
nature and interaction between bottom-up and top-down processes, and promising directions towards the
creation of even more powerful combined bottom-up and top-down models.

2 Early bottom-up attention concepts and models

Early attention models have been primarily influenced by the Feature Integration Theory (Treisman &
Gelade, 1980b), according to which incoming visual information is first analyzed by early visual neurons
which are sensitive to elementary visual features of the stimulus (e.g., colors, orientations, etc). This analysis,
operated in parallel over the entire visual field and at multiple spatial and temporal scales, gives rise to a
number of cortical feature maps, where each map represents the amount of a given visual feature at any
location in the visual field. Attention is then the process by which a region in space is selected and features
within that region are re-assembled or bound back together to yield more complex object representations
(Figure 2.a). Koch and Ullman (1985) extended the theory by advancing the concept of a single topographic
and scalar saliency map, receiving inputs from the feature maps, as a computationally efficient representation
upon which to operate the selection of where to attend next: A simple maximum-detector or winner-take-
all neural network (Arbib & Didday, 1971) was proposed which would simply pick the next most salient
location as the next attended one, while an active inhibition-of-return (Posner, 1980) mechanism would later
inhibit that location and thereby allow attention to shift as the winner-take-all network would pick the next
most salient location (Figure 2.b). From these ideas, a number of fully computational models started to be
developed (e.g., Figure 2.c,d).

At the core of these early models is the notion of visual salience, a signal that is computed in a stimulus-
driven manner and which indicates that some location is significantly different from its surroundings and
is worthy of attention. Early models computed visual salience from bottom-up features in several feature
maps, including luminance contrast, red-green and blue-yellow color opponency, and oriented edges (Itti
et al., 1998). While visual salience is sometimes carelessly described as a physical property of a visual
stimulus, it is important to remember that salience is the consequence of an interaction of a stimulus with
other stimuli, as well as with a visual system (biological or artificial). For example, a color-blind person will
have a dramatically different experience of visual salience than a person with normal color vision, even when
both look at exactly the same colorful physical scene. Nevertheless, because visual salience is believed to
primarily arise from fairly low-level and stereotypical computations in the early stages of visual processing,
the factors contributing to salience are generally quite comparable from one observer to the next, leading to
similar experiences across a range of observers and of viewing conditions.

The essence of salience lies in enhancing the neural and perceptual representation of locations whose local
visual statistics significantly differ from the broad surrounding image statistics, in some behaviorally relevant
manner. This basic principle is intuitively motivated as follows. Imagine a simple search array as depicted in
Figure 2.e, where one bar pops-out because of its unique orientation. Now imagine examining a feature map
which is tuned to stimulus intensity (luminance) contrast: because there are many white bars on a black
background, early visual neurons sensitive to local intensity contrast will respond vigorously to each of the
bars (distractors and target alike, since all have identical intensity). Based on the pattern of activity in this
map, in which essentially every bar elicits a strong peak of activity, one would be hard pressed to pick one
location as being clearly more interesting and worthy of attention than any of the others. Intuitively, hence,
one might want to apply some normalization operator N(.) which would give a very low overall weight to
this map’s contribution to the final saliency map. The situation is quite different when examining a feature
map where neurons are tuned to local vertical edges. In this map, one location (where the single roughly
vertical bar is) would strongly excite the neural feature detectors, while all other locations would elicit much
weaker responses. Hence, one location clearly stands out and hence becomes an obvious target for attention.
It would be desirable in this situation that the normalization operator N(.) give a high weight to this map’s
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contribution to the final saliency map (Itti et al., 1998; Itti & Koch, 2000; Itti & Koch, 2001a).
Early bottom-up attention models have created substantial interest and excitement in the community,

especially as they were shown to be applicable to an unconstrained variety of stimuli, as opposed to more
traditional computer vision approaches at the time, which often had been designed to solve a specific task
in a specific environment (e.g., detect human faces in photographs taken from a standing human viewpoint
(Viola & Jones, 2001)). Indeed, no parameter tuning nor any prior knowledge related to the contents of the
images or video clips to be processed was necessary for any of many early results, as the exact same model
processed psychophysical stimuli, filmed outdoors scenes, Hollywood movie footage, video games, and robotic
imagery. This gave rise to model prediction results that included, for example, the reproduction by Itti et
al.’s model of human behavior in visual search tasks (e.g., pop-out versus conjunctive search (Itti & Koch,
2000)); demonstration of strong robustness to image noise (Itti et al., 1998); automatic detection of traffic
signs and other salient objects in natural environments filmed by a consumer-grade color video camera (Itti
& Koch, 2001b); the detection of pedestrians in natural scenes (Miau et al., 2001); and of military vehicles
in overhead imagery (Itti et al., 2001); and — most importantly — the widely demonstrated ability of the
model to predict where humans look when freely images or videos that range from search arrays to fractals
to satellite images to everyday indoors and outdoors scenes (Parkhurst et al., 2002; Peters et al., 2005).

3 Flourishing of bottom-up models

Following initial success, many research groups started exploring the notions of bottom-up attention and
visual salience, which has given rise to many new computational models. We summarize 53 bottom-up
models along 13 different factors in Figure 3. A thorough examination of all models is certainly not feasible
in this limited space. Instead, we highlight below the main trends in seven categories that span from strong
inspiration from biological vision to more abstract mathematical definitions and implementations of the
concept of saliency. Models can coarsely be categorized as follows (but also see (Tsotsos & Rothenstein,
2011) for another possible taxonomy). Please note that some models fall under more than one category.

Cognitive models. Research into saliency modeling escalated after Itti et al.’s (1998) implementation
of Koch and Ullman’s (1985) computational architecture based on the Feature Integration Theory (Treisman
& Gelade, 1980b). In cognitive models, which were the first ones to approach the problem of algorithmically
computing saliency in arbitrary digital images, an input image is decomposed into a set of feature maps
across spatial scales which are then linearly or non-linearly normalized and combined to form a master
saliency map. An important element of this theory is the idea of center-surround which defines saliency as
distinctiveness of an image region to its immediate surroundings. Almost all saliency models are directly or
indirectly inspired by cognitive concepts of visual attention (e.g., (Le Meur et al., 2006; Marat et al., 2009)).

Information-theoretic models. Stepping back from biological implementation machinery, models in
this category are based on the premise that localized saliency computations serve to maximize information
sampled from one’s environment. These models assign higher saliency values to scene regions with rare
features. Information of visual feature F is I(F ) = −log p(F ) which is inversely proportional to the likelihood
of observing F (i.e., p(F )). By fitting a distribution P (F ) to features (e.g., using Gaussian Mixture Model
or Kernels), rare features can be immediately found by computing P (F )−1 in an image. While in theory
using any feature space is feasible, usually these models (inspired by efficient coding representations in visual
cortex) utilize a sparse set of basis functions (using ICA filters) learned from a repository of natural scenes.
Some basic approaches in this domain are AIM (Bruce & Tsotsos, 2005), Rarity (MANCAS, 2007), LG
(Local + Global image patch rarity) (Borji & Itti, 2012a), and incremental coding length models (Hou &
Zhang, 2008).

Graphical models. Graphical models are generalized Bayesian models which have been employed for
modeling complex attention mechanisms over space and time. Torralba (Torralba, 2003) proposed a Bayesian
approach for modeling contextual effects on visual search which was later adopted in the SUN model (Zhang
et al., 2008) for fixation prediction in free viewing. Itti and Baldi (Itti & Baldi, 2005) defined surprising
stimuli as those which significantly change beliefs of an observer. Harel et al. (GBVS) (Harel et al., 2007)
propagated similarity of features in a fully connected graph to build a saliency map. Avraham (Avraham
& Lindenbaum, 2010), Jia Li et al., (Li & Fei-Fei, 2010), and Tavakoli et al. (Rezazadegan Tavakoli et al.,
2011), have also exploited Bayesian concepts for saliency modeling.
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Decision theoretic models. This interpretation states that attention is driven optimally with respect
to the end task. Gao and Vasconcelos (Gao & Vasconcelos, 2004) argued that for recognition, salient features
are those that best distinguish a class of objects of interest from all other classes. Given some set of features
X = {X1, · · · , Xd}, at locations l, where each location is assigned a class label Y with Yl = 0 corresponding
to background and Yl = 1 indicates objects of interest, saliency is then a measure of mutual information
(usually Kullback-Leibler divergence (KL)), computed as I(X,Y ) =

∑d
i=1 I(Xi, Y ). Besides having good

accuracy in predicting eye fixations, these models have been very successful in computer vision applications
(e.g., anomaly detection and object tracking).

Spectral-analysis models. Instead of processing an image in the spatial domain, these models derive
saliency in the frequency domain. This way, there is no need for image processing operations such as center-
surround or segmentation. Hou and Zhang (Hou & Zhang, 2007) derive saliency for an image with amplitude
A(f) and phase P(f) as follows. The log spectrum L(f) is computed from the down-sampled image. From
L(f), the spectral residual R(f) is obtained by multiplying L(f) with hn(f) which is an n× n local average
filter and subtracting the result from itself. Saliency map is then the inverse Fourier transform of the
exponential of amplitude plus phase (i.e., S(x) = F−1

[
exp
(
R(f) + P(f)

)]
). The saliency of each point is

squared to indicate the estimation error and is then smoothed with a Gaussian filter for better visual effect.
Bian and Zhang (Bian & Zhang, 2009) and Guo et al. (Guo & Zhang, 2010) proposed spatio-temporal models
in the spectral domain.

Pattern classification models. Models in this category use machine learning techniques to learn
“stimuli-saliency” mappings from image features to eye fixations. They estimate saliency s; p(s|f) where f
is a feature vector which could be the contrast of a location and its surrounding neighborhood. Kienzle et
al. (Kienzle et al., 2007), Peters and Itti (Peters & Itti, 2007), and Judd et al. (2009) used image patches,
scene gist, and a vector of several features at each pixel, respectively and used classical SVM and Regression
classifiers for learning saliency. In an extension of Judd model, Borji (2012) showed that using a richer set
of features including bottom-up saliency maps of other models and within-object regions (e.g., eye within
faces) along with a boosting classifier leads to higher fixation predicting accuracy. Tavakoli et al. (Reza-
zadegan Tavakoli et al., 2011), used sparse sampling and kernel density estimation to estimate the above
probability in a Bayesian framework. Note that some of these models may not be purely bottom-up since
they use features that guide top-down attention, for example faces or text (Judd et al., 2009; Cerf et al.,
2008).

Other models. Some other models exist that do not easily fit into our categorization. For example,
Seo and Milanfar (Seo & Milanfar, 2009) proposed self-resemblance of local image structure for saliency
detection. The idea of decorrelation of neural response was used for a normalization scheme in the Adaptive
Whitening Saliency (AWS) model (Garcia-Diaz et al., 2009). Kootstra et al. (Kootstra et al., 2008) developed
symmetry operators for measuring saliency and Goferman et al. (Goferman et al., 2010) proposed a context-
aware saliency detection model with successful applications in re-targeting and summarization.

An important trend to consider is that over the past years starting from (Liu et al., 2007), models
have begun to diverge into two different classes: models of fixation prediction and models of salient region
detection. While the goal of the former models is to predict locations that grab attention, the latter models
attempt to segment the most salient object or region in a scene. A saliency operator is usually used to
estimate the extent of the object that is predicted to be the most likely first attended object. Evaluation
is often done by measuring precision-recall of saliency maps of a model against ground-truth data (explicit
saliency judgments of subjects by annotating salient objects or clicking on locations). Some models in two
categories have compared themselves against each other, without being aware of the distinction.

Figure 3 shows a list of models and their properties according to thirteen qualitative criteria derived
from behavioral and computational studies. The majority (53 out of 65) of covered attention models consists
of bottom-up models, indicating that at least from a computational perspective it is easier to formulate
attention guidance mechanisms based on low-level image features. This is reinforced by the existence of
several established benchmark datasets and standard evaluation scores for bottom-up models. The situation
is the opposite for top-down attention modeling although we have recently initiated an effort to share data
and code (Borji et al., 2012a; Borji et al., 2012c).

A brief comparison of saliency maps of 26 models on a few test images (Figure 4) shows large differences
in appearance of the maps generated by different models. Some models generate very sparse maps while
others are smoother. This makes fair model comparison a challenge since some scores may be influenced by
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smoothness of a map (Tatler et al., 2005). Recently, Borji et al. (2012b) performed a detailed investigation
of models to quantify their correlations with human attentional behavior. This study suggests that so far
the so-called “shuffled AUC (Area Under the ROC Curve)” score (Zhang et al., 2008) is the most robust
(this score uses distributions of human fixations on other stimuli than the one being scored to establish
a baseline, which attenuates the effects of certain biases in eye movements datasets, the strongest being
a bias towards looking preferentially near the center of any image). Results are shown in Figure 5. This
model evaluation shows a gap between current models and human performance. This gap is smaller for
some datasets, but overall exists. Discovering and adding more top-down features to models will hopefully
boost their performance. The analysis also shows that some models are very effective (e.g., HouNIPS, Bian,
HouCVPR, Torralba, and Itti-CIO2 in Figure 5) and also very fast providing a trade-off between accuracy
and speed necessary for many applications.

Despite past progress in bottom-up saliency modeling and fixation prediction while freely viewing natural
scenes, several open questions remain that should be answered in the future. The most confusing one is that
of “center bias,” whereby humans often appear to preferentially look near an image’s center. It is believed to
be largely caused by stimulus bias (e.g., photographer bias, whereby photographers tend to frame interesting
objects near the image center). Collecting fixation datasets with no or less center bias, and studying its role
on model evaluation needs to be addressed with natural scenes (see, e.g., (Parkhurst et al., 2002; Peters et al.,
2005) for unbiased artificial datasets of fractal images). As opposed to saliency modeling on static scenes,
the domain of spatio-temporal attention remains less explored (See (Dorr et al., 2010; Wang et al., 2012)
for examples). Emphasis should be on finding cognitive factors (e.g., actor, non-actor) rather than simple
bottom-up features (e.g., motion, flicker, or focus of expansion), and some of the top-down models discussed
below have started to explore how more semantic scene analysis can influence attention. Another aspect is
the study of attention on affective and emotional stimuli. Although a database of fixations on emotional
images has been gathered by Ramanathan et al. (2010), it is still not clear whether current models can be
extended to explain such fixations.

4 Top-down guidance of attention by task demands

Research towards understanding the mechanisms of top-down attention has given rise to two broad classes
of models: models which operate on semantic content, and models which operate on raw pixels and images.
Models in the first category are not fully computational in the sense used in the present chapter, in that
they require that an external expert (typically, one or more humans) first pre-processes raw experimental
recordings, often to create semantic annotations (e.g., translate from recorded video frames and gaze positions
into sequences that describe which objects were being looked at). For example, in a block copying task
(Ballard et al., 1995), the observers’ algorithm for completing the task was revealed by their pattern of eye
movements: first select a target block in the model by fixating it, then find a matching block in the resource
pool, then revisit the model to verify the block’s position, then fixate the workspace to place the new block
in the corresponding position. Other studies have used naturalistic interactive or immersive environments
to give high-level accounts of gaze behavior in terms of objects, agents, “gist” of the scene, and short-term
memory (Yarbus, 1967; Henderson & Hollingworth, 1999; Rensink, 2000; Land & Hayhoe, 2001; Sodhi et al.,
2002; Hayhoe et al., 2003), to describe, for example, how task-relevant information guides eye movements
while subjects make a sandwich (Land & Hayhoe, 2001; Hayhoe et al., 2003) or how distractions such as
setting the radio or answering a phone affect eye movements while driving (Sodhi et al., 2002).

While such perceptual studies have provided important constraints regarding goal-oriented high-level
vision, additional work is needed to translate these descriptive results into fully-automated computational
models that can be used in the application domains mentioned above. That is, although the block copy-
ing task reveals observers’ algorithm for completing the task, it does so only in the high-level language of
“workspace” and “blocks” and “matching.” In order for a machine vision system to replicate human ob-
servers’ ability to understand, locate, and exploit such visual concepts, we need a “compiler” to translate
such high-level language into the assembly language of vision—that is, low-level computations on a time-
varying array of raw pixels. Unfortunately, a general computational solution to this task is tantamount to
solving computer vision.

From behavioral and in particular eye-tracking experiments during execution of real-world tasks, several
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key computational factors can be identified which can be implemented in computational models (Figure 6):

• Spatial biases, whereby a given high-level task or top-down set may make some region of space more
likely to contain relevant information. For example, when the task is to drive, it is important to keep our
eyes on the road (Figure 6.a). We describe below how bottom-up attention models can be enhanced
by considering such task-driven spatial constraints, for example to suppress salient stimuli that lie
outside the task-relevant region of visual space. These models are motivated by both psychophysical
and physiological evidence of spatial biasing of attention based on both short-term and long-term top-
down cues (Chun & Jiang, 1998; Summerfield et al., 2011), resulting in enhancement of attended visual
regions and suppression of the un-attended ones (Brefczynski & DeYoe, 1999; Kastner et al., 1999);

• Feature biases, whereby the task may dictate that some visual features (e.g., some colors) are more
likely associated with items of interest than other features (Figure 6.b). Bottom-up models can also
be enhanced to account for feature biases, for example by modulating according to top-down goals the
relative weights by which different feature maps contribute to a saliency map (e.g., when searching
for a blue item, increase the gain of blue-selective feature maps). These models also are motivated
by experimental studies of so-called feature-based attention (Treue & Martinez Trujillo, 1999; Saenz
et al., 2002; Zhou & Desimone, 2011; Martinez-Trujillo, 2011) and, in particular, recent theories and
experiments investigating the role of the pulvinar nucleus in carrying out such biases (Baluch & Itti,
2011; Saalmann et al., 2012);

• Object-based and cognitive biases, whereby knowing about objects, about how they may interact
with each other, and about how they obey the laws of physics such as gravity and friction, may help
humans make more efficient decisions of where to attend next to achieve a certain top-down goal (e.g.,
playing cricket, Figure 6.c, or making a sandwich, Figure 6.d). Models can be taught how to recognize
objects and possibly other aspects of the world, to enable semantic reasoning that may give rise to these
more complex top-down attention behaviors. These models are also motivated by recent experimental
findings (Võ & Henderson, 2009; Schmidt & Zelinsky, 2009; Hwang et al., 2011).

We review top-down models that have implemented these strategies below. Although spatial biases
have historically been studied first, we start with feature biasing models as those are conceptually simpler
extensions to the bottom-up models described in the previous sections.

4.1 Top-down biasing of bottom-up feature gains

A simple strategy to include top-down influences in a computational attention model is to modulate the low-
levels of visual processing of the model according to the top-down task demands. This embodies the concept
of feature-based attention, whereby increased neural response can be detected in monkeys and humans to
visual locations which contain features that match a feature of current behavioral interest (e.g., locations that
contain upward moving dots when the animal’s task is to monitor upward motion (Treue & Martinez Trujillo,
1999; Saenz et al., 2002; Zhou & Desimone, 2011).

While the idea of top-down feature biases was already present in early conceptual models like the Guided
Search theory (Wolfe, 1994) and FeatureGate (Cave, 1999), the question for computational modelers has
been how exactly the feature gains should be adjusted to yield optimal expected enhancement of a desired
target among unwanted distractors (Figure 7). Earlier models have used supervised learning techniques to
compute feature gains from example images where targets of interest had been manually indicated (Itti &
Koch, 2001b; Frintrop et al., 2005; Borji et al., 2011). A more recent approach uses eye movement recordings
to determine these weights (Zhao & Koch, 2011). Interestingly, it has recently been proposed that an optimal
set of weight can be computed in closed-form given distributions of expected features for both targets of
interest to the task and irrelevant clutter or distractors. In this approach, each feature map is characterized
by a target-to-distractor response ratio (or signal-to-noise ratio, SNR), and feature maps are simply assigned
a weight that is inversely proportional to their SNR (Navalpakkam & Itti, 2006; Navalpakkam & Itti, 2007).
In addition to giving rise to a fully computational model, this theory has also been found to explain many
aspects of human guided search behavior (Navalpakkam & Itti, 2007; Serences & Saproo, 2010)

Note how the models of Figure 7 start introducing a blur between the notions of bottom-up and top-
down processing. In these models, indeed, the effect of top-down knowledge is to modulate the way in
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which bottom-up computations are carried out. This opens the question of whether a pure bottom-up state
may ever exist, and what the corresponding gain values may be (e.g., unity as has been assumed in many
models?). These questions are also being raised by a number of recent experiments (Theeuwes, 2010; Awh
et al., 2012), and are further discussed below.

4.2 Spatial priors and scene context

In a recent model, Ehinger et al. (2009) investigated whether a model that, in addition to a bottom-up
saliency map, learns spatial priors about where people may appear and a feature prior about what people
may look like, would better predict gaze patterns of humans searching for people. Indeed, several earlier
studies had suggested that bottom-up models, while widely demonstrated to correlate with human fixations
during free viewing, may not well predict fixations of participants once they are given a top-down task, for
example a search task (Zelinsky et al., 2006; Foulsham & Underwood, 2007; Henderson et al., 2007; Einhäuser
et al., 2008). One may argue, however, especially in the light of our above discussion of whether pure bottom-
up salience is a valid concept, that in these experiments the models were at an unfair disadvantage: Human
participants had been provided with some information which had not been communicated to models (e.g.,
search for a specific target, shown for 1 second before the search (Zelinsky et al., 2006); search of objects in
a category or for a specific object (Foulsham & Underwood, 2007); search for the small bullseye pattern or
for a local higher-contrast region (Einhäuser et al., 2008); or count people (Henderson et al., 2007)). Ehinger
et al. addressed this by proposing a model that combines three sources of information (Figure 8.a): First,
a “scene context” map was derived from learning the associations between holistic or global scene features
(coarsely capturing the gist of the scene (Torralba, 2003)) and the locations where humans appeared in
scenes with given holistic features (trained over 1880 example images). This map, which is of central interest
to this section of our chapter, thus learned the typical locations where humans were expected to appear in
different views of street scenes. This learning step produces a prior on locations that can be used to filter
out salient responses in locations that are highly unlikely to contain the target (e.g., in the sky, assuming
that no human was seen flying in the training dataset). Second, a person detector was run in a sliding
window manner over the entire image, creating a “target features” map that highlighted locations that
closely look like humans. This provides an alternative to learning feature gains as discussed above; instead,
an object detector algorithm is trained for the desired type of target. While possibly more efficient than
gain modulation, this approach suffers from lower biological plausibility. (See (Rao et al., 2002; Orabona
et al., 2005) for related models). Third and finally, a standard bottom-up “saliency map” provided additional
candidate locations (also see (Oliva et al., 2003) for earlier related work, integrating only saliency and scene
context). Ehinger et al. found that the model which combined all three maps outperformed any of the three
component models taken alone (Figure 8.b).

In a related model, Peters & Itti (Peters & Itti, 2007) also used a combination of bottom-up saliency
maps and top-down spatial maps derived from the holistic gist of the scene, but their top-down maps were
directly learned from eye movements of human observers, playing the same 3D video games as would be
used for testing (games included driving, exploration, flight combat, etc.; note that since players control
the game’s virtual camera viewpoint, each run of such game gives rise to a unique set of viewpoints and
of generated scenes). The bottom-up component of this model is based on the Itti-Koch saliency model
(Itti et al., 1998), which predicts interesting locations based on low-level visual features such as luminance
contrast, color contrast, orientation, and motion. The top-down component is based on the idea of “gist,”
which in psychophysical terms is the ability of people to roughly describe the type and overall layout of an
image after only a very brief presentation (Li et al., 2002), and to use this information to guide subsequent
target searches (Torralba, 2003). This model (Figure 8.c) decomposes each video frame into a low-level
image signature intended to capture some of the properties of “gist” (Siagian & Itti, 2007), and learns to
pair the low-level signatures from a series of video clips with the corresponding eye positions; once trained,
it generates predicted gaze density maps from the gist signatures of previously unseen video frames. To test
these bottom-up and top-down components, we compared their predicted gaze density maps with the actual
eye positions recorded while people interactively played video games (Figure 8.d).
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4.3 More complex top-down models

Many top-down models have been proposed which include higher degrees of cognitive scene understanding.
Already in the late 1990’s several models included a top-down component that decided where to look next
based on what had been observed so far (e.g., (Rybak et al., 1998; Schill et al., in press); also see (Itti &
Koch, 2001a) for review). In robotics, the notion of combining or alternating between different behaviors
(such as exploration versus search, or bottom-up versus top-down) has also led to several successful models
(Sprague & Ballard, 2003; Forssén et al., 2008; Burattini et al., 2010; Xu et al., 2010). More recently, and our
focus here, probabilistic inference and reasoning techniques, very popular in computer vision, have started
to be used in attention models.

In many recent models, the saliency map of bottom-up models is conserved as a data-driven source
of information for an overarching top-down system (more complicated than the feature or spatial biasing
described above). For example, Boccignone & Ferraro (2004) develop an overt attention system where the
top-down component is a random walker that follows an information foraging strategy over a bottom-up
saliency map. They demonstrate simulated gaze patterns that better match human distributions (Tatler
et al., 2011). Interesting related models have been proposed where bottom-up and top-down attention
interact through object recognition (Ban et al., 2010; Lee et al., 2011), or by formulating a task as a
classification problem with missing features, with top-down attention then providing a choice process over
the missing features (Hansen et al., 2011).

Of growing recent interest is the use of probabilistic reasoning and graphical models to explore how
several sources of bottom-up and top-down information may combine in a Bayesian-optimal manner. For
example, the model of Akamine et al. (2012) (also see (Kimura et al., 2008)), which employs probabilistic
graphical modeling techniques and considers the following factors, interacting in a dynamic Bayesian network
(Figure 9.a): On the one hand, input video frames give rise to deterministic saliency maps. These are
converted into stochastic saliency maps via a random process that affects the shape of salient blobs over
time (e.g., dynamic Markov random field (Kimura et al., 2008)). An eye focusing map is then created
which highlights maxima in the stochastic saliency map, additionally integrating top-down influences from
an eye movement pattern (a stochastic selection between passive and active state with a learned transition
probability matrix). The authors use a particle filter with Markov chain Monte-Carlo (MCMC) sampling to
estimate the parameters; this technique often used in machine learning allows for fast and efficient estimation
of unknown probability density functions. Although the top-down component is quite simple in this version
of the model, it is easy to see how more sophisticated top-down and contextual influences could be integrated
into the dynamic Bayesian network framework of Kimura et al. Several additional recent related models
using graphical models have been proposed (e.g., (Chikkerur et al., 2010)).

Although few have been implemented as fully computational models, several efforts have started to
develop models that perform reasoning over objects or other scene elements to make a cognitive decision of
where to look next (Navalpakkam & Itti, 2005; Yu et al., 2008; Beuter et al., 2009; Yu et al., 2012).

A a recent example, using probabilistic reasoning and inference tools, Borji et al. (Borji et al., 2012a)
introduced a framework to model top-down overt visual attention based on reasoning, in a task-dependent
manner, about objects present in the scene and about previous eye movements. They designed a Dynamic
Bayesian Network (DBN) that infers probability distributions over attended objects and spatial locations
directly from observed data. Two basic concepts in this model are 1) taking advantage of the sequence
structure of tasks, which allows to predict the future fixations from past fixations and knowledge about objects
present in the scene. Graphical models have indeed been very successful in the past to model sequences with
applications in different domains, including biology, time series modeling, and video processing, and 2)
computing attention at the object level. Since objects are essential building blocks in scenes, it is reasonable
to assume that humans have instantaneous access to task-driven object-level variables (as opposed to only
gist-like, scene-global, representations). Briefly, the model works by defining a Bayesian network over object
variables that matter for the task. For example, in a video game where one runs a hot-dog stand and has
to serve multiple hungry customers while managing the grill, those include raw sausages, cooked sausages,
buns, ketchup, etc.̃(Figure 9.b). Then, existing objects in the scene, as well as the previous attended object,
provide evidence toward the next attended object (Figure 9.b). The model also allows to read out which
spatial location will be attended, thus allowing one to verify its accuracy against the next actual fixation
of the human player. The parameters of the network are learned directly from training data in the same
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form as the test data (human players playing the game). This object-based model was significantly more
predictive of eye fixations compared to simpler classifier-based models, also developed by the same authors,
that map a signature of a scene to eye positions, several state-of-the-art bottom-up saliency models, as well
as brute-force algorithms such as mean eye position (Figure 9.c). This points toward the efficacy of this class
of models for modeling spatio-temporal visual data in presence of a task and hence a promising direction for
future. Probabilistic inference in this model is performed over object-related functions which are fed from
manual annotations of objects in video scenes or by state-of-the-art object detection models. (Also see (Sun
& Fisher, 2003; Sun et al., 2008) for models that consider objects, although they do not reason about object
identities and task-dependent roles).

Finally, several computational models have started to explore making predictions that go beyond simply
the next attended location. For example, Peters & Itti (Peters & Itti, 2008) developed a model that monitors
in an online manner video frames and eye gaze of humans engaged in 3D video games, computing instan-
taneous measures of how well correlated the eye is with saliency predictions and with gist-based top-down
predictions. They then learn to detect specific patterns in these instantaneous measures, which allows them
to predict — up to several seconds in in advance — when players are about to fire a missile in a flight
combat game, or to shift gears in a driving game. This model hence in essence estimates the intentions and
predicts the future actions of the player. A related recent model was proposed by Doshi & Trivedi (Doshi
& Trivedi, 2010) for active vehicle safety and driver monitoring. The system both computes bottom-up and
top-down saliency maps from a video feed of the driver’s view, and monitors the eye movements of the driver
to better predict driver attention and gaze by estimating online the cognitive state and level of distraction
of the driver. Using similar principles and adding pattern classification techniques, Tseng et al. (2009) have
recently introduced a model that uses machine learning to classify, from features collected at the point of
gaze over a few minutes of television viewing, control subjects from patients with disorders that affect the
attention and oculomotor systems. The model has been successfully applied to elderly subjects (classifying
patients with Parkinson’s disease vs. controls) as well as children (classifying children with Attention Deficit
Hyperactivity Disorder vs. Fetal Alcohol Spectrum Disorder vs. controls well above chance). These recent
efforts suggest that eye movement patterns in complex scenes do contain — like a drop of saliva — latent
individual biomarkers, which the latest attention modeling and pattern classification techniques are now
beginning to reliably decode.

5 Discussion and outlook

Our review shows that tremendous progress has been made in modeling both bottom-up and top-down
aspects of attention computationally. Tens of new models have been developed, each bringing new insight
into the question of what makes some stimuli more important to visual observers than other stimuli.

Our quantitative comparison of many existing computational models on three standard datasets (Fig-
ure 5) prompts at least two reactions: First, it is encouraging to see that several models perform significantly
better than trivial models (e.g., a central Gaussian blob) or than older models (e.g., Itti-CIO2 model in Fig-
ure 5). Second, however, it is surprising that the ranking of model scores is quite substantially different
from the chronological order in which models were published. Indeed, one would typically expect that for a
new model to be recognized, it should demonstrate superior performance compared to the state of the art,
and actually often this is the case — just using possibly different datasets, scoring metrics, etc. Thus one
important conclusion of our study is that carrying out standardized evaluations is important to ensure that
the field keeps moving forward (see (Borji, 2010) for a web-based effort in this direction).

Another important aspect of model evaluation is that currently almost all model comparisons and scoring
are based on average performance over a dataset of images or video clips, where often the dataset has been
hand-picked and may contain significant biases (Torralba & Efros, 2011). It may be more fruitful in the
future to focus scoring on the most dramatic mistakes a model might make, or the worst-case disagreement
between model and human observers. Indeed, average measures can easily be dominated by trivial cases if
those happen often (e.g., we discussed earlier the notion of center bias and how a majority of saccades which
humans make are aimed towards the centers of images), and models may be developed which perform well in
these cases but miss conceptually important understanding of how attention may operate in the minority of
non-trivial cases. In addition, departure from average performance measures may provide richer information
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about which aspects of attention are better captured by a given model (e.g., some models may perform
better on some sub-categories or even instances of images than others).

As we described more models, and in particular started moving from bottom-up models to those which
include top-down biases, the question arose of whether purely bottom-up models are indeed relevant to real
life. In other words, is there such a state of human cognition where a default or unbiased form of salience
may be computed and may guide gaze. Many experiments have assumed that free viewing, just telling
observers to “watch and enjoy” stimuli presented to them, might be an acceptable approximation to this
canonical unbiased state. However, it is trivially clear from introspection that cognition is not turned off
during free viewing, and that what we look at in one instant triggers a range of memories, emotions, desires,
cognitive inferences, etc. which all will ultimately influence where we look next. In this regard, it has been
recently suggested that maybe only the initial volley of activity through visual cortex following stimulus
onset may represent such canonical bottom-up saliency representation (Theeuwes, 2010). If such is the case,
then maybe comparing model predictions to sometimes rather long sequences of eye movements may be not
be the best measure of how well a model captures this initial purely bottom-up attention.

Models where top-down influences serve to bias the bottom-up processing stages have also blurred the
line between bottom-up and top-down. In fact, this is an important reminder that bottom-up and top-down
influences are not mutually exclusive and do not sum to give rise to attention control (Awh et al., 2012).
Instead, bottom-up and top-down often agree: The actor cognitively identified as the protagonist in a video
clip may also move in such ways that he is the most salient. In fact, today’s bottom-up may be nothing
more than our former generations’ top-down. Indeed, some bottom-up models have successfully integrated
high-level features such as human face detectors into their palette of feature maps (Judd et al., 2009), which
blurs again the line between bottom-up and top-down (these features are computed in a bottom-up manner
from the image, but their very presence in a model is based on top-down knowledge that humans do strongly
tend to look at faces in images (Cerf et al., 2009)).

When there is a task, top-down influences on attention are often believed to dominate, though this remains
controversial and depends both on the task and on the quantification method used (Zelinsky et al., 2006;
Foulsham & Underwood, 2007; Henderson et al., 2007; Einhäuser et al., 2008; Greene et al., 2012). In human
vision, we should not forget the following: Purely top-down attention (i.e., making a purely volitional eye
movement unrelated to any visual stimulus) is not a generally viable model, except maybe in blind persons.
Others may make pure top-down eye movements from time to time, but certainly not always — that is, no
matter how strongly one believes that top-down influences dominate, in the end controlling visual attention
is a visually-guided behavior, and, as such, it is dependent on visual stimuli. This is important for future
modeling efforts, as they attempt to tackle more complex tasks and situations, such as making a sandwich
(Figure 6.d): A person may indeed look at the jar of jam because it is the next required object for the task
(top-down guidance towards the jam). However, how did that person know where the jam is? In most cases,
some bottom-up analysis (maybe in the past) must have provided that information (except maybe if the
person was told where the jam is). Thus, modeling human behavior in complex tasks will likely require very
careful control over the experimental setup, so that human participants are not given more information or
additional priors that are not communicated to models (e.g., let a person look around before the task begins;
see (Foulsham, 2012) for recent relevant data). This consideration echoes our earlier remark about making
fair comparisons: If a model is not given the same information as a human participant (e.g., the model is
not biased towards a search target or is not allowed to explore a scene before the task begins), likely the
model will not perform as well, but we will also learn very little from such an experiment.

Another important challenge for models briefly mentioned above is dealing with sequence in eye movement
data (i.e., scanpath) and with how to capture temporality in saccades. When comparing models, a model
might be favored not only if it can predict exact saccade locations, but also their ordering and their individual
times of occurrence. In free viewing, in spite of past efforts (Privitera & Stark, 2000), it is still not clear
whether such sequential information is a strong factor of attention control and to what extent it depends on
the subject or the asked question (Yarbus, 1967). Despite this, recently some researchers (e.g., (Wang et al.,
2011)) have tried to develop models and scores to explain sequences of saccades. As opposed to free viewing,
it seems that there is much more temporal information in saccades in presence of a task. For instance, assume
an observer is viewing videos of two different tasks such as sandwich making or driving. It probably should
not be very difficult to decode the task just from the sequential pattern of eye movements. This means that
the task governs sequence of saccades when there is a task. In free-viewing, however, when subjects are asked
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to watch a static scene freely there might not be a unique instruction making them to saccade sequentially
to certain places. Even if subjects are asked to watch the scene under different questions, chances are that
sequence may not help to decode the task (Greene et al., 2012).

Our survey shows that the remaining gap between man and machine seems to a large extent to be in
3D+time scene understanding, which includes reconstruction of the 3D geometry of the scene, understanding
temporal sequences of events, simulation and extrapolation of physics over time in that 3D environment
(e.g., to extrapolate the trajectory of a ball as in Figure 6.c), and so on. This requires some degree of
machine vision and scene understanding which is not yet solved in the general case. This means that future
computational models of attention will need to bring to bear sophisticated machine vision algorithms for
scene understanding, to provide the necessary parsing of visual inputs into tokens that can be reasoned upon
and prioritized by attention.
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Cognitive scene understanding:
"a couple walks down the beach"

Low-level features:
oriented edges, color opponencies,
intensity contrast, motion energy,
stereo disparity, etc.
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Figure 1: Minimal attention-based architecture for complex dynamic visual scene understanding. This
diagram augments the triadic architecture of Rensink (2000), which identified three key components of
visual processing: volatile (instantaneous) and parallel pre-attentive processing over the entire visual field,
from the lowest-level features up to slightly more complex proto-object representations (top), identification of
the setting (scene gist and layout; left), and attentional vision including detailed and more persistent object
recognition within the spatially circumscribed focus of attention (right). Here we have extended Rensink’s
architecture to include a saliency map to guide attention bottom-up towards salient image locations, and
action recognition in dynamic scenes. Also see Navalpakkam et al. (2005).
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Figure 2: Early bottom-up attention theories and models. (a) Feature integration theory of Treisman &
Gelade (1980) posits several feature maps, and a focus of attention that scans a map of locations and collects
and binds features at the currently attended location. (from Treisman & Souther (1985)). (b) Koch &
Ullman (1985) introduced the concept of a saliency map receiving bottom-up inputs from all feature maps,
where a winner-take-all (WTA) network selects the most salient location for further processing. (c) Milanese
et al. (1994) provided one of the earliest computational models. They included many elements of the Koch
& Ullman framework, and added new components, such as an alerting subsystem (motion-based saliency
map) and a top-down subsystem (which could modulate the saliency map based on memories of previously
recognized objects). (d) Itti et al. (1998) proposed a complete computational implementation of a purely
bottom-up and task-independent model based on Koch & Ullman’s theory, including multiscale feature maps,
saliency map, winner-take-all, and inhibition of return. (e) One of the key elements of Itti et al.’s model is
to clearly define an attention interest operator, here denoted N(.), whereby the weight by which each feature
map contributes to the final saliency map depends on how busy the feature map is. This embodies the idea
that feature maps where one location significantly stands out from all others (as is the case in the orientation
map shown) should strongly contribute to salience because they clearly vote for a particular location in space
as the next focus of attention. In contrast, feature maps where many locations elicit comparable responses
(e.g., intensity map shown) should not strongly contribute because they provide no clear indication of which
location should be looked at next.
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7 Gao & Vasconcelos 2004 - + - + - - + s - DCT D DR Brodatz, Caltech
8 Ouerhani et al. 2004

Boccignone & Ferraro 2004
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9

2005
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10 Frintrop + + + + + + + f/s +/- CIOM C - -

2005

11 Itti & Baldi 2005 + - + + + + - f + CIOFM B KL, AUC ORIG-MTV
12 Ma et al. 2005 + - + + - - + f + M* O - -
13 Bruce & Tsotsos 2006 + - - + - + + f + DOG, ICA I KL, ROC Bruce and Tsotsos
14 Navalpakkam & Itti 2006 - + - + - + + s + CIO C - -
15 Zhai & Shah 2006 + - + + + - + f + SIFT O - -
16 Harel et al. 2006 + - - + - - + f + IO G AUC Bruce and Tsotsos
17 Le Meur et al. 2006 + - - + - - + f + LM* C CC, KL Le Meur et al.
18 Walther & Koch 2006 + - - + - + + f +/- CIO C - -
19 Peters & Itti 2007 + + + + + - + i + CIOFM P KL, NSS Peters and Itti
20 Liu et al. 2007 + - - + - - + f - Liu* G F-measure Regional
21 Shic & Scassellati 2007 + - + + + - + f + CIOM C ROC Shic and Scassellati
22 Hou & Zhang 2007 + - - + - + + f + FFT, DCT S NSS DB of Hou and Zhang, 2007
23 Cerf et al. 2007 + + - + - + + f/s + CIO :) C AUC Cerf et al.
24 Le Meur et al. 2007 + - + + + - + f + LM* C CC, KL Le Meur et al.
25 Mancas 2007 + - + + + + + f + CI I CC Le Meur et al.
26 Guo et al. 2008 + - - + - - + f + CIO D CC Self data
27 Zhang et al. 2008 + - - + - + + f + DOG, ICA B KL, AUC Bruce and Tsotsos
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29 Pang et al. 2008 + + + + + - + f + CIOM G NSS ORIG, Self data
30 Kootstra et al. 2008 + - - + - - + f + Symmetry C CC Kootstra et al.
31 Ban et al. 2008 + - + + + - + f + CIO+SYM I - -
32 Rajashekar et al. 2008 + - - + - - + f + R* S CC Rajashekar et al.

Aziz and Mertsching 2008 + - - + - + + f + CO,size, sym I _ -33
Kienzle et al. 2009 + - - + - - + f + I P K* Kienzle et al.34
Marat et al. 2009 + - + + + - + f + SM* C NSS Marat et al.35
Judd et al. 2009 + - - + - - + f + J* P AUC Judd et al.36
Seo & Milanfar 2009 + - + + + + + f + LSK I AUC, KL Bruce and Tsotsos, ORIG37
Rosin 2009 + - - + - - + f + C+ Edge O PR, F-measure DB of Liu et al, 200738
Yin Li et al. 2009 - + + + + + + s + RGB S DR DB of Hou and Zhang, 200739
Bian & Zhang 2009 + - + + + + + f + FFT S AUC Bruce and Tsotsos40
Diaz et al. 2009 + - - + - + + f + CIO O AUC Bruce and Tsotsos41
Zhang et al. 2009 + - + - + - + f + DOG, ICA B KL, AUC Bruce and Tsotsos42
Achanta et al. 2009 + - - + - - + f + DOG S PR DB of Liu et al, 200743
Gao et al. 2009 + - + + + + + f + CIO D AUC Bruce and Tsotsos44
Chikkerur et al. 2010 + + - + - + + f/s +/- CIO B AUC Bruce and Tsotsos, Chikkerur45
Mahadaven & Vasconcelos 2010 + - + - + - + - + I D DR, AUC SVCL background data46
Avraham & Lindenbaum 2010 + + - + - + + f/s +/- CIO G DR, CC UWGT, Ouerhani et al.47
Jia Li et al. 2010 - + + + + - + f + CIO B AUC RSD, MTV, ORIG, Peters and Itti48
Guo et al. 2010 + - + + + + + f/s +/- FFT S DR Self data49
Borji et al. 2010 - + - + - + + s +/- CIO O DR -50
Goeferman et al. 2010 + - - + - - + - + C :) O AUC DB of Hou and Zhang, 200751
Murray et al. 2011 + - - + - - + f + CIO C AUC, KL Bruce and Tsotsos, Judd et al.52

53 Wang et al. 2011 + - - + - - + f + ICA I AUC Self data

McCallum 1995 - + - + - + - i + - R - Self data54
Rao et al. 1995 - + - + - - + s + CIO O - Self data55
Ramstrom & Christiansen 2002 - + - + - - + - + CI O - -56
Sprague & Ballard 2003 - + + - + + + i - S* R - -57
Renninger et al. 2004 - + - + - + - s - Edgelet I DR Self data58
Navalpakkam & Itti 2005 - + - + - + + - + CIO C - Self data59
Paletta et al. 2005 - + - + - - + - - SIFT R DR COIL-20, TSG-2060
Jodogne & Piater 2007 - + - + - - + i - SIFT R - -61
Butko & Movellan 2009 - + + + + + + s - - R - -62
Verma & McOwan 2009 + - - + -

-
+ - s - CIO O - -63

64 Borji et al. 2010 - + - + - - +
+ - +

i - CIO R - self data

65 Borji et al. 2012 - + - + i - CIO B AUC, NSS self dataTo
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Figure 3: Survey of bottom-up and top-down computational models, classified according to 13 factors. Factors in order are:
Bottom-up (f1), Top-down (f2), Spatial (-)/Spatio-temporal (+) (f3), Static (f4), Dynamic (f5), Synthetic (f6) and Natural
(f7) stimuli, Task-type (f8), Space-based(+)/Object-based(-) (f9), Features (f10), Model type (f11), Measures (f12), and Used
dataset (f13). In Task type (f8) column: free-viewing (f); target search (s); interactive (i). In Features (f10) column: CIO:
color, intensity and orientation saliency; CIOFM: CIO plus flicker and motion saliency; M* = motion saliency, static saliency,
camera motion, object (face) and aural saliency (Speech-music); LM* = contrast sensitivity, perceptual decomposition, visual
masking and center-surround interactions; Liu* = center-surround histogram, multi-scale contrast and color spatial-distribution;
R* = luminance, contrast, luminance-bandpass, contrast-bandpass; SM* = orientation and motion; J* = CIO, horizontal line,
face, people detector, gist, etc; S* = color matching, depth and lines; :) = face. In Model type (f11) column, R means that a
model is based RL. In Measures (f12) column: K* = used Wilcoxon-Mann-Whitney test (The probability that a random chosen
target patch receives higher saliency than a randomly chosen negative one); DR means that models have used a measure of
detection/classification rate to determine how successful was a model. PR stands for Precision-Recall. In dataset (f13) column:
Self data means that authors gathered their own data. For a detailed definition of these factors please refer to Borji & Itti
(2012 PAMI).
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Figure 4: Example images (first row), human eye movement heatmaps (second row), and saliency maps from
26 computational models. The three vertical dashed lines separate the three datasets used (Bruce & Tsotsos,
Kootstra & Schomacker, and Judd et al.). Black rectangles indicate the model originally associated with a
given image dataset. Please see Borji et al. (2012 TIP) for additional details.
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Figure 5: Ranking visual saliency models over three image datasets. Left column: Bruce & Tsotsos (2005),
Middle column: Kootstra & Shomaker (2008), and Right column: Judd et al. (2009) using shuffled AUC
score. Stars indicate statistical significance using t-test (95%, p ≤ 0.05) between consecutive models. Error
bars indicate standard error of the mean (SEM): σ√

N
, where σ is the standard deviation and N is the

number of images. The Judd model uses center feature, gist and horizon line, and object detectors for cars,
faces, and human body. Itti-CIO2 is the approach proposed by Itti et al. (1998) that uses a normalization
scheme known as Maxnorm: For each feature map, find the global max M and find the average m of all
other local maxima. Then just weight the map by (M −m)2. In the Itti-CIO method (Itti & Koch, 2000),
normalization is: Convolve each map by a Difference of Gaussian(DoG) filter, cut off negative values, and
iterate this process for a few times. As results show the Maxnorm normalization scheme performs better. In
the literature, majority of models have been compared against Itti-CIO model. Please see Borji et al. (2012
TIP) for additional details on these results.
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Figure 6: Experimental motivation to explore spatial biases, feature biases, and more complex semantic
top-down models. (a) Percentage of fixations onto different road locations while human drivers drove at 50
miles/hour on an open road three times (once each panel; dots indicate non-zero percentages smaller than
1). We can see that over the three repetitions (top to bottom panels), eye fixations started clustering more
tightly around the left side of the horizon line (from Mourant & Rockwell, 1970). This motivates top-down
models to learn over time how a task may induce some spatial biases in the deployment of attention. (b)
Neural recordings in the frontal eye fields (FEF) as monkeys searched from a cued target among various
distractors reveals that the number of saccades the animal made to find the target is negatively correlated
with neural firing at the target location around (±50ms) the onset of the first saccade (scatter plot shows
examples, one dot per trial, from one recording site, and the negatively-sloped linear regression; histogram
shows distributions of slopes over all recording sites, with the significant ones in black and all others in gray).
This suggests that top-down models can also exploit biasing for specific features of a search target to attempt
to guide attention faster towards the target (from Zhou & Desimone, 2011). (c) Eye movement recordings
of cricket batsmen revealed that their “eye movements monitor the moment when the ball is released, make
a predictive saccade to the place where they expect it to hit the ground, wait for it to bounce, and follow
its trajectory for 100-200 ms after the bounce” (Land & McLeod, 2000). This suggests that some knowledge
of physics, gravity, bouncing, etc. may be necessary to fully understand human gaze behavior in this more
complex scenario. (d) Eye movement recordings while making a sandwich are clearly aimed towards the
next required item during the unfolding of the successive steps required by the task, with very little searching
or exploration (Land & Hayhoe, 2001). Thus, recognition and memorization of objects in the scene is also
likely to be required of top-down models to tackle such more complex scenario.
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Figure 7: Top-down models that modulate feature gains. (a) The Guided Search theory of Wolfe (1994)
predicted that bottom-up feature maps can be weighted and modulated by top-down commands. (b) Com-
putational framework to optimally compute the weight of each feature map, given top-down knowledge of the
expected distribution of feature values θ for both target objects (P (θ|T )) and distractors (P (θ|D)). The gain
of each feature is set inversely proportionally to the expected target-to-distractor signal-to-noise ratio given
these distributions (Navalpakkam & Itti, 2006; 2007). (c) Examples of images (top row), naive un-weighted
saliency maps (middle row), and optimally-biased saliency maps based on feature distributions gathered from
sample training images (bottom row). Although the object of interest was not the most salient according
to a purely bottom-up model in these examples, it becomes the most salient once the model is biased using
top-down gains computed from the target and distractor feature distributions (Navalpakkam & Itti, 2006).
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Figure 8: Top-down models that involve spatial modulation. (a) Model of Ehinger at al. (2009) where an
attention map is informed by three guidance sources, given the task of finding people: (1) a spatial map
that, based on the coarse scene structure, provides a spatial prior on where humans might appear in the
given scene (e.g., they might appear on sidewalks); (2) A map that indicates where visual features in the
image that resemble the features of the desired targets are observed; (3) a bottom-up saliency map. (b)
The combined-source model performs best and significantly better than any of the three component models
taken alone, and also performs better than an empirical context oracle (where a set of humans manually
indicated where humans might appear in the given scenes). (c) A model that learns top-down priors from
human gaze behavior while engaged in complex naturalistic tasks, such as driving (Peters & Itti, 2007).
A task-dependent learner component builds, during a training phase, associations between distinct coarse
types of scenes and observed eye movements (e.g., drivers tend to look to the left when the road turns left).
During testing, exposure to similar scenes gives rise to a top-down salience map, which is combined with a
standard bottom-up salience map to give rise to the final (BU*TD) priority map that guides attention. (d)
Example results from the model of (c) applied to a driving video game. Blue diamonds represent the peak
location in each map and orange circles represent the current eye position of the human driver. Here the
bottom-up (BU) salience map considers that the main character is the most interesting scene element, but,
as more correctly predicted by the top-down (TD) map, the driver is looking into the road’s turn and on the
horizon line. From Peters & Itti (2007).
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Figure 9: Examples of recent more complex top-down models. (a) Model of Akamine et al. (2012) which
combines bottom-up saliency influences and top-down active/passive state influences over space and time
using a dynamic Bayesian network. Although the top-down state is quite simple in this model (active vs.
passive), the proposed mathematical framework could easily extend to more complex top-down influences.
(b) Graphical representation of the DBNs approach of Borji et al. (2012 AAAI) unrolled over two time-
slices. Xt is the current saccade position, Yt is the currently attended object, and F it is the function that
describe object i at the current scene. All variables are discrete. It also shows a time series plot of probability
of objects being attended and a sample frame with tagged objects and eye fixation overlaid. (c) Sample
predicted saccade maps of the DBN model (shown in b). Each red circle indicates the observers eye position
superimposed with each maps peak location (blue squares). Smaller distance indicates better prediction.
Images from top-left to bottom-right are: a sample frame from the hot-dog bush game where the player has
to serve customers food and drink, MEP stands for the mean eye position over all frames during the game
play, G is just a trivial Gaussian map at the image center, BU is the bottom-up saliency map of the Itti
model, REG(1) is a regression model which maps the previous attended object to the current attended object
and fixation location, REG(2) is similar to REG(1) but the input vector consists of the available objects at
the scene augmented with the previously attended object, SVM(1) and SVM(1) correspond to REG(1) and
REG(2) but using an SVM classifier, Mean BU is the average BU map showing which regions are salient
throughout the game course, Similarly DBN(1) and DBN(2) correspond to REG(1) and REG(2) meaning
that in DBN(1) network slice consists of just one node for previously attended object while in DBN(2) each
network slice consists of the previously attended object as well information of the previous objects in the
scene, and finally Rand is a white noise random map.

30


