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Abstract

In a very influential yet anecdotal illustration, Yarbus suggested that human eye movement patterns
are modulated top-down by different task demands. While the hypothesis that it is possible to decode the
observer’s task from eye movements has received some support (e.g., Iqbal & Bailey (2004); Henderson et
al. (2013)), Greene et al. (2012) argued against it by reporting a failure. In this study, we perform a more
systematic investigation of this problem, probing a larger number of experimental factors than previously.
Our main goal is to determine the informativeness of eye movements for task and mental state decoding. We
perform two experiments. In the first experiment, we re-analyze the data from a previous study by Greene
et al. (2012) and contrary to their conclusion, we report that it is possible to decode the observer’s task from
aggregate eye movement features slightly but significantly above chance, using a Boosting classifier (34.12%
correct vs. 25% chance-level; binomial test, p = 1.0722e − 04). In the second experiment, we repeat and
extend Yarbus’ original experiment by collecting eye movements of 21 observers viewing 15 natural scenes
(including Yarbus’ scene) under Yarbus’ seven questions. We show that task decoding is possible, also
moderately but significantly above chance (24.21% vs. 14.29% chance-level; binomial test, p = 2.4535e−06).
We thus conclude that Yarbus’ idea is supported by our data and continues to be an inspiration for future
computational and experimental eye movement research. From a broader perspective, we discuss techniques,
features, limitations, societal and technological impacts, and future directions in task decoding from eye
movements.

Keywords: visual attention, eye movements, bottom-up saliency, top-down attention, free viewing, visual
search, mind reading, task decoding, Yarbus

1. Introduction

Eyes are windows to perception and cognition. They convey a wealth of information regarding our
mental processes. Indeed this has been elegantly demonstrated by seminal works of Guy T. Buswell (1935)
and I. A. Yarbus (1967), who were the first to investigate the relationship between eye movement patterns
and high-level cognitive factors. Yarbus recorded an observer’s eye movements (with his home-made gaze
tracking suction cap device) while s/he viewed the I. E. Repin’s painting, “The Unexpected Visitor” (1884)1.
He illustrated fixations of the observer as s/he viewed the painting under seven different instructions: 1)
Free examination, 2) Estimate the material circumstances of the family, 3) Give the ages of the people, 4)
Surmise (guess) what family had been doing before the arrival of the unexpected visitor, 5) Remember the
cloths worn by the people, 6) Remember positions of people and objects in the room, 7) Estimate how long
the visitor had been away from the family.

Yarbus’ results show striking differences in eye movement patterns across instructions, over the same
visual stimulus. Early in the viewing period, fixations were particularly directed to the faces of the individuals
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in the painting and also observers showed a strong preference to look at the eyes more than any other features
of the face. Yarbus concluded that the eyes fixate on those scene elements which carry useful information,
thus showing where we look depends critically on our cognitive task. Further, Yarbus’ experiments point
towards the active nature of the human visual system, as opposed to passively or randomly sampling the
visual environment. This active aspect of vision and attention has been extensively investigated by Dana
Ballard, Mary Hayhoe, Michael Land and others who studied eye movements in the context of natural
behavior. Please see Ballard et al. (1995); Hayhoe & Ballard (2005); Tatler et al. (2011); Tatler & Vincent
(2009); Schütz et al. (2011); Navalpakkam & Itti (2005); Land & Hayhoe (2001); Land (2006); Itti & Koch
(2001); Borji & Itti (2012) for recent reviews.

Two prominent yet contrasting hypotheses attempt to explain eye movements and attention in natural
behavior. First, according to the cognitive relevance hypothesis, eyes are driven by top-down factors that
intentionally direct fixations toward informative task-driven locations (e.g., in driving). Second, in the
absence of such task demands (e.g., in scene free-viewing), eyes are directed to low-level image discontinuities
such as bright regions, edges, colors, etc., so called salient regions. This is often referred to as the saliency
hypothesis (Treisman & Gelade, 1980; Koch & Ullman, 1985; Parkhurst et al., 2002; Itti et al., 1998). Both
hypotheses are likely to be correct, yet the relative contribution of top-down and bottom-up attentional
components varies across daily behaviors. Conversely, by looking at eye movements, one could possibly infer
the underlying factors affecting fixations (i.e., task at hand or mental state), or gain insights into what an
observer is currently thinking. Active research is undergoing to discover the interplay between top-down task-
driven factors and bottom-up stimulus-driven factors in driving visual attention and to assess the amount
of information eye movements convey regarding mental thoughts.

Yarbus showed a proof of concept with a single observer but did not conduct a comprehensive quanti-
tative analysis. Perhaps DeAngelus & Pelz (2009) were the first to confirm Yarbus’ findings, with multiple
observers viewing Repin’s painting. Viewing times in their study were self-paced (9 to 50 seconds), and were
significantly less than the enforced 3-minute viewing time of Yarbus’ observer. DeAngelus and Pelz showed
that observers’ eye movement patterns were similar to those reported by Yarbus, with faces invariably fix-
ated, and the overall viewing pattern varying with task instruction. A few of their observers, especially
those with shorter viewing times, did not show dramatic shifts with instruction. The task “Give the ages of
the people” resulted in the smallest inter-observer distance of all tasks, indicating that for this task the eye
movement patterns were most similar among the observers. The “Estimate how long the visitor had been
away from the family” task showed the most variability among observers, suggesting that observers used
different viewing strategies to complete this task.

The general trend for fixations when viewing scenes to fall preferentially on persons within the scene
had been shown previously by Buswell (1935). The tendency of observers to fixate on faces has recently
been quantitatively confirmed by Cerf et al. (2009) and further supported by large-scale eye tracking studies
(e.g., Judd et al. (2009); Subramanian et al. (2010)). Yarbus’ results (along with DeAngelus & Pelz (2009))
indicate that, for extended viewing times, observers show a clear tendency to make repeated cycles of fixations
between the key features of a face or a scene (a.k.a cyclic behavior). Both attention and face perception
communities have been largely inspired by Yarbus’ early insights (See Kingstone (2009)).

Castelhano et al. (2009) investigated how task instruction influences specific parameters of eye movement
control. They asked 20 participants to view color photographs of natural scenes under two instruction sets:
searching a scene for a particular item or remembering characteristics of that same scene. They found that
viewing task biases aggregate eye-movement measures such as average fixation duration and average saccade
amplitude. Mills et al. (2011) examined the influence of task set on the spatial and temporal characteristics of
eye movements during scene perception. They found that task affects both spatial (e.g., saccade amplitude)
and temporal characteristics of fixations (e.g., fixation duration).

Tatler et al. (2010) explored Yarbus’ biography, his scientific legacy including his eye tracking apparatus,
and his key contributions. They recorded eye movements of observers when viewing Yarbus’ own portrait
under the task conditions resembling Yarbus’ questions with mild modifications. For example questions 4
and 7 were phrased as “Estimate what the person had been doing just before this picture was taken” and
“Try to estimate how long this person had been away from home when this picture was taken and why he
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had been away”, respectively. They showed that: 1) Yarbus’ findings generalize to a simpler visual stimulus,
and 2) instructions influence where and which features an observer inspects in face viewing.

Betz et al. (2010) addressed how or whether at all high-level task information interacts with the bottom-
up processing of stimulus-related information. They recorded viewing behavior of 48 observers on web pages
for three different tasks: free viewing, content awareness, and information search. They showed that task-
dependent differences in their setting were not mediated by a re-weighting of features in the bottom-up
hierarchy, ruling out the weak top-down hypothesis. Consequently, they concluded that the strong top-down
hypothesis, which proposes that top-down information acts independently of the bottom-up process, is the
most viable explanation for their data. These results support Yarbus’ findings in that top-down factors
influence where we look when viewing a scene.

Henderson et al. (2013) recorded eye movements of 12 participants while they were engaged in four
tasks over 196 scenes and 140 texts: scene search, scene memorization, reading, and pseudo reading. They
showed that the viewing tasks were highly distinguishable based on eye-movement features in a four-way
classification. They reported a high task decoding accuracy above 80% using multivariate pattern analysis
(MVPA) methods widely used in the neuroimaging literature. Their four tasks, however, are much coarser
than Yarbus’ original questions, thus making the decoding problem effectively easier. Further, natural scenes
and text used by Henderson et al. have dramatically different low-level feature distributions, which causes
major differences in eye movement patterns (O’Connell & Walther, 2012; Harel et al., 2008), hence some of
the decoding accuracy may be due to stimulus rather than task.

The list of studies addressing task decoding from eye movements and effects of tasks/instructions on fixa-
tions is not limited to the above works. Indeed, a large variety of studies have confirmed that eye movements
contain rich signatures of the observer’s mental task, including: predicting search target (Rajashekar et al.,
2006; Zelinsky & Samaras, 2008; Haji-Abolhassani & Clark, 2013; Zelinsky et al., 2013), predicting stimulus
category (Harel et al., 2008; O’Connell & Walther, 2012; Borji et al., 2013b), predicting what number a
person may randomly pick (Loetscher et al., 2010), predicting mental abstract tasks (Brandt & Stark, 1997;
Mast & Kosslyn, 2002; Meijering et al., 2012; Ferguson & Breheny, 2011), predicting events (Peters & Itti,
2007; Bulling et al., 2011), classifying patients from controls (Tseng et al., 2012; Jones & Klin, 2013), and
predicting driver’s intent (Lethaus et al., 2013). Several studies have investigated the role of eye movements
in natural vision including: reading (Rayner, 1979; Reichle et al., 2003; Kaakinen & Hyönä, 2010; Clark &
O’regan, 1998), visual search (Zelinsky, 2008; Torralba et al., 2006), driving (Land & Lee, 1994; Land &
Tatler, 2001), tea making (Land & Rusted, 1999), sandwich making (Hayhoe et al., 2003), arithmetic and
geometric problem solving (Epelboim & Suppes, 2001; Cagli et al., 2009), mental imagery (Kosslyn, 1994;
Mast & Kosslyn, 2002), cricket (Land & McLeod, 2000), fencing (Hagemann et al., 2010), billiard (Crespi
et al., 2012), drawing (Cagli et al., 2009), magic (Kuhn et al., 2008), shape recognition (Renninger et al.,
2005), and walking and obstacle avoidance (Mennie et al., 2007).

Departing from the above studies arguing that it is possible to decode observers’ task from fixations
(e.g., Iqbal & Bailey (2004); Henderson et al. (2013)) and Greene et al. (2012) have recently cast a shadow
on task or mind state decoding by bringing counter examples. They conducted an experiment in which they
recorded eye movements of observers when viewing scenes under four highly overlapped questions. Using
three pattern classification techniques they were not able to decode the task significantly above chance using
aggregate eye movement features (See Figure 4 in Greene et al.’s paper). They were, however, able to decode
image and observer’s identity from eye movements above chance level. Task classification failure along with
their finding that human judges could not tell the category of scanpath, led Greene et al. to conclude “The
famous Yarbus figure may be compelling but, sadly, its message appears to be misleading. Neither humans
nor machines can use scan paths to identify the task of the viewer”.

In summary, the effect of task on eye movement patterns has been confirmed by several studies. Despite
the volume of attempts at studying task influences on eye movements and attention, fewer attempts have been
made to decode observer’s task, especially on complex natural scenes using pattern classification techniques
(i.e., the reverse process of task-based fixation prediction). However, there is of course a large body of
work examining top-down attentional control and eye movements using simple stimuli and tasks such as
visual search arrays and cueing tasks (e.g., Folk & Remington (1998), Folk et al. (1992), Egeth & Yantis
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(1997), Yantis (2000), Duncan & Humphreys (1989), Bundesen et al. (2005), Sperling (1960), Sperling &
Dosher (1986)). We attempt to thoroughly investigate the task decoding problem by analyzing previous
data and findings of Greene et al. as well as our own collected data. We focus on Greene et al.’s study
because we believe that their experimental design was best suited for task decoding and well in line with
Yarbus’ original idea, yet they reported that decoding failed. Further, we study limitations and important
factors in task decoding including features and methods used for this purpose. Finally, we discuss potential
technological and societal impacts of task and mental state decoding.

2. Experiment One

Due to important implications of Greene et al.’s results, here we first reanalyze their data and then
summarize learned lessons. They shared data of their third experiment with us which includes fixations of
17 observers viewing 20 grayscale images, each for 60 seconds2. They asked observers to view images under
four questions: 1) Memorize the picture (memory), 2) Determine the decade in which the picture was taken
(decade), 3) Determine how well the people in the picture know each other (people), and 4) Determine the
wealth of the people in the picture (wealth). Table 1 shows the arrangement of observers over these tasks.
Each observer did all four tasks but over different images. This results in 17 × 20 = 340 scanpaths where
each scanpath contains fixations of an observer over one image. The design was intentional to prohibit one
observer seeing the same scene twice. Figure 1 demonstrates the stimuli used in this experiment.

images 1 ∼ 5 6 ∼ 10 11 ∼ 15 16 ∼ 20

4 O × T 1 4 O × T 2 4 O × T 3 4 O × T 4

4 O × T 2 4 O × T 3 4 O × T 4 . . .

5 O × T 3 5 O × T 4 . . .

4 O × T 4 4 O × T 1

Table 1: Arrangement of observers over tasks in Greene et al. (2012). O and T stand for observer and task, respectively.

Three factors may have caused task prediction failure in Greene et al.’s study: First and foremost, spatial
image information is lost in the type of features they exploited (i.e., using histograms). This is particularly
important since the first observation that strikes the mind from Yarbus’ illustration is spatial patterns of
fixations 3. Second, the importance of the classification technique may have been underestimated in Greene
et al.’s study. In fact, they only tried linear classifiers (linear discriminant analysis, linear SVM, and cor-
relational methods) and concluded that their failure in task decoding is independent of the classification
technique. They made similar arguments for images and features. Third, in Greene et al.’s study, observers
were partitioned across images. Thus image and observer idiosyncrasies might have effects on task decod-
ing (Poynter et al., 2013; Risko et al., 2012; Chua et al., 2005). For example, one observer might not have
the necessary knowledge regarding a task or an image may not convey sufficient information for answering
questions. In what follows, we scrutinize these factors one by one.

Regarding the first factor, we use a simple feature which is the smoothed fixation map, downsampled to
100 × 100 and linearized to a 1 × 10000 D vector (feature type 1). Figure 2.A shows fixation maps for an
example image. The fixation map reflects pure eye movement patterns. Additionally, we use histograms of
Normalized Scanpath Saliency (NSS) proposed by Peters et al. (2005), using 9 saliency models4. This feature

2Please see the original paper for more details on the experimental setup. Greene et al., reported 16 observers on their
paper (exp 3) but shared 17 with us and on their website http://stanford.edu/∼mrgreene/Publications.html. Our results and
conclusions are valid over selection of 16 subjects distributed equally across tasks.

3Greene et al. were able to decode the stimulus from the aggregate features. We suspect that using spatial patterns will
lead to much higher accuracies as scanpaths on images are often quite different(e.g., O’Connell & Walther (2012); Harel et al.
(2008)).

4Selected saliency models include: AIM (Bruce & Tsotsos, 2009), AWS (Garcia-Diaz et al., 2012), GBVS (Harel et al.,
2006), HouCVPR (Hou & Zhang, 2007), HouNIPS (Hou & Zhang, 2008), ITTI98 (Itti et al., 1998), PQFT (Guo & Zhang,
2010), SEO (Seo & Milanfar, 2009), and SUN (Zhang et al., 2008). For more details on these models, the interested reader is
referred to Borji & Itti (2012) and Borji et al. (2012b). Note that saliency is not a unique measurement and may change from
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reflects the stimulus + behavior effect and basically indicates which visual attributes may be important when
an observer is viewing an image under a task. NSS values are activations at fixated locations from a saliency
map that is normalized to have zero mean and unit standard deviation. For each image, NSS values are
calculated and then the histogram of these values (using 70 bins) is considered as features. Thus for 9 models,
this leads to a 9 × 70 = 630 dimensional vector (feature type 2). Although our features are aggregates and
histograms like Greene et al.’s, one critical difference is that the values which are aggregated reflect a spatial
correlation between eye movements and spatial saliency features in each image. Thus, our features capture
whether a task may lead an observer to allocate gaze differently over different types of salient image regions.

We also consider the first four features used in Greene et al. (2012) including the number of fixations, the
mean fixation duration, the mean saccade amplitude, and the percent of the image area covered by fixations
assuming a 1◦ fovea (feature type 3; dimensionality of 4). In addition, because it has been argued that the
first few fixations over a scene may convey more information (Parkhurst et al., 2002), we form a 4th feature
type which includes < x, y > locations of the first 5 fixations (i.e., a 10D vector). Note that, in addition to
these features, one could think of more complex features (e.g., scanpath sequence, NSS histograms on learned
top-down task relevance maps, dwell times on faces, text, and human bodies, and temporal characteristics of
fixations (Mills et al., 2011)) to obtain better accuracies. But as we show here, these simple features suffice
to decode the task in this particular problem.

Regarding the second factor, we investigate other classification methods such as k-nearest-neighbor;
kNN (Fix & Hodges, 1951) and Boosting (Freund & Schapire, 1997; Schapire, 1990) techniques which have
been proven to be successful on different problems in machine learning, computer vision, and cognitive
sciences5. The intuition is that for different problems, different classification methods may perform better.
kNN is a classic non-parametric method for classification and regression problems. Given a distance metric
(e.g., Euclidean distance), the kNN classifier predicts class label of a test sample as the majority vote of its k
closest training examples in the feature space (i.e., the most common output among the neighbors). If k = 1,
then the class label of the test sample is the same as its nearest neighbor. We also tried Boosting algorithms
which are popular and powerful machine learning tools nowadays. The basic idea underlying Boosting
algorithms is learning several weak classifiers (i.e., a classifier that works slightly better than chance) and
combing their outputs to form a strong classifier (i.e., a meta-algorithm). The learning is done in an iterative
manner. After adding a weak learner, the data is re-weighted to emphasize mistakes. Misclassified exemplars
gain higher weight while correctly-classified exemplars lose weight. Here, we employ the RUSBoost (Random
Under-Sampling Boost) algorithm (Seiffert et al., 2010) which uses a hybrid sampling/boosting strategy to
handle class imbalance problem in data with discrete class labels. To better model the minority class, this
algorithm randomly removes examples from the majority class until all classes have balanced number of
examples (i.e., under-sampling). Due to the random sampling, different runs of this algorithm may yield
different results. While the class imbalance (only one task has 5 subjects) is not a big issue in our data, we
believe it is the ensemble of weak classifiers (here decision trees) that makes good prediction possible6.

With respect to the third factor, we conduct the following two analyses: 1) pooling data from all observers
over all images and tasks (i.e., 17 × 20 scanpaths), and 2) treating each image separately. These analyses
help disentangle the effects of image and observer parameters on task decoding.

2.1. Task decoding over all data

We trained multi-class classifiers to recover task (one out of four possible) from eye movement patterns.
We follow a leave-one-out cross validation procedure similar to Greene et al. (2012). Each time we set one
datapoint aside and train a classifier over the rest of data. The trained classifier is then applied to the
set-aside datapoint. We repeat the same procedure over all 340 datapoints and report the average accuracy
(i.e., 340 binary values). Decoding results are shown in Fig. 2.B.

one model to another. That is why here we employ several models instead of one.
5Boosting classifiers have been used for fixation prediction in free viewing tasks (e.g., Borji (2012) and Zhao & Koch (2012)).
6Please see Matlab documentation for fitensemble function.
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image 1 - 0.4906 [0.2500]

Easy

8 - 0.5118 [0.2941]

9 - 0.4835 [0.1728] 10 - 0.2800 [0.2206]

7 - 0.2694 [0.3492]

2 - 0.3741 [0.3088]

13 - 0.1859 [0.2280]

11 - 0.3977 [0.1765]

4 - 0.2812 [0.2279]

6 - 0.3565 [0.2610]5 - 0.3094 [0.5331]

12 - 0.3965 [0.5845]

3 - 0.3518 [0.2537]

14 - 0.3623 [0.5956] 15 - 0.3765 [0.4118] 16 - 0.3600 [0.3382]

17 - 0.2259 [0.1765] 18 - 0.3270 [0.4154] 19 - 0.1318 [0.4118] 20 - 0.3670 [0.3235]

Hard

Figure 1: Stimuli used in experiment 1. Easy and difficult scenes for task decoding are marked with blue and red boxes,
respectively. Please see Table 3 (Appendix I) for performances of individual runs of the RUSBoost classifier. Average decoding
accuracies (numbers after dash lines) are using feature type 3 over 50 RUSBoost runs. Numbers in brackets are classification
accuracy using feature type 1 (over 50 RUSBoost runs). Original images are 800 × 600 pixels.
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Using kNN and feature type 1 (i.e., fixation map), we achieved average accuracy of 0.2412 (k=2; binomial
test, p = 0.89). Feature type 2 leads to accuracy of 0.2353 (k=2; p = 0.31). Using feature type 3, we
achieved accuracy of 0.3118 which is above Greene et al.’s results and is significantly better than chance
(k=8; p = 0.014). Classification with feature type 4 leads to accuracy of 0.2441 (k=1). Combination of
features did not improve the results significantly. Fig. 2.B (bottom panel) shows kNN performance as a
function of number of neighbors (k= 2n, n = 0 . . . 6). kNN classification performance levels here are for the
best-performing value of k.

Using RUSBoost classifier with 50 boosting iterations and feature type 1, we achieved accuracy of 0.25
(non-significant vs. chance; binomial test, p = 0.6193). We achieved accuracy of 0.2294 using feature type
2. Feature type 3 leads to accuracy of 0.3412 (p = 1.0722e− 04). Finally, feature type 4 results in accuracy
of 0.2176. Combination of all features did not increase the results significantly (accuracy of 0.3412 using all
features).

Bonferroni correction for multiple comparisons (Shaffer, 1995): Here, we used two classifiers, 5
feature types (including combination of features), and 7 values of parameter k in kNN resulting in 5×7+5 = 40
tries. We need to correct p-values for these comparisons. Thus, significance p is equal to 0.05/40 = 0.0013.
Using kNN, the best p value is 0.014 which is above the corrected significance level, therefore kNN does
not yield statistically significant decoding accuracy that is strong enough given that we made 40 different
attempts at decoding. Hence, we discard using kNN for the rest of the paper. Using the RUSBoost classifier
(with feature type 3), however, results remain statistically significant after correction as p values are smaller
than 0.0013 which indicates that task is decodable on this data significantly above the 25% chance level.

Results of this analysis indicate that spatial fixation patterns are not informative regarding the observer’s
task when pooling all data (on Greene et al.’s data). Further, our results show that classification method is
a key factor. For example, using the same 4 features employed by Greene et al. (feature type 3), we achieved
better accuracies with kNN and Boosting classifiers. Note that, here we did not conduct an exhaustive search
to find the best features or feature combinations. It might be possible to reach even higher accuracies with
more elaborate feature selection strategies.

2.2. Task decoding over single images

Task decoding accuracy highly depends on the stimulus set. For example, if an image does not have the
necessary content that is called for by different tasks (in an extreme case, a blank image and tasks about age
or wealth of people), it may not yield task-dependent eye movement patterns as strong as an image that has
such content. That is, we expect that interaction between semantic image contents and task may give rise
to the strongest eye movement signatures. Failure to decode task might thus be more likely if the stimuli
do not support executing the task. This is particularly important since both Yarbus and Greene et. al., did
not probe observers’ responses to see whether or not they were actually able to perform the task.

We train a RUSBoost classifier (with 50 boosting iterations) on 16 observers over each individual image
and apply the trained classifier to the remaining observer over the same image (i.e., leave one observer out).
We repeat this process for all 20 images. Using feature type 1, we achieve average accuracy of 0.3267 (over
50 runs and images). Feature type 3 resulted in accuracy of 0.3414 (See Appendix I (Table 3) for results
of 50 runs). The maximum performance using this feature over runs was 0.3719 and the minimum was
0.3156. Using combination of all features (a feature vector of size 10000 + 9×70 + 4 + 10 = 10644D)
results in average accuracy of 0.3294. Examination of confusion matrices using RUSBoost and feature type
3 (Figure 2.C) shows above chance performance on diagonal elements with higher accuracies for memory
and decade tasks. There is high confusion between wealth and other classes.

Average task decoding performance per image using feature type 3 is illustrated in Figure 2.C as well
as in Figure 1. Using this feature, decoding accuracy is significantly above chance level for majority of the
images, is non-significant vs. chance for one image, and is significantly below chance for three images (using
t-test over 50 runs; see Appendix I). The easiest and most difficult stimuli using feature type 1 along with
their scanpaths and confusion matrices (using a sample run of RUSBoost) are shown in Fig. 3.

Results of the second analysis support our argument that image content is an important factor in task
decoding. Task decoding becomes very difficult if an image lacks diagnostic information relevant to the task
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A) Fixation and saliency maps B) Task decoding over all data C) Task decoding over single images
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Figure 2: Results of experiment 1: A) Top: A sample image along with saliency maps using ITTI98 and GBVS models and its
corresponding smoothed fixation maps (using Gaussian sigma 33 subtending about 0.85◦ × 0.85◦ of visual angle). Matlab code
for generating the smoothed fixation map: imresize(conv2(map, fspecial(’gaussian’, 200, 33)), [100 100], ’nearest’).
Numbers on top of fixation maps in the bottom panel show the observer’s number (See Table 1). B) Top: Task decoding accuracy
using individual features and their combination over all data. Stars indicate statistical significance versus chance using binomial
test. Bottom: Effect of number of kNN neighbors on task decoding accuracy. C) Top: Average decoding accuracies over 50
runs of the RUSBoost classifier over individual images using feature type 3 (See Appendix I). Error bars indicate standard
deviations over 50 runs. Bottom: Average confusion matrix (over 50 RUSBoost runs) averaged over all images.
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Figure 3: Easiest and hardest stimuli for task decoding in experiment 1 using feature type 1 over 50 RUSBoost runs. Confusion
matrices are for a sample run of RUSBoost on each image using leave-one-out procedure.
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(See Figure 3 for such an example). Further, when treating each image separately, scanpaths turn to become
informative regarding the task for some images. Overall, results from this experiment suggest that it is
possible to decode the task above chance from the same type of features used by Greene et al. (2012).

3. Experiment Two

The questions in the task set of Greene et al. are very similar to each other. For decade, memory and
wealth tasks, observers have to look over the entire image to gain useful information. This causes very
similar fixation patterns such that these patterns are not really differentiable to the naked eye (see Figure 3)
or to classifiers, while, to some extent, clearly different patterns may have contributed to making Yarbus’
illustration so compelling. Here we aim to decode observer’s task from eye movements with particular
emphasis on spatial fixation patterns (i.e., feature type 1) rather than aggregate features (type 3). While
mean values of eye movement measures (i.e., feature type 3) can change as a function of task, the distributions
of these values highly overlap across tasks (Henderson et al., 2013).

In our view an important limitation of Greene et al.’s study is that they did not use Yarbus’ original 7
tasks, as Yarbus might have reached different conclusions had he used different tasks. In this experiment,
we thus seek to test the accuracy of Yarbus’ exact idea by replicating his tasks.

3.1. Methods

3.2. Participants

A total of 21 students (10 male, 11 female) from the University of Southern California (USC) participated.
Students’ majors were Computer sciences, Neuroscience, Psychology, Mathematics, Cognitive sciences, Com-
munication, Health, Biology, Sociology, Business, and Public relations. The experimental methods were ap-
proved by the USC’s Institutional Review Board (IRB). Observers had normal or corrected-to-normal vision
and were compensated by course credits. Observers were in the age range between 19 to 24 (mean = 22.2,
std = 2.6). They were näıve with respect to the purpose of the experiment.

3.3. Apparatus

Participants sat 130 cm away from a 42 inch monitor screen so that scenes subtended approximately
43◦ × 25◦ of visual angle. A chin/head rest was used to minimize head movements. Stimuli were presented
at 60Hz at resolution of 1920 × 1080 pixels. Eye movements were recorded via an SR Research Eyelink eye
tracker (spatial resolution 0.5◦) sampling at 1000 Hz.

3.4. Materials

Stimuli consisted of 15 paintings (13 are oil on canvas, some are by I. E. Repin). Figure 4 shows stimuli
including Repin’s painting used by Yarbus. We chose images such that a person7 who could be construed
as an unexpected visitor exists in all of them. Thus Yarbus’ questions are applicable to these images (e.g.,
more so on images 2, 3, and 11 and less so on images 4, 6, and 15).

3.5. Procedure

We followed a partitioned experimental procedure similar to Greene et al., where observers answered
questions on three sets of images (Table 2). Each set consists of five images corresponding to one row of
Figure 4. In other words, no participant saw the same stimulus twice. Each image was shown for 30 seconds
followed by a 5 seconds delay (gray screen). At the beginning of each session (5 images), the eye tracker
was re-calibrated. Each observer viewed each set of 5 images only under one question. We used the seven
questions of Yarbus’ study mentioned in the Introduction. Figure 5 illustrates eye movements of observers
on 7 images.

7Or the dog in image number 8 in Figure 4.
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Easy Hard

image 1 - 0.1648 [0.1810] 2 - 0.3733 [0.3556]

6 - 0.2771 [0.2635] 7 - 0.1019 [0.1143]

3 - 0.3152 [0.3492]

8 - 0.2724 [0.2698]

4 - 0.2352 [0.2318] 5 - 0.2619 [0.2635]

10 - 0.4162 [0.3905]9 - 0.2828 [0.2825]

15 - 0.2505 [0.2222]14 - 0.3648 [0.3619]13 - 0.2600 [0.2698]12 - 0.3867 [0.3810]11 - 0.1514 [0.1492]

Figure 4: Stimuli used in experiment 2. Images resemble Repin’s painting (image number 5) in that in all of the images exists
a somewhat unexpected visitor. (Source: Courtesy of www.ilyarepin.org). Three easiest and three most difficult stimuli are
marked with blue and red boxes, respectively. Average decoding accuracies (numbers after dash lines) are using combination
of feature types 1 and 2 over all RUSBoost runs. See Table 4 (Appendix II) for decoding results on individual RUSBoost runs.
Numbers in brackets are classification accuracy using feature type 1.

3.6. Decoding Results

We employ the RUSBoost classifier with 50 boosting iterations as in the first experiment. Features consist
of saliency maps of 9 models used in experiment 1 (footnote 4) plus additional 14 feature channels from the
ITTI model including: ITTI-C, ITTI-CIO, ITTI-CIOLTXE, ITTI-E, ITTI-Entropy, ITTI-I, ITTI, ITTI-L,
ITTI-O, ITTI-OLTXE, ITTI-Scorr, ITTI-T, ITTI-Variance, and ITTI-X. These feature channels extract
different types of features that range from Intensity (I), Color (C), Orientation (O), Entropy (E), Variance,
T-junctions (T), X-junctions (X), L-junctions (L), and Spatial Correlation (Scorr). Please see Itti et al. (1998)
and Tseng et al. (2012) (and its supplement) for more details on these features and implementation details.
ITTI and ITTI98 are different versions of the Itti et al. model, corresponding to different normalization
schemes. In ITTI98, each feature map’s contribution to the saliency map is weighted by the squared difference
between the globally most active location and the average activity of all other local maxima in the feature

images 1 ∼ 5 6 ∼ 10 11 ∼ 15

3 O × T 1 3 O × T 2 3 O × T 3

3 O × T 2 3 O × T 3 3 O × T 4

3 O × T 3 3 O × T 4 3 O × T 5

3 O × T 4 3 O × T 5 . . .

3 O × T 5 . . . . . .

3 O × T 6 . . . . . .

3 O × T 7 3 O × T 1 3 O × T 2

Table 2: Arrangement of observers over tasks in experiment II. O and T stand for observer and task, respectively.
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Task  1 Task  2 Task  3 Task  4 Task  5 Task  6 Task  7

Figure 5: Eye movements of observers over stimuli in experiment 2 for 7 images. Note that each image was shown to a observer
only under one question. Tasks are: 1) Free examination, 2) Give material circumstances (Wealth), 3) Estimate ages of the
people, 4) Estimate the activity before the arrival of the visitor, 5) Remember cloths, 6) Remember positions of people and
objects, and 7) Estimate how long the visitor had been away.
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map (Itti et al., 1998). This gives rise to smooth saliency maps, which tend to correlate better with noisy
human eye movement data. In the ITTI model (Itti & Koch, 2000), the spatial competition for saliency is
much stronger which gives rise to much sparser saliency maps. Figure 6.A shows 23 saliency maps for a
sample image.
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Figure 6: A) Saliency maps for a sample image used in the second experiment. Acronyms are: Intensity (I), Color (C),
Orientation (O), Entropy (E), Variance, T-junctions (T), X-junctions (X), L-junctions (L), and Spatial Correlation (Scorr). B)
Importance of saliency maps (feature type 2 using 70D NSS histograms) for task decoding. Here, a RUSBoost classifier (50
runs) was used over all data according to the analysis in section 3.6.1).

3.6.1. Task decoding over all data

Following the experiment one, we first pool all data and perform task decoding over all images and
observers. We report results using a leave-one-out procedure. We have 21 observers, each viewing 15 images
(each 5 images under a different question; 3 questions per observer) thus resulting in 315 scanpaths. Using
feature type 1, we achieved average accuracy of 0.2421 which is significantly above chance8 (binomial test,
p = 2.4535e − 06). Using feature type 2 (i.e., NSS histogram of 9 saliency models as in Exp 1) results in
accuracy of 0.2254 (p = 5.6044e − 05). Increasing the number of saliency models to 23 results in the same
performance as when using 9 models. Combination of all features did not improve the results in this analysis.
To evaluate the importance of saliency maps as features, we performed task decoding over all data using
individual saliency features (i.e., NSS values; feature type 2) and RUSBoost classification (See section 3.6.1).
Results are shown in Figure 6.B. Majority of the saliency models lead to above chance accuracy indicating
informativeness of NSS histograms and low-level image features for task decoding.

Bonferroni correction for multiple comparisons: With the RUSBoost classifier, correcting for three
features and their combination, p values have to be smaller than 0.05/4 = 0.0125 which is the case here using
all feature types. Thus, we can safely conclude that task is decodeable from eye movements on our data
using spatial fixation patterns and NSS histograms (as opposed to experiment 1).

3.6.2. Task decoding over single images

Three observers viewed each image under one question thus resulting in 21 datapoints per image (i.e., 3
observers × 7 questions). Note that each set of three observers were assigned the same question (Table 2).
RUSBoost classifier and feature type 1 results in average accuracy of 0.2724 over 50 runs and 15 images.
Using first two feature types (a 10000 + 23 ×70 = 11610D vector) results in average performance of 0.2743.
Over all runs (i.e., table rows), the minimum accuracy (average over all 15 images) is 0.2540 and maximum

8We obtained accuracy of 0.2399 ± 0.0016 (mean + std) over 60 runs of the RUSBoost classifier.

13



accuracy is 0.3079. Note that our accuracies are almost two times higher than the 14.29% chance level (i.e.,
1/7). Easy and difficult stimuli for task decoding are shown in Figure 4. See Table. 4 (Appendix II) for
results of individual runs of the RUSBoost classifier over individual images. The easiest and hardest stimuli
using feature type 1 along with their scanpaths and confusion matrices are shown in Fig. 8.

To measure the degree to which tasks differ from each other, we show in Figure 7.A the distribution of
fixations over all images with the same task. Each element shows the amount of overlap in two questions.
To generate this plot, we first normalize each map to [0 1] and then subtract maps from each other. Hence
brighter blue and red regions mean higher difference between two tasks. It shows profound differences among
tasks 3 (estimating ages), 4 (estimating activity) and 7 (estimating away time) to other tasks. Task 1 (free
examination) is more similar to other tasks. The reason might be because people look everywhere in images
including faces and people which are also informative objects for other tasks. Task 2 (estimating wealth) and
task 6 (remembering positions) show smaller difference to other tasks probably because observers inspect the
entire image in two tasks. Figure 7.B shows the confusion matrix averaged over 15 images and 50 RUSBoost
runs using feature type 1. We observe high accuracies for task 3 (estimating age), task 5 (remembering
cloths), and task 7 (estimating how long the visitor has been away) but low accuracy for the free-viewing
task. There is a high confusion between task 2 and tasks 6 and 1 and also between task 1 and task 7.

Results of the two analyses in second experiment, in alignment with DeAngelus & Pelz (2009), confirm
that eye movements are modulated top-down by task demands in a way that task can be predicted from eye
movement patterns. We found that spatial fixation patterns, which were not much informative over Greene
et al.’s data, suffice to decode the task on our data. We expect to gain even higher task decoding accuracies
by using other eye movement statistics, such as fixation durations or amplitudes which have been shown to
be different across Yarbus’ questions (DeAngelus & Pelz, 2009).

4. Discussion and Conclusion

What do we learn from the two experiments in this study? Successful task decoding results provide
further evidence that fixations convey diagnostic information regarding the observer’s mental state and
task9, consistent with the cognitive relevance theory of attention (See Hayhoe & Ballard (2005)). This
means that top-down factors in complex tasks systematically influence the viewer’s cognitive state and his
thought processes. Our results support previous decoding findings mentioned in the introduction section
(e.g., some over more controlled stimuli such as predicting search target (Rajashekar et al., 2006)).

We demonstrated that it is possible to reliably infer the observer’s task from Greene et al.’s data using
stronger classifiers. Classification was better when we treated images individually. Although we were able
to decode the task from Greene et al.’s data, making strong arguments regarding feasibility of task decoding
on this data is difficult mainly due to the small size of this dataset. We think to gain better insights, larger
datasets for task decoding are necessary. Such datasets allow break down of data into (larger) separate train
and test sets. Parameters of a classifier can be optimized using the train set and the resultant classifier can
be evaluated on the test set. Performing the analysis in this manner eliminates the need for correction for
multiple comparisons, hence allowing one to try possibly thousands of possible classifiers and parameters.

In the second experiment, we showed that it is possible to decode the task using Yarbus’ original tasks,
almost twice above chance, much better than using Greene et al.’s tasks. These results are in line with findings
of DeAngelus & Pelz (2009). While our results are significantly above chance, it might be still possible
to obtain better accuracies by exploiting even more informative features and other types of classification
techniques. Our investigation on task decoding using 5-second time slots (i.e., 1st 5-seconds, 2nd 5-seconds,
. . .) suggest that accuracies might be higher for early fixations but this needs further investigation. We
also found that decoding accuracy critically depends on three factors: 1) task set (how separable they are),

9Note that here we used task and cognitive state interchangeably. There are however subtle differences. Cognitive state
refers to the state of a person’s psychological condition (e.g., confusion, preoccupation, wonder, etc.). By task here referred to
a well-defined question that observers should try to answer (e.g., estimating age, search for an object, reading, etc.).
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2) stimulus set (whether a scene has sufficient information or not), and 3) observer’s knowledge (whether
observers understand questions).
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Figure 8: Easiest and hardest stimuli for task decoding in experiment 2 using feature type 1 over 50 RUSBoost runs. Confusion
matrices are for a sample run of RUSBoost on each image using leave-one-out procedure.

Is it always possible to decode task from eye movements? We argue that there is no general answer to this
type of pattern recognition questions. Answers depend on the used stimuli, observers, and questions. One
could choose tasks such that decoding becomes very hard even with sophisticated features and classifiers;
we found that this is the case on Greene et al.’s data. In particular, on the type of tasks and scenes used
here majority of fixations are attracted to faces and people which causes a huge overlap across tasks. In
some easier scenarios, where tasks are more different, very simple features might suffice to decode the task
accurately (e.g., Henderson et al. (2013)). In the extreme simplest case, one can imagine a task like this: a
person on the left side of the screen and a dog on the right side, with observers’ tasks being: 1) How old is
the person? and 2) What breed is the dog? Obviously answering these tasks demands looking at the person
for the first question and looking at the dog for the second question which results in 100% task decoding
accuracy (for a rational observer) just from eye movement locations. One can also choose images from which
task decoding is very difficult because they contain little information that is directly relevant to the task.
This was also found in our results, as some images yield more accurate task decoding than others. One could
also recruit observers who don’t understand the question. So far none of the works mentioned in the present
study have analyzed the observers’ answers on tasks. So, the failure in task decoding might be simply due
to the observer’s disability to extract useful information from the scene.

Since the parameter space is large, making strong arguments regarding impossibility of task decoding
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(see, e.g., Greene et al.’s claim “static scan paths alone do not appear to be adequate to infer complex
mental states of an observer” in their abstract) seems to be very difficult and needs a systematic probing
of the whole parameter space (or a theoretical proof). On the other hand, to prove that task decoding on
a particular setting is feasible, one only needs to find a working set of parameters (and it suffices; after
accounting for multiple comparisons and following a cross-validation procedure (Salzberg, 1997)). The latter
is the common practice in pattern recognition community. Please note that our results also do not imply
that it is always possible to decode the task. The counter example proposed by Greene et al. was found to
not hold in our analysis.

As a control analysis, Greene et al., asked some human participants to look at eye movements of their
observers and guess which task the observers have been doing. They showed that similar to classifiers,
participants also failed in task decoding. Failure of humans to decode the task by looking at eye movement
patterns (experiment 4 in Greene et al.) does not necessarily mean that fixations lack task-relevant informa-
tion. Indeed, there are some cases in vision sciences where machine learning techniques outperform humans,
in particular over large datasets (e.g., frontal face recognition, defect detection, cell type differentiation,
DNA microarray analysis, etc.).

Several concerns exist that need to be carefully thought about before conducting a task decoding ex-
periment using eye movements. Here we followed the procedure by Greene et al., in which: 1) no observer
viewed the same image twice, and 2) the same scene was shown under multiple questions. The first rule aims
to eliminate memory biases. The second rule ensures that the final result is not due to differences in stimuli.
Yarbus (1967) and DeAngelus & Pelz (2009) violated the first rule where the same observers viewed the im-
ages under the same questions. Henderson et al. (2013) violated the second rule in which different questions
were asked over different images (which might be the reason why they obtained such high accuracies above
80%). Another possibly important factor affecting task decoding results is eye tracking accuracy. This is
particularly important when tasks are very similar to each other. One other concern regards selection of the
stimulus set. If the stimulus set includes many images containing people, faces, and text, which capture a
large portion of fixations in a task independent manner, then there is basically not much information left
helping task decoding. The last concern is about the suitability of features. In some scenarios, especially in
dynamic environments (e.g., watching a video, driving a car, etc.) the type of features employed here may
not be suitable for task decoding. In particular, spatial information is reduced to one fixation per frame.
This requires temporal processing of features to see which places (or in what order) observers have visited
the locations.

Here, we showed that task is decode-able on static images by a more systematic and exhaustive exploration
of the parameter space including features, classifiers, and new data. Pushing deeper into real-time scenarios,
using joint online analysis of video and eye movements, we have recently been able to predict – more than
one second in advance – when a player is about to pull the trigger in a flight combat game, or to shift gears
in a car racing game (Peters & Itti, 2007). We have been also able to predict next fixation of a video game
player for such games as running a hot-dog stand (Borji et al., 2013a) and Super Mario Cart (Borji et al.,
2012a). In a similar approach where our computational models provide a normative gold standard against
one particular individual’s gaze behavior, we have demonstrated a system which can predict, by recording
an observer’s gaze for 15 minutes while one watches TV, whether one has ADHD (Tseng et al., 2012).
These preliminary results clearly demonstrate how computational attention models can be used jointly with
behavioral recordings to infer some internal state of a person, from a short-term intention (e.g., pull the
trigger) to long-term characteristics (e.g., like ADHD).

Beyond scientific value, decoding task from eye movements has practical applications. Potential techno-
logical applications include: wearable visual technologies (smart glasses like Google Glass), smart displays,
adaptive web search, marketing, activity recognition (Fathi et al., 2011; Pirsiavash & Ramanan, 2012; Albert
et al., 2012), human-computer interaction, and biometrics. Portable electronic devices such as smart-phones,
tablets, smart glasses with cameras are becoming increasingly popular (See Windau & Itti (2013) for an ex-
ample study). Enabling eye tracking on these devices could be used to predict the user’s intent one step
ahead and provide him necessary information in a more efficient and adaptive manner. This could be aug-
mented with approaches that use non-visual information on cell phones such as accelerometer data or global
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positioning systems (e.g., Albert et al. (2012)). Another area of applicability is assistant systems especially
for elderly and disabled users (e.g., in driving or other daily life activities (Bulling et al., 2011; Doshi &
Trivedi, 2012, 2009)). Here, we focused on predicting observer’s task. Some studies have utilized eye move-
ments to tap into mental states such as confusion and concentration (Victor et al., 2005; Griffiths et al.,
1984), arousal (Woods et al., 1978; Subramanian et al., 2010), or deception (Kuhn & Tatler, 2005). Eye
movements can also be utilized as a measure of learning capacity in category learning and feature learning
(e.g., Rehder & Hoffman (2005); Chen et al. (2013)) and expertise (e.g., Vogt & Magnussen (2007); Bertram
et al. (2013); Jarodzka et al. (2010)).

From a societal point of view, reliable fixation-based task decoding methods could be very rewarding.
One area of application is patient diagnosis. Several high-prevalence neurological disorders involve dysfunc-
tions of oculomotor control and attention, including Autism Spectrum Disorder (ASD), Attention Deficit
Hyperactivity Disorder (ADHD), Fetal Alcohol Spectrum Disorder (FASD), Parkinson’s disease (PD), and
Alzheimer10. Diagnosis and treatment of these disorders are becoming a pressing issue in today’s society
(See (Klin et al., 2009; Jones & Klin, 2013)). For example, about 1 in 6 children in the U.S. had a devel-
opmental disability, such as intellectual disabilities, cerebral palsy, and autism, in 2006-2008. Reliable and
early diagnosis of these disorders boils down to accessing observers’ internal thought processes and their
cognitive states. This is where our task decoding framework becomes relevant and could potentially replace
or complement existing clinical neurological evaluation, structured behavioral tasks, and neuroimaging tech-
nique which are currently expensive and time-consuming. We believe that the type of methods discussed
here along with low-cost non-invasive eye tracking facilities offer considerable promise for patient screen-
ing. However, to make it happen in the future, high-throughput and robust task-decoding methods need to
be devised. One direction could be augmenting eye movements with purely biological cues such as pupils,
sweating, heart rate, and breathing for this purpose.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R1 .5294 .2941 .4706 .2353 .2353 .3529 .2941 .5294 .4118 .2941 .4118 .4118 .1765 .3529 .3529 .3529 .1765 .3529 .1765 .3529

R2 .6471 .4706 .3529 .2941 .4118 .2941 .2941 .5294 .5294 .2941 .4118 .4118 .2353 .4118 .3529 .4118 .3529 .3529 .1176 .3529

R3 .4706 .3529 .2941 .2353 .3529 .3529 .2941 .5294 .4706 .2353 .4706 .3529 .1176 .2941 .3529 .4118 .2941 .2941 .1765 .3529

R4 .4118 .3529 .2353 .2941 .2353 .3529 .2353 .4706 .4706 .2353 .4118 .2941 .1176 .4118 .3529 .3529 .1765 .3529 .1176 .3529

R5 .4706 .3529 .4118 .2941 .2941 .3529 .1765 .5294 .5294 .2941 .4118 .4118 .1176 .4118 .3529 .3529 .1765 .3529 .1765 .4118

R6 .4706 .4118 .3529 .2941 .4118 .3529 .2353 .4706 .4706 .2353 .4706 .4118 .2353 .3529 .3529 .3529 .2941 .2941 .1176 .3529

R7 .6471 .2941 .3529 .2353 .2353 .2941 .1765 .5294 .4706 .2941 .3529 .4118 .2941 .3529 .3529 .3529 .1765 .2941 .2353 .4118

R8 .5294 .3529 .3529 .2353 .3529 .3529 .2353 .5882 .4706 .3529 .4706 .4118 .2353 .2941 .3529 .3529 .1765 .4118 .0588 .3529

R9 .4706 .4118 .4118 .2353 .3529 .3529 .2941 .5294 .5294 .3529 .3529 .4118 .1765 .3529 .3529 .3529 .2353 .3529 .1765 .4118

R10 .4706 .4118 .4118 .2941 .2941 .3529 .2353 .4706 .4706 .2941 .3529 .5294 .1176 .4706 .3529 .3529 .2353 .2941 .1765 .3529

R11 .5294 .4118 .2941 .2941 .2941 .2941 .2941 .5882 .4706 .2353 .4118 .4118 .1176 .3529 .2941 .4118 .1765 .3529 .0588 .3529

R12 .5294 .2941 .2353 .2353 .3529 .4118 .1765 .5294 .4118 .2941 .4118 .4706 .2353 .2941 .4118 .3529 .2353 .2941 .1176 .4118

R13 .4118 .4118 .3529 .2941 .4118 .4706 .2941 .5294 .4706 .2941 .3529 .2941 .1765 .4118 .4706 .2941 .2353 .2941 0 .3529

R14 .5882 .3529 .3529 .2941 .2941 .4118 .2353 .5294 .4706 .2941 .4118 .5294 .1176 .2941 .3529 .3529 .2941 .2353 .1765 .3529

R15 .5294 .4118 .3529 .3529 .2353 .4118 .2941 .4706 .5294 .2941 .4118 .4118 .2353 .3529 .4118 .3529 .1765 .2941 .0588 .3529

R16 .4118 .4118 .2941 .2353 .2353 .4118 .3529 .5294 .4706 .2353 .4118 .3529 .1765 .4118 .3529 .4118 .1765 .4118 .1765 .4118

R17 .4706 .4118 .3529 .2941 .2353 .3529 .3529 .4706 .4706 .2353 .3529 .4118 .1176 .3529 .4118 .3529 .1765 .2941 .0588 .3529

R18 .4706 .2941 .4118 .2353 .2941 .3529 .2353 .4706 .5294 .2941 .4706 .4706 .1765 .2353 .4118 .3529 .2353 .2941 .2353 .3529

R19 .4118 .3529 .2941 .3529 .2941 .2941 .2353 .5294 .4706 .2353 .2941 .4118 .1176 .3529 .3529 .3529 .2353 .3529 .1176 .4118

R20 .4118 .4118 .4118 .2353 .3529 .4118 .2353 .5294 .4706 .2941 .4118 .3529 .2353 .3529 .4118 .3529 .1765 .3529 .1176 .3529

R21 .4706 .4706 .2941 .3529 .2353 .3529 .2941 .5294 .4706 .2353 .4118 .4118 .2941 .2941 .4118 .3529 .2941 .2353 .0588 .3529

R22 .4706 .4118 .2941 .2353 .3529 .3529 .1765 .4706 .4706 .2941 .4118 .4706 .2353 .3529 .2941 .3529 .2941 .2353 .1765 .3529

R23 .5882 .2941 .2941 .4118 .3529 .3529 .2941 .5294 .5294 .2941 .4118 .4118 .1765 .2941 .4118 .3529 .2941 .2941 .0588 .3529

R24 .5294 .3529 .3529 .2353 .3529 .2941 .2941 .5882 .5294 .2941 .4118 .4118 .1765 .4118 .2941 .2941 .1765 .4118 .1765 .4118

R25 .4706 .2941 .3529 .1765 .3529 .3529 .3529 .4706 .4706 .2353 .4118 .3529 .2941 .2941 .3529 .3529 .2353 .3529 .0588 .3529

R26 .5294 .5294 .2941 .3529 .3529 .2941 .2353 .5294 .4706 .2353 .3529 .3529 .1765 .4118 .4706 .3529 .1765 .3529 .1176 .3529

R27 .4118 .3529 .3529 .2941 .2353 .4118 .2941 .5294 .4706 .2941 .4118 .3529 .1765 .3529 .4118 .3529 .2353 .3529 .1176 .3529

R28 .4706 .4118 .4118 .2353 .4118 .2941 .2353 .5294 .5294 .2353 .4706 .3529 .1765 .4118 .3529 .3529 .2353 .2353 .1176 .3529

R29 .5294 .4118 .4118 .2353 .2941 .4118 .2941 .5294 .4706 .2941 .3529 .4118 .1765 .2941 .4706 .3529 .1765 .3529 .1176 .3529

R30 .5294 .3529 .2353 .4118 .2941 .3529 .2353 .4706 .4706 .2353 .4118 .4118 .1765 .5294 .4118 .3529 .1765 .4118 .1176 .3529

R31 .4706 .2941 .4118 .2353 .2941 .2941 .3529 .5294 .4706 .2353 .3529 .3529 .1765 .4118 .4118 .3529 .2353 .4706 .1176 .3529

R32 .5294 .3529 .3529 .2941 .2941 .3529 .2941 .5294 .4706 .2941 .4706 .4118 .1765 .4118 .4118 .3529 .1765 .2941 .1765 .4118

R33 .4706 .3529 .3529 .2941 .2941 .3529 .2353 .5294 .4706 .2941 .4706 .4118 .1176 .3529 .2941 .4118 .2353 .2941 .0588 .4118

R34 .5294 .4118 .3529 .2353 .2941 .4118 .2941 .5294 .5294 .2941 .4118 .4706 .1176 .4118 .3529 .4118 .1765 .4118 .1176 .3529

R35 .4118 .4706 .4118 .2941 .2941 .3529 .1176 .5294 .4706 .2941 .4118 .3529 .1765 .4706 .4118 .3529 .2353 .2941 .1765 .3529

R36 .5294 .3529 .3529 .2941 .2941 .3529 .2941 .4706 .5882 .2941 .4118 .4118 .1765 .3529 .2941 .3529 .2353 .4118 .0588 .3529

R37 .4706 .3529 .3529 .2941 .2353 .4118 .1765 .5294 .4706 .1765 .2941 .4118 .1176 .3529 .4118 .2941 .2353 .2941 .1176 .4118

R38 .5882 .3529 .3529 .2941 .3529 .3529 .3529 .4706 .4706 .3529 .4706 .4118 .2353 .4118 .4118 .3529 .1765 .3529 .1176 .3529

R39 .4706 .3529 .4706 .2941 .2941 .3529 .2353 .4706 .5294 .2941 .4118 .3529 .2353 .3529 .3529 .3529 .2353 .2941 .2353 .3529

R40 .5294 .4118 .3529 .2941 .2941 .3529 .2941 .4118 .4706 .3529 .4706 .4118 .2353 .4118 .4706 .3529 .1765 .2941 .1765 .3529

R41 .4706 .4706 .4118 .2353 .2941 .2941 .2941 .5294 .5294 .2941 .3529 .3529 .2353 .2353 .4706 .3529 .2353 .3529 .1176 .3529

R42 .4706 .2941 .3529 .2941 .2941 .3529 .2353 .5294 .4118 .3529 .2353 .4118 .1765 .4706 .3529 .3529 .2353 .3529 .1176 .3529

R43 .4706 .2941 .4118 .2353 .2941 .3529 .3529 .5294 .4706 .2941 .3529 .3529 .2353 .3529 .3529 .3529 .2941 .3529 .1176 .3529

R44 .4118 .5294 .2941 .2941 .2353 .3529 .2941 .4706 .5294 .2941 .2941 .2941 .1765 .3529 .2941 .3529 .2941 .2941 .2353 .4118

R45 .4706 .2941 .2941 .2941 .4118 .3529 .2941 .5294 .4706 .2941 .4118 .4118 .1765 .3529 .4118 .3529 .1765 .4118 .2353 .3529

R46 .5294 .3529 .3529 .3529 .2353 .4118 .3529 .4706 .4706 .2941 .3529 .3529 .2353 .3529 .4118 .5294 .3529 .2941 .0588 .3529

R47 .5294 .2941 .3529 .2353 .3529 .3529 .2353 .4706 .5294 .2941 .2941 .4706 .1176 .2353 .4118 .3529 .2353 .2353 .1765 .3529

R48 .4118 .3529 .2941 .2941 .2941 .2941 .2941 .4706 .4118 .2353 .4118 .3529 .1765 .4118 .3529 .3529 .1765 .2941 .1765 .3529

R49 .3529 .3529 .3529 .2353 .3529 .4118 .2941 .5294 .5294 .2941 .4118 .3529 .1176 .3529 .2941 .3529 .2353 .3529 .1176 .4118

R50 .5294 .4118 .4118 .3529 .3529 .3529 .2941 .5294 .4118 .2353 .4706 .3529 .2941 .2941 .3529 .3529 .2353 .2353 .1176 .3529

Avg. .4906 .3741 .3518 .2812 .3094 .3565 .2694 .5118 .4835 .2800 .3977 .3965 .1859 .3623 .3765 .3600 .2259 .3270 .1318 .3670

p-val. .0000 .0000 .0000 .0000 .0000 .0000 .0152 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0011 .0000 .0000 .0000

Table 3: Performance of the RUSBoost classifier for task decoding per image in experiment 1 using feature type three. Columns
represent images 1 to 20 and each row corresponds to a separate run. Each single number is the the average of 17 accuracies
(i.e., leave on subject out). Last row shows p-values across RUSBoost runs using t-test (vs. chance). Easiest and most difficult
stimuli are shown in bold-face font.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R1 0.1905 0.3333 0.3333 0.2381 0.2381 0.3333 0.1429 0.1905 0.2857 0.4286 0.1905 0.3810 0.2381 0.2857 0.2857

R2 0.1905 0.3333 0.2381 0.3333 0.1905 0.2857 0.0476 0.2857 0.2857 0.3810 0.1429 0.3810 0.2857 0.3810 0.2381

R3 0.1905 0.3333 0.3810 0.2381 0.2381 0.2857 0.0952 0.2381 0.3333 0.3810 0.1429 0.4286 0.2381 0.3333 0.2381

R4 0.0952 0.2857 0.3333 0.1905 0.2381 0.1905 0.0952 0.2381 0.2381 0.4286 0.1429 0.3333 0.3810 0.3810 0.2381

R5 0.1905 0.3810 0.3810 0.2381 0.1905 0.2381 0.1429 0.2381 0.2857 0.4762 0.2381 0.3810 0.3333 0.2857 0.2381

R6 0.1429 0.4762 0.3333 0.2381 0.2381 0.1905 0.0952 0.1905 0.2857 0.3810 0.0952 0.3810 0.2857 0.3333 0.3333

R7 0.0952 0.3333 0.3333 0.2381 0.3333 0.2381 0.0952 0.2381 0.2857 0.3810 0.2381 0.4286 0.2857 0.3333 0.2381

R8 0.1905 0.3333 0.3333 0.2381 0.2381 0.3333 0.1905 0.3333 0.2381 0.4286 0.2857 0.3810 0.2857 0.3810 0.2857

R9 0.1429 0.3333 0.2857 0.2857 0.2381 0.2857 0.1429 0.2857 0.2857 0.4286 0.1429 0.3333 0.2857 0.3810 0.2381

R10 0.0952 0.4286 0.3333 0.1905 0.2857 0.2381 0.0952 0.2381 0.2857 0.3810 0.1429 0.4286 0.2381 0.4286 0.2381

R11 0.1905 0.3810 0.2857 0.2381 0.2381 0.2381 0.1429 0.2381 0.2381 0.4286 0.1905 0.4286 0.2381 0.3810 0.1905

R12 0.0952 0.3333 0.3333 0.1429 0.2857 0.3333 0 0.2857 0.2857 0.4286 0.1429 0.3810 0.2381 0.2857 0.2381

R13 0.1429 0.3810 0.3810 0.2381 0.2381 0.2857 0.1429 0.3333 0.2381 0.3810 0.1429 0.3810 0.2857 0.3810 0.2381

R14 0.2381 0.4762 0.3810 0.2381 0.2381 0.2381 0.0476 0.2857 0.2381 0.4286 0.0952 0.3333 0.2381 0.3810 0.2857

R15 0.2381 0.3810 0.2381 0.2857 0.2381 0.1905 0.1429 0.2857 0.2381 0.4286 0.1429 0.3333 0.3333 0.2381 0.2857

R16 0.1905 0.3810 0.2857 0.1905 0.3810 0.2381 0.0476 0.2381 0.2857 0.4762 0.1429 0.3333 0.1905 0.3333 0.2857

R17 0.1905 0.4286 0.2857 0.1905 0.2857 0.2381 0.0476 0.2857 0.2857 0.3810 0.1429 0.3810 0.2381 0.4286 0.2857

R18 0.1429 0.3333 0.3333 0.1905 0.2857 0.2857 0.0952 0.3333 0.2857 0.4762 0.1429 0.3810 0.2381 0.4286 0.2381

R19 0.1429 0.4286 0.2381 0.2381 0.2381 0.2857 0.1429 0.2857 0.2857 0.3810 0.1429 0.4286 0.2857 0.3810 0.1905

R20 0.0952 0.3810 0.3810 0.2381 0.2381 0.3333 0.1429 0.2857 0.2857 0.4762 0.1429 0.4286 0.2857 0.2857 0.2381

R21 0.1429 0.3333 0.1905 0.1905 0.2857 0.2857 0.1429 0.3333 0.2857 0.4286 0.1429 0.3810 0.1905 0.3810 0.2381

R22 0.1905 0.3333 0.2857 0.1905 0.2381 0.3333 0.0952 0.2857 0.2381 0.3810 0.0952 0.4286 0.2381 0.3810 0.2381

R23 0.1429 0.3333 0.3810 0.2381 0.1905 0.3333 0.0952 0.3333 0.4286 0.4286 0.0476 0.4286 0.2857 0.2857 0.2381

R24 0.1905 0.4286 0.2857 0.2857 0.2381 0.2381 0.1429 0.2857 0.3333 0.4286 0.1905 0.3810 0.2381 0.2857 0.2857

R25 0.1429 0.4286 0.2857 0.2857 0.2857 0.2857 0.0476 0.2857 0.1905 0.3810 0.0952 0.3810 0.2857 0.3333 0.2381

R26 0.1429 0.3333 0.3333 0.2381 0.3333 0.3333 0.0952 0.2381 0.2857 0.4286 0.0952 0.3810 0.2381 0.3810 0.2381

R27 0.2857 0.3333 0.3333 0.2857 0.2857 0.3333 0.1905 0.2857 0.3333 0.4286 0.2381 0.3810 0.2381 0.3333 0.2857

R28 0.1429 0.3810 0.2381 0.1905 0.2857 0.3333 0.1905 0.2857 0.3333 0.3810 0.0952 0.3810 0.2857 0.3810 0.1905

R29 0.1429 0.3333 0.4286 0.2857 0.2381 0.3810 0.0476 0.1905 0.2857 0.4286 0.0476 0.4286 0.2857 0.4286 0.2381

R30 0.1429 0.4286 0.3333 0.2381 0.2857 0.2857 0.1429 0.2857 0.3810 0.4762 0.1905 0.3810 0.2857 0.4286 0.3333

R31 0.1429 0.4286 0.3810 0.1905 0.2381 0.1905 0.1429 0.2857 0.2381 0.3810 0.0952 0.3810 0.2857 0.3333 0.1905

R32 0.1429 0.3810 0.2857 0.2857 0.2857 0.1905 0.0952 0.2381 0.2857 0.3810 0.1905 0.4286 0.2381 0.3810 0.2857

R33 0.1429 0.3333 0.3333 0.3333 0.2381 0.3333 0.1429 0.2381 0.2857 0.4286 0.2857 0.4286 0.1905 0.3810 0.2381

R34 0.1429 0.4286 0.2857 0.2381 0.2857 0.2857 0.0476 0.1905 0.2857 0.4286 0.1429 0.4286 0.2381 0.3810 0.2381

R35 0.1905 0.3333 0.3810 0.2381 0.2381 0.2857 0.1429 0.2381 0.2857 0.4762 0.1905 0.3333 0.2381 0.4286 0.1905

R36 0.1429 0.3810 0.3333 0.2381 0.2857 0.3333 0.0952 0.2381 0.2857 0.4762 0.1905 0.3810 0.1905 0.4286 0.2381

R37 0.1429 0.3333 0.3333 0.1905 0.2857 0.2381 0.0476 0.3333 0.3333 0.4286 0.2381 0.3810 0.2381 0.3810 0.3333

R38 0.1905 0.3810 0.3810 0.2381 0.3333 0.2857 0.0476 0.2857 0.2381 0.3333 0.0952 0.4286 0.2857 0.4286 0.1905

R39 0.1429 0.3810 0.3333 0.1429 0.2381 0.3333 0.0952 0.2381 0.2857 0.3810 0.2381 0.3810 0.2381 0.3333 0.2381

R40 0.1905 0.2857 0.2381 0.1429 0.2857 0.3333 0.0476 0.2857 0.3333 0.3810 0.0952 0.4286 0.2381 0.4286 0.2857

R41 0.1429 0.3333 0.3333 0.2857 0.2381 0.3333 0.0476 0.2381 0.3333 0.3810 0.1429 0.3810 0.1905 0.4286 0.1905

R42 0.1905 0.3333 0.2381 0.3333 0.1905 0.2857 0.0476 0.2857 0.2857 0.3810 0.1429 0.3810 0.2857 0.3810 0.2381

R43 0.1429 0.3810 0.3810 0.2381 0.2381 0.2857 0.1429 0.3333 0.2381 0.3810 0.1429 0.3810 0.2857 0.3810 0.2381

R44 0.2381 0.4762 0.3810 0.2381 0.2381 0.2381 0.0476 0.2857 0.2381 0.4286 0.0952 0.3333 0.2381 0.3810 0.2857

R45 0.2381 0.3810 0.2381 0.2857 0.2381 0.1905 0.1429 0.2857 0.2381 0.4286 0.1429 0.3333 0.3333 0.2381 0.2857

R46 0.1905 0.3810 0.2857 0.1905 0.3810 0.2381 0.0476 0.2381 0.2857 0.4762 0.1429 0.3333 0.1905 0.3333 0.2857

R47 0.1905 0.4286 0.2857 0.1905 0.2857 0.2381 0.0476 0.2857 0.2857 0.3810 0.1429 0.3810 0.2381 0.4286 0.2857

R48 0.1429 0.3333 0.3333 0.1905 0.2857 0.2857 0.0952 0.3333 0.2857 0.4762 0.1429 0.3810 0.2381 0.4286 0.2381

R49 0.1429 0.4286 0.2381 0.2381 0.2381 0.2857 0.1429 0.2857 0.2857 0.3810 0.1429 0.4286 0.2857 0.3810 0.1905

R50 0.1905 0.3810 0.2381 0.2857 0.2857 0.2381 0.1429 0.3333 0.2381 0.4286 0.1429 0.3810 0.3333 0.2857 0.2857

Avg. 0.1648 0.3733 0.3152 0.2352 0.2619 0.2771 0.1019 0.2724 0.2828 0.4162 0.1514 0.3867 0.2600 0.3648 0.2505

p-val. 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2602 0.0000 0.0000 0.0000 0.0000

Table 4: Performance of the RUSBoost classifier for task decoding in experiment 2 using one observer out procedure. Columns
represent images 1 to 15 and each row corresponds to an individual run. Chance level is at 14.29%. Results are using the first
two feature types (i.e., a 11610D vector). Shown by the last row p-values (across RUSBoost runs), decoding is significantly
above chance for some images, is significantly below chance for image number 7, and is non-significant versus chance for image
number 11 (using t-test).
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