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P (X t |G 1: t ) = P (X t |G t , G 1: t− 1 )

=
P (G t |X t )P (X t |G 1: t− 1 )

P (G t |G 1: t− 1 )
= µP (G t |X t )P (X t |G 1: t− 1 )

P (X t |G 1: t , X 1: t− 1 ) = P (X t |G t , G 1: t− 1 , X 1: t− 1 )

=
P (G t |X t )P (X t |G 1: t− 1 , X 1: t− 1 )

P (G t |G 1: t− 1 , X 1: t− 1 )
= µ1P (G t |X t )P (X t |G 1: t− 1 , X 1: t− 1 )
= µ1µ2P (G t |X t )P (X t− 1 |X t )P (X t |G 1: t− 1 , X 1: t− 2 )

P (X t |G 1: t , X 1: t− 1 ) = µP (G t |X t )P (X t− 1 |X t )P (X t )

* Publicly available at: http://www.ics.uci.edu/ihler/code/kde.html

P (X t |G 1: t , X 1: t− 1 , A j =1: n
1: t− 1 )

= µP (G t |X t )P (X t− 1 |X t )P (X t ) × Π n
j =1 P (A j

t− 1 |X t )

Case 3: Gist, previous saccade, and motor actions
Finally, we combine all evidences in our Bayesian model. Following 
the steps in case 2 and simplifying we reach to:

Case1 : Gist only
In this case, only global context information from all past and the cur-
rent time is used. According to the Bayes theorem we have:

Above formula assumes that actions are independent of each other 
given the attended location (i.e., Ak    Al | X). An important point here 
is whether actions influence saccades or vice-versa. Computing 
above requires estimation of P(Gt|Xt) and similarly others. This can be 
done in several ways using non-parametric probability density esti-
mation techniques such as generalized Gaussian model, histogram 
estimation or kNNs. We adapted the Kernel Density Estimation (KDE) 
approach. One pdf is calculated for each spatial location:

where Kh is a Gaussian kernel with smoothing parameter (sliding 
window or bandwidth) h and m is number of data points. We used a 
Matlab toolbox* for implementing KDE.

where µ1 is equal to P(Gt|G1:t−1,X1:t−1 )
−1 and µ2 is P(xt−1|G1:t−1,X1:t−2 )

−1. 
Again, considering Markov assumption and defining µ = µ1 µ2, we 
have:

Case 2: Gist and previous saccade
In the second step, we add previous saccade locations to the formula-
tion:

Following Markov assumption, the current scene Gist (Gt) has all the 
necessary information for determining state and knowing the attended 
location.Thus Xt is independent of all previous gists: P(Xt|G1:t−1 ) = P(Xt). 
Therefore, we can write: P(Xt|G1:t ) = µP(Gt|Xt )P(Xt ) with P(Xt) as the 
prior distribution over eye positions.
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1
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(6) Proposed Models
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(7) Scoring and Results

 We proposed a unified Bayesian approach that is applicable to a large class of everyday 
tasks where global scene knowledge, the sequence of fixated locations, and physical ac-
tions, constrain future eye fixations. 
 Applications: quantitative analysis of differences among populations of subjects (e.g., 
young vs. elderly or novices vs. experts) in complex tasks such as driving, assistant tech-
nologies for demanding tasks, prosthetic design, human computer interaction, context 
aware systems, and health care.
 It is still possible to gain higher performance by knowing more about the scene. For in-
stance, by calculating the number or state of task-related objects. 
 Extraction and addition of subjective factors such as fatigue, preference, and experi-
ence into our model is an interesting next step.
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Conclusions & References

Normalized Scanpath Saliency (NSS): the response value at the human eye position                
in a model’s predicted gaze density map that has been normalized to have zero mean and unit 
standard deviation:

Area Under the Curve (AUC): A model’s saliency map is treated as a binary classifier on every 
pixel; pixels with larger saliency values than a threshold are classified as fixated while the rest of 
the pixels are classified as non-fixated.

(xh , yh )

NSS ( t) = 1
σ s ( x )

s(x ( t)) − µs ( t )
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DS 0.57 0.54 0.73 0.62 0.658 0.76 0.78 0.82 0.82 0.82
0.19 0.05 0.948 0.54 0.30 1.47 1.66 1.9 1.91 1.95

WS 0.52 0.41 0.73 0.55 0.51 0.76 0.81 0.83 0.83 0.84
0.27 -0.2 1.25 0.66 0.19 1.64 1.9 2.18 2.21 2.46

SM 0.61 0.69 0.72 0.67 0.62 0.67 0.75 0.78 0.79 0.79
0.59 0.74 1.21 0.77 0. 33 0.62 1.07 1.13 1.21 1.11

BS 0.72 0.61 0.73 0.69 0.72 0.72 0.76 0.79 0.81 0.84
1.04 0.54 1.1 0.80 1.2 0.96 1.89 2.1 2.2 2.7

TG 0.62 0.5 0.622 0.6 0.6 0.6 0.73 0.75 0.75 -
0.58 0.01 0.55 0.51 0.29 0.57 1.28 1.36 1.34 -

AUC (1st rows) and NSS scores 
(2nd rows) of 5 state-of-the-art 
bottom-up saliency  models, Gauss,  
AFM, and our models over 5 video 
games. The score of the best model 
in each row is shown in red. In 
almost all cases, while other models 
fall below Gaussian and AFM 
models, KDE (All) scores the best. 
In some cases, regression and KNN 
model score the best. C-x stands for 
Case x.

Gist [ 2 ] HOG [ 4 ]
Game kNN REG kNN REG
DS 0.80 (1.77) 0.8 (1.86) 0.81 (1.88) 0.81 (2.05)
SM 0.75 (0.88) 0.76 (1.01) 0.74 (0.97) 0.79 (1.23)

Comparing AUC and NSS scores (in paren-
thesis) of the Gist model of Siagian et al. [2] 
and HOG features for saccade prediction 
using kNN and regression classifiers for 3D 
Driving School and Super Mario games. 

Prediction accuracy of our KDE models, the Itti et al. [3], classifiers also implemented here, as well as brute-
force predictors (AFM and Gaussian) for 5 video games using NSS and AUC (ROC) scores.
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 Despite a considerable amount of previous work on bottom-up saliency modeling 
for predicting human fixations over static and dynamic stimuli, few studies have thus 
far attempted to model top-down and task-driven influences of visual attention. 

 Here, taking advantage of the sequential nature of real-world tasks [1], we propose 
a unified Bayesian approach for modeling task-driven visual attention. Several 
sources of information, including global context of a scene, previous attended loca-
tions, and previous motor actions, are integrated over time to predict the next at-
tended location. 

 Recording eye movements while subjects engage in 5 contemporary 2D and 3D 
video games, as modest counterparts of everyday tasks, we show that our approach 
is able to predict human attention and gaze better than the state-of-the-art, with a 
large margin (about 15% increase in prediction accuracy). The advantage of our ap-
proach is that it is automatic and applicable to arbitrary visual tasks.

(1) Introduction 

Original frame (DS game) GBVS AIMJuddSUN ICLSDSR KDE (All)

(2) Data Gathering

Joystick

Game Machine
WinXP

VGA to Composite
Video Converter

Function:
- Play game
- Record joystick, mouse,
  wheel actions, and sounds

Recording Machine
Linux Mandriva

Eye Tracker Recorder
Win98

Function:
- Record video
- Calibration of eye tracker
- Main time keeper

Function:
- Record eye movement
- Control the camera

Function:
- Convert VGA to
  Composite for Recording

VGA Composite

DVI

LANLAN

LCD Monitor

Eye tracker camera

Steering Wheel

+ Acc./Brake
   Pedals

SubjectHeadphone

Mouse Experimental 
Setup

Subjects aged 20-30 were asked 
to play 5 games with the rig 
shown at left: 3D Driving School 
(DS), 18 Wheel of Steel (WS), 
Super Mario Bros (SM), Burger 
Shop (BS), and Top Gun (TG). 
Subjects were placed at 130cm 
from the screen subtending a 
field of view of 43º x 25º. There 
was a 5-min training before the 
test sessions for each game. 
Video frames [30Hz], Eye fixa-
tions [240Hz], and Actions [62Hz] 
(except TG) were recorded.

Correlation between actions and saccade positions. Rows indicate events (each frame 
was manually tagged based on its event type). Columns from left to right include: wheel 
vs. eye−x, eye−y vs. wheel, saccade coordinates during the game (eye−x vs. eye−y), and 
frequency of pedal positions for DS game. 

Game # Sacc. # Subj Dur. # Frames Size Action
DS 6382 10 10 min 180K 110 J
WS 4849 10 10 ” 180K 110 J
SM 1482 5 5 ” 45K 26 J
BS 1763 5 5 ” 45K 26 M
TG 4602 12 ~4.5 ” 99K 57 N/A

Summary statistics of our data including overall number of saccades, subjects, dura-
tions per subject, frames, sizes in GB, and action types (J indicates joystick and M 
stands for mouse).
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 Bottom-up saliency does not account for task-driven eye movements.

(5) Benchmark Models

argmin
W

||M × W − X sacc ||2 Subject to : W ≥ 0.

Linear Regression (REG). This model maps Gist of the scene to the 
eye position: 

where M indicates the matrix of feature vectors and X is the matrix of 
eye positions. The least-squares solution of the above objective func-
tion is: W = M+ × X, where M+ is the pseudo-inverse of the matrix M 
through SVD decomposition. Given vector E = (u, v) as the eye posi-
tion over a 20 × 15 map (i.e., w = 20, h = 15) with u    [1, 20] and 
v    [1, 15], the gaze density map can then be represented by vector 
X = [x1, x2, . . . , x300 ] with xi=1 for i=u+(v-1)×20 and xi=0 otherwise. 

k Nearest Neighbor Classifier (kNN). The attention map for a test frame 
is built from the distribution of fixations of its k most similar frames in the 
training set: 

where Xj is the fixation map of the j−th most similar frame to frame i which 
is weighted according to its similarity to frame i in feature space. 

X i = 1
k

k
j =1 D (F i , F j )− 1X j

Average Fixation Map (AFM) is the average of all saccade positions 
during the time course of a task over all m training frames: 

AFM = 1
m

m
j =1 X j

Central Gaussian filter (Gauss). The rationale behind using this model 
is that humans tend to look at the center of the screen when game play-
ing (center-bias or photographer-bias issue [5]). 

Bottom-up saliency models. We also compare the prediction power  
of our models against classic saliency models that predict fixations by 
detecting image outliers (e.g., [3]).
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We fitted a 2D Bivariate Gaussian to the fixation data of each game using 
ML algorithm.
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of features

• salience is a global 
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(3) Features

(4) Collected Data 

Global context (Gist, G). A quick summary of the quintessential charac-
teristics of an image. We adopt the gist model of [2]1 as it is based on the 
bottom-up saliency model [3]. We consider 4 scales for each orientation 
pyramid, 6 scales for each color pyramid, and 6 scales for intensity. For 
each of the maps, average in each of the patches of grid sizes n × n (here 
n   {1, 2, 4}) are calculated (thus 21 values). Overall the final gist vector will 
be the augmentation of (4×4+6×2+6×1)×21 = 714 values. We then exploit 
PCA to reduce the dimensionality of this vector. We also, investigate the 
ability of histogram of oriented gradient (HOG) [4] features to represent the 
global context of a scene2.

Previous saccade location (X). A lot of everyday tasks need a number of 
perceptions and actions to be performed in a sequence (e.g., Sandwich 
making [1]). Therefore, knowing what object has been attended previously 
gives an evidence for the next attended object. We implement this idea 
over spatial locations. For instance, P (Xt+1=b|Xt=a) indicates the probabil-
ity of looking at location b in the next time step given that location a is cur-
rently fixated (e.g., looking at left first and then right when turning right).

Motor actions (A). Actions and fixations are tightly linked thus, by know-
ing a performed action, one can tell where to look next. We assume that 
these actions correspond to some high-level events in the game. We 
logged actions for driving games, from which we only generated a 2D fea-
ture vector from wheel and pedal positions. For other games, 2D mouse 
position and joystick buttons were used.
1 http://ilab.usc.edu/siagian/Research/Gist/Gist.html
2 http://pascal.inrialpes.fr/soft/olt/

Sample frames of the video games. Second column shows the aver-
age fixation location over all subjects. Third column shows the mean 
bottom-up saliency map derived from the Itti et al.’s [3] model showing 
the average bottom-up salient regions through the whole time course 
of a game. Some of these data (right) has been collected in our lab by 
Peters and Itti [6]. Our data is freely available upon request.
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