
One challenge when tracking objects is to adapt the object representation 
depending on the scene context to account for changes in illumination, 
coloring, scaling, etc. 

We present a solution that is based on particle filters and component-
based descriptors. We deal with changing backgrounds by using a quick 
training phase with user interaction at the beginning of an image 
sequence. During this phase, some background clusters are learned 
along with object representations for those clusters. Next, for the rest of 
the sequence the best fitting background cluster is determined for each 
frame and the corresponding object representation is used for tracking. 
Experiments show a particle filter adapting to background changes can 
efficiently track objects and persons in natural scenes and results in 
higher tracking results than the basic approach. 

Additionally, using an object tracker to follow the main character in video 
games, we were able to explain a large amount of eye fixations higher 
than other saliency models in terms of NSS score proving that tracking is 
an important top-down attention component.

The term “saliency” is often 
referred to visual attention 
where some parts of stimuli 
are selected for further pro-
cessing.

Selection mechanism could 
be bottom-up where it is de-
rived by stimuli level compe-
titions or top-down task- 
relevance mechanisms 
based on tasks demands. 

We follow a different direc-
tion than spatio-temporal sa-
liency models by tracking a 
task-relevant object.
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a) Used objects in our work 
and their corresponding 
component-based descriptors, 
b) Descriptor and feature maps 
Fi for Person 1. From left to 
right: bright-dark, dark-bright, 
green-red, blue-yellow, red-
green and yellow-blue
contrasts.

Left: An illustration of the template MR * for the 
target region R* . The three colored rectangles 
denote the mi,j . Note that each of them
comes from a different feature map which is 
illustrated here by different colors. 
Right: the template MR′ adapted to region R′.

Sample frames from Cell, Person2 
and Drill test sequences and esti-
mated target rectangles. Green 
dots: particles that matched to 
target, cyan dots: particles that did 
not match. Yellow (blue) rectangles 
mean high (low) con�dence.

Detection rate (percentage of frames with the 
object correctly detected) and detection enhance-
ment rate (in parentheses). In both train and test 
cases except the Box3 (since it was a small easy 
case and without large changes in background) 
we observed an increase in detection rate of clus-
tering compared to the �rst-frame case. An object 
is considered as detected if the center of the
rectangle Mo proposed by the tracker is on the 
manually tagged target region Mt.

Traces of object position in x and y dimensions for Gadget and Cell objects. Black vertical bars show the occluded 
frames for Cell object.

The target descriptor consists of a collection of components that 
have a strong contrast within a certain feature dimension.

First, six feature maps Fi are computed. They represent intensity 
and color contrasts based on color-opponent cells of the human 
visual system.

Second, we compute a component-based target descriptor from 
the feature maps. A component is a peak in one of the feature 
maps within the target region.

The positions of the regions mi,j are stored relative to the center of 
R′ and represent a template MR′.

Finally, we describe how the target descriptor d* is
matched to an image region R′ of arbitrary size and dimensions.

b) A sample frame of Mario Sun-
shine game with particles overlaid. 
Sample saliency maps of models are 
also shown. The panel at the 
bottom-right is the instantaneous 
NSS score for this frame. Since sub-
jects did not agree much in this 
frame NSS score for the IO model is 
smaller than Tracking model. NSS 
scores for CIOFM, M and Surprise 
are negative indicating that bottom-
up salient stimuli do not capture 
task-relevant attention, however 
when adding saliency map of Track-
ing model to this models NSS score 
increased to above 0. 
c) Average NSS score over all six 
games. As it shows CIOFM + Track-
ing model achieved the best score 
followed by Motion + Tracking. 
Tracking alone is higher than other 
pure bottom-up saliency models indi-
cating that subjects most of the time 
tracked the main character in these 
games. There is still a big difference 
in performance of models and Inter-
Observer model (more than 1.5 
difference in NSS score). 

We first learn a number of background clusters from a train 
image sequence and also their corresponding object descrip-
tors which can successfully detect the object in those back-
grounds. 

Then over a test sequence, for each frame, first we find its 
background cluster and then apply the descriptor of that clus-
ter to the frame.

weight of a particle is based on 
the distance of the descriptor it 
represents and the target tem-
plate descriptor.

To adapt the particle tracking to account for 
background changes, for each frame in a se-
quence we find its cluster among the learned 
background clusters from training frames and 
then use the descriptor of that cluster.

The tracker employs the standard Condensation algorithm 
which maintains a set of weighted particles over time using 
a recursive procedure based on the following three steps: 

First, the system draws particles randomly from the particle 
set of the previous time step, where each particle is drawn 
with a probability proportional to the associated weight of 
the particle. 

Second, the particles are transformed (predicted) according 
to a motion model. 

Finally, all particles are assigned new weights according to 
an observation model and the object state is estimated.

For image representation, we partition the image and use the 
average of the feature maps:

We then use BSAS algo-
rithm to generate a 
number of background 
clusters.

where element F pq of Ei matrix is the normalized mean
of Fi ((p − 1)w : pw, (q − 1)h : qh) region of map Fi and gener-
ates a row vector of matrix Ei:

a) Sample frames from 6 game stimuli used in the experiments: Super 
Mario Sunshine (left two), Pikmin, Super Monkey ball, PacMan World (last 
two). Below each frame is the average NSS score over 1668, 1082, 2483, 
687, 1863, and 1548 frames, respectively for several models. 
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Detection results for both first-frame and clustering cases.

Object # o� rames
in train set

# o� rames
in test set

# of
Clusters

Detection rate (Train) Detection rate (Test)

first-frame case clustering case first-frame case clustering case
1 Gadget 1200 1500 3 91.6 97.6 (6) 66.6 96.7 (30.1)
2 Cell 2400 1200 8 82.9 95.6 (12.7) 49.6 95 (45.4)
3 Drill 2400 3300 10 67.1 93.5 (26.4) 71.3 80.3 (9)
4 Cylinder 2665 2100 13 78.3 82.6 (4.3) 36.8 69.2 (32.4)
5.a Box1 75 75 2 61.3 100 (38.7) 50.6 88 (37.4)
5.b - - 53 - - - 40 61.3 (21.3)
5.c - - 43 - - - 28 45.3 (17.3)
6 Box2 100 100 3 63 100 (37) 67 90 (23)
7 Box3 97 101 3 52.5 96.9 (44.4) 40.6 92 (51.4)
8 Box4 50 65 2 100 100 (0) 100 100 (0)
9 Can1 70 70 3 61.4 100 (38.6) 44.3 82.8 (38.5)
10.a Can2 75 100 3 64 100 (36) 57 78 (21)
10.b - - 100 - - - 67 90 (23)
11 Person1 84 100 3 96.4 100 (3.6) 86 100 (14)
12 Person2 158 161 5 41.8 93 (51.2) 87.5 92.5 (5)
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The bottom-up saliency computation of the attention system VOCUS.
By Simone Frintrop
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