Planning

- Search vs. planning
- STRIPS operators
- Partial-order planning
What we have so far

- Can TELL KB about new percepts about the world
- KB maintains model of the current world state
- Can ASK KB about any fact that can be inferred from KB

How can we use these components to build a planning agent, i.e., an agent that constructs plans that can achieve its goals, and that then executes these plans?
Remember: Problem-Solving Agent

Note: This is offline problem-solving. Online problem-solving involves acting w/o complete knowledge of the problem and environment.
Simple planning agent

• Use percepts to build model of current world state

• IDEAL-PLANNER: Given a goal, algorithm generates plan of action

• STATE-DESCRIPTION: given percept, return initial state description in format required by planner

• MAKE-GOAL-QUERY: used to ask KB what next goal should be
A Simple Planning Agent

function SIMPLE-PLANNING-AGENT(percept) returns an action

static: KB, a knowledge base (includes action descriptions)
p, a plan (initially, NoPlan)
t, a time counter (initially 0)

local variables: G, a goal
current, a current state description

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current ← STATE-DESCRIPTION(KB, t)

if p = NoPlan then
 G ← ASK(KB, MAKE-GOAL-QUERY(t))
p ← IDEAL-PLANNER(current, G, KB)

if p = NoPlan or p is empty then
 action ← NoOp
else
 action ← FIRST(p)
p ← REST(p)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t ← t+1

return action
Search vs. planning

Consider the task *get milk, bananas, and a cordless drill*

Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate
Search vs. planning

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
<td>Lisp data structures</td>
<td>Logical sentences</td>
</tr>
<tr>
<td>Actions</td>
<td>Lisp code</td>
<td>Preconditions/outcomes</td>
</tr>
<tr>
<td>Goal</td>
<td>Lisp code</td>
<td>Logical sentence (conjunction)</td>
</tr>
<tr>
<td>Plan</td>
<td>Sequence from S_0</td>
<td>Constraints on actions</td>
</tr>
</tbody>
</table>
Planning in situation calculus

\(\text{PlanResult}(p, s) \) is the situation resulting from executing \(p \) in \(s \)
\[
\text{PlanResult}([], s) = s \\
\text{PlanResult}([a|p], s) = \text{PlanResult}(p, \text{Result}(a, s))
\]

Initial state \(\text{At(Home, S_0)} \land \neg \text{Have(Milk, S_0)} \land \ldots \)

Actions as Successor State axioms
\[
\text{Have(Milk, Result(a, s))} \iff \\
[(a = \text{Buy(Milk)} \land \text{At(Supermarket, s)}) \lor (\text{Have(Milk, s)} \land a \neq \ldots)]
\]

Query
\[
s = \text{PlanResult}(p, S_0) \land \text{At(Home, s)} \land \text{Have(Milk, s)} \land \ldots
\]

Solution
\[
p = [\text{Go(Supermarket)}, \text{Buy(Milk)}, \text{Buy(Bananas)}, \text{Go(HWS)}, \ldots]
\]

Principal difficulty: unconstrained branching, hard to apply heuristics
Basic representation for planning

- Most widely used approach: uses STRIPS language

- **states:** conjunctions of function-free ground literals (i.e., predicates applied to constant symbols, possibly negated); e.g.,

 \[\text{At(Home)} \land \neg \text{Have(Milk)} \land \neg \text{Have(Bananas)} \land \neg \text{Have(Drill)} \ldots\]

- **goals:** also conjunctions of literals; e.g.,

 \[\text{At(Home)} \land \text{Have(Milk)} \land \text{Have(Bananas)} \land \text{Have(Drill)}\]

 but can also contain variables (implicitly universally quant.); e.g.,

 \[\text{At}(x) \land \text{Sells}(x, \text{Milk})\]
Planner vs. theorem prover

- **Planner**: ask for sequence of actions that makes goal true if executed

- **Theorem prover**: ask whether query sentence is true given KB
STRIPS operators

Tidily arranged actions descriptions, restricted language

Action: \(Buy(x) \)

Precondition: \(At(p), Sells(p, x) \)

Effect: \(Have(x) \)

[Note: this abstracts away many important details!]

Restricted language \(\Rightarrow \) efficient algorithm

- Precondition: conjunction of positive literals
- Effect: conjunction of literals

Graphical notation:

\[
\begin{array}{c}
At(p) \ Sells(p,x) \\
\hline
Buy(x) \\
\hline
Have(x)
\end{array}
\]
Types of planners

• Situation space planner: search through possible situations

• Progression planner: start with initial state, apply operators until goal is reached
 Problem: high branching factor!

• Regression planner: start from goal state and apply operators until start state reached
 Why desirable? usually many more operators are applicable to initial state than to goal state.
 Difficulty: when want to achieve a conjunction of goals

Initial STRIPS algorithm: situation-space regression planner
State space vs. plan space

Standard search: node = concrete world state
Planning search: node = partial plan

Defn: open condition is a precondition of a step not yet fulfilled

Operators on partial plans:
 add a link from an existing action to an open condition
 add a step to fulfill an open condition
 order one step wrt another

Gradually move from incomplete/vague plans to complete, correct plans
Operations on plans

- Refinement operators: add constraints to partial plan

- Modification operator: every other operators
Types of planners

- **Partial order planner**: some steps are ordered, some are not

- **Total order planner**: all steps ordered (thus, plan is a simple list of steps)

- **Linearization**: process of deriving a totally ordered plan from a partially ordered plan.
Partially ordered plans

A plan is **complete** iff every precondition is achieved

A precondition is **achieved** iff it is the effect of an earlier step and no possibly intervening step undoes it
Plan

We formally define a plan as a data structure consisting of:

- Set of **plan steps** (each is an operator for the problem)

- Set of **step ordering constraints**

 e.g., \(A \prec B \) means “A before B”

- Set of **variable binding constraints**

 e.g., \(v = x \) where \(v \) variable and \(x \) constant or other variable

- Set of **causal links**

 e.g., \(A \xrightarrow{c} B \) means “A achieves c for B”
POP algorithm sketch

function POP(initial, goal, operators) returns plan

 plan ← Make-Minimal-Plan(initial, goal)
 loop do
 if Solution?(plan) then return plan
 S_need, c ← Select-Subgoal(plan)
 Choose-Operator(plan, operators, S_need, c)
 Resolve-Threats(plan)
 end

function Select-Subgoal(plan) returns S_need, c

 pick a plan step S_need from Steps(plan)
 with a precondition c that has not been achieved
 return S_need, c
POPS algorithm (cont.)

```plaintext
procedure CHOOSE-OPERATOR(plan, operators, S_{need}, c)
    choose a step S_{add} from operators or STEPS(plan) that has c as an effect
    if there is no such step then fail
    add the causal link S_{add} \rightarrow c \rightarrow S_{need} to LINKS(plan)
    add the ordering constraint S_{add} < S_{need} to ORDERINGS(plan)
    if S_{add} is a newly added step from operators then
        add S_{add} to STEPS(plan)
        add Start < S_{add} < Finish to ORDERINGS(plan)

procedure RESOLVE-THREATS(plan)
    for each S_{threat} that threatens a link S_i \rightarrow S_j in LINKS(plan) do
        choose either
        Demotion: Add S_{threat} < S_i to ORDERINGS(plan)
        Promotion: Add S_j < S_{threat} to ORDERINGS(plan)
        if not CONSISTENT(plan) then fail
    end
```

POP is sound, complete, and **systematic** (no repetition)

Extensions for disjunction, universals, negation, conditionals
Clobbering and promotion/demotion

A **clobberer** is a potentially intervening step that destroys the condition achieved by a causal link. E.g., $Go(\text{Home})$ clobbers $At(HWS)$:

Demotion: put before $Go(HWS)$

Promotion: put after $Buy(Drill)$
Example: block world

"Sussman anomaly" problem

Start State

\[\text{Clear}(x) \quad \text{On}(x,z) \quad \text{Clear}(y) \]
\[\text{PutOn}(x,y) \]
\[\sim \text{On}(x,z) \quad \sim \text{Clear}(y) \quad \text{Clear}(z) \quad \text{On}(x,y) \]

Goal State

\[\text{Clear}(x) \quad \text{On}(x,z) \]
\[\text{PutOnTable}(x) \]
\[\sim \text{On}(x,z) \quad \text{Clear}(z) \quad \text{On}(x,\text{Table}) \]

+ several inequality constraints
Example (cont.)

\[\text{START} \]

\[\text{On}(C,A) \text{ On}(A,\text{Table}) \text{ Cl}(B) \text{ On}(B,\text{Table}) \text{ Cl}(C) \]

\[\text{On}(A,B) \quad \text{On}(B,C) \]

\[\text{FINISH} \]

Example (cont.)

\[\text{START} \]

\[\text{On}(C, A) \quad \text{On}(A, \text{Table}) \quad \text{Cl}(B) \quad \text{On}(B, \text{Table}) \quad \text{Cl}(C) \]

\[\text{Cl}(B) \quad \text{On}(B, z) \quad \text{Cl}(C) \]

\[\text{PutOn}(B, C) \]

\[\text{On}(A, B) \quad \text{On}(B, C) \]

\[\text{FINISH} \]
Example (cont.)
Example (cont.)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

On(C,z) Cl(C)

PutOnTable(C)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)

Cl(B) On(B,z) Cl(C)

PutOn(B,C)

On(A,B) On(B,C)

FINISH

PutOn(A,B) clobbers Cl(B) => order after PutOn(B,C)

PutOn(B,C) clobbers Cl(C) => order after PutOnTable(C)