Last time: Problem-Solving

• **Problem solving:**
 • Goal formulation
 • Problem formulation (states, operators)
 • Search for solution

• **Problem formulation:**
 • Initial state
 • ?
 • ?
 • ?
 • ?

• **Problem types:**
 • single state: accessible and deterministic environment
 • multiple state: ?
 • contingency: ?
 • exploration: ?
Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - Operators
 - Goal test
 - Path cost

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: ?
 - contingency: ?
 - exploration: ?
Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - Operators
 - Goal test
 - Path cost

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: inaccessible and deterministic environment
 - contingency: inaccessible and nondeterministic environment
 - exploration: unknown state-space
Last time: Finding a solution

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(*problem, strategy*) returns a *solution*, or failure

initialize the search tree using the initial state *problem*

loop do

if there are no candidates for expansion **then return** failure

choose a leaf node for expansion according to strategy

if the node contains a goal state **then return** the corresponding solution

else expand the node and add resulting nodes to the search tree

end
Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state.

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding).

```plaintext
Function General-Search(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add resulting nodes to the search tree
    end
```

Strategy: The search strategy is determined by ???
Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(*problem, strategy*) returns a *solution*, or failure

initialize the search tree using the initial state *problem*

loop do

if there are no candidates for expansion *then return* failure

choose a leaf node for expansion according to strategy

if the node contains a goal state *then return* the corresponding solution

else expand the node and add resulting nodes to the search tree

end

Strategy: The search strategy is determined by the order in which the nodes are expanded.
A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) **returns** a solution, or failure

`open` ← make-queue(make-node(initial-state[problem]))
`closed` ← [empty]

loop do

if open is empty *then return* failure

`currnode` ← Remove-Front(open)

if Goal-Test[problem] applied to State(curnode) *then return* curnode

`children` ← Expand(curnode, Operators[problem])

while children not empty

... see next slide ...

end

`closed` ← Insert(closed, curnode)
`open` ← Sort-By-PathCost(open)

end
A Clean Robust Algorithm

\[
\begin{aligned}
\text{children} & \leftarrow \text{Expand}(\text{currnode}, \text{Operators}[\text{problem}]) \\
\text{while} \; \text{children} \; \text{not empty} & \\
\quad \text{child} & \leftarrow \text{Remove-Front}(\text{children}) \\
\quad \text{if} \; \text{no node in open or closed has child’s state} & \\
\quad \quad \text{open} & \leftarrow \text{Queuing-Fn}(\text{open}, \text{child}) \\
\quad \text{else if} \; \text{there exists node in open that has child’s state} & \\
\quad \quad \text{if PathCost}(\text{child}) < \text{PathCost}(\text{node}) & \\
\quad \quad \quad \text{open} & \leftarrow \text{Delete-Node}(\text{open}, \text{node}) \\
\quad \quad \quad \text{open} & \leftarrow \text{Queuing-Fn}(\text{open}, \text{child}) \\
\quad \text{else if} \; \text{there exists node in closed that has child’s state} & \\
\quad \quad \text{if PathCost}(\text{child}) < \text{PathCost}(\text{node}) & \\
\quad \quad \quad \text{closed} & \leftarrow \text{Delete-Node}(\text{closed}, \text{node}) \\
\quad \quad \quad \text{open} & \leftarrow \text{Queuing-Fn}(\text{open}, \text{child}) \\
\quad \text{end} & \\
\end{aligned}
\]
Last time: search strategies

Uninformed: Use only information available in the problem formulation
- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening

Informed: Use heuristics to guide the search
- Best first
- A*
Evaluation of search strategies

- Search algorithms are commonly evaluated according to the following four criteria:
 - **Completeness**: does it always find a solution if one exists?
 - **Time complexity**: how long does it take as a function of number of nodes?
 - **Space complexity**: how much memory does it require?
 - **Optimality**: does it guarantee the least-cost solution?

- Time and space complexity are measured in terms of:
 - b – max branching factor of the search tree
 - d – depth of the least-cost solution
 - m – max depth of the search tree (may be infinity)
Last time: uninformed search strategies

Uninformed search:
Use only information available in the problem formulation
- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening
This time: informed search

Informed search:

Use heuristics to guide the search

- Best first
- A*
- Heuristics
- Hill-climbing
- Simulated annealing
Best-first search

- **Idea:**
 use an evaluation function for each node; estimate of "desirability"

 ⇒ expand most desirable unexpanded node.

- **Implementation:**

 QueueingFn = insert successors in decreasing order of desirability

- **Special cases:**
 greedy search
 A* search
Romania with step costs in km

Straight-line distance to Bucharest

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobrota</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamț</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vlcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy search

- **Estimation function:**
 \[h(n) = \text{estimate of cost from } n \text{ to goal (heuristic)} \]

- **For example:**
 \[h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest} \]

- Greedy search expands first the node that appears to be closest to the goal, according to \(h(n) \).
Greedy search example

Arad

366
Properties of Greedy Search

- Complete?
- Time?
- Space?
- Optimal?
Properties of Greedy Search

• Complete? No – can get stuck in loops
e.g., Iasi > Neamt > Iasi > Neamt > ...
Complete in finite space with repeated-state checking.

• Time? O(b^m) but a good heuristic can give
dramatic improvement

• Space? O(b^m) – keeps all nodes in memory

• Optimal? No.
A* search

• Idea: avoid expanding paths that are already expensive

evaluation function: \(f(n) = g(n) + h(n) \) with:
 \(g(n) \) – cost so far to reach \(n \)
 \(h(n) \) – estimated cost to goal from \(n \)
 \(f(n) \) – estimated total cost of path through \(n \) to goal

• A* search uses an admissible heuristic, that is,
 \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the true cost from \(n \).
 For example: \(h_{SLD}(n) \) never overestimates actual road distance.

• Theorem: A* search is optimal
A* search example

Arad

366
Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

\[
\begin{align*}
 f(G_2) &= g(G_2) \quad \text{since } h(G_2) = 0 \\
 &> g(G_1) \quad \text{since } G_2 \text{ is suboptimal} \\
 &\geq f(n) \quad \text{since } h \text{ is admissible}
\end{align*}
\]

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.
Optimality of A* (more useful proof)

Lemma: A* expands nodes in order of increasing f value

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
Properties of A*

- Complete?
- Time?
- Space?
- Optimal?
Properties of A*

- Complete? Yes, unless infinitely many nodes with $f \leq f(G)$

- Time? Exponential in \(((\text{relative error in } h) \times \text{(length of solution)})\)

- Space? Keeps all nodes in memory

- Optimal? Yes – cannot expand f_{i+1} until f_i is finished
Proof of lemma: pathmax

For some admissible heuristics, f may decrease along a path.

E.g., suppose n' is a successor of n.

\[
\begin{array}{c}
\text{n} & g=5 & h=4 & f=9 \\
1 \\
\text{n'} & g'=6 & h'=2 & f'=8
\end{array}
\]

But this throws away information!
$f(n) = 9 \Rightarrow$ true cost of a path through n is ≥ 9
Hence true cost of a path through n' is ≥ 9 also.

Pathmax modification to A*:
Instead of $f(n') = g(n') + h(n')$, use $f(n') = \max(g(n') + h(n'), f(n))$.

With pathmax, f is always nondecreasing along any path.
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]
(i.e., no. of squares from desired location of each tile)

Start State

\[
\begin{array}{ccc}
5 & 4 & \text{ } \\
6 & 1 & 8 \\
7 & 3 & 2 \\
\end{array}
\]

Goal State

\[
\begin{array}{ccc}
1 & 2 & 3 \\
8 & \text{ } & 4 \\
7 & 6 & 5 \\
\end{array}
\]

\[h_1(S) = ?? \]
\[h_2(S) = ?? \]
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
5 & 4 & \\
6 & 1 & 8 \\
7 & 3 & 2
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
8 & \\
7 & 6 & 5
\end{array}
\]

Start State Goal State

\[h_1(S) = ?? \quad 7 \]
\[h_2(S) = ?? \quad 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18 \]
Relaxed Problem

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Next time

- Iterative improvement
- Hill climbing
- Simulated annealing