Artificial Neural Networks and Al

Artificial Neural Networks provide...
- A new computing paradigm

- A technique for developing trainable classifiers, memories,
dimension-reducing mappings, etc

- A tool to study brain function
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Converging Frameworks

e Artificial intelligence (Al): build a
“packet of intelligence” into a machine

e Cognitive psychology: explain human behavior by interacting
processes (schemas) “in the head” but not localized in the brain

. interactions of components of the brain -

e and abstracting from them as both Artificial intelligence and
Cognitive psychology:

- connectionism: networks of trainable “quasi-neurons” to provide “parallel
distributed models” little constrained by neurophysiology

- abstract (computer program or control system) information processing
models
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Vision, Al and ANNSs

\%;/

McCullogh & Pitts, 1942
input neuron output Zi WiXi > e

Perceptron learning rule (Rosenblatt, 1962)
Backpropagation

Hopfield networks (1982)

Kohonen self-organizing maps
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Vision, Al and ANNSs

Aim: give to machines same or better vision capability as ours
Drive: Al, robotics applications and factory automation

Initially: passive, feedforward, layered and hierarchical process
that was just going to provide input to higher reasoning
processes (from Al)

But soon: realized that could not handle real images

make the system more robust by allowing the

vision to adapt with the ongoing recognition/interpretation
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Brodmann’s cytoarchitectural
map ol Cortical Areas

Lateral View




Major Functional Areas

 Primary motor: voluntary movement
« Primary somatosensory: tactile, pain, pressure, position, temp., mvt.
« Motor association: coordination of complex movements

 Prefrontal: planning, emotion, judgement

» Speech center (Broca’'s area): speerh nradictinn and articnlatinn
e Wernicke’'s area: comprehen-

. sion of speech

e Auditory: hearing

e Auditory association: complex

. auditory processi
* Visual: low-level vision
 Visual association: higher-level
. vision
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More on Connectivity



Neurons and Synapses
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Electron Micrograph of a Real Neuron
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Transmenbrane lonic Transport

e [on channels act as gates that allow or block the flow of specific
lons into and out of the cell.

OUTSIDE | OUTSIDE
OF CELL | OF CELL ¢ - OF GELL




The Cable Equation

e See
http://diwww.epfl.ch/~gerstner/SPNM/SPNM.htm|
for excellent additional material (some reproduced here).

e Just a piece of passive dendrite can yield complicated differential
equations which have been extensively studied by electronicians in
the context of the study of coaxial cables (TV antenna cable):

1. r.w"
S TR S
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The Hodgkin-Huxley Model

Example spike trains obtained...
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Detailed Neural Modeling

e A simulator, called “Neuron” has been developed
at Yale to simulate the Hodgkin-Huxley equations,
as well as other membranes/channels/etc.

See http://www.neuron.yale.edu/

Na/Ca exchange

Transmitter
ralease
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The "basic" biological neuron

4

—>

/‘\0
Dendrites Soma Axon with branches and
synaptic terminals

e The soma and dendrites act as the input surface; the axon carries the
outputs.

e The tips of the branches of the axon form synapses upon other neurons or
upon effectors (though synapses may occur along the branches of an axon
as well as the ends). The arrows indicate the direction of "typical”
information flow from inputs to outputs.

CS 561, Session 28 16



Warren McCulloch and Walter Pitts (1943)

A McCulloch-Pitts neuron operates on a discrete
time-scale, t = 0,1,2,3, ... with time tick equal to
one refractory period

X4(t)

x A1)

axon

P y(t+1)

X (1)

At each time step, an input or output is
on or off — 1 or O, respectively.

Each connection or synapse from the output of one neuron to the
iInput of another, has an attached weight.
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Excitatory and Inhibitory Synapses

e We call a synapse
excitatory if w, > 0, and

inhibitory if w; < O.

e We also associate a threshold O with each neuron

e A neuron fires (i.e., has value 1 on its output line) at time t+1 if the
weighted sum of inputs at t reaches or passes 0:

y(t+1) =1 ifandonly if 2 wx(t) =0
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From Logical Neurons to Finite Automata

L Brains, Machines, and
AND Mathematics, 2nd Edition,
1987
1 ¢ ‘ i Boolean Net
1
X- Y
OR @ ‘ ¢
1
NOT x+ {
Finite
1 Automaton

—
Y Q
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Increasing the Realism of Neuron Models

e The McCulloch-Pitts neuron of 1943 is important

as a basis for

. logical analysis of the neurally computable, and

. current design of some neural devices (especially when
augmented by learning rules to adjust synaptic weights).

e However, it is no longer considered a useful model for making
contact with neurophysiological data concerning real neurons.

CS 561, Session 28
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Leaky Integrator Neuron

e The simplest "realistic" neuron model is a
continuous time model based on using the firing rate (e.g., the
number of spikes traversing the axon in the most recent 20 msec.)
as a continuously varying measure of the cell's activity

e The state of the neuron is described by a single variable, the
membrane potential.

e The firing rate is approximated by a sigmoid, function of membrane
potential.

M(t) = o (m(t))
4

sigmoid curve o

4 —p m(t)
CS 561, Session 28 21



Leaky Integrator Model

T rﬁ(t) = -m(t) + h

has solution m(t) = e¥Tm(0) + (1 -eY¥Mh

— h for time constant T > 0.

e We now add synaptic inputs to get the
Leaky Integrator Model:

T r;1(t) = -m(t) + 2. w X()+h
where X(t) is the firing rate at the it input..

e Excitatory input (w; > 0) will increase m(t)

e Inhibitory input (w; < 0) will have the opposite effect.

CS 561, Session 28
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Hopfield Networks

A paper by John Hopfield in 1982 was the catalyst
In attracting the attention of many physicists to
"Neural Networks".

In a network of McCulloch-Pitts neurons

whose output is 1 iff 2wij sj = 6. and is otherwise 0,

neurons are updated synchronously: every neuron processes its
inputs at each time step to determine a new output.

CS 561, Session 28
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Hopfield Networks

e A Hopfield net (Hopfield 1982) is a net of such units
subject to the asynchronous rule for updating one
neuron at a time:

"Pick a unit | at random.

If 2wij sj = 6, turn it on.
Otherwise turn it off."

e Moreover, Hopfield assumes symmetric weights:
Wij = Wiji

CS 561, Session 28
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“Energy” of a Neural Network

Hopfield defined the “energy”:
E=-%22;ssw; + 2,56

If we pick unit i and the firing rule (previous slide) does not
change its s;, it will not change E.

CS 561, Session 28
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si: 0to 1 transition

* If s;initially equals 0, and 2 w;s; 2 6,

then s; goes from O to 1 with all other s; constant,
and the "energy gap", or change in E, is given by

AE——l/zZ(w
- (25 WS
< 0.

Sj + wjs;) + 6

T
iSi - 6) (by symmetry)

CS 561, Session 28
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si: 1to O transition

* If s;initially equals 1, and 2 w;s; < 6,
then s; goes from 1 to 0 with all other s; constant

The "energy gap,” or change in E, Is given, for symmetric w;;,
by:

CS 561, Session 28
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Minimizing Energy

e On every updating we have AE < 0

e Hence the dynamics of the net tends to move E toward a minimum.

 We stress that there may be different such states — they are /oca/ minima.
Global minimization is not guaranteed.

Basin of
-~} s

Attraction for C

C
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Self-Organizing Feature Maps _ﬁ%ﬁ@ﬁ%ﬁ%@@% §§§§§

e The neural sheet is Input
. . ; fibres
represented in a discretized oy
form by a (usually) 2-D R RE=SiE== D=
lattice A of formal neurons. —

Meuron layer

e The input pattern is a vector x from some pattern space V. Input
vectors are normalized to unit length.

e The responsiveness of a neuron at a site r in A is measured by
X.Wr = Zi Xi wri
where wr is the vector of the neuron's synaptic efficacies.

e The "Image" of an external event is regarded as the unit with the
maximal response to it
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Self-Organizing Feature Maps

Typical graphical representation: plot the weights (wr) as vertices

and draw links between neurons that are nearest neighbors in A.

30
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Self-Organizing Feature Maps

e These maps are typically useful to achieve some dimensionality-
reducing mapping between inputs and outputs.

CS 561, Session 28 ¢



Applications: Classification

Business

«Credit rating and risk assessment
eInsurance risk evaluation

eFraud detection

eInsider dealing detection
eMarketing analysis

eMailshot profiling

eSignature verification

eInventory control

Engineering
eMachinery defect diagnosis
eSignal processing
eCharacter recognition
*Process supervision
eProcess fault analysis
eSpeech recognition
eMachine vision
eSpeech recognition

eRadar signal classmcatlonbo 561 Sessior

Security

eFace recognition
eSpeaker verification
eFingerprint analysis

Medicine

eGeneral diagnosis

eDetection of heart defects

Sclence
eRecognising genes
eBotanical classification
eBacteria identification
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Applications: Modelling

Business

ePrediction of share and
commodity prices

ePrediction of economic indicators
eInsider dealing detection
eMarketing analysis

eMailshot profiling

eSignature verification

_ _ Science
Englneerlng ePrediction of the performance of
eTransducer linerisation drugs from the molecular structure
«Colour discrimination Weather prediction
<Robot control and eSunspot prediction
navigation
eProcess control ..
eAircraft landing control Medicine
Car active suspension ». Medical imaging
control and image processing
<Printed Circuit auto
routing
eIntegrated circuit layout CS 561, Session 28 23

-Image compression



Applications: Forecasting

eFuture sales

eProduction Requirements
eMarket Performance
eEconomic Indicators
eEnergy Requirements
Time Based Variables

CS 561, Session 28
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Applications: Novelty Detection

eFault Monitoring
ePerformance Monitoring
eFraud Detection
eDetecting Rate Features
eDifferent Cases

CS 561, Session 28
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Multi-layer Perceptron Classifier

e
LN
j ety
Connection
meights\
1

T i T, 44 . | - LTF.1 .
JINIT FAITerTL IBATUre ¥iallles
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Start with random weights

Multi-layer Perceptron
Classifier

- Apply training pattern

Compute output error

Compute adjustments to weights

e
7 Temimne 1\"‘%-

N T et

Yﬂﬂuﬁmﬂ/

Evaluate average
systern error

http://ams.eqgeo.sail.jrc.it/eurost

at/Lot16- l\
SUPCOM95/node7.html /
= “”\i%—)
< accept able END
., s A
ok N4



Classifiers

e http://www.electronicsletters.com/papers/2001/0020/paper.asp

—» decision

X, —»
e 1-stage approach mnpu classifier [— decision
X, —»
e 2-stage
approach
L ¥i
' X; — feature —>
input : . | classifier
© | exXtraction ,
% — Va




Example: face recognition

Here using the 2-stage approach:

SEX  IDENTITY

FACE

CLASSIFICATION MLP

FEATURE EXTRACTION MLP

39
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Learm ng Rate

Learning rate

05
0.45
o4
0.35
03
0.25%

0.5
0.l
0.05

50

Lo LS50 200 250
Epach
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Testing / Evaluation

e Look at performance as a function of network complexity

LD

i

Test Evvor %a

L0

20 40
MNumber of classes

CS 561, Session 28
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Test Evvor P

Testing / Evaluation

40

30

20

LD

Comparison with other known techniques
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Associlative Memories

e http://www.shef.ac.uk/psychology/qurney/notes '™ '™ =+~

e ldea: store: 3331 Original T
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Associative memory with Hopfield nets

Setup a Hopfield net such that local minima correspond

to the stored patterns.

Issues:

- because of weight symmetry, anti-patterns (binary reverse) are stored as
well as the original patterns (also spurious local minima are created when
many patterns are stored)

- if one tries to store more than about
patterns, the network exhibits unstable behavior

- works well only if patterns are uncorrelated

b
™ EE =4

1,85 ,X3 %, ..} arethe ‘memories’
stored



Capabilities and Limitations of Layered Networks

e |ssues:

- what can given networks do?

- What can they learn to do?

- How many layers required for given task?
- How many units per layer?

- When will a network generalize?

- What do we mean by generalize?

CS 561, Session 28
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Capabilities and Limitations of Layered Networks

e \What about boolean functions?

e Single-layer perceptrons are very limited:
- XOR problem
- eftc.

e But what about multilayer perceptrons?

We can represent any boolean function with a network with just one
hidden layer.

How??

CS 561, Session 28
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Capabilities and Limitations of Layered Networks

To approximate a set of functions of the inputs by a layered network
with continuous-valued units and sigmoidal activation function...

Cybenko, 1988: ... are necessary, with
arbitrary accuracy attainable by adding more hidden units.

Cybenko, 1989: IS enough to approximate any
continuous function.

decompose function to be approximated into a sum
of localized “bumps.” The bumps can be constructed with two hidden

layers.

Similar in spirit to Fourier decomposition. Bumps = radial basis
functions.

CS 561, Session 28 48



Optimal Network Architectures

How can we determine the number of hidden units?

- evaluate variations of the network, using a metric
that combines its performance and its complexity. Then apply various
mutations to the network (change number of hidden units) until the
best one is found.

- apply weight decay (remember reinforcement
learning) during training

- eliminate connections with weight below threshold
- re-train

- For example, eliminate units with total
synaptic input weight smaller than threshold.
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For further information

e See

Hertz, Krogh & Palmer: Introduction to the theory of neural
computation (Addison Wesley)

In particular, the end of chapters 2 and 6.
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