Lecture 4: Introduction to Vision.

Reading Assignments:

Chapters 2 and 3 of textbook.
Today’s lecture

- The challenges:
 - Optics and image formation
 - Sampling and image representation
 - Theoretical limits

- The biological approach:
 - Organization of the primate retina
 - Trading accuracy for coverage: moving eyes

- The engineering approach:
 - Arrays of photosensitive sensors
 - On-board processing and VLSI sensors
 - Trading accuracy for coverage: multiple moving cameras
Projection

- Image
- Object
- focal point
- Lens
- Optical axis
- optical center

f
u
v
Projection

Centre of projection focal length f Image

Object
Convention: Visual Angle

Rather than reporting two numbers (size of object and distance to observer), we will combine both into a single number:

- **visual angle**

 e.g.,
 - the moon: about 0.5 deg visual angle
 - your thumb nail at arm’s length: about 1.5 deg visual angle
 - 1 deg visual angle: 0.3 mm on retina
Charge-Coupled Devices

Uniform array of sensors
Very little on-board processing
Very inexpensive
Optics limitations: acuity
We think of most things in the real world as continuous, yet, everything in a computer is discrete.

The process of mapping a continuous function to a discrete one is called sampling.

The process of mapping a continuous variable to a discrete one is called quantization.

When we represent or render an image using a computer we must both sample and quantize.
Sampling

Sampling Grid

The most common (but not the only) way to generate the table values necessary to represent our function is to multiply the function by a sampling grid. A sampling grid is composed of periodically spaced Kronecker delta functions.

The definition of the 2-D Kronecker delta is:

\[
\delta(x, y) = \begin{cases}
1, & (x, y) = (0, 0) \\
0, & \text{otherwise}
\end{cases}
\]

And a 2-D sampling grid:

\[
\sum_{j=0}^{w-1} \sum_{i=0}^{h-1} \delta(u - i, v - j)
\]
Sampling

Sampling an Image

When a continuous image is multiplied by a sampling grid a discrete set of points are generated. These points are called samples. These samples are pixels. We store them in memory as arrays of numbers representing the intensity of the underlying function.

The same analysis can be applied to geometric objects:
The Big Question

How densely must we sample an image in order to capture its essence?

Since our sampling grid is periodic we can appeal to Fourier analysis for an answer. Fourier analysis states that all periodic signals can be represented as a summation of sinusoidal waves. Thus every image function that we understand as a height field in the spatial domain, has a dual representation in the frequency domain.

We can transform signals from one domain to the other using the Fourier transform.

\[
F(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i2\pi(ux+vy)} \, dx \, dy
\]

\[
f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{i2\pi(ux+vy)} \, du \, dv
\]
Convolution & Fourier Transforms

In order to simplify our analysis we will consider 1-D signals for the moment. It will be straightforward to extend the result to 2-D.

Some operations that are difficult to compute in the spatial domain are simplified when the function is transformed to its dual representation in the frequency domain. One such function is convolution.

Convolution describes how a system with impulse response, \(h(x) \), reacts to a signal, \(f(x) \).

\[
f(x) \star h(x) = \int_{-\infty}^{\infty} f(\lambda)h(x - \lambda)\,d\lambda
\]

This integral evaluation is equivalent to multiplication in the frequency domain

\[
f(x) \star h(x) \rightarrow F(u)H(u)
\]

The converse is also true

\[
F(u) \star H(u) \rightarrow f(x)h(x)
\]
Sampling in the frequency domain

Image sampling was defined as multiplying a periodic series of delta functions by the continuous image. This is the same as convolution in the frequency domain.

Consider the sampling grid:

And the function being sampled
Reconstruction

This amounts to accumulating copies of the function’s spectrum centered at the delta functions of the sampling grid.

Remember the goal of a sampled representation is to faithfully represent the underlying function. Ideally we would apply a low-pass filter to our sampled representation to reconstruct our original function. We will call this processing a reconstruction filter.

In this example we mixed together copies of our function (as seen in the darker overlap regions). In this case subsequent processing does not allow us to separate out a representative copy of our function.
Aliasing

This mixing of spectrums is called aliasing. It has the effect of introducing high-frequencies into our original function. There are two ways of dealing with aliasing.

The first is to low pass filter our signal before we sample it.

The second is to increase the sampling frequency.
Sampling Theorem

In order to have any hope of accurately reconstructing a function from a periodically sampled version of it, two conditions must be satisfied:

1. The function must be bandlimited.
2. The sampling frequency, \(f_s \), must be at least twice the maximum frequency, \(f_{\text{max}} \), of the function.

Satisfying these conditions will eliminate aliasing.

In practice:

- "Jaggies" are aliasing
- Both of the techniques discussed are used
 1. Super-sampling (more samples than pixels)
 2. Low-pass prefiltering (averaging of super-samples)
Aliasing
Eye Anatomy

- Conjunctiva
- Ora serrata
- Ciliary body
- Aqueous
- Iris
- Anterior chamber
- Cornea
- Pupil
- Lens
- Posterior chamber
- Canal of Schlemm
- Retina
- Choroid
- Sclera
- Vitreous
- Macula
- Artery (central retinal)
- Optic nerve
- Vein (central retinal)
- Rectus medialis
Visual Pathways

[Diagram of visual pathways showing the eye, optic nerve, optic chiasm, optic tract, lateral geniculate nucleus, primary visual cortex, and optic radiation.]
Image Formation

The cornea and lens serve to refract light and focus an image of the object upon the retinal surface.

Accommodation

Accommodation: ciliary muscles can adjust shape of lens, yielding an effect equivalent to an autofocus.
Phototransduction Cascade

Net effect: light (photons) is transformed into electrical (ionic) current.
Roughly speaking: 3 types of cones, sensitive to red, green and blue.
Processing layers in retina
Retinal Processing
Center-Surround organization: neurons with receptive field at given location receive inhibition from neurons with receptive fields at neighboring locations (via inhibitory interneurons).
Early Processing in Retina

Transient Response

ON-center OFF-surround

Stimulus: on off

Kuffler 1953
Color Processing

Double-Opponency: space & chromaticity

Livingstone & Hubel 1984

Over-representation of the Fovea

Fovea: central region of the retina (1-2deg diameter); has much higher density of receptors, and benefits from detailed cortical representation.
Fovea and Optic Nerve
Blind Spot
Retinal Sampling
Retinal Sampling
Seeing the world through a retina
Because of blurring by the optics, we cannot see infinitely small objects…
Sampling & optics

The sampling grid optimally corresponds to the amount of blurring due to the optics!
Retinal Implants

Problems:

- long-term toxicity (neurons close to electrodes die)
- image quality so low that users hate it!
Silicon Retina

Smoothing network: allows system to adapt to various light levels.
VLSI sensor with retinal organization
Combining cameras

From fixed cameras with overlapping field of view, we can reconstruct a virtual camera with any point of view: virtual PTZ (pan-tilt-zoom).

Figure 2: (a) The GlobeAll system, (b) Real images acquired by two cameras of the system, (c) represents a virtual camera generated from the two views. (d) shows a planar mosaic, depicting a real time view of the monitored scene.