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Case 3: Gist, previous saccade, and motor actions

= WP (G¢|X )P (X 1|X )P (X¢) x M)y P (AL, [X+)

Above formula assumes that actions are independent of each other
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video games, as modest counterparts of everyday tasks, we show that our approach global context of a scene?. p .S, ! ’ Following Markov assumption, the current scene Gist (G, has all the
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force predictors (AFM and Gaussian) for 5 video games using NSS and AUC (ROC) scores.
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different combinations

: given the attended location (i.e., AL A' | X). An important point here
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