
CS 561, Session 19 1

Logical reasoning systems

• Theorem provers and logic programming languages

• Production systems

• Frame systems and semantic networks

• Description logic systems

CS 561, Session 19 2

Logical reasoning systems

• Theorem provers and logic programming languages – Provers: use
resolution to prove sentences in full FOL. Languages: use backward
chaining on restricted set of FOL constructs.

• Production systems – based on implications, with consequents
interpreted as action (e.g., insertion & deletion in KB). Based on
forward chaining + conflict resolution if several possible actions.

• Frame systems and semantic networks – objects as nodes in a
graph, nodes organized as taxonomy, links represent binary
relations.

• Description logic systems – evolved from semantic nets. Reason
with object classes & relations among them.

CS 561, Session 19 3

Basic tasks

• Add a new fact to KB – TELL

• Given KB and new fact, derive facts implied by conjunction of KB
and new fact. In forward chaining: part of TELL

• Decide if query entailed by KB – ASK

• Decide if query explicitly stored in KB – restricted ASK

• Remove sentence from KB: distinguish between correcting false
sentence, forgetting useless sentence, or updating KB re. change in
the world.

CS 561, Session 19 4

Indexing, retrieval & unification

• Implementing sentences & terms: define syntax and map sentences
onto machine representation.

Compound: has operator & arguments.
e.g., c = P(x) ∧ Q(x) Op[c] = ∧ ; Args[c] = [P(x), Q(x)]

• FETCH: find sentences in KB that have same structure as query.
ASK makes multiple calls to FETCH.

• STORE: add each conjunct of sentence to KB. Used by TELL.
e.g., implement KB as list of conjuncts
TELL(KB, A ∧ ¬ B) TELL(KB, ¬C ∧ D)
then KB contains: [A, ¬B, ¬C, D]

CS 561, Session 19 5

Complexity

• With previous approach,

FETCH takes O(n) time on n-element KB

STORE takes O(n) time on n-element KB (if check for duplicates)

Faster solution?

CS 561, Session 19 6

Table-based indexing

• Use hash table to avoid looping over entire KB for each TELL or
FETCH

e.g., if only allowed literals are single letters, use a 26-element
array to store their values.

• More generally:
- convert to Horn form
- index table by predicate symbol
- for each symbol, store:

list of positive literals
list of negative literals
list of sentences in which predicate is in conclusion
list of sentences in which predicate is in premise

CS 561, Session 19 7

Tree-based indexing

• Hash table impractical if many clauses for a given predicate symbol

• Tree-based indexing (or more generally combined indexing):
compute indexing key from predicate and argument symbols

Predicate?

First arg?

CS 561, Session 19 8

Unification algorithm

• Using clever indexing, can reduce number of calls to unification

• Still, unification called very often (at basis of modus ponens) =>
need efficient implementation.

• See AIMA p. 303 for example of algorithm with O(n^2) complexity
(n being size of expressions being unified).

CS 561, Session 19 9

Logic programming

Remember: knowledge engineering vs. programming…

CS 561, Session 19 10

Logic programming systems

e.g., Prolog:

• Program = sequence of sentences (implicitly conjoined)
• All variables implicitly universally quantified
• Variables in different sentences considered distinct
• Horn clause sentences only (= atomic sentences or sentences with

no negated antecedent and atomic consequent)
• Terms = constant symbols, variables or functional terms
• Queries = conjunctions, disjunctions, variables, functional terms
• Instead of negated antecedents, use negation as failure operator:

goal NOT P considered proved if system fails to prove P
• Syntactically distinct objects refer to distinct objects
• Many built-in predicates (arithmetic, I/O, etc)

CS 561, Session 19 11

Prolog systems

CS 561, Session 19 12

Prolog example

CS 561, Session 19 13

Expanding Prolog

• Parallelization:
OR-parallelism: goal may unify with many different literals and

implications in KB
AND-parallelism: solve each conjunct in body of an implication

in parallel

• Compilation: generate built-in theorem prover for different
predicates in KB

• Optimization: for example through re-ordering
e.g., “what is the income of the spouse of the president?”

Income(s, i) ∧ Married(s, p) ∧ Occupation(p, President)
faster if re-ordered as:

Occupation(p, President) ∧ Married(s, p) ∧ Income(s, i)

CS 561, Session 19 14

Theorem provers

• Differ from logic programming languages in that:
- accept full FOL
- results independent of form in which KB entered

CS 561, Session 19 15

OTTER

• Organized Techniques for Theorem Proving and Effective Research
(McCune, 1992)

• Set of support (sos): set of clauses defining facts about problem
• Each resolution step: resolves member of sos against other axiom
• Usable axioms (outside sos): provide background knowledge about

domain
• Rewrites (or demodulators): define canonical forms into which

terms can be simplified. E.g., x+0=x
• Control strategy: defined by set of parameters and clauses. E.g.,

heuristic function to control search, filtering function to eliminate
uninteresting subgoals.

CS 561, Session 19 16

OTTER

• Operation: resolve elements of sos against usable axioms

• Use best-first search: heuristic function measures “weight” of each
clause (lighter weight preferred; thus in general weight correlated
with size/difficulty)

• At each step: move lightest close in sos to usable list, and add to
usable list consequences of resolving that close against usable list

• Halt: when refutation found or sos empty

CS 561, Session 19 17

Example

CS 561, Session 19 18

CS 561, Session 19 19

CS 561, Session 19 20

Forward-chaining production systems

• Prolog & other programming languages: rely on backward-chaining
(I.e., given a query, find substitutions that satisfy it)

• Forward-chaining systems: infer everything that can be inferred
from KB each time new sentence is TELL’ed

• Appropriate for agent design: as new percepts come in, forward-
chaining returns best action

CS 561, Session 19 21

Implementation

• One possible approach: use a theorem prover, using resolution to
forward-chain over KB

• More restricted systems can be more efficient.

• Typical components:
- KB called “working memory” (positive literals, no variables)
- rule memory (set of inference rules in form

p1 ∧ p2 ∧ … � act1 ∧ act2 ∧ …
- at each cycle: find rules whose premises satisfied

by working memory (match phase)
- decide which should be executed (conflict resolution phase)
- execute actions of chosen rule (act phase)

CS 561, Session 19 22

Match phase

• Unification can do it, but inefficient

• Rete algorithm (used in OPS-5 system): example
rule memory:

A(x) ∧ B(x) ∧ C(y) � add D(x)
A(x) ∧ B(y) ∧ D(x) � add E(x)
A(x) ∧ B(x) ∧ E(x) � delete A(x)

working memory:
{A(1), A(2), B(2), B(3), B(4), C(5)}

• Build Rete network from rule memory, then pass working memory
through it

CS 561, Session 19 23

Rete network

D A=D add E

A B A=B C add D

E delete A
A(1),
A(2)

B(2),
B(3),
B(4)

A(2),
B(2)

C(5) D(2)

Circular nodes: fetches to WM; rectangular nodes: unifications
A(x) ∧ B(x) ∧ C(y) � add D(x)
A(x) ∧ B(y) ∧ D(x) � add E(x)
A(x) ∧ B(x) ∧ E(x) � delete A(x)

{A(1), A(2), B(2), B(3), B(4), C(5)}

CS 561, Session 19 24

Advantages of Rete networks

• Share common parts of rules

• Eliminate duplication over time (since for most production systems
only a few rules change at each time step)

CS 561, Session 19 25

Conflict resolution phase

• one strategy: execute all actions for all satisfied rules

• or, treat them as suggestions and use conflict resolution to pick one
action.

• Strategies:
- no duplication (do not execute twice same rule on same args)
- regency (prefer rules involving recently created WM elements)
- specificity (prefer more specific rules)
- operation priority (rank actions by priority and pick highest)

CS 561, Session 19 26

Frame systems & semantic networks

• Other notation for logic; equivalent to sentence notation

• Focus on categories and relations between them (remember
ontologies)

• e.g., Cats Mammals
Subset

CS 561, Session 19 27

Semantic network link types

Link type Semantics Example

A B A ⊂ B Cats Mammals

A B A ∈ B Bill Cats

A B R(A, B) Bill 12

A B ∀ x x ∈ A � R(x, B) Birds 2

A B ∀ x ∃ y x ∈ A � y ∈ B ∧ R(x, y) Birds Birds

Subset

Member

R

R

R Parent

Legs

Age

Member

Subset

CS 561, Session 19 28

Description logics

• FOL: focus on objects

• Description logics: focus on categories and their definitions

• Principal inference tasks:
- subsumption: is one category subset of another?
- classification: object belings to category?

CS 561, Session 19 29

CLASSIC

• And(concept, …)
• All(RoleName, Concept)
• AtLeast(Integer, RoleName)
• AtMost(Integer, RolaName)
• Fills(RoleName, IndividualName, …)
• SameAs(Path, Path)
• OneOf(IndividualName, …)

e.g., Bachelor = And(Unmarried, Adult, Male)

